JP4299511B2 - Hot-rolled steel sheet with excellent punchability - Google Patents

Hot-rolled steel sheet with excellent punchability Download PDF

Info

Publication number
JP4299511B2
JP4299511B2 JP2002213925A JP2002213925A JP4299511B2 JP 4299511 B2 JP4299511 B2 JP 4299511B2 JP 2002213925 A JP2002213925 A JP 2002213925A JP 2002213925 A JP2002213925 A JP 2002213925A JP 4299511 B2 JP4299511 B2 JP 4299511B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
shear
rolled steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002213925A
Other languages
Japanese (ja)
Other versions
JP2004052069A (en
Inventor
和久 楠見
志郎 佐柳
靖啓 冨田
健二 才田
正芳 末廣
英邦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002213925A priority Critical patent/JP4299511B2/en
Publication of JP2004052069A publication Critical patent/JP2004052069A/en
Application granted granted Critical
Publication of JP4299511B2 publication Critical patent/JP4299511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は340MPaを超える引張強度を持ち、ブランキング加工、シャーリング加工を施される部品に用いる打ち抜き性に優れた熱延鋼板に関するものであり、これを酸洗した酸洗鋼板や、各種表面処理を施した鋼板に関するものである。
【0002】
【従来の技術】
自動車用を初めとした鋼板を使用した部品の多くは、ブランキング加工、シャーリング加工などを施される場合が多いが、形状精度や切断面の品質に対する要求が年々高まっている。通常の剪断加工においては、切断面は一般的に、ダレ−剪断面−破断面−かえりという様相を示すが、剪断面は平滑で精度的に良好な部分である。この剪断面を増加させる方法としては、クリアランスを小さくすることが挙げられるが、クリアランスを小さくすると2次剪断と呼ばれる不良が発生する。
【0003】
2次剪断の発生は、1次剪断面(2次剪断面と区別するために通常の剪断面について以後このように表現する。) 形成中にポンチとダイスから発生したクラックが、クリアランスが小さいために工具下の圧縮応力領域まで進展してそこで停留するために、材料の分離が生じずに再度剪断面が形成されるという現象である。この2次剪断が生じると、切断面に凹凸が生じて、部品の組み合わせ・溶接などに支障を生じる。また、2次剪断の発生は切断部近傍の応力状態に影響を受けるために、2次剪断が発生した場合の金型調整にて微妙なクリアランス調整が必要となり、コスト・納期の点で不利となる。
【0004】
以上のように2次剪断を抑制することは重要であるが、2次剪断の制御に関する知見は成形条件としてはクリアランス、材質面では軟質化ということのみで系統的検討はなされていない。また、打ち抜き性ということに関しては、特開平3−47922号公報、特開平8−295927号公報などに熱延工程とその後に焼鈍や冷延工程を行うことによる打ち抜き性の改善に関する技術が開示され、特開昭55−73845号公報や特開平3−18403号公報などに合金添加元素を制限することにより打ち抜き性を改善する技術が開示されているが、2次剪断を抑制する技術は開示されていない。
【0005】
【発明が解決しようとする課題】
上記の如く、切断面精度向上のためにクリアランスを小さくした場合の2次剪断発生を抑制しうる、打ち抜き性の優れた熱延鋼板を提供することを目的とする。
【0006】
【課題を解決するための手段】
2次剪断を解決する手段を検討するために詳細検討したところ、1次剪断面の長さが大きいと2次剪断面発生量が減少することが明らかになった。これは1次剪断面の長さが大きいと、パンチ、ダイスでのクラック発生位置がお互いに近くなるために、クラックが会合しやすくなるためと考えられる。そこで、1次剪断長さを長くするための冶金的因子を詳細検討した結果、鋼中のC,Si,Sの量を制御することにより2次剪断を抑制できることを明らかにした。
【0007】
