JP2001254160A - Method of manufacturing aluminum alloy wire, and aluminum alloy - Google Patents

Method of manufacturing aluminum alloy wire, and aluminum alloy

Info

Publication number
JP2001254160A
JP2001254160A JP2000065080A JP2000065080A JP2001254160A JP 2001254160 A JP2001254160 A JP 2001254160A JP 2000065080 A JP2000065080 A JP 2000065080A JP 2000065080 A JP2000065080 A JP 2000065080A JP 2001254160 A JP2001254160 A JP 2001254160A
Authority
JP
Japan
Prior art keywords
aluminum alloy
weight
wire
alloy wire
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000065080A
Other languages
Japanese (ja)
Inventor
Takeshi Ikeda
毅 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2000065080A priority Critical patent/JP2001254160A/en
Publication of JP2001254160A publication Critical patent/JP2001254160A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy capable of giving an alloy wire excellent in strength, elongation, electric conductivity and heat resistance, and also to provide a method for manufacturing such an aluminum alloy wire, by which manufacturing yield can be increased and heat treatment conditions can be easily set. SOLUTION: The aluminum alloy has a composition which contains, by weight, 0.08-1.5% Mg, 0.09-1.5% Si, 0.008-0.15% Zr and 0.002-0.05% Ti and in which the ratio between the number of Mg atoms that of Si atoms, Mg/Si, is regulated to 0.1-3.0. The roughly continuously drawn aluminum alloy wire can be manufacturing by using a wire rod of the aluminum alloy having the above composition and subjecting this wire rod to solution heat treatment at 430-630 deg.C for 0.5-10 h, cooling down to ordinary temperature at >=5 deg.C/s cooling rate, cold working at >=70% reduction of area, and heat treatment at a temp. of 110-360 deg.C for 0.4-20 h.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は強度、導電率および
耐熱性に優れ、電力ケーブルの導体やアーマーロッドな
どとして好適なアルミニウム合金および該合金線の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy excellent in strength, conductivity and heat resistance and suitable as a conductor or an armor rod of a power cable, and a method for producing the alloy wire.

【0002】[0002]

【従来技術・発明が解決しようとする課題】送電線の導
体として用いられる導電性耐熱アルミニウム合金は主成
分としてのアルミニウムにZrやSiを添加した合金
で、耐熱アルミ合金線(TAI)、超耐熱アルミ合金線
(UTAI)、特別耐熱アルミ合金線(XTAI)など
が実用化されている。しかしこれらの耐熱アルミニウム
合金線の強度は純アルミニウム系の硬アルミ線(HA
I)と同等であって、支持鉄塔の建設が困難なために長
距離間に電線を架線せざるを得ない山岳部、河川や海峡
の横断部、あるいは著しい着雪や強風などの厳しい環境
に曝される用途では、満足のいく機械的強度を有してい
るとは言いがたい。上記耐熱アルミニウム合金線にCu
やMgなどの元素を添加して強度を高めた合金も開発さ
れた。しかし該合金線は、熱処理後の強加工で強度を限
界まで高めているため、伸びが著しく小さく、また外傷
などが発生した場合の切り欠き感受性が高いなどクラン
プ部などで信頼性に欠ける欠点があった。
2. Description of the Related Art A conductive heat-resistant aluminum alloy used as a conductor of a power transmission line is an alloy obtained by adding Zr or Si to aluminum as a main component. Aluminum alloy wires (UTAI), special heat-resistant aluminum alloy wires (XTAI) and the like have been put to practical use. However, the strength of these heat resistant aluminum alloy wires is pure aluminum hard aluminum wire (HA
It is equivalent to I), and it is difficult to construct a supporting tower, so it is necessary to wire electric wires over long distances, in mountainous areas, crossing rivers and straits, or in severe environments such as severe snowfall and strong winds It is hard to say that the exposed applications have satisfactory mechanical strength. Cu on the heat-resistant aluminum alloy wire
Alloys having increased strength by adding elements such as iron and Mg have also been developed. However, since the strength of the alloy wire is increased to the limit by strong working after heat treatment, elongation is remarkably small, and there is a defect that the reliability of the clamp portion and the like is lacking because the notch sensitivity is high when external damage is caused. there were.

【0003】そこで高強度なAl−Mg−Si系合金に
Zrを微量添加した合金を使用したアルミニウム合金線
の製造方法が開発された(特許第2944907号)。
しかしこの方法も連続鋳造圧延時に荒引線の割れが発生
する、成分によって最適熱処理条件が著しく違うため工
程管理が煩雑であるなど、解決すべき問題が多い。
Therefore, a method of manufacturing an aluminum alloy wire using an alloy obtained by adding a small amount of Zr to a high-strength Al-Mg-Si alloy has been developed (Japanese Patent No. 2944907).
However, this method also has many problems to be solved, such as the occurrence of cracks in the rough drawn wire during continuous casting and rolling, and the process control is complicated because the optimum heat treatment conditions are significantly different depending on the components.

【0004】本発明の目的は、上記課題に鑑みて、強
度、伸び、導電率および耐熱性に優れ、かつ製造歩留ま
りが高く、熱処理条件の設定の容易なアルミニウム合金
線を製造する方法およびそのようなアルミニウム合金を
提供することである。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a method of manufacturing an aluminum alloy wire which is excellent in strength, elongation, electrical conductivity and heat resistance, has a high production yield, and can easily set heat treatment conditions. To provide a suitable aluminum alloy.

【0005】[0005]

【課題を解決するための手段】本発明者は上記目的を達
成するために鋭意研究を重ねた結果、Al−Mg−Si
−Zr系合金にTiを添加するとと同時に、合金中のM
gとSiの原子の数の比を特定の範囲に調整すると、A
l−Mg−Si−Zr系合金線の製造方法がもつ欠点が
解消し、安定して高強度、高耐熱性および高導電率を有
するアルミニウム合金線が歩留まり良く製造できること
を見出し、本発明を完成するに到った。
The inventor of the present invention has made intensive studies to achieve the above object, and has found that Al-Mg-Si
At the same time as adding Ti to the Zr-based alloy,
When the ratio of the number of atoms of g and Si is adjusted to a specific range, A
Solved the drawbacks of the method for manufacturing l-Mg-Si-Zr alloy wire, and found that an aluminum alloy wire having high strength, high heat resistance and high electrical conductivity can be stably manufactured with good yield, and the present invention was completed. I came to.

