JP2915596B2 - Production method of extra fine wire - Google Patents

Production method of extra fine wire

Info

Publication number
JP2915596B2
JP2915596B2 JP3681991A JP3681991A JP2915596B2 JP 2915596 B2 JP2915596 B2 JP 2915596B2 JP 3681991 A JP3681991 A JP 3681991A JP 3681991 A JP3681991 A JP 3681991A JP 2915596 B2 JP2915596 B2 JP 2915596B2
Authority
JP
Japan
Prior art keywords
ingot
fine wire
fine
wire
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3681991A
Other languages
Japanese (ja)
Other versions
JPH04254559A (en
Inventor
泰夫 芥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3681991A priority Critical patent/JP2915596B2/en
Publication of JPH04254559A publication Critical patent/JPH04254559A/en
Application granted granted Critical
Publication of JP2915596B2 publication Critical patent/JP2915596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、伸線性に優れた極細線
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultrafine wire having excellent drawability.

【従来の技術とその課題】近年、電子機器の小型化並び
に多機能化に伴って、前記機器に用いられる配電線は益
々細線化し、50μm 以下の極細線から、更には30μm 以
下の超極細線にまで細線化が進んでいる。これらの極細
線又は超極細線(以下極細線と総称する)は、例えば銅
線の場合は、SCR等の連続鋳造圧延法により製造した
荒引線を、途中に焼鈍処理を施しながら冷間伸線する方
法により製造がなされていた。しかしながら、前記のS
CR法等の連続鋳造圧延法で鋳造される鋳塊は5000
mm2 規模の大型鋳塊の為、極細線に至る迄の工程が長
く、特に少量多品種の合金製極細線を製造するような場
合はコスト的に見て不利であり、又かかる鋳塊は表面品
質が不良な為、伸線加工の途中に皮剥工程を入れる必要
があり生産性に劣るものであった。
2. Description of the Related Art In recent years, with the miniaturization and multifunctionality of electronic equipment, distribution lines used in such equipment have become increasingly thin, from ultra-fine wires of 50 μm or less to ultra-fine wires of 30 μm or less. Thinning is progressing to. For example, in the case of copper wire, these ultra-fine wires or ultra-fine wires (hereinafter referred to as ultra-fine wires) are obtained by cold drawing while subjecting a rough drawn wire manufactured by a continuous casting and rolling method such as SCR to annealing treatment in the middle. Manufacturing method. However, the aforementioned S
The ingot cast by the continuous casting and rolling method such as the CR method is 5000
mm 2 scale for large ingot of a long process of up to the filament, particularly if small amounts, such as the production of alloy fine wire of high-mix is disadvantageous when viewed in cost, or such ingot Since the surface quality is poor, it is necessary to put a peeling step in the middle of the wire drawing process, resulting in poor productivity.

【0002】このようなことから、20mmφ程度の小サ
イズの鋳塊を用いる方法、更にはこの小サイズ鋳塊を加
工性に優れた一方向凝固組織又は方向性凝固組織となし
て、鋳塊から極細線まで一気に冷間加工して途中の焼鈍
処理を省略する方法が提案された。この一方向凝固組織
又は方向性凝固組織の鋳塊は、凝固時の熱抽出を鋳型を
介さず直接製出鋳塊を通して行うようにして製造する
為、表面品質に優れ、従って途中に皮剥工程を要さない
というような利点をも有するものであった。ところが、
前述の一方向凝固組織又は方向性凝固組織の鋳塊を冷間
加工する方法によっても、極細線の径が細くなると断線
が多発して生産性が著しく低下するという問題があっ
た。
In view of the above, a method using an ingot of a small size of about 20 mmφ, and further, forming the small-sized ingot into a unidirectionally solidified structure or a directionally solidified structure having excellent workability, A method has been proposed in which cold working is performed at once to an ultrafine wire and annealing treatment in the middle is omitted. Since the ingot of this unidirectionally solidified structure or directional solidified structure is manufactured by performing heat extraction at the time of solidification directly through the produced ingot without using a mold, the surface quality is excellent, and therefore, a peeling step is performed on the way. It also has the advantage that it is unnecessary. However,
Even with the above-mentioned method of cold working a unidirectionally solidified structure or a directionally solidified ingot, there is a problem that if the diameter of the ultrafine wire is reduced, disconnection occurs frequently and productivity is significantly reduced.