その機構としては以下のことが考えられる。C,Sの量は炭化物や介在物の量を決定している。1次剪断の長さは1次剪断面の形成中のクラックの発生を抑制することが重要であり、それには炭化物や介在物の量を減少させるためにC,S量を少なくする方が良いと考えられる。また、Siの添加は炭化物を分散析出させる効果があり、Si量が多いほどクラックの発生が抑制されて1次剪断長さが長くなることが考えられる。
【0008】
また、これらの鋼では強化のためにMnを添加しているが、Mnが多く添加される場合にはMn偏析が層状に生じて、板厚方向に強度のばらつきが生じることがある。さらにMnの偏析は炭化物形成にも影響を及ぼし、その場合、パーライトが層状に分布するバンド組織を呈することがある。このMn偏析の2次剪断発生に及ぼす影響を検討したところ、Mn濃度にばらつきが大きい場合には上記のC,Si,Sを制御して1次剪断を長くしたとしても2次剪断が部分的に残存して切断面の品質が良好とならないが、Mn濃度のばらつきを制限することにより、仮にバンド組織が生じた場合でも2次剪断が抑制できることを明らかにした。この理由としては、Mn偏析のばらつきが小さい場合には、板厚方向の強度ばらつきが小さくなり、クラック発生が均一となるためであると推察された。
【0009】
以上のように、鋼中のC,Si,Sの量を制御することと、Mn濃度ばらっきを制限することにより2次剪断を抑制できる。また、このような思想は断面全体を剪断面とするべく行われるファインブランキング加工にも通じ、良好なファインブランキング性を示すものと考えられる。
【0010】
本発明の要旨とするところは、以下の通りである。
(1)質量%で、
C :0.05〜0.12%、 Si:0.05〜0.3%、
Mn:0.3〜0.7%、 S :0.01%以下、
P :0.1%以下、 Al:0.005〜0.1%、
N :0.01%以下、 Ni:0.01〜2%、
Cu:0.01〜2%、 Cr:0.01〜2%
を含有し、残部Fe及び不可避的不純物からなり、鋼板中のMn濃度の標準偏差が全Mn濃度の20%以下であり、パンチ径20mmφで打ち抜く際に、クリアランスが板厚の10%で2次剪断が出現しなくなることを特徴とする打ち抜き性に優れた熱延鋼板。
【0011】
(2)鋼成分が、更に質量%で、B:0.0005〜0.01%を含有することを特徴とする上記(1)に記載の打ち抜き性に優れた熱延鋼板。
【0012】
(3)鋼成分が、更に質量%で、Ti,Nb,V,Moの1種又は2種以上を0.005〜0.5%含有することを特徴とする上記(1)又は(2)に記載の打ち抜き性に優れた熱延鋼板。
【0014】
【発明の実施の形態】
本発明の成分の限定理由としては以下の通りである。
Cは炭化物量を決定する元素であり、2次剪断の抑制のためには低い方が望ましい。しかし、低炭素化は製鋼コストの上昇を招き、また炭素自体は安価な強化元素であるために340MPa以上の引張強度を得るためには適量の添加が必要となる。本発明では強度確保の観点で下限を0.05%とし、2次剪断抑制の観点から上限を0.12%以下と制限する。上限に関しては上述の如く低い方が有利であり、0.1%以下とするとさらに2次剪断が抑制される。
【0015】
Siは炭化物を微細分散させる効果があり、2次剪断抑制効果がある。その効果が発揮されるための下限を0.05%とした。一方、多量の添加は表面のスケール発生に影響し、鋼板表面粗度を不均一にする方向であり、酸洗性も劣化させるため、0.3%以下の添加が望ましい。
【0016】
Mnは固溶強化により引張強度を確保するために必要であり、下限を0.3%とした。Mnの添加量により必要な強度が得られるように適当に決めれば良い。一方、Mnの強度上昇の効果は添加量を増加させると飽和するうえ、Mn添加量が大きくなると偏析によりMn濃度ばらつきが生じやすくなり、それらを後述のレベルに低下させるための手段が必要となるため、0.7%以下の添加が望ましい。
【0017】
Sは主な介在物であるMnSに影響を与える元素である。2次剪断の抑制のためには低い方が望ましく、上限を0.01%以下とする。下限については特に限定されるものではないが、脱硫コストの観点からは0.001%程度までとするのが望ましい。
【0018】
基本的には上記の元素を制御すれば2次剪断が抑制され、打ち抜き性に優れた熱延鋼板を実現できるが、場合によっては以下の元素を添加しても良い。
Bは熱延でのスラブ加熱中もしくは粗圧延中にBNとして析出するために材質の捲取温度依存性が小さくなる効果がある。しかし、過度の添加は延性を低下させるため、Bを添加する場合は0.0005%〜0.01%とすることが望ましい。
【0019】
Ti,Nb,V,Moの1種または2種以上を0.005%〜0.5%添加することができる。この種の元素を添加することにより、炭化物、窒化物による析出強化が期待できるが、過度に添加すると延性が低下するために、上記の範囲に添加するのが望ましい。
【0020】
Ni,Cu,Crをそれぞれ0.01〜2%添加する。これらの微量添加はスケール疵を減少させる効果があるものの、過度の添加は延性の低下と合金コスト増を招くために、上記の範囲に添加するのが望ましい。
【0021】
以上の元素のほかに、通常に存在する元素としてはP,Al,Nがある。
Pは強度向上に効果のある元素であるが、溶接性を低下させる元素である。添加する場合は、0.1%以下に抑えるのが望ましい。
【0022】