【0006】すなわち本発明は以下のアルミニウム合金
線の製造方法およびアルミニウム合金に関する。 (1) Mg0.08〜1.5重量%、Si0.09〜
1.5重量%、Zr0.008〜0.15重量%および
Ti0.002〜0.05重量%を含み、Mg原子とS
i原子の数の比、Mg/Siが0.1〜3.0であるア
ルミニウム合金から製造される荒引線を、430℃〜6
30℃の温度で0.5〜10時間溶体化処理し、5℃/
秒以上の冷却速度で常温まで冷却し、その後断面積減少
率70%以上の冷間加工を施し、次いで110℃〜36
0℃の温度で0.4〜20時間熱処理することからなる
アルミニウム合金線の製造方法。
That is, the present invention relates to the following method for manufacturing an aluminum alloy wire and an aluminum alloy. (1) Mg 0.08 to 1.5% by weight, Si 0.09 to
1.5% by weight, 0.008 to 0.15% by weight of Zr and 0.002 to 0.05% by weight of Ti,
The rough wire drawn from an aluminum alloy having a ratio of the number of i atoms, Mg / Si of 0.1 to 3.0, was measured at 430 ° C to 6 ° C.
Solution treatment at a temperature of 30 ° C. for 0.5 to 10 hours, 5 ° C. /
Cooling to room temperature at a cooling rate of not less than seconds, then performing cold working with a cross-sectional area reduction rate of 70% or more,
A method for producing an aluminum alloy wire, comprising performing a heat treatment at a temperature of 0 ° C. for 0.4 to 20 hours.

【0007】(2) アルミニウム合金がCu0.00
4〜0.3重量%およびFe0.08〜1.5重量%の
少なくともひとつを含有する上記(1)のアルミニウム
合金線の製造方法。
(2) The aluminum alloy is Cu 0.00
The method for producing an aluminum alloy wire according to the above (1), comprising at least one of 4 to 0.3% by weight and 0.08 to 1.5% by weight of Fe.

【0008】(3) アルミニウム合金が、Mg0.1
〜1.0重量%、Si0.1〜1.0重量%、Zr0.
01〜0.1重量%およびTi0.002〜0.05重
量%を含み、Mg原子とSi原子の数の比、Mg/Si
が0.2〜2.0である上記(1)のアルミニウム合金
線の製造方法。
(3) When the aluminum alloy is Mg0.1
To 1.0% by weight, 0.1 to 1.0% by weight of Si, 0.
0.1-0.1% by weight and 0.002-0.05% by weight of Ti, the ratio of the number of Mg atoms to the number of Si atoms, Mg / Si
Is 0.2 to 2.0. The method for producing an aluminum alloy wire according to the above (1).

【0009】(4) アルミニウム合金から製造される
荒引線を、450℃〜620℃の温度で0.5〜10時
間溶体化処理し、5℃/秒以上の冷却速度で常温まで冷
却し、その後断面積減少率70%以上の冷間加工を施
し、次いで120℃〜350℃の温度で0.5〜20時
間熱処理することからなる上記(3)のアルミニウム合
金線の製造方法。
(4) The rough wire drawn from the aluminum alloy is subjected to a solution treatment at a temperature of 450 ° C. to 620 ° C. for 0.5 to 10 hours, and cooled to a normal temperature at a cooling rate of 5 ° C./sec or more. (3) The method for producing an aluminum alloy wire according to the above (3), which comprises performing cold working with a cross-sectional area reduction rate of 70% or more, and then performing heat treatment at a temperature of 120 ° C to 350 ° C for 0.5 to 20 hours.

【0010】(5) Mg0.08〜1.5重量%、S
i0.09〜1.5重量%、Zr0.008〜0.15
重量%およびTi0.002〜0.05重量%を含み、
Mg原子とSi原子の数の比、Mg/Siが0.1〜
3.0であるアルミニウム合金。
(5) 0.08-1.5% by weight of Mg, S
i 0.09 to 1.5% by weight, Zr 0.008 to 0.15
% By weight and 0.002-0.05% by weight of Ti,
The ratio of the number of Mg atoms to the number of Si atoms, Mg / Si is 0.1 to
An aluminum alloy that is 3.0.

【0011】(6) アルミニウム合金が、Mg0.1
〜1.0重量%、Si0.1〜1.0重量%、Zr0.
01〜0.1重量%およびTi0.002〜0.05重
量%を含み、Mg原子とSi原子の数の比、Mg/Si
が0.2〜2.0である上記(5)のアルミニウム合金
線。
(6) When the aluminum alloy is Mg0.1
To 1.0% by weight, 0.1 to 1.0% by weight of Si, 0.
0.1-0.1% by weight and 0.002-0.05% by weight of Ti, the ratio of the number of Mg atoms to the number of Si atoms, Mg / Si
Is 0.2 to 2.0, the aluminum alloy wire of the above (5).

【0012】(7) Cu0.004〜0.3重量%お
よびFe0.08〜1.5重量%の少なくともひとつを
含有する上記(5)または(6)のアルミニウム合金
線。
(7) The aluminum alloy wire according to (5) or (6), containing at least one of 0.004 to 0.3% by weight of Cu and 0.08 to 1.5% by weight of Fe.

【0013】(8) アルミニウム合金から製造される
合金線が、電力ケーブルの導体として使用されることを
特徴とする上記(5)、(6)または(7)のアルミニ
ウム合金。
(8) The aluminum alloy according to (5), (6) or (7), wherein an alloy wire produced from the aluminum alloy is used as a conductor of a power cable.

【0014】(9) アルミニウム合金から製造される
荒引線を溶体化処理し、常温まで冷却し、その後冷間加
工を施し、次いで熱処理することからなるアルミニウム
合金線の製造方法において使用されることを特徴とする
上記(5)、(6)または(7)のアルミニウム合金。
(9) A method for producing an aluminum alloy wire, comprising subjecting a rough drawn wire produced from an aluminum alloy to a solution treatment, cooling to room temperature, performing cold working, and then heat treating. The aluminum alloy according to the above (5), (6) or (7), which is characterized by the following.

【0015】特に、Mg0.1〜1.0重量%、Si
0.1〜1.0重量%、Zr0.01〜0.1重量%お
よびTi0.002〜0.05重量%を含み、Mg原子
とSi原子の数の比、Mg/Siが0.2〜2.0であ
るアルミニウム合金から製造される荒引線を、450℃
〜620℃の温度で0.5〜10時間溶体化処理し、5
℃/秒以上の冷却速度で常温まで冷却し、その後断面積
減少率70%以上の冷間加工を施し、次いで120℃〜
350℃の温度で0.5〜20時間熱処理することによ
って、品質の高いアルミニウム合金線が効率よく製造す
ることができる。
In particular, 0.1-1.0% by weight of Mg, Si
0.1 to 1.0 wt%, Zr 0.01 to 0.1 wt% and Ti 0.002 to 0.05 wt%, the ratio of the number of Mg atoms to Si atoms, Mg / Si is 0.2 to Rough wire drawn from an aluminum alloy of 2.0
Solution treatment at a temperature of ~ 620 ° C for 0.5-10 hours,
Cooling to room temperature at a cooling rate of not less than 120 ° C./sec.
By performing the heat treatment at a temperature of 350 ° C. for 0.5 to 20 hours, a high-quality aluminum alloy wire can be efficiently manufactured.