【0003】[0003]

【課題を解決するための手段】本発明はかかる状況に鑑
み鋭意研究を行った結果、一方向凝固組織又は方向性凝
固組織の鋳塊を冷間加工していくと結晶粒界に割れが生
じ、この割れが後の極細線への冷間伸縮工程で断線の原
因になることを知見し、更に研究を重ねて本発明を完成
させるに至ったものである。即ち、本発明は、一方向凝
固組織又は方向性凝固組織の鋳塊を熱間加工して微細な
再結晶組織の細線用素材となし、次いで当該細線用素材
を冷間伸線加工することを特徴とする極細線の製造方法
である。本発明方法において、一方向凝固組織とは、図
1にその縦断面図を示したように結晶粒1が鋳塊の長手
方向に平行に成長したものであり、かかる一方向凝固組
織2の鋳塊3は加熱鋳型連続鋳造法やチョコラルスキー
連続鋳造法等の方法により製造される。又かかる一方向
凝固組織2の鋳塊3を熱間加工すると一方向凝固組織2
は微細な再結晶組織4に変わるものである。他方、方向
性凝固組織とは、図2にその縦断面図を示したように、
結晶粒1が鋳塊の両側から中心に向けて斜め方向に成長
したもので、かかる方向性凝固組織5の鋳塊6は、鋳型
からの熱抽出を最小限に留め、鋳塊が鋳型から出た後、
直ちに鋳塊を直接強制冷却して得られるもので、通常の
横型連続鋳造法等で鋳型からの冷却を弱め、二次冷却を
強めることにより製造される。この鋳塊6の場合も熱間
加工を施すことにより方向性凝固組織5は微細な再結晶
組織4に変化する。本発明方法において、一方向凝固組
織又は方向性凝固組織の鋳塊を熱間加工する方法として
は、圧延、押出し、スエージャー、引抜き等の任意の加
工法が適用される。又熱間加工後の細線用素材を極細線
に加工する方法としては、通常の冷間伸線加工法が用い
られる。
The present invention has been made in view of the above situation, and as a result of intensive research, as a result of cold working of a directional solidified structure or a directional solidified structure ingot, cracks occur at crystal grain boundaries. The inventors have found that the cracks cause disconnection in the subsequent step of cold expansion and contraction to an ultrafine wire, and have conducted further studies to complete the present invention. That is, the present invention is fine the ingot unidirectional solidification structure or directionally solidified structure by hot working
A method for producing an ultrafine wire, comprising forming a material for a fine wire having a recrystallized structure, and then cold-drawing the material for the fine wire. In the method of the present invention, the directionally solidified structure is a structure in which crystal grains 1 are grown in parallel with the longitudinal direction of the ingot as shown in a longitudinal sectional view of FIG. The lump 3 is manufactured by a method such as a hot mold continuous casting method or a Czochralski continuous casting method. When the ingot 3 of the unidirectionally solidified structure 2 is hot worked, the unidirectionally solidified structure 2 is formed.
Is changed to a fine recrystallized structure 4. On the other hand, the directional solidification structure is, as shown in FIG.
The crystal grains 1 grow obliquely from both sides of the ingot toward the center. The ingot 6 of the directional solidification structure 5 minimizes heat extraction from the mold, and the ingot is discharged from the mold. After
It is obtained by immediately forcibly cooling the ingot immediately, and is manufactured by weakening the cooling from the mold and increasing the secondary cooling by a usual horizontal continuous casting method or the like. Also in the case of this ingot 6, the directional solidification structure 5 is changed to a fine recrystallized structure 4 by performing hot working. In the method of the present invention, as a method of hot working a unidirectionally solidified structure or an ingot having a directional solidified structure, any working method such as rolling, extrusion, swager, drawing or the like is applied. In addition, as a method for processing the fine wire material after hot working into an extremely fine wire, a normal cold drawing method is used.

【0004】[0004]

【作用】本発明方法では、一方向凝固組織又は方向性凝
固組織の鋳塊を用いるので、表面品質が優れ皮剥等の工
程を入れる必要がなく、又上記一方向凝固組織又は方向
性凝固組織の鋳塊を熱間加工するので、粒界割れを起こ
さずに微細な再結晶組織の細線用素材が得られ、この細
線用素材を冷間伸線加工することにより伸線性に優れた
極細線が製造される。
According to the method of the present invention, since the ingot of a unidirectionally solidified structure or a directionally solidified structure is used, the surface quality is excellent and there is no need to perform a step such as peeling. Since the ingot is hot-worked, a fine wire material with a fine recrystallized structure can be obtained without causing grain boundary cracking, and ultra-fine wire with excellent wire drawing properties can be obtained by cold-drawing this fine wire material. Manufactured.