Alは脱酸元素として添加するが、少量であると脱酸効果が低く介在物量が増加し、過度の添加は延性が低下する。そこで特には規定しないものの、0.005%〜0.1%の範囲にあることが望ましい。
【0023】
Nは過度に含まれると加工性を低下させ、時効性も低下させる元素であり、0.01%以下が望ましい。
【0024】
また、Ca,REMは硫化物系介在物が球状化して穴拡げ性を向上させるので、それぞれCa:0.0005%〜0.01%、REM:0.005%〜0.1%添加しても良い。
【0025】
その他、不可避的に含有される微量な不純物については、特に規制する必要は無く、それらの元素が添加されていても本発明の効果に対して影響を及ぼさない。
【0026】
また、Mn偏析のMn濃度ばらつきについては、Mn濃度の標準偏差が全Mn濃度の20%以下としたが、標準偏差が全Mn濃度の20%を超えると板厚方向の強度ばらつきが大きくなり、かつバンド組織も多量に出現して、2次剪断が残存しやすくなるためである。標準偏差が全Mn濃度の20%以下であれば、板厚方向の強度ばらつきも少なく、またバンド組織が出現する場合でも軽微であるために2次剪断発生が抑制されて、打ち抜き性の優れた熱延鋼板を実現できる。Mn濃度は電子線マイクロアナライザーを用い、板厚断面を研磨した試料を板厚方向に線分析することにより濃度分布を測定する方法が推奨される。測定条件を調整してノイズをできるだけ除去して測定する必要がある。
【0027】
以上の熱延鋼板を実現する製造方法としては、特に限定されるものではなく、Mn偏析に関して本発明の範囲を満たすようにすれば、2次剪断発生が抑制されて、打ち抜き性の優れた熱延鋼板を得ることができる。製造コストの点からは連続鋳造にて製造したスラブを、ホットチャージまたは一旦冷却した後に1000℃以上、1400℃以下に再加熱して、仕上げ圧延温度800℃〜900℃、捲取温度700℃以下で熱延するような工程が推奨される。生産量が少ない場合には薄スラブ連続鋳造からの直接熱延も可能である。
【0028】
Mn添加量を多くすると、Mn偏析が顕著となる。これらを緩和して本発明の範囲とする方法としては、鋳造中の冷却制御、電磁攪拌、溶鋼温度制御、鋳造時の軽圧下などが考えられるが、これらについては鋳造機の個々に対して条件を最適化し、コストや状況を含めて適当な方法を選択すればよい。
【0029】
なお、本発明鋼は、電磁攪拌条件を工夫することで得ることができる。すなわち電磁攪拌の加速度を高くするため、流速を20cm/s以下として0.5s(秒)で電流を立ち上げ、3秒通電し、0.5秒で立ち下げて1秒通電しないというサイクルを連続して行うというものである。これにより凝固シェル前面と溶鋼に剪断力を発生させてデンドライトを分断し、等軸晶化することによりMnの偏析を低減できる。さらに、内部の身凝固部の温度を保持したまま、凝固の直前で中心固相率が0.7%まで軽圧下を行い、さらなるMn偏析の抑制を図ることができる。
【0030】
【実施例】
以下、本発明の実施例について説明する。
表1,2に示す化学成分のスラブを表1,2に併せて示す条件にて熱延した。表2の鋼は表1に示す鋼をべースにいくつかの元素を添加したものである。スラブ厚さは250mm、熱延鋼板の板厚は4.0mmとした。熱延板のうち、実験番号1、3、6、7、12、192445〜48、53は、酸洗ラインにて表面のスケールを除去した酸洗鋼板とした。製造した鋼板の引張強度は、JIS5号試験片により圧延方向と平行方向で測定し、引張強度が340MPa以上であれば凡例○、以下であれば凡例×として表1,2に示した。
【0031】
Mn濃度分布は鋼板の任意の部位から断面研磨した試料を作成し、電子線マイクロアナライザーによる板厚方向の線分析にて測定し、統計処理により標準偏差を求めた。打抜き試験は汎用の打抜き工具で行った。パンチ径は20mmφでダイス径を変更することによりクリアランスを変更した。2次剪断の発生は目視で行い、クリアランスが板厚の10%で2次剪断が出現しなくなる場合を凡例◎、クリアランスが板厚の11.3%で2次剪断が出現しなくなる場合を凡例○、クリアランスが板厚の11.3%でも2次剪断が発生する場合を凡例×として表1,2に合わせて示した。
なお、Mn偏析を抑制する手段として、前述の高加速度電磁攪拌と軽圧下を実験番号27,29,32,34を除いた全ての実験において行った。
【0032】
実験番号1、3、6、7、12、13、18、19、24は鋼中のC,Si量を変化させた実験である。実験番号1,7,13,19はC量が制限より少なく、引張強度が340MPa以上とならなかった。実験番号6,12,18,24はC量が制限より多く、2次剪断が解消しなかった。
【0033】
実験番号25、27、29、30、32、34はMn量とMn偏析の影響を検討したもので、連続鋳造の冷却により偏析を制御したものである。実験番号25,30はMn量が制限以下であるため引張強度が340MPa以上とならなかった。実験番号27,29,32,34はMn濃度の標準偏差の全Mn濃度に対する割合が制限以上であったために2次剪断が解消しなかった。
【0035】
実験番号45〜48、53は本発明鋼であり、2次剪断が抑制されて優れた打ち抜き性を示すことが分かる。
【0036】
【表1】