【0016】[0016]

【発明の実施の形態】本発明によれば、Mg0.08〜
1.5重量%、Si0.09〜1.5重量%、Zr0.
008〜0.15重量%およびTi0.002〜0.0
5重量%を含み、Mg原子とSi原子の数の比、Mg/
Siが0.1〜3.0であるアルミニウム合金、または
これにCu0.004〜0.3重量%および/またはF
e0.08〜1.5重量%を加えたアルミニウム合金か
ら連続鋳造圧延法により荒引線が製造される。該合金の
成分としてTiが添加されることによって、連続鋳造圧
延工程で凝固組織が微細な等方的結晶(等軸晶)となる
ため、鋳造に引き続いて行われる圧延時に合金線の割れ
が生じ難くなる。
According to the present invention, Mg of 0.08 to
1.5 wt%, Si 0.09 to 1.5 wt%, Zr0.
008 to 0.15% by weight and Ti 0.002 to 0.0
5% by weight, the ratio of the number of Mg atoms to the number of Si atoms, Mg /
Aluminum alloy with 0.1 to 3.0 Si, or 0.004 to 0.3% by weight of Cu and / or F
(e) A rough drawn wire is manufactured by a continuous casting and rolling method from an aluminum alloy to which 0.08 to 1.5% by weight is added. By adding Ti as a component of the alloy, the solidification structure becomes fine isotropic crystals (equiaxed crystals) in the continuous casting and rolling process, so that the alloy wire cracks during rolling performed subsequent to casting. It becomes difficult.

【0017】次いで荒引線を430℃〜630℃の温度
で0.5〜10時間溶体化処理し、5℃/秒以上の冷却
速度で常温まで冷却することによって、Mg、Si、Z
r、CuおよびFeの各元素の全部または一部をアルミ
ニウムの素地に強制的に固溶させる。この結果、この後
行われる冷間加工と該冷間加工後の熱処理によって合金
線に充分な強度と耐熱性を持つ組織を形成することがで
きるようになる。
Next, the rough drawn wire is subjected to a solution treatment at a temperature of 430 ° C. to 630 ° C. for 0.5 to 10 hours, and cooled to a room temperature at a cooling rate of 5 ° C./sec or more to obtain Mg, Si, Z
All or a part of each element of r, Cu and Fe is forcibly dissolved in the aluminum base. As a result, a structure having sufficient strength and heat resistance can be formed in the alloy wire by the subsequent cold working and heat treatment after the cold working.

【0018】これに続く断面積減少率70%以上の冷間
加工で、アルミニウム素地に固溶したMg、Cuおよび
Feが加工硬度を大きくして合金線の強度を高める。こ
の加工で導入された組織は固溶したZrによって高温ま
で安定化され、かくして得られる合金線は高強度と優れ
た耐熱性の両方の長所を併せ持つ合金線となる。また該
冷間加工後の熱処理では、強加工された組織の残留応力
を緩和するとともに、Mg、Siの一部がMg2Siと
して析出して、合金線の強度の低下を抑え、同時にアル
ミニウム素地中のMg、Si、Feの固溶度が減少して
導電性が向上する。
In the subsequent cold working at a cross-sectional area reduction rate of 70% or more, Mg, Cu and Fe dissolved in the aluminum base increase the working hardness and increase the strength of the alloy wire. The structure introduced by this processing is stabilized up to a high temperature by the solid solution of Zr, and the alloy wire thus obtained is an alloy wire having both advantages of high strength and excellent heat resistance. Further, in the heat treatment after the cold working, the residual stress of the strongly worked structure is relaxed, and a part of Mg and Si precipitates as Mg 2 Si to suppress a decrease in the strength of the alloy wire, and at the same time, suppress the aluminum base. The solid solubility of Mg, Si, and Fe therein decreases, and the conductivity improves.

【0019】本発明で用いられるアルミニウム合金のM
g含有量は0.08〜1.5重量%である。Mg含有量
が0.08重量%未満では、冷間加工による合金線の強
度増加が不充分となり、一方、1.5重量%より多いと
合金線の導電率が低下する。好ましいMg含有量は0.
1〜1.0重量%、より好ましくは0.2〜0.8重量
%、さらに好ましくは0.3〜0.7重量%である。
The M of the aluminum alloy used in the present invention
The g content is between 0.08 and 1.5% by weight. If the Mg content is less than 0.08% by weight, the strength of the alloy wire due to cold working is insufficiently increased, while if it is more than 1.5% by weight, the conductivity of the alloy wire is reduced. The preferred Mg content is 0.1.
The content is 1 to 1.0% by weight, more preferably 0.2 to 0.8% by weight, and still more preferably 0.3 to 0.7% by weight.

【0020】Si含有量はアルミニウム合金中0.09
〜1.5重量%である。0.09重量%未満では冷間加
工による合金線の強度増加が不充分となり、また冷間加
工後の熱処理によるMg2Siの析出が起こりにくくな
る。一方Si含有量が1.5重量%より多いと導電率と
耐熱性が低下する。好ましいSi含有量は0.1〜1.
0重量%、より好ましくは0.2〜0.8重量%、さら
に好ましくは0.3〜0.7重量%である。
The content of Si is 0.09 in the aluminum alloy.
~ 1.5% by weight. If it is less than 0.09% by weight, the increase in strength of the alloy wire by cold working becomes insufficient, and the precipitation of Mg 2 Si due to heat treatment after cold working hardly occurs. On the other hand, when the Si content is more than 1.5% by weight, the electrical conductivity and the heat resistance decrease. The preferred Si content is 0.1-1.
0% by weight, more preferably 0.2 to 0.8% by weight, still more preferably 0.3 to 0.7% by weight.

【0021】Zr含有量はアルミニウム合金中0.00
8〜0.15重量%である。該含有量が0.008重量
%未満では得られる合金線の耐熱性が充分ではなく、一
方0.15重量%より多いと導電率が低下する。好まし
いZr含有量は0.01〜0.1重量%、より好ましく
は0.02〜0.08重量%、さらに好ましくは0.0
3〜0.07重量%である。
The Zr content in the aluminum alloy is 0.00
8 to 0.15% by weight. If the content is less than 0.008% by weight, the heat resistance of the obtained alloy wire is not sufficient, while if it is more than 0.15% by weight, the electrical conductivity decreases. The preferred Zr content is 0.01 to 0.1% by weight, more preferably 0.02 to 0.08% by weight, and still more preferably 0.0 to 0.08% by weight.
3 to 0.07% by weight.