【0005】[0005]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 加熱鋳型連続鋳造法又は横型連続鋳造法によりそれぞれ
一方向凝固組織又は方向性凝固組織の15mmφの無酸素
銅鋳塊を製造し、この鋳塊を溝ロールにより400℃〜
500℃の温度範囲で熱間圧延して6mmφの細線用素材
となした。次に上記細線用素材を適宜焼鈍を入れつつ3
0μm φの極細線に冷間伸線した。 実施例2 実施例1において、無酸素銅に代えて銅に錫を0.6%
添加した銅錫合金を用い、この合金を500℃〜600
℃の温度範囲で熱間圧延した他は実施例1と同じ方法に
より30μm φの極細線を製造した。 比較例1 実施例1又は2にて製造した各々の鋳塊を冷間圧延して
6mmφの細線用素材となした他はそれぞれ実施例1又は
2と同じ方法により30μm φの極細線を製造した。 比較例2 無酸素銅又は銅錫合金の鋳塊に、横型連続鋳造法により
通常の条件で製造した多結晶鋳塊を用い、鋳塊の圧延加
工を熱間と冷間の両方の方法で行った他はそれぞれ実施
例1又は2と同じ方法により30μm φの極細線を製造
した。このようにして製造した各々の極細線について、
1断線当たりの伸線量を調べた。結果は表面欠陥の計測
結果を併記して表1に示した。尚、方向性凝固組織の鋳
塊の圧延方向は図2に示したのと同じように結晶粒1の
成長方向に対し順方向とした。又表面欠陥は2mmφでの
渦流探傷により計測した。
The present invention will be described below in detail with reference to examples. Example 1 A 15 mmφ oxygen-free copper ingot having a unidirectional solidification structure or a directional solidification structure was manufactured by a heating mold continuous casting method or a horizontal continuous casting method.
The material was hot-rolled in a temperature range of 500 ° C. to obtain a material for a fine wire of 6 mmφ. Next, the above fine wire material is subjected to 3
Cold drawing was performed to a fine wire of 0 μm φ. Example 2 In Example 1, 0.6% of tin was added to copper instead of oxygen-free copper.
Using an added copper-tin alloy, this alloy is
An ultrafine wire having a diameter of 30 μm was manufactured in the same manner as in Example 1 except that hot rolling was performed in a temperature range of ° C. Comparative Example 1 An ultrafine wire having a diameter of 30 µm was produced in the same manner as in Example 1 or 2, except that each ingot produced in Example 1 or 2 was cold-rolled to obtain a material for a fine wire of 6 mmφ. . Comparative Example 2 Ingots of oxygen-free copper or copper-tin alloy were subjected to rolling by both hot and cold methods using polycrystalline ingots produced under ordinary conditions by a horizontal continuous casting method. An ultrafine wire of 30 μm φ was manufactured in the same manner as in Example 1 or 2, respectively. For each extra-fine wire produced in this way,
The extension dose per disconnection was examined. The results are shown in Table 1 together with the measurement results of surface defects. In addition, the rolling direction of the ingot having the directional solidification structure was set to the forward direction with respect to the growth direction of the crystal grains 1 as shown in FIG. Surface defects were measured by eddy current testing at 2 mmφ.

【0006】[0006]

【表1】 [Table 1]

【0007】表1より明らかなように、本発明方法品
(No1〜4)は表面欠陥は全く検出されず、又30μm
φでの伸線性も1断線当たり7kg以上で極めて優れた
ものであった。これに対し、比較方法品のNo5〜8は表
面品質は優れていたものの、鋳塊を冷間圧延した為、結
晶粒間に割れが生じて極細線での伸線性が低下した。又
No9〜12は鋳塊組織が多結晶体であった為、表面欠陥が
発生し、又冷間加工材には粒界割れも存在した為、伸線
性が極端に低下した。上記実施例又は比較例において、
一方向凝固組織鋳塊の方が方向性凝固組織鋳塊より、又
無酸素銅鋳塊の方が銅錫合金よりそれぞれ伸線性が良好
な理由は、前者は表面品質、後者は変形抵抗の差による
ものと考えられる。以上銅及び銅合金について説明した
が、本発明方法はアルミ等の他の金属材料に適用しても
同様の効果が得られるものである。
As is clear from Table 1, no surface defects were detected in the method products of the present invention (Nos.
The drawability at φ was also extremely excellent at 7 kg or more per disconnection. On the other hand, although Comparative Examples Nos. 5 to 8 had excellent surface quality, the ingot was cold-rolled, so that cracks were generated between the crystal grains and the drawability of the ultrafine wire was reduced. or
In Nos. 9 to 12, the ingot structure was polycrystalline, so that surface defects were generated, and the cold-worked material also had grain boundary cracks, so that the drawability was extremely reduced. In the above examples or comparative examples,
The reason that the unidirectional solidification structure ingot has better drawability than the directionally solidification structure ingot, and the oxygen-free copper ingot has better drawability than the copper-tin alloy is that the former has a difference in surface quality and the latter has a difference in deformation resistance. It is thought to be due to. Although copper and copper alloys have been described above, the same effects can be obtained by applying the method of the present invention to other metal materials such as aluminum.