Figure 0004299511
【0037】
【表2】
Figure 0004299511
【0038】
【発明の効果】
本発明により、ブランキング加工、シャーリング加工が施される部品に使用される熱延鋼板の打ち抜き性が良好となり、部品の形状精度が向上するため、産業上の寄与は大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-rolled steel sheet having a tensile strength exceeding 340 MPa and excellent in punchability for use in parts subjected to blanking and shearing processes. It is related with the steel plate which gave.
[0002]
[Prior art]
Many parts using steel plates such as those for automobiles are often subjected to blanking, shearing, etc., but demands for shape accuracy and cut surface quality are increasing year by year. In a normal shearing process, the cut surface generally exhibits a form of sag-shear surface-fracture surface-burl, but the shear surface is a smooth and accurate portion. As a method for increasing the shear plane, it is possible to reduce the clearance. However, if the clearance is decreased, a defect called secondary shear occurs.
[0003]
The occurrence of secondary shearing is the primary shearing surface (the normal shearing surface will be expressed in the following to distinguish it from the secondary shearing surface). Cracks generated from the punch and the die during formation are small in clearance. This is a phenomenon in which a shear surface is formed again without separation of material because the material extends to the compressive stress region under the tool and stops there. When this secondary shear occurs, irregularities are generated on the cut surface, which hinders the combination and welding of parts. In addition, since the occurrence of secondary shear is affected by the stress state in the vicinity of the cut part, fine clearance adjustment is necessary for mold adjustment when secondary shear occurs, which is disadvantageous in terms of cost and delivery time. Become.
[0004]
As described above, it is important to suppress the secondary shearing, but the knowledge about the control of the secondary shearing has not been systematically studied because only the forming conditions are clearance and the material is softened. Regarding punchability, JP-A-3-47922, JP-A-8-295927, etc. disclose techniques relating to improvement of punchability by performing a hot rolling process and subsequent annealing and cold rolling processes. Japanese Patent Laid-Open No. 55-73845 and Japanese Patent Laid-Open No. 3-18403 disclose a technique for improving punchability by limiting an alloy additive element, but a technique for suppressing secondary shearing is disclosed. Not.
[0005]
[Problems to be solved by the invention]
As described above, an object of the present invention is to provide a hot-rolled steel sheet having excellent punchability that can suppress the occurrence of secondary shearing when the clearance is reduced to improve the accuracy of the cut surface.
[0006]
[Means for Solving the Problems]
Detailed studies were conducted in order to study the means for solving the secondary shear, and it was found that the amount of secondary shear surface generated decreases when the length of the primary shear surface is large. This is considered to be because cracks are likely to be associated with each other because crack generation positions in the punch and the die are close to each other when the length of the primary shear plane is large. Therefore, as a result of detailed examination of metallurgical factors for increasing the primary shear length, it was clarified that secondary shear can be suppressed by controlling the amounts of C, Si, and S in the steel.
[0007]
The mechanism is considered as follows. The amount of C and S determines the amount of carbides and inclusions. It is important for the length of the primary shear to suppress the generation of cracks during the formation of the primary shear surface, and it is better to reduce the amounts of C and S in order to reduce the amount of carbides and inclusions. it is conceivable that. Further, the addition of Si has an effect of dispersing and precipitating carbides, and it is considered that as the amount of Si increases, the generation of cracks is suppressed and the primary shear length becomes longer.
[0008]
Moreover, although Mn is added for strengthening in these steels, when a large amount of Mn is added, Mn segregation occurs in a layered form, and strength variation may occur in the thickness direction. Further, segregation of Mn affects the formation of carbides, and in that case, a band structure in which pearlite is distributed in layers may be exhibited. When the influence of this Mn segregation on the occurrence of secondary shear was examined, if the Mn concentration varies widely, even if the primary shear is lengthened by controlling the above C, Si, S, the secondary shear is partially However, it was clarified that the secondary shear can be suppressed even if a band structure is generated by limiting the variation in the Mn concentration. The reason for this is presumed that when the variation in Mn segregation is small, the variation in strength in the thickness direction is small, and the occurrence of cracks is uniform.
[0009]
As described above, secondary shearing can be suppressed by controlling the amounts of C, Si, and S in the steel and by limiting variation in Mn concentration. Such a concept is also considered to exhibit good fine blanking properties through fine blanking that is performed so that the entire cross-section is a shear plane.
[0010]
The gist of the present invention is as follows.
(1) In mass%,
C: 0.05 to 0.12%, Si: 0.05 to 0.3%,
Mn: 0.3 to 0.7%, S: 0.01% or less,
P: 0.1% or less, Al: 0.005-0.1%,