【0022】Ti含有量はアルミニウム合金中0.00
2〜0.05重量%である。該含有量が0.002重量
%未満では凝固組織を微細化する効果がなく、一方0.
05重量%より多いと導電率を著しく低下させる。好ま
しいTi含有量は0.005〜0.05重量%、より好
ましくは0.01〜0.03重量%である。
The content of Ti in the aluminum alloy is 0.00
2 to 0.05% by weight. When the content is less than 0.002% by weight, there is no effect of refining the solidified structure.
If it is more than 05% by weight, the electric conductivity is remarkably reduced. The preferred Ti content is 0.005 to 0.05% by weight, more preferably 0.01 to 0.03% by weight.

【0023】Cuを使用する場合その含有量はアルミニ
ウム合金中0.004〜0.3重量%である。該含有量
が0.004重量%未満では冷間加工による合金線の強
度増加が不充分となり、また0.3重量%より多いと合
金線の導電率が低下する。より好ましいCu含有量は
0.005〜0.2重量%、さらに好ましくは0.00
8〜0.15重量%、とりわけ好ましくは0.01〜
0.10重量%である。
When Cu is used, its content is 0.004 to 0.3% by weight in the aluminum alloy. If the content is less than 0.004% by weight, the strength of the alloy wire due to cold working is insufficiently increased, and if it is more than 0.3% by weight, the conductivity of the alloy wire is reduced. A more preferred Cu content is 0.005 to 0.2% by weight, still more preferably 0.005 to 0.2% by weight.
8 to 0.15% by weight, particularly preferably 0.01 to
0.10% by weight.

【0024】Feを使用する場合その含有量はアルミニ
ウム合金中0.08〜1.5重量%である。該含有量が
0.08重量%未満では冷間加工による合金線の強度増
加が不充分となり、一方1.5重量%より多いと得られ
た合金線の導電率と耐熱性が低下する。より好ましいF
e含有量は0.1〜1.0重量%、さらに好ましくは
0.02〜0.15重量%、とりわけ好ましくは0.0
3〜0.10重量%である。
When Fe is used, its content is 0.08 to 1.5% by weight in the aluminum alloy. If the content is less than 0.08% by weight, the strength of the alloy wire due to cold working is insufficiently increased, while if it is more than 1.5% by weight, the conductivity and heat resistance of the obtained alloy wire are reduced. More preferred F
e content is 0.1 to 1.0% by weight, more preferably 0.02 to 0.15% by weight, particularly preferably 0.02 to 0.15% by weight.
3 to 0.10% by weight.

【0025】合金中に含まれるMg原子とSi原子との
数の比、Mg/Siは0.1〜3.0、好ましくは0.
2〜2.0、より好ましくは0.5〜1.6、さらに好
ましくは0.8から1.5に調整する。該比が0.1未
満では冷間加工後の熱処理の際に析出するMg2Siに
対してSiが過剰になりすぎ得られる合金線の耐熱性と
導電率が低下し、一方3.0よりも大きいとMg2Si
に対してMgが過剰となり合金線の導電率が低下するだ
けでなくMg2Siの析出速度が遅くなって、最適な熱
処理条件が使用する成分によって著しく異なる。
The ratio of the number of Mg atoms to the number of Si atoms contained in the alloy, Mg / Si is 0.1 to 3.0, preferably 0.1 to 3.0.
It is adjusted to 2 to 2.0, more preferably 0.5 to 1.6, and still more preferably 0.8 to 1.5. When the ratio is less than 0.1, the heat resistance and the electrical conductivity of the alloy wire obtained by excessively adding Si to the Mg 2 Si precipitated during the heat treatment after the cold working are reduced, while the ratio is less than 3.0. Is too large for Mg 2 Si
In contrast to this, Mg becomes excessive and not only decreases the conductivity of the alloy wire but also lowers the deposition rate of Mg 2 Si, so that the optimal heat treatment conditions differ significantly depending on the components used.

【0026】本発明で用いられるアルミニウム合金には
通常含まれるZnなどの不純物を通常程度(おおよそ
0.001重量%以下)含有することは許容されるが、
V、Mnなどといった導電率を低下させる元素の含有量
は低く抑えることが望ましい。地金の段階でAl−Bま
たはAl−Ti−B母合金の添加によるボロン処理を行
っても良い。
The aluminum alloy used in the present invention may contain ordinary impurities (such as Zn) which are usually contained (about 0.001% by weight or less).
It is desirable to keep the content of elements that lower the conductivity, such as V and Mn, low. Boron treatment by addition of an Al-B or Al-Ti-B mother alloy may be performed at the stage of the base metal.

【0027】このような組成をもつアルミニウム合金か
ら連続鋳造圧延法により荒引線を製造する。本発明に用
いられる荒引線の連続鋳造圧延方法は特に制限されず、
プロペルチ法、ヘズレー法、SCR法、スピーデム法な
どの周知の方法が採用できる。好ましくはプロペルチ法
であり、例えば回転する水冷銅鋳型ホイールとスチール
ベルトの間に形成される隙間に溶湯を注ぎ、ホイールが
約3/4回転する間に凝固したアルミニウム合金バーを
連続的に取り出し、該バーをそのまま多段圧延機に導入
して荒引線に仕上げる。
A rough drawn wire is manufactured from an aluminum alloy having such a composition by a continuous casting and rolling method. The continuous casting and rolling method of the rough drawing wire used in the present invention is not particularly limited,
Well-known methods such as the Properch method, the Hesley method, the SCR method, and the Speedem method can be adopted. Preferable is the Properch method, for example, pouring molten metal into a gap formed between a rotating water-cooled copper mold wheel and a steel belt, and continuously removing the solidified aluminum alloy bar while the wheel rotates about 3/4, The bar is directly introduced into a multi-high rolling mill to finish it into a rough drawing line.

【0028】連続鋳造圧延法により例えば直径8mm〜
15mm程度の荒引線を得るが、その際の鋳造温度は7
00〜900℃が好ましい。また得られたバーを100
℃以下になるまでに断面積減少率80%以上で圧延する
ことが望ましい。
For example, a diameter of 8 mm
A rough drawing line of about 15 mm is obtained, but the casting temperature is 7
00-900 degreeC is preferable. The bar obtained is 100
It is desirable to perform rolling at a cross-sectional area reduction rate of 80% or more until the temperature becomes lower than or equal to ° C.