【0008】[0008]

【効果】以上述べたように、本発明方法によれば、伸線
性良好な極細線を得られ工業上顕著な効果を奏する。
As described above, according to the method of the present invention, an extremely fine wire having good drawability can be obtained, and an industrially remarkable effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法で用いる一方向凝固組織鋳塊の態様
例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an embodiment of a unidirectionally solidified structure ingot used in the method of the present invention.

【図2】本発明方法で用いる方向性凝固組織鋳塊の態様
例を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing an example of an embodiment of a directional solidification structure ingot used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 結晶粒 2 一方向凝固組織 3 一方向凝固組織の鋳塊 4 微細な再結晶組織 5 方向性凝固組織 6 方向性凝固組織の鋳塊 DESCRIPTION OF SYMBOLS 1 Crystal grain 2 Unidirectional solidification structure 3 Ingot of unidirectional solidification structure 4 Fine recrystallized structure 5 Directional solidification structure 6 Ingot of directional solidification structure

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22F 1/08 B21C 1/00 B22D 27/04 H01B 1/02 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) C22F 1/08 B21C 1/00 B22D 27/04 H01B 1/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一方向凝固組織又は方向性凝固組織の鋳
塊を熱間加工して微細な再結晶組織の細線用素材とな
し、次いで当該細線用素材を冷間伸線加工することを特
徴とする極細線の製造方法。
An ingot having a directionally solidified structure or a directionally solidified structure is hot-worked into a fine wire material having a fine recrystallized structure , and then the fine wire material is cold drawn. A method for producing an extra fine wire.
JP3681991A 1991-02-06 1991-02-06 Production method of extra fine wire Expired - Lifetime JP2915596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3681991A JP2915596B2 (en) 1991-02-06 1991-02-06 Production method of extra fine wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3681991A JP2915596B2 (en) 1991-02-06 1991-02-06 Production method of extra fine wire

Publications (2)

Publication Number Publication Date
JPH04254559A JPH04254559A (en) 1992-09-09
JP2915596B2 true JP2915596B2 (en) 1999-07-05

Family

ID=12480369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3681991A Expired - Lifetime JP2915596B2 (en) 1991-02-06 1991-02-06 Production method of extra fine wire

Country Status (1)

Country Link
JP (1) JP2915596B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240949A (en) * 2000-02-29 2001-09-04 Mitsubishi Materials Corp Method of manufacturing for worked billet of high- purity copper having fine crystal grain
EP1274527A4 (en) * 2001-02-28 2006-12-20 Showa Denko Kk Plastic-worked member and production method thereof
JP4911672B2 (en) * 2006-02-03 2012-04-04 臼井国際産業株式会社 Method for manufacturing high-pressure fuel pipe for accumulator fuel injection system
CN109003743A (en) * 2018-07-25 2018-12-14 王文芳 A kind of production method of the superfine conductor of continuous copper alloy

Also Published As

Publication number Publication date
JPH04254559A (en) 1992-09-09

Similar Documents

Publication Publication Date Title
CN104073689A (en) Aluminum alloy forged material for automobile and method for manufacturing the same
KR101317096B1 (en) Cu-Co-Si COPPER ALLOY FOR USE IN ELECTRONICS, AND MANUFACTURING METHOD THEREFOR
JP5530216B2 (en) Magnesium alloy forging with excellent mechanical properties and method for producing the same
CN104769139B (en) Cu Be alloys and its manufacture method
JPS63262447A (en) Production of pipe rod and strip plate
KR20130089656A (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
WO2012043170A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP2017179569A (en) Copper alloy for electronic material
JP2017179493A (en) Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
US4352697A (en) Method of hot-forming metals prone to crack during rolling
US3964935A (en) Aluminum-cerium-iron electrical conductor and method for making same
JP2001254160A (en) Method of manufacturing aluminum alloy wire, and aluminum alloy
JP2915596B2 (en) Production method of extra fine wire
US4216031A (en) Aluminum nickel base alloy electrical conductor and method therefor
JP2944907B2 (en) Method of manufacturing aluminum alloy wire for electric conduction
US3967983A (en) Method for making a aluminum nickel base alloy electrical conductor
JP2018062705A (en) Copper alloy for electronic material
JPS6123852B2 (en)
JPH0125822B2 (en)
JP4444143B2 (en) Copper alloy strip manufacturing method
JP2566877B2 (en) Method for producing Cu-Ag alloy conductor
JP2996378B2 (en) Manufacturing method of copper alloy rod for conductive wire rolled by cold rolling
JP3320455B2 (en) Method for producing Cu-Ag alloy conductor
RU2807260C1 (en) METHOD FOR MANUFACTURING BRONZE RODS “БрХ08”
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100416

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

EXPY Cancellation because of completion of term