N: 0.01% or less, Ni : 0.01-2%,
Cu : 0.01-2%, Cr : 0.01-2%
It contains, and the balance Fe and unavoidable impurities, der than 20% of the standard deviation total Mn concentration of Mn concentration in the steel sheet is, when punching a punch diameter 20 mm.phi, clearance of 10% plate thickness 2 A hot-rolled steel sheet with excellent punchability , characterized in that secondary shear does not appear .
[0011]
(2) steel ingredients, in addition mass%, B: hot-rolled steel sheet excellent in out punching properties according to (1), characterized in that it contains from 0.0005 to 0.01 percent.
[0012]
(3) The above (1) or (2), wherein the steel component further contains 0.005 to 0.5% of one or more of Ti, Nb, V, and Mo in mass%. hot-rolled steel sheet excellent in out punching of the described.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Reasons for limiting the components of the present invention are as follows.
C is an element that determines the amount of carbide, and is preferably low for the purpose of suppressing secondary shear. However, the reduction in carbon causes an increase in steelmaking cost, and since carbon itself is an inexpensive strengthening element, it is necessary to add an appropriate amount in order to obtain a tensile strength of 340 MPa or more. In the present invention, the lower limit is 0.05% from the viewpoint of securing the strength, and the upper limit is limited to 0.12% or less from the viewpoint of suppressing secondary shear. As described above, the lower limit of the upper limit is advantageous. When the upper limit is 0.1% or less, secondary shear is further suppressed.
[0015]
Si has an effect of finely dispersing carbide and has a secondary shear suppressing effect. The lower limit for exhibiting the effect was set to 0.05%. On the other hand, addition of a large amount affects the generation of scale on the surface, tends to make the surface roughness of the steel sheet non-uniform, and also deteriorates pickling properties, so addition of 0.3% or less is desirable.
[0016]
Mn is necessary for securing the tensile strength by solid solution strengthening, and the lower limit is set to 0.3%. What is necessary is just to determine suitably so that required intensity | strength may be acquired with the addition amount of Mn. On the other hand, the effect of increasing the strength of Mn is saturated when the addition amount is increased, and when the addition amount of Mn is increased, Mn concentration variation is likely to occur due to segregation, and means for reducing them to the level described later is required. Therefore, addition of 0.7% or less is desirable.
[0017]
S is an element that affects MnS, which is the main inclusion. A lower value is desirable for suppressing secondary shear, and the upper limit is made 0.01% or less. The lower limit is not particularly limited, but it is preferably about 0.001% from the viewpoint of desulfurization cost.
[0018]
Basically, if the above elements are controlled, secondary shear is suppressed and a hot-rolled steel sheet having excellent punchability can be realized. However, the following elements may be added in some cases.
Since B precipitates as BN during slab heating in hot rolling or during rough rolling, there is an effect that the temperature dependency of the material is reduced. However, since excessive addition reduces ductility, when adding B, it is desirable to set it as 0.0005%-0.01%.
[0019]
One or more of Ti, Nb, V, and Mo can be added in an amount of 0.005% to 0.5%. By adding this kind of element, precipitation strengthening by carbides and nitrides can be expected, but if added excessively, the ductility is lowered, so it is desirable to add in the above range.
[0020]
Ni, Cu and Cr are added in an amount of 0.01 to 2% , respectively . Although these trace additions have the effect of reducing scale wrinkles, excessive addition causes a drop in ductility and an increase in alloy costs, so it is desirable to add them in the above range.
[0021]
In addition to the above elements, P, Al, and N are commonly present elements.
P is an element effective in improving the strength, but is an element that decreases weldability. When added, it is desirable to keep it to 0.1% or less.
[0022]
Al is added as a deoxidizing element, but if it is a small amount, the deoxidation effect is low and the amount of inclusions increases, and excessive addition decreases ductility. Therefore, although not particularly specified, it is desirable to be in the range of 0.005% to 0.1%.
[0023]
N is an element that, when excessively contained, lowers workability and also reduces aging, and is preferably 0.01% or less.
[0024]
In addition, since Ca and REM spheroidize inclusions to improve the hole expansion property, Ca: 0.0005% to 0.01% and REM: 0.005% to 0.1% are added respectively. Also good.
[0025]
In addition, there is no particular need to regulate a trace amount of impurities inevitably contained, and even if these elements are added, the effect of the present invention is not affected.
[0026]