【0029】得られた荒引線を430℃〜630℃の温
度で0.5〜10時間溶体化処理した後、5℃/秒以上
の冷却速度で常温まで冷却する。荒引線の溶体化処理温
度が430℃未満では、添加した元素が充分に固溶され
ない。一方、630℃よりも高いと結晶粒の粗大化、荒
引線の表面の酸化、荒引線表面でMgが優先的に酸化さ
れるなどのために冷間加工での加工性や該加工後合金線
の特性を低下させる恐れがある。好ましい溶体化処理温
度は450℃〜620℃、より好ましくは480℃〜6
00℃である。
After the obtained rough drawn wire is subjected to a solution treatment at a temperature of 430 ° C. to 630 ° C. for 0.5 to 10 hours, it is cooled to a normal temperature at a cooling rate of 5 ° C./sec or more. If the solution treatment temperature of the rough drawn wire is lower than 430 ° C., the added element is not sufficiently dissolved. On the other hand, if the temperature is higher than 630 ° C., the crystal grains become coarse, the surface of the rough drawn wire is oxidized, and Mg is preferentially oxidized on the surface of the rough drawn wire. Characteristics may be degraded. The preferred solution treatment temperature is 450 ° C to 620 ° C, more preferably 480 ° C to 6 ° C.
00 ° C.

【0030】また溶体化処理時間が0.5時間未満では
添加元素が充分には固溶せず、10時間よりも長いと結
晶粒の粗大化、荒引線表面の酸化、荒引線表面でのMg
の優先酸化が進行するばかりではなく、いたずらに長い
溶体化処理は製造コストを上昇させる。好ましい溶体化
処理時間は1〜8時間である。
If the solution treatment time is less than 0.5 hour, the added element does not form a solid solution sufficiently, and if the solution treatment time is more than 10 hours, the crystal grains become coarse, the rough line surface is oxidized, and the Mg on the rough line surface is Mg.
Not only does the preferential oxidation of the solution proceed, but an unnecessarily long solution treatment increases the production cost. The preferred solution treatment time is 1 to 8 hours.

【0031】溶体化処理後の冷却速度が5℃/秒未満の
場合は、冷却中にMg、Si、Feなどの析出が進行
し、添加元素を充分に固溶させることができないだけで
なく、冷間加工での加工性を低下させる。好ましい冷却
速度は8℃/秒以上である。上限は特に限定されない
が、おおよそ100℃/秒が好ましい。冷却の方法は特
に限定されないが、たとえば水などに浸漬することによ
って行われる。
If the cooling rate after the solution treatment is less than 5 ° C./sec, the precipitation of Mg, Si, Fe, etc. proceeds during the cooling, and not only the added element cannot be sufficiently dissolved, but also Decreases workability in cold working. A preferred cooling rate is at least 8 ° C./sec. The upper limit is not particularly limited, but is preferably about 100 ° C./sec. The cooling method is not particularly limited, but is performed, for example, by immersing in water or the like.

【0032】続いて該荒引線は常温(0〜30℃)で断
面積減少率(加工前の断面積に対する減少した断面積の
割合)70%以上の冷間加工が施される。断面積減少率
が70%未満の加工では充分な加工硬化が得られず、得
られる合金線の強度が不足する。また、温間加工や熱間
加工では充分な加工硬化が得られない。好ましい冷間加
工の断面積減少率は80%以上である。上限は特に限定
されないがおおよそ98%である。
Subsequently, the rough drawn wire is subjected to cold working at a normal temperature (0 to 30 ° C.) with a cross-sectional area reduction rate (a ratio of a reduced cross-sectional area to a cross-sectional area before processing) of 70% or more. If the cross-sectional area reduction rate is less than 70%, sufficient work hardening cannot be obtained, and the strength of the obtained alloy wire is insufficient. Further, sufficient work hardening cannot be obtained by warm working or hot working. The cross-sectional area reduction rate of the preferred cold working is 80% or more. The upper limit is not particularly limited, but is approximately 98%.

【0033】冷間加工の方法は通常の穴ダイスを用いた
引抜き加工、ロールを用いた圧延加工、スウェージング
加工など、いかなる加工方法でもよいが、好ましい加工
方法は穴ダイスを用いた引抜き加工である。
The cold working method may be any working method such as drawing using a normal hole die, rolling using a roll, and swaging, but the preferred working method is drawing using a hole die. is there.

【0034】冷間加工された線は、さらに110℃〜3
60℃の温度で0.4〜20時間熱処理を施される。該
熱処理温度が110℃未満では、MgとSiの化合物生
成に非常に長時間を要するため熱処理コストが増大す
る。360℃よりも高いと過時効による軟化が著しくな
って強度と伸びが低下する。
[0034] The cold-worked wire is further heated to 110 ° C to 3 ° C.
Heat treatment is performed at a temperature of 60 ° C. for 0.4 to 20 hours. If the heat treatment temperature is lower than 110 ° C., it takes a very long time to generate a compound of Mg and Si, so that the heat treatment cost increases. If the temperature is higher than 360 ° C., softening due to overaging becomes remarkable, and strength and elongation decrease.

【0035】また、熱処理時間が0.4時間未満では得
られる合金線の強度と導電率の向上が充分ではなく、一
方20時間よりも長いと過時効状態となって強度と伸び
が低下するばかりではなく熱処理コストが増大する。好
ましい熱処理条件は120℃〜350℃で0.5〜20
時間、より好ましくは150℃〜300℃で1〜10時
間である。
On the other hand, if the heat treatment time is less than 0.4 hours, the strength and conductivity of the obtained alloy wire are not sufficiently improved, while if the heat treatment time is more than 20 hours, the alloy wire is overaged and the strength and elongation are reduced. Instead, the heat treatment cost increases. Preferred heat treatment conditions are 120 to 350 ° C. and 0.5 to 20.
Time, more preferably at 150 ° C. to 300 ° C. for 1 to 10 hours.

【0036】このようにして得られたアルミニウム合金
線は、例えば直径3.5mmで、引張強さ260Mpa
以上、伸び5%以上、導電率56%以上および耐熱性2
50℃以上の性能を兼ね備えることができる。あるいは
直径3.5mmで、引張強さ300Mpa以上、伸び4
%以上、導電率53%以上および耐熱性230℃以上の
性能をもつこともできる。
The aluminum alloy wire thus obtained has, for example, a diameter of 3.5 mm and a tensile strength of 260 Mpa.
Above, elongation 5% or more, conductivity 56% or more, and heat resistance 2
It can have a performance of 50 ° C. or more. Alternatively, it has a diameter of 3.5 mm, a tensile strength of 300 Mpa or more, and an elongation of 4
% Or more, conductivity of 53% or more, and heat resistance of 230 ° C. or more.

【0037】[0037]

【実施例】以下、実施例および比較例により本発明をい
っそう詳細に説明する。 実施例1 表1に示す組成の合金をプロペルチ法により連続鋳造圧
延し、外径9.5mmの荒引線を得た。その際、圧延割
れの有無を過流探傷器と肉眼でチェックした。結果を表
1に示す。該荒引線に620℃0.5時間の溶体化処理
を施した後、速度10℃/秒で室温まで冷却した。次い
で、断面積減少率90%の冷間加工を加えてアルミニウ
ム合金線(素線)とし、さらに350℃0.5時間の素
線熱処理を施し、導電性アルミニウム合金線を得た。得
られた合金線につき、引張強さ、伸び、導電率および耐
熱性を評価した。引張強さと伸びはJISZ2241に
基づいて測定し、導電率はJISH0505に基づいて
測定した。また耐熱性は1時間の加熱で引張強さが加熱
前の90%まで低下する温度を測定した。結果を表2に
示す。
The present invention will be described below in more detail with reference to Examples and Comparative Examples. Example 1 An alloy having a composition shown in Table 1 was continuously cast and rolled by a propelting method to obtain a rough drawn wire having an outer diameter of 9.5 mm. At that time, the presence or absence of rolling cracks was visually checked with an overcurrent flaw detector. Table 1 shows the results. After subjecting the rough drawn wire to a solution treatment at 620 ° C. for 0.5 hour, it was cooled to room temperature at a rate of 10 ° C./sec. Next, a cold working with a cross-sectional area reduction rate of 90% was performed to obtain an aluminum alloy wire (strand), and further, a wire heat treatment was performed at 350 ° C. for 0.5 hour to obtain a conductive aluminum alloy wire. The resulting alloy wire was evaluated for tensile strength, elongation, electrical conductivity, and heat resistance. Tensile strength and elongation were measured based on JISZ2241, and conductivity was measured based on JISH0505. The heat resistance was measured at a temperature at which the tensile strength was reduced to 90% of that before heating by heating for 1 hour. Table 2 shows the results.

【0038】実施例2〜10および比較例1〜10 表1に示す組成の合金を用い、表1に示す溶体化処理条
件および冷却速度、表2に示す断面積減少率の冷間処理
および素線熱処理条件で、実施例1と同様にして導電性
アルミニウム合金線を得た。実施例1と同様にして、圧
延割れの有無、引張強さ、伸び、導電率および耐熱性を
評価した。連続鋳造圧延時の割れ発生状況を表1に、導
電用アルミニウム合金線の各特性(引張強さ、伸び、導
電率および耐熱性)を表2に示す。なお比較例8〜10
については連続鋳造圧延時に割れが発生したため、以後
の評価は実施できなかった。
Examples 2 to 10 and Comparative Examples 1 to 10 Using alloys having the compositions shown in Table 1, the solution treatment conditions and cooling rates shown in Table 1 and the cold treatments and reductions of the cross-sectional area reduction rates shown in Table 2 were carried out. Under the conditions of wire heat treatment, a conductive aluminum alloy wire was obtained in the same manner as in Example 1. In the same manner as in Example 1, the presence or absence of rolling cracks, tensile strength, elongation, conductivity, and heat resistance were evaluated. Table 1 shows the state of occurrence of cracks during continuous casting and rolling, and Table 2 shows the properties (tensile strength, elongation, conductivity, and heat resistance) of the aluminum alloy wire for conductivity. Comparative Examples 8 to 10
For, cracks occurred during continuous casting and rolling, and the subsequent evaluation could not be performed.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】本発明の方法によれば、例えば直径3.
5mmの線材で260Mpa以上の引張強さ、5%以上
の伸び、56%以上の導電率および250℃以上の耐熱
性、または300Mpa以上の引張強さ、4%以上の伸
び、53%以上の導電率および230℃以上の耐熱性と
いう性能を兼ね備えた品質の高い導電用高力耐熱アルミ
合金線が、合金圧延時に割れを発生することもなく、ま
た最適熱処理条件が成分によって著しく違うこともな
く、容易に、かつ歩留まり良く、安定して製造すること
ができる。
According to the method of the present invention, for example, a diameter of 3.
Tensile strength of 260 Mpa or more, 5% or more elongation, conductivity of 56% or more and heat resistance of 250 ° C. or more, or tensile strength of 300 Mpa or more, elongation of 4% or more, conductivity of 53% or more with 5 mm wire High-strength heat-resistant aluminum alloy wire with high quality, which has both heat resistance and heat resistance of 230 ° C or higher, does not crack during alloy rolling, and the optimal heat treatment conditions do not differ significantly depending on the components. It can be manufactured easily, with good yield, and stably.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630A 650 650A 661 661A 685 685Z 691 691B 691C 692 692A Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C22F 1/00 630 C22F 1/00 630A 650 650A 661 661A 685 685Z 691 691B 691C 692 692A