As for the Mn concentration variation of Mn segregation, the standard deviation of Mn concentration is 20% or less of the total Mn concentration, but when the standard deviation exceeds 20% of the total Mn concentration, the strength variation in the thickness direction increases. In addition, a large amount of band structure also appears and secondary shear tends to remain. If the standard deviation is 20% or less of the total Mn concentration, there is little variation in strength in the plate thickness direction, and even when a band structure appears, the occurrence of secondary shearing is suppressed and excellent punchability is achieved. A hot-rolled steel sheet can be realized. For the Mn concentration, an electron beam microanalyzer is recommended, and a method of measuring the concentration distribution by performing a line analysis in the plate thickness direction on a sample whose plate thickness has been polished is recommended. It is necessary to adjust the measurement conditions to remove noise as much as possible.
[0027]
The production method for realizing the above hot-rolled steel sheet is not particularly limited. If the scope of the present invention is satisfied with respect to Mn segregation, generation of secondary shear is suppressed, and heat with excellent punchability is obtained. A rolled steel sheet can be obtained. From the viewpoint of production cost, a slab produced by continuous casting is hot-charged or once cooled and then reheated to 1000 ° C. or higher and 1400 ° C. or lower, and finish rolling temperature 800 ° C. to 900 ° C., cutting temperature 700 ° C. or lower A process that is hot-rolled at is recommended. When the production volume is small, direct hot rolling from thin slab continuous casting is also possible.
[0028]
When the amount of Mn added is increased, Mn segregation becomes significant. As a method of relaxing these to be within the scope of the present invention, cooling control during casting, electromagnetic stirring, molten steel temperature control, light pressure reduction during casting, etc. can be considered. And select an appropriate method including the cost and situation.
[0029]
In addition, this invention steel can be obtained by devising electromagnetic stirring conditions. In other words, in order to increase the acceleration of electromagnetic stirring, the current flow was raised at 0.5 s (seconds) at a flow rate of 20 cm / s or less, the current was turned on for 3 seconds, the cycle was lowered at 0.5 seconds, and no current was turned on for 1 second. To do. Thereby, shear force is generated in the solidified shell front surface and the molten steel, the dendrite is divided, and equiaxed crystallization can reduce Mn segregation. Furthermore, while maintaining the temperature of the internal solidification part, the central solid fraction can be lightly reduced to 0.7% immediately before solidification to further suppress Mn segregation.
[0030]
【Example】
Examples of the present invention will be described below.
The slabs of chemical components shown in Tables 1 and 2 were hot rolled under the conditions shown in Tables 1 and 2 together. The steels in Table 2 are obtained by adding some elements to the steel shown in Table 1. The slab thickness was 250 mm, and the hot-rolled steel plate thickness was 4.0 mm. Among the hot-rolled sheets, Experiment Nos. 1 , 3, 6 , 7, 12 , 19 , 24 , 45 to 48 , and 53 were pickled steel sheets whose surface scales were removed by a pickling line. Tables 1 and 2 show the tensile strength of the manufactured steel sheet as measured in a direction parallel to the rolling direction using a JIS No. 5 test piece.
[0031]
The Mn concentration distribution was prepared by preparing a sample whose cross-section was polished from an arbitrary part of the steel sheet, measured by line analysis in the thickness direction with an electron beam microanalyzer, and obtaining a standard deviation by statistical processing. The punching test was performed with a general-purpose punching tool. The punch diameter was 20 mmφ, and the clearance was changed by changing the die diameter. The occurrence of secondary shear is performed visually. Legend indicates that secondary shear does not appear when the clearance is 10% of the plate thickness. Legend indicates that secondary shear does not appear when the clearance is 11.3% of the plate thickness. A case where secondary shear occurs even when the clearance is 11.3% of the plate thickness is shown in Tables 1 and 2 as a legend x.
In addition, as a means for suppressing Mn segregation, the above-described high acceleration electromagnetic stirring and light pressure reduction were performed in all experiments except for experiment numbers 27, 29, 32, and 34.
[0032]
Experiment numbers 1 , 3, 6 , 7, 12 , 13, 18 , 19, and 24 are experiments in which the amounts of C and Si in the steel were changed. In Experiment Nos. 1, 7, 13, and 19, the amount of C was less than the limit, and the tensile strength did not exceed 340 MPa. In Experiment Nos. 6, 12, 18, and 24, the amount of C was larger than the limit, and the secondary shear was not eliminated.
[0033]
Experiment Nos. 25 , 27, 29 , 30, 32 , and 34 examined the effects of Mn content and Mn segregation, and controlled segregation by cooling of continuous casting. In Experiment Nos. 25 and 30, the amount of Mn was less than the limit, so the tensile strength did not exceed 340 MPa. In Experiment Nos. 27, 29, 32, and 34, since the ratio of the standard deviation of the Mn concentration to the total Mn concentration was more than the limit, the secondary shear was not eliminated.
[0035]
Experiment numbers 45 to 48 and 53 are steels of the present invention, and it can be seen that secondary shear is suppressed and excellent punchability is exhibited.
[0036]
[Table 1]
Figure 0004299511
[0037]
[Table 2]
Figure 0004299511
[0038]
【The invention's effect】
According to the present invention, the punchability of a hot-rolled steel sheet used for parts subjected to blanking and shearing is improved, and the shape accuracy of the parts is improved.