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.08〜1.5重量%、Si0.
09〜1.5重量%、Zr0.008〜0.15重量%
およびTi0.002〜0.05重量%を含み、Mg原
子とSi原子の数の比、Mg/Siが0.1〜3.0で
あるアルミニウム合金から製造される荒引線を、430
℃〜630℃の温度で0.5〜10時間溶体化処理し、
5℃/秒以上の冷却速度で常温まで冷却し、その後断面
積減少率70%以上の冷間加工を施し、次いで110℃
〜360℃の温度で0.4〜20時間熱処理することか
らなるアルミニウム合金線の製造方法。
1. An alloy containing 0.08 to 1.5% by weight of Mg and 0.1% by weight of Si.
09-1.5% by weight, Zr 0.008-0.15% by weight
430, a rough wire drawn from an aluminum alloy containing 0.002 to 0.05% by weight of Ti and having a ratio of the number of Mg atoms to the number of Si atoms, and Mg / Si of 0.1 to 3.0.
Solution treatment at a temperature of from 0 to 630 ° C for 0.5 to 10 hours,
Cool to room temperature at a cooling rate of 5 ° C./sec or more, then perform cold working with a cross-sectional area reduction rate of 70% or more, and then 110 ° C.
A method for producing an aluminum alloy wire, comprising performing a heat treatment at a temperature of about 360 ° C. for 0.4 to 20 hours.
【請求項2】 アルミニウム合金がCu0.004〜
0.3重量%およびFe0.08〜1.5重量%の少な
くともひとつを含有する請求項1のアルミニウム合金線
の製造方法。
2. An aluminum alloy having a Cu content of 0.004 to
2. The method for producing an aluminum alloy wire according to claim 1, wherein the aluminum alloy wire contains at least one of 0.3% by weight and 0.08 to 1.5% by weight of Fe.
【請求項3】 アルミニウム合金が、Mg0.1〜1.
0重量%、Si0.1〜1.0重量%、Zr0.01〜
0.1重量%およびTi0.002〜0.05重量%を
含み、Mg原子とSi原子の数の比、Mg/Siが0.
2〜2.0である請求項1のアルミニウム合金線の製造
方法。
3. The method according to claim 1, wherein the aluminum alloy is Mg 0.1-1.
0 wt%, Si 0.1-1.0 wt%, Zr0.01-
0.1% by weight and 0.002 to 0.05% by weight of Ti, and the ratio of the number of Mg atoms to the number of Si atoms, Mg / Si is 0.1%.
2. The method for producing an aluminum alloy wire according to claim 1, wherein the number is 2 to 2.0.
【請求項4】 アルミニウム合金から製造される荒引線
を、450℃〜620℃の温度で0.5〜10時間溶体
化処理し、5℃/秒以上の冷却速度で常温まで冷却し、
その後断面積減少率70%以上の冷間加工を施し、次い
で120℃〜350℃の温度で0.5〜20時間熱処理
することからなる請求項3のアルミニウム合金線の製造
方法。
4. A wire drawn from an aluminum alloy is subjected to a solution treatment at a temperature of 450 ° C. to 620 ° C. for 0.5 to 10 hours, and cooled to a normal temperature at a cooling rate of 5 ° C./second or more.
4. The method for producing an aluminum alloy wire according to claim 3, wherein the aluminum alloy wire is subjected to cold working at a cross-sectional area reduction rate of 70% or more, and then heat-treated at a temperature of 120C to 350C for 0.5 to 20 hours.
【請求項5】 Mg0.08〜1.5重量%、Si0.
09〜1.5重量%、Zr0.008〜0.15重量%
およびTi0.002〜0.05重量%を含み、Mg原
子とSi原子の数の比、Mg/Siが0.1〜3.0で
あるアルミニウム合金。
5. An alloy containing 0.08 to 1.5% by weight of Mg and 0.1% by weight of Si.
09-1.5% by weight, Zr 0.008-0.15% by weight
And an alloy containing 0.002 to 0.05% by weight of Ti, and the ratio of the number of Mg atoms to the number of Si atoms, and Mg / Si is 0.1 to 3.0.
【請求項6】 アルミニウム合金が、Mg0.1〜1.
0重量%、Si0.1〜1.0重量%、Zr0.01〜
0.1重量%およびTi0.002〜0.05重量%を
含み、Mg原子とSi原子の数の比、Mg/Siが0.
2〜2.0である請求項5のアルミニウム合金線。
6. The method according to claim 1, wherein the aluminum alloy is Mg 0.1-1.
0 wt%, Si 0.1-1.0 wt%, Zr0.01-
0.1% by weight and 0.002 to 0.05% by weight of Ti, and the ratio of the number of Mg atoms to the number of Si atoms, Mg / Si is 0.1%.
6. The aluminum alloy wire according to claim 5, which is 2 to 2.0.
【請求項7】 Cu0.004〜0.3重量%およびF
e0.08〜1.5重量%の少なくともひとつを含有す
る請求項5または6のアルミニウム合金線。
7. 0.004 to 0.3% by weight of Cu and F
7. The aluminum alloy wire according to claim 5, wherein the aluminum alloy wire contains at least one of 0.08 to 1.5% by weight.
【請求項8】 アルミニウム合金から製造される合金線
が、電力ケーブルの導体として使用されることを特徴と
する請求項5、6または7のアルミニウム合金。
8. The aluminum alloy according to claim 5, wherein an alloy wire manufactured from the aluminum alloy is used as a conductor of a power cable.
【請求項9】 アルミニウム合金から製造される荒引線
を溶体化処理し、常温まで冷却し、その後冷間加工を施
し、次いで熱処理することからなるアルミニウム合金線
の製造方法において使用されることを特徴とする請求項
5、6または7のアルミニウム合金。
9. A method for producing an aluminum alloy wire, which comprises subjecting a rough drawn wire produced from an aluminum alloy to a solution treatment, cooling to room temperature, cold working, and then heat treating. The aluminum alloy according to claim 5, 6 or 7, wherein
JP2000065080A 2000-03-09 2000-03-09 Method of manufacturing aluminum alloy wire, and aluminum alloy Pending JP2001254160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000065080A JP2001254160A (en) 2000-03-09 2000-03-09 Method of manufacturing aluminum alloy wire, and aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000065080A JP2001254160A (en) 2000-03-09 2000-03-09 Method of manufacturing aluminum alloy wire, and aluminum alloy

Publications (1)

Publication Number Publication Date
JP2001254160A true JP2001254160A (en) 2001-09-18

Family

ID=18584669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000065080A Pending JP2001254160A (en) 2000-03-09 2000-03-09 Method of manufacturing aluminum alloy wire, and aluminum alloy

Country Status (1)

Country Link
JP (1) JP2001254160A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018646A1 (en) * 2008-08-11 2010-02-18 住友電気工業株式会社 Aluminum alloy wire
JP2010130709A (en) * 2008-11-25 2010-06-10 Furukawa Electric Co Ltd:The Aluminum wire rod connector
WO2011105585A1 (en) * 2010-02-26 2011-09-01 古河電気工業株式会社 Aluminum alloy conductor
WO2011105584A1 (en) * 2010-02-26 2011-09-01 古河電気工業株式会社 Aluminum alloy conductor
WO2012011513A1 (en) * 2010-07-20 2012-01-26 古河電気工業株式会社 Aluminium alloy conductor and manufacturing method for same
WO2014112636A1 (en) * 2013-01-21 2014-07-24 矢崎総業株式会社 Aluminum alloy wire, electric wire, cable and wire harness
CN104538116A (en) * 2014-12-16 2015-04-22 广东省工业技术研究院(广州有色金属研究院) Method for producing high-strength high-conductivity aluminum alloy conductor
US9099218B2 (en) 2009-07-06 2015-08-04 Yazaki Corporation Electric wire or cable
WO2016002895A1 (en) * 2014-07-03 2016-01-07 矢崎総業株式会社 Electrical wire or cable, wire harness, and method for manufacturing aluminum alloy strand
CN106460104A (en) * 2014-03-06 2017-02-22 古河电气工业株式会社 Aluminum alloy wire, aluminum alloy strand wire, coated electric wire, wire harness, process for producing aluminum alloy wire, and method for examining aluminum alloy wire
CN107254611A (en) * 2013-03-29 2017-10-17 古河电器工业株式会社 Aluminium alloy conductor, aluminium alloy stranded conductor, coated electric wire, the manufacture method of wire harness and aluminium alloy conductor
DE112007002585B4 (en) 2006-10-30 2018-05-09 Autonetworks Technologies, Ltd. Method of making a conductor and conductor
EP3228718A4 (en) * 2014-12-05 2018-07-04 Furukawa Electric Co. Ltd. Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material
JP2018154927A (en) * 2018-05-24 2018-10-04 矢崎総業株式会社 Aluminum alloy, aluminum alloy wire using aluminum alloy, wire harness for automobile using aluminum alloy wire, and manufacturing method of aluminum alloy strand wire

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007002585B4 (en) 2006-10-30 2018-05-09 Autonetworks Technologies, Ltd. Method of making a conductor and conductor
WO2010018646A1 (en) * 2008-08-11 2010-02-18 住友電気工業株式会社 Aluminum alloy wire
US10304581B2 (en) 2008-08-11 2019-05-28 Sumitomo Electric Industries, Ltd. Aluminum alloy wire
US9147504B2 (en) 2008-08-11 2015-09-29 Sumitomo Electric Industries, Ltd. Aluminum alloy wire
US8353993B2 (en) 2008-08-11 2013-01-15 Sumitomo Electric Industries, Ltd. Aluminum alloy wire
JP2010130709A (en) * 2008-11-25 2010-06-10 Furukawa Electric Co Ltd:The Aluminum wire rod connector
USRE46950E1 (en) 2009-07-06 2018-07-10 Yazaki Corporation Electric wire or cable
US9099218B2 (en) 2009-07-06 2015-08-04 Yazaki Corporation Electric wire or cable
JPWO2011105584A1 (en) * 2010-02-26 2013-06-20 古河電気工業株式会社 Aluminum alloy conductor
US9214251B2 (en) 2010-02-26 2015-12-15 Furukawa Electric Co., Ltd. Aluminum alloy conductor
WO2011105584A1 (en) * 2010-02-26 2011-09-01 古河電気工業株式会社 Aluminum alloy conductor
JP4986251B2 (en) * 2010-02-26 2012-07-25 古河電気工業株式会社 Aluminum alloy conductor
CN102803530A (en) * 2010-02-26 2012-11-28 古河电气工业株式会社 Aluminum alloy conductor
CN102803530B (en) * 2010-02-26 2014-08-20 古河电气工业株式会社 Aluminum alloy conductor
WO2011105585A1 (en) * 2010-02-26 2011-09-01 古河電気工業株式会社 Aluminum alloy conductor
JPWO2012011513A1 (en) * 2010-07-20 2013-09-09 古河電気工業株式会社 Method for producing aluminum alloy conductor
WO2012011513A1 (en) * 2010-07-20 2012-01-26 古河電気工業株式会社 Aluminium alloy conductor and manufacturing method for same
JP5228118B2 (en) * 2010-07-20 2013-07-03 古河電気工業株式会社 Method for producing aluminum alloy conductor
JP2014139334A (en) * 2013-01-21 2014-07-31 Yazaki Corp Aluminum alloy wire, wire, cable and wire harness
WO2014112636A1 (en) * 2013-01-21 2014-07-24 矢崎総業株式会社 Aluminum alloy wire, electric wire, cable and wire harness
US20150325325A1 (en) * 2013-01-21 2015-11-12 Yazaki Corporation Aluminum alloy wire, electric wire, cable and wire harness
US10249401B2 (en) 2013-01-21 2019-04-02 Yazaki Corporation Aluminum alloy wire, electric wire, cable and wire harness
CN107254611A (en) * 2013-03-29 2017-10-17 古河电器工业株式会社 Aluminium alloy conductor, aluminium alloy stranded conductor, coated electric wire, the manufacture method of wire harness and aluminium alloy conductor
EP3115473A4 (en) * 2014-03-06 2017-11-08 Furukawa Electric Co. Ltd. Aluminum alloy wire, aluminum alloy strand wire, coated electric wire, wire harness, process for producing aluminum alloy wire, and method for examining aluminum alloy wire
JPWO2015133004A1 (en) * 2014-03-06 2017-04-06 古河電気工業株式会社 Aluminum alloy wire, aluminum alloy twisted wire, covered electric wire, wire harness, method for producing aluminum alloy wire, and method for measuring aluminum alloy wire
CN106460104A (en) * 2014-03-06 2017-02-22 古河电气工业株式会社 Aluminum alloy wire, aluminum alloy strand wire, coated electric wire, wire harness, process for producing aluminum alloy wire, and method for examining aluminum alloy wire
US9899118B2 (en) 2014-03-06 2018-02-20 Furukawa Electric Co., Ltd. Aluminum alloy wire rod, alluminum alloy stranded wire, coated wire, wire harness, method of manufacturing aluminum alloy wire rod, and method of measuring aluminum alloy wire rod
US20170096729A1 (en) * 2014-07-03 2017-04-06 Yazaki Corporation Electrical wire or cable, wire harness, and method of manufacturing aluminum alloy strand
CN106507679A (en) * 2014-07-03 2017-03-15 矢崎总业株式会社 Electric wire or the method for cable, wire harness and manufacture aluminium alloy strand
JP6023901B2 (en) * 2014-07-03 2016-11-09 矢崎総業株式会社 Electric wire or cable, wire harness, and aluminum alloy strand manufacturing method
WO2016002895A1 (en) * 2014-07-03 2016-01-07 矢崎総業株式会社 Electrical wire or cable, wire harness, and method for manufacturing aluminum alloy strand
EP3228718A4 (en) * 2014-12-05 2018-07-04 Furukawa Electric Co. Ltd. Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material
CN104538116B (en) * 2014-12-16 2016-09-28 广东省材料与加工研究所 A kind of high intensity, the production method of high-conductivity aluminum alloy wire
CN104538116A (en) * 2014-12-16 2015-04-22 广东省工业技术研究院(广州有色金属研究院) Method for producing high-strength high-conductivity aluminum alloy conductor
JP2018154927A (en) * 2018-05-24 2018-10-04 矢崎総業株式会社 Aluminum alloy, aluminum alloy wire using aluminum alloy, wire harness for automobile using aluminum alloy wire, and manufacturing method of aluminum alloy strand wire

Similar Documents

Publication Publication Date Title
JP6328805B2 (en) Aluminum wire for automobile
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4596490B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP2001254160A (en) Method of manufacturing aluminum alloy wire, and aluminum alloy
JP3908987B2 (en) Copper alloy excellent in bendability and manufacturing method thereof
JPS6358907B2 (en)
JP2001226754A (en) Method of manufacturing for heat resistant aluminum alloy and electric cable
JP2944907B2 (en) Method of manufacturing aluminum alloy wire for electric conduction
JP2010163677A (en) Aluminum alloy wire rod
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
JPH0125822B2 (en)
JPS6123852B2 (en)
JPH0418016B2 (en)
JP2835041B2 (en) Method of manufacturing heat-resistant aluminum alloy conductive wire
JPS63293146A (en) Manufacture of high strength heat resistant aluminum alloy for electric conduction
JP3320455B2 (en) Method for producing Cu-Ag alloy conductor
JP3227072B2 (en) Method of manufacturing aluminum alloy wire for electric conduction
JP2835042B2 (en) Method of manufacturing heat-resistant aluminum alloy conductive wire
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same
JPH0314901B2 (en)
JP2932726B2 (en) Manufacturing method of copper alloy wire

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411