Claims (3)

質量%で、
C :0.05〜0.12%、
Si:0.05〜0.3%、
Mn:0.3〜0.7%、
S :0.01%以下、
P :0.1%以下、
Al:0.005〜0.1%、
N :0.01%以下、
Ni:0.01〜2%、
Cu:0.01〜2%、
Cr:0.01〜2%
を含有し、残部Fe及び不可避的不純物からなり、鋼板中のMn濃度の標準偏差が全Mn濃度の20%以下であり、パンチ径20mmφで打ち抜く際に、クリアランスが板厚の10%で2次剪断が出現しなくなることを特徴とする打ち抜き性に優れた熱延鋼板。
% By mass
C: 0.05 to 0.12%,
Si: 0.05-0.3%
Mn: 0.3 to 0.7%,
S: 0.01% or less,
P: 0.1% or less,
Al: 0.005 to 0.1%,
N: 0.01% or less,
Ni : 0.01-2%,
Cu : 0.01-2%,
Cr : 0.01-2%
It contains, and the balance Fe and unavoidable impurities, der than 20% of the standard deviation total Mn concentration of Mn concentration in the steel sheet is, when punching a punch diameter 20 mm.phi, clearance of 10% plate thickness 2 A hot-rolled steel sheet with excellent punchability , characterized in that secondary shear does not appear .
鋼成分が、更に質量%で、B:0.0005〜0.01%を含有することを特徴とする請求項1に記載の打ち抜き性に優れた熱延鋼板。Steel ingredients, in addition mass%, B: good hot rolled steel sheet out vent of claim 1, characterized in that it contains 0.0005 to 0.01%. 鋼成分が、更に質量%で、Ti,Nb,V,Moの1種又は2種以上を0.005〜0.5%含有することを特徴とする請求項1又は2に記載の打ち抜き性に優れた熱延鋼板。Steel ingredients further by mass%, Ti, Nb, V, out vent of claim 1 or 2, characterized in that it contains 0.005 to 0.5% one or more of Mo Excellent hot-rolled steel sheet.
JP2002213925A 2002-07-23 2002-07-23 Hot-rolled steel sheet with excellent punchability Expired - Fee Related JP4299511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213925A JP4299511B2 (en) 2002-07-23 2002-07-23 Hot-rolled steel sheet with excellent punchability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213925A JP4299511B2 (en) 2002-07-23 2002-07-23 Hot-rolled steel sheet with excellent punchability

Publications (2)

Publication Number Publication Date
JP2004052069A JP2004052069A (en) 2004-02-19
JP4299511B2 true JP4299511B2 (en) 2009-07-22

Family

ID=31936391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213925A Expired - Fee Related JP4299511B2 (en) 2002-07-23 2002-07-23 Hot-rolled steel sheet with excellent punchability

Country Status (1)

Country Link
JP (1) JP4299511B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644075B2 (en) * 2005-09-02 2011-03-02 新日本製鐵株式会社 High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP4751152B2 (en) * 2005-09-02 2011-08-17 新日本製鐵株式会社 Hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and hole expansibility, alloyed hot-dip galvanized high-strength steel sheet, and methods for producing them
JP4644076B2 (en) * 2005-09-05 2011-03-02 新日本製鐵株式会社 High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP4644077B2 (en) * 2005-09-05 2011-03-02 新日本製鐵株式会社 Hot-dip galvanized high-strength steel sheet and alloyed hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and formability, and methods for producing them
KR102543407B1 (en) * 2019-03-06 2023-06-14 닛폰세이테츠 가부시키가이샤 hot rolled steel
KR20220111724A (en) * 2020-01-27 2022-08-09 닛폰세이테츠 가부시키가이샤 hot rolled steel

Also Published As

Publication number Publication date
JP2004052069A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP5687624B2 (en) Stainless steel, cold-rolled strip made from this steel, and method for producing steel plate products from this steel
RU2625366C2 (en) High impact steel sheet with high stability to delayed failure and low-temperature shock viscosity, and high impact part, manufactured with its use
EP2865779B1 (en) H-Section steel and process for producing same
EP2975149B1 (en) H-shaped steel and process for manufacturing same
WO2011065479A1 (en) High-strength ultra-thick h shape steel and process for production thereof
JP5362582B2 (en) Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same
CN111433381B (en) High Mn steel and method for producing same
JP5904310B1 (en) Ferritic stainless steel and manufacturing method thereof
EP3715492A1 (en) Hot-rolled steel sheet and manufacturing method therefor
CN112513307A (en) High Mn steel and method for producing same
JP4299511B2 (en) Hot-rolled steel sheet with excellent punchability
CN117062927A (en) Martensitic stainless steel sheet excellent in corrosion resistance, method for producing same, and martensitic stainless steel tool product
CN116018416A (en) Steel sheet and method for producing same
CN115380128B (en) Slab excellent in surface cracking resistance sensitivity and continuous casting method thereof
JP4259097B2 (en) Ti-containing high workability ferritic chromium steel sheet excellent in ridging resistance and method for producing the same
JPWO2019203251A1 (en) Hot rolled steel sheet
JPH11286742A (en) Manufacture of tapered steel plate
US20220017984A1 (en) Ferritic stainless steel sheet and method for producing same
JP2007177303A (en) Steel having excellent ductility and its production method
CN111684093A (en) High Mn steel and method for producing same
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
JP6823221B1 (en) Highly corrosion resistant austenitic stainless steel and its manufacturing method
CN115380129B (en) Slab and continuous casting method thereof
JP3775178B2 (en) Thin steel plate and manufacturing method thereof
JP4258039B2 (en) Ferritic stainless steel hot-rolled sheet, cold-rolled sheet excellent in ridging resistance, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070214

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R151 Written notification of patent or utility model registration

Ref document number: 4299511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees