WO2012011513A1 - Aluminium alloy conductor and manufacturing method for same - Google Patents

Aluminium alloy conductor and manufacturing method for same Download PDF

Info

Publication number
WO2012011513A1
WO2012011513A1 PCT/JP2011/066499 JP2011066499W WO2012011513A1 WO 2012011513 A1 WO2012011513 A1 WO 2012011513A1 JP 2011066499 W JP2011066499 W JP 2011066499W WO 2012011513 A1 WO2012011513 A1 WO 2012011513A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
wire
alloy conductor
heat treatment
Prior art date
Application number
PCT/JP2011/066499
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 関谷
京太 須齋
賢悟 水戸瀬
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2011553225A priority Critical patent/JP5228118B2/en
Publication of WO2012011513A1 publication Critical patent/WO2012011513A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the present invention relates to an aluminum alloy conductor used as a conductor of an electrical wiring body and a method of manufacturing the same.
  • the specific gravity of aluminum is about 1/3 of copper
  • the conductivity of aluminum is about 2/3 of copper (based on 100% IACS of pure copper, about 66% IACS of pure aluminum)
  • the conductor wire material of pure aluminum Although it is necessary to make the cross-sectional area of the conductor wire of pure aluminum about 1.5 times that of the conductor wire of pure copper in order to pass the same current as the conductor wire of pure copper, the mass still is about half compared to copper.
  • the above% IACS refers to the conductivity when the resistivity of the international annealed copper standard (International Annealed Copper Standard) is 1.7241 ⁇ 10 ⁇ 8 ⁇ m as 100% IACS.
  • the bending fatigue resistance is required of the aluminum conductor used for the electric wiring body of the moving body because a wire harness attached to a door or the like is repeatedly subjected to bending stress due to opening and closing of the door.
  • a metal material such as aluminum is repeatedly applied and removed with a load such as opening and closing of a door even at a low load that does not break with a single load, fatigue fracture occurs that breaks with a certain number of repetitions.
  • the said aluminum conductor When the said aluminum conductor is used for an opening-and-closing part, when a bending fatigue-resistant characteristic is bad, it is feared that a conductor will fracture during its use, and the problem that durability and reliability are missing arises. It is generally said that the higher the strength, the better the fatigue properties. Therefore, although high strength aluminum wire should be applied, the wire harness is required to be easy to handle at the time of its installation (mounting work to the vehicle body), so the elongation is generally 10% or more A dullable material (annealed material) that can be secured is often used.
  • the aluminum conductor used for the electrical wiring body of the moving body has a material excellent in bending fatigue resistance characteristics. Is required.
  • a pure aluminum system represented by aluminum alloy wire rod for power transmission line (JIS A1060 or JIS A1070) can not sufficiently withstand repeated bending stress caused by opening and closing of a door or the like.
  • alloyed materials to which various additive elements are added are excellent in strength, causing a decrease in conductivity due to a solid solution phenomenon of the additive elements in aluminum, and forming an excessive intermetallic compound in aluminum. It is a problem that the wire breakage may occur during wire drawing. Therefore, it was necessary to limit and select the additive element to prevent the decrease in conductivity and the deterioration in processability, and to improve the strength and the resistance to bending fatigue.
  • Patent documents 1 to 3 are typical ones as an aluminum conductor used for an electric wiring body of a moving body.
  • the electric wire conductor described in Patent Document 1 may have too high tensile strength and may be difficult to attach to a vehicle body.
  • the aluminum conductive wire specifically described in Patent Document 2 the finish annealing is not performed.
  • Cu since Cu is not contained, it is desired to have a low elongation and a higher flexibility for the attachment work on the vehicle body.
  • Patent Document 3 discloses a light-weight, flexible, flexible aluminum conductive wire, but the request for improving the characteristics of the moving body to the electric wiring body is only intensified, and further improvement of the characteristics is desired. There is.
  • JP 2008-112620 A JP, 2006-19163, A JP, 2006-253109, A
  • An object of the present invention is to provide an aluminum alloy conductor excellent in bending fatigue resistance and the like.
  • the present inventors have repeatedly conducted various studies and, as satisfying the required bending fatigue resistance, include the components contained in the aluminum alloy conductor, and the effect of the additive element by controlling the finish annealing production process of the conductor.
  • the inventors have found that the above characteristics can be improved by optimizing the crystal grain size of the conductor using the above, and based on this finding, the present invention has been completed.
  • the present invention provides the following solutions.
  • Aluminum alloy conductor characterized by being.
  • the number of repeated breakages is 90,000 or more when a bending strain of tensile strength of 120 MPa or more and conductivity of 57% IACS or more and ⁇ 0.17% is applied
  • the mass ratio (W1 / W2) of the total content (W1) of the content of at least one element selected from the group consisting of Sn, Cd and In to the content (W2) of Zr is 0.6 to 2
  • the apparatus is characterized in that the number of repeated breakages is 80,000 or more when a bending strain of 120 MPa or more and a conductivity of 52% IACS or more and ⁇ 0.17% is applied (6)
  • a method of manufacturing an aluminum alloy conductor comprising the step of performing heat treatment, wherein the annealing heat treatment is performed under conditions of a temperature of 300 to 450 ° C. for 10 minutes to 6 hours.
  • Production method. (13) 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.02 to 0.3 mass% of Si , At least one element selected from the group consisting of Sn, Cd and In in a total amount of 0.01 to 0.5 mass%, and further containing 0.001 to 0.01 mass% of a total of Ti and V, Zr
  • the aluminum alloy component containing 0.001 to 0.1 mass% of Al and the balance Al and unavoidable impurities is melted and then subjected to continuous casting and rolling to obtain a rough bar, cold wire drawing to a rough draw wire, and heat treatment
  • a method of manufacturing an aluminum alloy conductor comprising the steps of applying, drawing, forming a wire, and annealing heat treatment, where
  • Method of producing an aluminum alloy conductor (15) containing 0.1 to 1 mass% of Cu, and 0.01 to 0.5 mass% in total of at least one element selected from the group consisting of Sn, Cd and In, with the balance being Al and unavoidable impurities
  • Aluminum alloy conductor (16) containing 0.1 to 1 mass% of Cu, and 0.01 to 0.5 mass% in total of at least one element selected from the group consisting of Sn, Cd and In;
  • the mass ratio of the total content (W1) of the content of at least one element selected from the group consisting of Sn, Cd and In to the content (W2) of Zr is 0.6 to 2.6
  • the aluminum alloy conductor according to (17) characterized in that (19) The aluminum alloy conductor according to any one of (15) to (18), wherein the conductor is used as a battery cable, a harness or a wire for a motor in a movable body. (20) The aluminum alloy conductor according to any one of (15) to (19), wherein the conductor is used for a vehicle, a train, or an aircraft.
  • the annealing heat treatment is a continuous heat treatment including the steps of rapid heating and quenching, and is performed by applying either of the following ⁇ 1> or ⁇ 2>: ⁇ 1> wire temperature y (° C.) and annealing time x (seconds), 0.03 ⁇ x ⁇ 0.55, and 26x -0.6 + 377 ⁇ y ⁇ 23.5x -0.6 +423 Continuous conduction heat treatment satisfying the relationship of; or ⁇ 2> annealing furnace temperature z (° C.) and annealing time x (seconds), 1.5 ⁇ x ⁇ 5 and ⁇ 50x + 550 ⁇ z ⁇ ⁇ 36x + 650 Heat treatment during continuous running that satisfies the relationship of
  • the aluminum alloy conductor according to the items (1) to (4) and the method for producing an aluminum alloy conductor according to the item (5) are collectively referred to as a first embodiment of the present invention.
  • the aluminum alloy conductor according to the items (6) to (11) and the method for producing an aluminum alloy conductor according to the items (12) to (14) are collectively referred to as a first embodiment of the present invention.
  • the aluminum alloy conductor according to the items (15) to (20) and the method for producing an aluminum alloy conductor according to the item (21) are collectively referred to as a third embodiment of the present invention.
  • the present invention is meant to encompass all of the first, second and third embodiments.
  • the aluminum alloy conductor of the present invention is excellent in strength and conductivity, is useful as a battery cable mounted on a moving body, a conductor for a harness or a motor, and is a door, trunk, bonnet, etc. for which excellent bending fatigue resistance is required. It can also be suitably used. Furthermore, the aluminum alloy conductor of the present invention is excellent in that the bending fatigue property does not deteriorate even when exposed to high temperature (for example, 120 ° C.), and is excellent in corrosion resistance.
  • FIG. 1 is an explanatory view of the repeated breakage frequency test of the embodiment.
  • the first embodiment of the present invention will be described.
  • 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.02 to Si are included.
  • the reason for setting the content of Fe to 0.01 to 0.4 mass% is mainly to utilize various effects of the Al—Fe-based intermetallic compound.
  • Fe dissolves only in 0.05 mass% at 655 ° C. in aluminum, and is less at room temperature. The remainder is crystallized or precipitated as Al-Fe second phase particles.
  • the crystallized product or precipitate acts as a grain refining agent, and also improves strength and resistance to bending fatigue.
  • the strength is also increased by the solid solution of Fe.
  • the content of Fe is preferably 0.10 to 0.3 mass%, more preferably 0.15 to 0.25 mass%.
  • the reason why the content of Cu is 0.3 to 0.5 mass% is that Cu is solid-soluted in the aluminum base material to strengthen it, and to improve the bending fatigue resistance property, and further, This is for forming second phase particles with Al, Fe, Mg and Si to improve the bending fatigue resistance.
  • the content of Cu is preferably 0.35 to 0.5 mass%, more preferably 0.4 to 0.5 mass%.
  • the content of Mg is set to 0.04 to 0.3 mass% because Mg dissolves in the aluminum base material and strengthens, and a part of it is Al, Fe, Cu, Si, etc. This is because the second phase particles can be formed to improve strength, bending fatigue resistance, and heat resistance. If the content of Mg is too low, the effect is insufficient, and if too high, the conductivity decreases. Moreover, when there is too much content of Mg, a yield strength will become excessive, a moldability, twistability may be degraded, and workability may worsen.
  • the content of Mg is preferably 0.08 to 0.3 mass%, more preferably 0.1 to 0.28 mass%.
  • the reason why the content of Si is set to 0.02 to 0.3 mass% is that Si is solid solution in the aluminum base material to strengthen it, and a part thereof is Al, Fe, Cu, Mg This is because the second phase particles can be formed to improve strength, bending fatigue resistance, and heat resistance.
  • the content of Si is too small, the effect is insufficient.
  • the content of Si is too large, the conductivity decreases, the formability and the twistability are deteriorated, and the formability is deteriorated.
  • precipitation of Si alone in the heat treatment process during wire production causes disconnection.
  • the content of Si is preferably 0.04 to 0.25 mass%, more preferably 0.04 to 0.20 mass%.
  • both Ti and V act as a refining material of the ingot during melt casting. If the structure of the ingot is coarse, cracking occurs in the wire processing step, which is not desirable industrially. When the content of Ti and V is too small, the effect is insufficient, and when the content is too large, the conductivity is largely reduced and the effect is also saturated.
  • the total content of Ti and V is preferably 0.002 to 0.008 mass%, more preferably 0.003 to 0.006 mass%.
  • the aluminum alloy conductor of this embodiment of the present invention having desired excellent bending fatigue resistance, strength, and conductivity by defining the crystal grain size strictly in addition to the above components. You can get
  • the grain size in the cross section perpendicular to the wire drawing direction of the aluminum alloy conductor is 5 to 25 ⁇ m. The reason is that if the thickness is less than 5 ⁇ m, the partial unrecrystallized structure remains and the elongation is significantly reduced. The upper limit of 25 ⁇ m is that the deformation behavior is uneven when a coarse structure exceeding this is formed. In the same way, the elongation is reduced and the strength is significantly reduced.
  • the crystal grain size is more preferably 5 to 20 ⁇ m.
  • the tensile strength of the aluminum alloy conductor of this embodiment of the present invention is 120 MPa or more. This is because if the tensile strength is less than 120 MPa, the strength including the handling is insufficient and it is difficult to use as an industrial conductor.
  • the tensile strength is preferably 120 to 160 MPa, more preferably 120 to 150 MPa.
  • the conductivity of the aluminum alloy conductor of this embodiment of the invention is 57% IACS or higher. This is because if the conductivity is less than 57% IACS, a high current of several tens of ampere (A) flows when used for a power line, and the current loss is severe.
  • the conductivity is preferably 57-62% IACS conductivity, more preferably 58-62% IACS.
  • the aluminum alloy conductor of this embodiment of the invention has excellent resistance to flex fatigue.
  • the test is performed with a strain amplitude of ⁇ 0.17% as a standard for the bending fatigue resistance.
  • Flexural fatigue resistance changes with strain amplitude. When the strain amplitude is large, the fatigue life becomes short, and when the strain amplitude is small, the fatigue life becomes long. Since the strain amplitude can be determined by the wire diameter of the wire (aluminum alloy conductor) 1 and the curvature radius of the bending jigs 2 and 3 shown in FIG. 1, the wire diameter of the wire 1 and the curvature radius of the bending jigs 2 and 3 are arbitrary.
  • Another preferred embodiment of the present invention is 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.1 to 0.5 of Si. Containing 0.2 to 0.3 mass% and at least one element selected from the group consisting of Sn, Cd and In in a total amount of 0.01 to 0.5 mass%, and further combining Ti and V into 0.001 to It is an aluminum alloy conductor containing 0.01 mass%, the balance Al and unavoidable impurities, and having a crystal grain size of 5 to 25 ⁇ m in a cross section perpendicular to the wire drawing direction.
  • the bending fatigue resistance In order to improve the bending fatigue resistance further than the above-described alloy, it is preferable to suppress the formation of second phase particles containing two or more of Al, Fe, Cu, Mg, and Si as components.
  • Sn, Cd and In have the action of capturing the pores in the aluminum alloy, that is, they have the function of suppressing or delaying the diffusion action which proceeds with the pores, whereby Al, It suppresses the formation of second phase particles composed of two or more of Fe, Cu, Mg and Si.
  • the bending fatigue resistance can be further improved by the addition of at least one element selected from the group consisting of Sn, Cd and In.
  • the effect of suppressing the formation of second phase particles is less than 0.01 mass%.
  • the content is more than 0.5 mass%, the effect of suppressing formation is lost and the formation of second phase particles is accelerated, and the elongation decreases, and when the total amount is too large, cracking occurs during wire drawing. It is likely to occur and industrial production can not be realized.
  • the effect of suppressing the formation of second phase particles by the addition of at least one element selected from the group consisting of Sn, Cd and In is remarkable at a low temperature of 100 ° C. or less, but at a high temperature exceeding 100 ° C.
  • at least one element selected from the group consisting of Sn, Cd and In at least one of Al, Fe, Cu, Mg and Si is a component even at high temperatures exceeding 100 ° C. It has the effect of suppressing the formation of two-phase particles.
  • the addition amount of Zr is 0.001 to 0.1 mass%, the effect is insufficient if it is less than 0.001 mass%, and if it exceeds 0.1 mass%, the second phase particles of Al-Zr system The generation amount of is large to lower the bending fatigue resistance.
  • a more preferable range of the mass ratio (W1 / W2) of the total content (W1) of the content of at least one element selected from the group consisting of Sn, Cd and In to the content (W2) of Zr is 0.6 It is -2.6. Within this range, even at a high temperature exceeding 100 ° C., the generation of second phase particles containing two or more of Al, Fe, Cu, Mg and Si as a component is more effectively suppressed.
  • the aluminum alloy conductor of this embodiment of the present invention having desired excellent bending fatigue resistance, strength, and conductivity by defining the crystal grain size strictly in addition to the above components. You can get
  • the grain size in the cross section perpendicular to the wire drawing direction of the aluminum alloy conductor is 5 to 25 ⁇ m. The reason is that if the thickness is less than 5 ⁇ m, the partial unrecrystallized structure remains and the elongation is significantly reduced. The upper limit of 25 ⁇ m is that the deformation behavior is uneven when a coarse structure exceeding this is formed. In the same way, the elongation is reduced and the strength is significantly reduced.
  • the crystal grain size is more preferably 5 to 20 ⁇ m.
  • the tensile strength of the aluminum alloy conductor of this embodiment of the present invention is 120 MPa or more. This is because if the tensile strength is less than 120 MPa, the strength including the handling is insufficient and it is difficult to use as an industrial conductor.
  • the tensile strength is preferably 120 to 160 MPa, more preferably 120 to 150 MPa.
  • the conductivity of the aluminum alloy conductor of this embodiment of the invention is greater than 52% IACS. Essentially, if the conductivity is less than 57% IACS, a high current of several tens of ampere (A) flows when used for a power line, and current loss may be severe, so preferably 57-62% IACS conductivity is there. However, for example, in the case of application to a communication cable such as a battery cable or a wire harness in a moving body, the range is not limited to 57% IACS or more, and 52% IACS or more may be used.
  • the aluminum alloy conductor of this embodiment of the invention has excellent resistance to flex fatigue.
  • the test is performed with a strain amplitude of ⁇ 0.17% as a standard for the bending fatigue resistance.
  • Flexural fatigue resistance changes with strain amplitude. When the strain amplitude is large, the fatigue life becomes short, and when the strain amplitude is small, the fatigue life becomes long. Since the strain amplitude can be determined by the wire diameter of the wire (aluminum alloy conductor) 1 and the curvature radius of the bending jigs 2 and 3 shown in FIG. 1, the wire diameter of the wire 1 and the curvature radius of the bending jigs 2 and 3 are arbitrary.
  • the wires actually used are not single wires, but have a stranded wire structure, and since the coating treatment is performed, the load on the wire conductors is a fraction of that. It was described in Table 3 that the number of repeated breakages of 80,000 times or more which can secure sufficient bending fatigue resistance as an evaluation value on a single wire is desirable. More preferably, it is 100,000 times or more, and more preferably 150,000 times or more. Also, in automotive applications, the wires may be exposed to high temperatures in harsh operating environments.
  • the number of repeated breakages is preferably 80,000 or more, and more preferably 90,000 or more.
  • the manufacturing method of the aluminum alloy conductor of the 1st and 2nd embodiment of this invention is demonstrated.
  • the aluminum alloy conductor according to the first and second embodiments of the present invention is [1] melting, [2] casting, [3] hot or cold working (such as groove rolling), [4] wire drawing, It can manufacture through each process of [5] heat treatment (intermediate annealing), [6] wire-drawing, and [7] heat treatment (finish annealing).
  • the aluminum alloy composition of the present invention first, at least one element selected from the group consisting of each alloy component of Fe, Cu, Mg, Si, Ti, V and Al, or in addition thereto Sn, Cd and In.
  • the respective alloy components in combination or any of these alloy components and each alloy component in which Zr is further combined are melted in an amount such that the desired concentration is obtained.
  • the process from casting to processing of a wire rod of about 10 mm in diameter can be performed continuously, and steps such as a reheating step can be omitted, so that productivity can be significantly improved.
  • the casting cooling rate at this time is preferably 1 to 20 ° C./second.
  • the surface is peeled off to make a diameter of 9 to 9.5 mm, and this is drawn to make a rough drawn wire.
  • Intermediate annealing is applied to the cold drawn rough drawn wire by a batch type annealing furnace.
  • the condition of the intermediate annealing is a temperature of 300 to 450.degree. If the temperature is less than 300 ° C., non-recrystallized grains remain, which causes breakage during wire drawing in a later step. When the temperature exceeds 450 ° C., coarse recrystallized grains are formed, and the tensile strength and the elongation are significantly reduced. Also in this case, there are problems in quality such as breakage during wire drawing. The time is 10 minutes to 6 hours. If it is less than 10 minutes, non-recrystallized grains remain and cause breakage during wire drawing in a later step.
  • the heat treatment temperature exceeds 6 hours, coarse recrystallized grains may be formed depending on the heat treatment temperature, the tensile strength and the elongation may be significantly reduced, and the wire may be broken during wire drawing. It is not good to exceed 6 hours from the viewpoint of productivity.
  • the conditions for the intermediate annealing are preferably 300 to 450 ° C. and 30 minutes to 4 hours.
  • Wire drawing is further applied to make a wire. Also in this case, the processing degree is 1 or more and 6 or less for the above-mentioned reason.
  • the cold drawn wire of a predetermined diameter is subjected to finish annealing in a batch annealing furnace to obtain an aluminum alloy conductor.
  • the conditions for the finish annealing are a temperature of 300 to 450.degree. If the temperature is less than 300 ° C., non-recrystallized grains remain, and sufficient flexibility can not be secured. Moreover, when it exceeds 450 ° C., coarse recrystallized grains are formed, and the tensile strength and the elongation are significantly reduced.
  • the time is 10 minutes to 6 hours. If it is less than 10 minutes, non-recrystallized grains remain, and sufficient flexibility can not be secured.
  • the conditions for the finish annealing are preferably 300 to 450 ° C. for 30 minutes to 4 hours.
  • an electric current annealing in which electricity is supplied to a conductor and annealing is performed by Joule heat, or a wire annealing in which a wire is continuously passed and annealed in an annealing furnace kept at high temperature.
  • induction heating may be employed in which the wire passes continuously through the magnetic field for annealing.
  • the heat treatment is generally performed at a high temperature for a short time, the conditions for the finish annealing are different from the batch annealing.
  • the aluminum alloy conductors of these embodiments of the present invention prepared by heat treatment appropriately as described in detail above have a recrystallized structure in addition to having the predetermined crystal grain size.
  • the recrystallized structure is a structural state composed of crystal grains with few lattice defects such as dislocations introduced by plastic working. By having a recrystallized structure, tensile elongation at break, conductivity can be recovered, and sufficient flexibility can be obtained.
  • Yet another preferred embodiment of the present invention contains 0.1 to 1 mass% of Cu, and 0.01 to 0.5 mass% in total of at least one element selected from the group consisting of Sn, Cd and In. And an aluminum alloy conductor consisting of the balance Al and unavoidable impurities.
  • an unavoidable impurity in the alloy composition of the aluminum alloy conductor of this embodiment it is disclosed in JISH2110 (Aluminum alloy base metal for electricity), and it is not more than 0.25 mass% of Fe, not more than 0.1 mass% of Si, and 0.005 mass% of Cu.
  • Mn of 0.005 mass% or less and Ti + V 0.005 mass% or less can be mentioned.
  • unavoidable impurities in the industrially manufactured bare metal are generally in the range of Fe 0.05 to 0.15 mass% and Si 0.04 to 0.1 mass%.
  • the alloy composition of the aluminum alloy conductor of this embodiment may contain 0.1 to 0.35 mass% of Mg.
  • Fe may be contained in an amount of 1.0 mass% or less exceeding the content of the unavoidable impurities.
  • Cu should be in a solid solution state in aluminum without forming second phase particles.
  • Cu tends to easily form second phase particles with Al, and the formation amount of the second phase particles increases with the increase of the added Cu amount, and the formed second phase particles deteriorate in bending fatigue characteristics.
  • the bending fatigue resistance can be further improved by the addition of at least one element selected from the group consisting of Sn, Cd and In. If the total content of at least one element selected from the group consisting of Sn, Cd and In is 0.01 to 0.5 mass%, the effect of suppressing the formation of second phase particles is less than 0.01 mass%. If the content is more than 0.5 mass%, the effect of suppressing formation is saturated and the elongation is reduced, and if the total amount is too large, cracking tends to occur at the time of wire drawing, and industrial production can not be realized It is.
  • the effect of suppressing the formation of second phase particles by the addition of at least one element selected from the group consisting of Sn, Cd and In is remarkable at a low temperature of 100 ° C. or less, but at a high temperature exceeding 100 ° C.
  • Zr together with at least one element selected from the group consisting of Sn, Cd and In, has the effect of suppressing the formation of second phase particles containing Al and Cu even at high temperatures exceeding 100 ° C. Have.
  • the addition amount of Zr is 0.001 to 0.1 mass%, the effect is insufficient if it is less than 0.001 mass%, and if it exceeds 0.1 mass%, the second phase particles of Al-Zr system The generation amount of is large to lower the bending fatigue resistance.
  • a more preferable range of the mass ratio (W1 / W2) of the total content (W1) of the content of at least one element selected from the group consisting of Sn, Cd and In to the content (W2) of Zr is 0.6 It is -2.6. Within this range, even at a high temperature exceeding 100 ° C., it has the effect of further suppressing the formation of second phase particles containing Al and Cu as components.
  • the aluminum alloy conductor of this embodiment of the present invention having the desired excellent bending fatigue resistance characteristics, strength and conductivity by strictly controlling the manufacturing method other than the above components You can get it.
  • the tensile strength of the aluminum alloy conductor of this embodiment of the present invention is 120 MPa or more. This is because if the tensile strength is less than 120 MPa, the strength including the handling is insufficient and it is difficult to use as an industrial conductor.
  • the tensile strength is preferably 120 to 160 MPa, more preferably 120 to 150 MPa.
  • the conductivity of the aluminum alloy conductor of this embodiment of the invention is greater than 52% IACS. Essentially, if the conductivity is less than 57% IACS, a high current of several tens of ampere (A) flows when used for a power line, and current loss may be severe, so preferably 57-62% IACS conductivity is there. However, for example, in the case of application to a communication cable such as a battery cable or a wire harness in a moving body, the range is not limited to 57% IACS or more, and 52% IACS or more may be used.
  • the aluminum alloy conductor of this embodiment of the invention has excellent resistance to flex fatigue.
  • the test is performed with a strain amplitude of ⁇ 0.17% as a standard for the bending fatigue resistance.
  • Flexural fatigue resistance changes with strain amplitude. When the strain amplitude is large, the fatigue life becomes short, and when the strain amplitude is small, the fatigue life becomes long. Since the strain amplitude can be determined by the wire diameter of the wire (aluminum alloy conductor) 1 and the curvature radius of the bending jigs 2 and 3 shown in FIG. 1, the wire diameter of the wire 1 and the curvature radius of the bending jigs 2 and 3 are arbitrary.
  • the wires actually used are not single wires, but have a stranded wire structure, and since the coating treatment is performed, the load on the wire conductors is a fraction of that. It was described in Table 6 that the number of repeated breakages of 80,000 times or more which can secure sufficient bending fatigue resistance as an evaluation value for a single wire is desirable. More preferably, it is 100,000 times or more, and more preferably 150,000 times or more. Also, in automotive applications, the wires may be exposed to high temperatures in harsh operating environments.
  • the number of repeated breakages is preferably 80,000 or more, and more preferably 90,000 or more.
  • the aluminum alloy conductor according to the third embodiment of the present invention may be manufactured by [1] melting, [2] casting, [3] hot or cold working as a manufacturing method different from the first and second embodiments. It can manufacture through each process of (4 groove drawing, etc.), [4] wire drawing, [5] heat treatment (intermediate annealing), [6] wire drawing, and [7] heat treatment (finish annealing).
  • the melting is performed by melting the alloy components of the aluminum alloy composition described above in such amounts as to achieve the concentrations of the respective embodiments.
  • casting is performed while continuously casting the molten metal in a water-cooled mold using a properchi-type continuous casting-rolling machine combining a casting wheel and a belt to make a rough bar of about 10 mm ⁇ .
  • the casting cooling rate at this time is preferably 1 to 20 ° C./second.
  • Casting and hot rolling may be performed by billet casting, extrusion and the like.
  • the processing degree is preferably 1 or more and 6 or less.
  • Intermediate annealing is applied to the cold drawn wire rod. Intermediate annealing is mainly performed to restore the flexibility of the wire rod that has been hardened by wire drawing. If the intermediate annealing temperature is too high or too low, wire breakage will occur in the subsequent wire drawing process, and the wire can not be obtained.
  • the intermediate annealing temperature is preferably 300 to 450 ° C., more preferably 350 to 450 ° C.
  • the time of intermediate annealing is 10 minutes or more. If it is less than 10 minutes, the time required for recrystallized grain formation and growth is insufficient, and the flexibility of the wire can not be recovered. Preferably, it is 1 to 6 hours.
  • the average cooling rate from the heat treatment temperature to 100 ° C. during the intermediate annealing is not particularly specified, it is preferably 0.1 to 10 ° C./min.
  • the degree of processing (the degree of processing before the continuous heat treatment) at this time is made 1 or more and 6 or less.
  • the degree of processing greatly affects recrystallized grain formation and growth. If the degree of processing is too small, during the heat treatment of the next step, the recrystallized grains may be coarsened, the strength and the elongation may be significantly reduced, which may cause a break. In addition, the driving force for moving the recrystallized grain boundaries may be insufficient to form a target recrystallized texture. If the size is too large, wire drawing becomes difficult, and problems may occur in quality such as breakage during wire drawing.
  • the processing degree is preferably 2 or more and 6 or less.
  • the drawing speed is controlled to obtain a desired recrystallization texture.
  • the wire drawing speed is preferably 500 to 2000 m / min. If the drawing speed is less than 500 m / min, it may not be possible to obtain the desired recrystallized texture during the final annealing in the next step. If the drawing speed is more than 2000 m / min, the frictional force applied to the wire is large, and it may not be possible to obtain the intended recrystallization texture during the final annealing in the next step, and the wire breaks during drawing May cause problems in terms of quality.
  • the wire drawing speed is more preferably 800 to 1800 m / min.
  • the cold drawn wire of a predetermined diameter is subjected to finish annealing by batch heat treatment or continuous heat treatment to obtain an aluminum alloy conductor.
  • the conditions of the batch type heat treatment as the finish annealing are the same as described above.
  • the continuous heat treatment can be performed by any of the two methods of the continuous current heat treatment and the continuous running heat treatment.
  • annealing is performed by Joule heat generated from itself by applying an electric current to a wire which passes continuously through two electrode wheels.
  • the wire can be annealed by controlling the temperature of the wire and the annealing time including the rapid heating and quenching steps. Cooling is performed by passing the wire continuously through water or nitrogen gas atmosphere after rapid heating.
  • the wire temperature is too low or the annealing time is too short, or if both do not provide the flexibility needed for in-vehicle installation etc, while the wire temperature is too high or the annealing time is too long
  • the crystal orientation is excessively rotated by over-annealing, and a desired recrystallization texture can not be obtained, and furthermore, the resistance to bending fatigue also deteriorates. Therefore, if it carries out on the conditions with which the following relationships are satisfied, it can be set as the above-mentioned desired recrystallization texture.
  • the wire temperature y (° C.) represents the temperature immediately before passing through the cooling step, at which the temperature as the wire becomes the highest.
  • y (° C.) is usually in the range of 414 to 616 (° C.).
  • the heat treatment during continuous running is to allow the wire to continuously pass through the annealing furnace maintained at high temperature for annealing.
  • the wire can be annealed by controlling the temperature of the annealing furnace and the annealing time including the rapid heating and quenching steps. Cooling is performed by passing the wire continuously through water or nitrogen gas atmosphere after rapid heating. If the annealing furnace temperature is too low or the annealing time is too short or both cases, the flexibility required for in-vehicle installation etc.
  • the annealing furnace temperature is z (° C.) and the annealing time is x (seconds) in the continuous running heat treatment, 1.5 ⁇ x ⁇ 5 and ⁇ 50x + 550 ⁇ z ⁇ ⁇ 36x + 650 Do as you meet.
  • annealing furnace temperature z (degreeC) represents the temperature just before passing through a cooling process where temperature becomes the highest as a wire material.
  • z (° C.) is usually in the range of 300 to 596 (° C.).
  • the finish annealing by the continuous heat treatment may be induction heating in which the wire is continuously passed and annealed in a magnetic field.
  • the aluminum alloy conductor of this embodiment of the present invention produced by heat treatment properly as described in detail above has a recrystallized structure in addition to having the above-mentioned predetermined alloy composition.
  • the recrystallized structure is a structural state composed of crystal grains with few lattice defects such as dislocations introduced by plastic working. By having a recrystallized structure, tensile elongation at break, conductivity can be recovered, and sufficient flexibility can be obtained.
  • Example No. Comparative Examples 1 to 24 1 to 12 First Embodiment of the Present Invention, That is, Embodiments and Comparative Examples of the Invention According to the Items (1) to (5))
  • Table 1 Examples
  • Table 2 Comparative Examples
  • Fe, Cu, Mg, Si, Ti, V, and Al were used at a predetermined amount ratio (mass%) to form an alloy.
  • Al the JIS-H4040 alloy No. 1070 was used, and the content of unavoidable impurities did not exceed the values in Tables 1 and 2.
  • a batch type heat treatment at a temperature of 300 to 450 ° C. (comparative example includes 250 ° C. and 500 ° C.) for 0.5 to 4 hours is applied as a final annealing to obtain an aluminum alloy conductor.
  • Comparative example No. 13 As shown in Table 2 below, Fe, Cu, Mg, and Al were melted by a conventional method using a predetermined amount ratio (% by mass) and cast into a 25.4 mm square mold to obtain an ingot . Next, the ingot was held at 400 ° C. for 1 hour, hot-rolled with a grooved roll, and processed into a rough drawn wire having a wire diameter of 9.5 mm. Next, this rough drawn wire is drawn to a wire diameter of 0.9 mm, then heat treated by holding at 350 ° C. for 2 hours for quenching, and then wire drawing is continued to continue an aluminum alloy wire with a wire diameter of 0.32 mm. Was produced. Finally, the manufactured aluminum alloy wire having a wire diameter of 0.32 mm was heat-treated at 350 ° C. for 2 hours and gradually cooled.
  • Comparative example No. 14 As shown in Table 2 below, Fe, Mg, Si and Al are melted by a conventional method using a predetermined amount ratio (% by mass) and processed into a rough drawn wire having a wire diameter of 9.5 mm by a continuous casting and rolling method did. Next, after drawing this rough drawn wire to a wire diameter of 2.6 mm, heat treatment is performed by holding for 2 hours at 350 ° C. so that the tensile strength after heat treatment is 150 MPa or less, and wire drawing is continued to continue the wire An aluminum alloy wire of 0.32 mm in diameter was produced.
  • Comparative example No. 15 As shown in Table 2 below, an alloy melt prepared by melting using Fe, Mg, Si and Al at a predetermined ratio (mass%) was cast by a continuous casting machine to produce a cast bar. Then, a wire rod of ⁇ 9.5 mm was produced by a hot rolling machine, and the obtained wire rod was subjected to cold drawing to produce an electric wire of ⁇ 0.26 mm. Subsequently, seven wire strands were twisted together to make a stranded wire. Thereafter, solution treatment, cooling, and aging heat treatment were performed to obtain a wire conductor. The solution treatment temperature at this time is 550 ° C., the tempering temperature of the aging heat treatment is 170 ° C., and the tempering time is 12 hours. In addition, each characteristic shown in Table 2 evaluated the twisted wire by breaking it into one strand.
  • A Grain size (GS) The cross section of the test material cut out perpendicularly to the wire drawing direction was filled with a resin, and after mechanical polishing, electrolytic polishing was performed. Electropolishing conditions are as follows: polishing solution is an ethanol solution of 20% perchloric acid, solution temperature is 0-5 ° C., voltage is 10 V, current is 10 mA, and time is 30-60 seconds. Then, in order to obtain grain contrast, anodizing was performed using 2% hydrofluoric acid under the conditions of a voltage of 20 V, a current of 20 mA, and a time of 2 to 3 minutes. The tissue was photographed with a 200 to 400 ⁇ optical microscope and particle size measurement was performed by the cross method.
  • the wire 1 was inserted with 1 mm between the bending jigs 2 and 3 at an interval of 1 mm, and was repeatedly made to move along the jigs 2 and 3.
  • One end of the wire was fixed to the holding jig 5 so that bending could be repeatedly performed, and a weight 4 of about 10 g was hung at the other end. Since the holding jig 5 moves during the test, the wire 1 fixed to the holding jig also moves and can be repeatedly bent. The repetition is performed under the condition of 1.5 Hz (1.5 times of reciprocation in 1 second), and when the test piece 1 of the wire is broken, the weight 4 is dropped and the counting is stopped.
  • Comparative Example No. 1 made of pure Al.
  • the crystal grain size is large, the tensile strength is low, and furthermore, the value of the number of repeated breakages is small because the bending fatigue resistance is inferior.
  • Comparative example No. In the aluminum alloy conductors of 2 to 10, the alloy composition is an example out of the specified range of the present invention. In the case of 2 to 4, 6 and 8 to 10 aluminum alloy conductors, the number of repeated breakages is insufficient. Comparative example No. In the case of the 5, 7, 9, 10 aluminum alloy conductors, the conductivity is insufficient. Furthermore, in the aluminum alloy conductors of Comparative Examples 2, 4 and 6, the tensile strength is insufficient. Comparative example No.
  • the aluminum alloy conductors of Examples 11 and 12 are examples in which the manufacturing conditions are out of the specified range of the present invention. In the case of the 12 aluminum alloy conductors, the tensile strength and the number of repeated breakages are also insufficient. Comparative example No. The aluminum alloy conductor No. 13 reproduces Example 2 of JP-A-2006-253109, but the number of repeated breakages is insufficient. Comparative example No. The aluminum alloy conductor No. 14 reproduces Example 6 of JP-A-2006-19163, but the crystal grain size of the present invention can not be obtained, and the tensile elongation at break is insufficient. Comparative example No. The aluminum alloy conductor No.
  • Example 15 reproduces Example 3 of JP-A-2008-112620, but the crystal grain size of the present invention can not be obtained, and the tensile elongation at break and the electrical conductivity are insufficient.
  • Example No. The aluminum alloy conductors of 1 to 24 are excellent in bending fatigue resistance, tensile properties and conductivity, and are suitable for applications such as wire harnesses used for doors, trunks and bonnets of moving vehicle bodies.
  • Example No. 101 to 120, Comparative Example No. 1 121-127 The second embodiment of the present invention, that is, the embodiment and the comparative example of the invention described in the items (6) to (14))
  • Tables 3 and 4 below the above-described example using Fe, Cu, Mg, Si, Ti, V, Sn, Cd, In, Zr, and Al in a predetermined amount ratio (mass%)
  • an aluminum alloy conductor was produced.
  • Each characteristic was measured about the produced aluminum alloy conductor of each Example and comparative example similarly to the above-mentioned Example.
  • about the number of times of repeated breakage it measured also about the characteristic after leaving to stand at 120 degreeC for 120 hours.
  • Tables 3 and 4 In addition, for the aluminum alloy conductor No. 1 described in Table 1 in the above-mentioned example, With respect to 1 to 20, the number of repeated breakages after leaving at 120 ° C. for 120 hours was measured. The results are shown in Table 5.
  • Example No. 201-212, comparative example No. 213-218 (Third Embodiment of the Invention, That is, Embodiments and Comparative Examples of the Invention According to the Items (15) to (21))
  • Table 6 an aluminum alloy conductor was produced in the same manner as in the above-mentioned Example, using each component at a predetermined amount ratio (% by mass).
  • the wire drawing speed is 1500 m / min
  • the working degree ⁇ is 2.1
  • the final wire diameter is 0.31 mm.
  • heat treatment as finish annealing was performed by continuous current heat treatment or batch heat treatment under the conditions described in Table 6.
  • Each characteristic was measured about the produced aluminum alloy conductor of each Example and comparative example similarly to the above-mentioned Example. Moreover, about the number of times of repeated breakage, it measured also about the characteristic after leaving to stand at 120 degreeC for 120 hours. The results are shown in Table 6. Furthermore, in addition to these tests, a salt spray test was performed on a wire (aluminum alloy conductor). The produced aluminum alloy conductor was cut into a length of about 1 m and exposed to a neutral 5% salt spray test (JISH 8502) for 96 hours.
  • JISH 8502 neutral 5% salt spray test
  • the aluminum alloy conductor containing 201 to 212 Sn, Cd, In, and Zr each has a number of repeated breakage exceeding 100,000, which proves to be an excellent bending characteristic, and after leaving at 120 ° C.
  • the reduction in the number of breakages was slight even in the case of the above, and the number of repeated breakages exceeded 95,000.
  • No. 1 with too little Cu added In the aluminum alloy conductors 213 and 214, the number of repeated breakages was significantly lower than 90,000 times, and the decrease was remarkable after leaving at 120 ° C.
  • the aluminum alloy conductors 215 and 216 had remarkable reduction in the number of repeated breakages after being left at 120 ° C., and deteriorated in the salt spray test.
  • comparative example No. The aluminum alloy conductors 217 and 218 are examples in which the manufacturing conditions are out of the specified range of the present invention, but both are insufficient in tensile elongation at break, and Comparative Example No. In the case of the aluminum alloy conductor 218, the tensile strength and the number of repeated breakages are also insufficient.
  • Test piece (wire, aluminum alloy conductor) 2, 3 Bending jig 4 Weight 5 Holding jig

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

Disclosed is an aluminium alloy conductor having excellent bend-tolerance fatigue properties. The disclosed aluminium alloy conductor includes 0.01-0.4 mass% Fe, 0.3-0.5 mass% Cu, 0.04-0.3 mass% Mg, and 0.02-0.3 mass% Si, and further includes 0.001-0.01 mass% of a combination of Ti and V, and is formed from the remaining portion (A1) and unavoidable impurities. The crystal grain diameter, in a vertical cross section of the wire drawing direction of the conductor, is 5-25 µm.

Description

アルミニウム合金導体およびその製造方法Aluminum alloy conductor and method of manufacturing the same
 本発明は、電気配線体の導体として用いられるアルミニウム合金導体およびその製造方法に関する。 The present invention relates to an aluminum alloy conductor used as a conductor of an electrical wiring body and a method of manufacturing the same.
 従来、自動車、電車、航空機等の移動体の電気配線体として、ワイヤハーネスと呼ばれる銅または銅合金の導体を含む電線に銅または銅合金(例えば、黄銅)製の端子(コネクタ)を装着した部材が用いられていたが、近年の移動体の軽量化の中で、電気配線体の導体として、銅又は銅合金より軽量なアルミニウム又はアルミニウム合金を用いる検討が進められている。
 アルミニウムの比重は銅の約1/3、アルミニウムの導電率は銅の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、純アルミニウムの導体線材に純銅の導体線材と同じ電流を流すためには、純アルミニウムの導体線材の断面積を純銅の導体線材の約1.5倍にする必要があるが、それでも質量では銅に比べて約半分となるので、有利な点がある。
 なお、上記の%IACSとは、万国標準軟銅(International Annealed Copper Standard)の抵抗率1.7241×10-8Ωmを100%IACSとした場合の導電率を表したものである。
Conventionally, a member obtained by attaching a terminal (connector) made of copper or copper alloy (for example, brass) to an electric wire containing a conductor of copper or copper alloy called a wire harness as an electric wiring body of a mobile body such as an automobile, train or aircraft In recent years, in the weight reduction of mobiles, studies have been advanced to use aluminum or an aluminum alloy lighter than copper or a copper alloy as a conductor of an electric wiring body.
The specific gravity of aluminum is about 1/3 of copper, the conductivity of aluminum is about 2/3 of copper (based on 100% IACS of pure copper, about 66% IACS of pure aluminum), and the conductor wire material of pure aluminum Although it is necessary to make the cross-sectional area of the conductor wire of pure aluminum about 1.5 times that of the conductor wire of pure copper in order to pass the same current as the conductor wire of pure copper, the mass still is about half compared to copper. There are advantages to this.
The above% IACS refers to the conductivity when the resistivity of the international annealed copper standard (International Annealed Copper Standard) is 1.7241 × 10 −8 Ωm as 100% IACS.
 そのアルミニウムを移動体の電気配線体の導体として用いるためには幾つかの課題がありそのひとつに耐屈曲疲労特性の向上がある。移動体の電気配線体に使用されるアルミニウム導体に耐屈曲疲労特性が要求されるのは、ドアなどに取り付けられたワイヤハーネスではドアの開閉により繰り返し曲げ応力を受けるためである。アルミニウムなどの金属材料は、一回の負荷では破断しないような低い荷重でもドアの開閉のように荷重を加えたり除いたりを繰り返し行なうと、ある繰り返し回数で破断する疲労破壊が生じる。前記アルミニウム導体が開閉部に用いられたとき、耐屈曲疲労特性が悪いとその使用中に導体が破断することが懸念され、耐久性、信頼性に欠けるという問題を生ずる。
 一般に強度の高い材料ほど疲労特性は良好と言われている。そこで、強度の高いアルミニウム線材を適用すればよいが、ワイヤハーネスはその設置時の取り回し(車体への取り付け作業)がしやすいことが要求されているために、一般的には伸びが10%以上確保できる鈍し材(焼鈍材)が使われていることが多い。
In order to use the aluminum as a conductor of the electric wiring body of a mobile body, there are several problems, one of which is the improvement of the resistance to bending fatigue. The bending fatigue resistance is required of the aluminum conductor used for the electric wiring body of the moving body because a wire harness attached to a door or the like is repeatedly subjected to bending stress due to opening and closing of the door. When a metal material such as aluminum is repeatedly applied and removed with a load such as opening and closing of a door even at a low load that does not break with a single load, fatigue fracture occurs that breaks with a certain number of repetitions. When the said aluminum conductor is used for an opening-and-closing part, when a bending fatigue-resistant characteristic is bad, it is feared that a conductor will fracture during its use, and the problem that durability and reliability are missing arises.
It is generally said that the higher the strength, the better the fatigue properties. Therefore, although high strength aluminum wire should be applied, the wire harness is required to be easy to handle at the time of its installation (mounting work to the vehicle body), so the elongation is generally 10% or more A dullable material (annealed material) that can be secured is often used.
 よって、移動体の電気配線体に使用されるアルミニウム導体には、取扱い及び取り付け時に必要となる強度、及び電気を多く流すために必要となる導電率に加えて、耐屈曲疲労特性の優れた材料が求められている。 Therefore, in addition to the strength required for handling and mounting, and the conductivity required for flowing a large amount of electricity, the aluminum conductor used for the electrical wiring body of the moving body has a material excellent in bending fatigue resistance characteristics. Is required.
 このような要求のある用途に対して、送電線用アルミニウム合金線材(JIS A1060やJIS A1070)を代表とする純アルミニウム系では、ドアなどの開閉で生じる繰り返し曲げ応力に十分耐えることはできない。また、種々の添加元素を加えた合金化した材料は強度には優れるものの、アルミニウム中への添加元素の固溶現象により導電率の低下を招くこと、アルミニウム中に過剰な金属間化合物を形成することで伸線加工中に断線を引き起こす場合があることが問題であった。そのため、添加元素を限定、選択して導電率低下及び加工性劣化を防ぎ、強度及び耐屈曲疲労特性を向上する必要があった。 With respect to such applications, a pure aluminum system represented by aluminum alloy wire rod for power transmission line (JIS A1060 or JIS A1070) can not sufficiently withstand repeated bending stress caused by opening and closing of a door or the like. In addition, although alloyed materials to which various additive elements are added are excellent in strength, causing a decrease in conductivity due to a solid solution phenomenon of the additive elements in aluminum, and forming an excessive intermetallic compound in aluminum. It is a problem that the wire breakage may occur during wire drawing. Therefore, it was necessary to limit and select the additive element to prevent the decrease in conductivity and the deterioration in processability, and to improve the strength and the resistance to bending fatigue.
 移動体の電気配線体に用いられるアルミニウム導体として代表的なものに特許文献1~3に記載のものがある。しかし下記のように、いずれの特許文献記載の発明も、さらに解決すべき課題を有する。
 特許文献1に記載されている電線導体は、引張強度が高すぎであり、車体への取り付け作業がしにくくなることがある。
 特許文献2に具体的に記載されているアルミ導電線では、仕上げ焼鈍を行なっていない。またCuが含まれていないため、伸びが低く、車体での取り付け作業にはさらに柔軟性が高いものが要望される。
 特許文献3には軽量、柔軟かつ屈曲性に優れたアルミニウム導電線が開示されているが、移動体の電気配線体への特性改善の要求は強まるばかりであり、さらなる特性の向上が望まれている。
Patent documents 1 to 3 are typical ones as an aluminum conductor used for an electric wiring body of a moving body. However, as described below, the inventions described in any patent documents have problems to be solved further.
The electric wire conductor described in Patent Document 1 may have too high tensile strength and may be difficult to attach to a vehicle body.
In the case of the aluminum conductive wire specifically described in Patent Document 2, the finish annealing is not performed. In addition, since Cu is not contained, it is desired to have a low elongation and a higher flexibility for the attachment work on the vehicle body.
Patent Document 3 discloses a light-weight, flexible, flexible aluminum conductive wire, but the request for improving the characteristics of the moving body to the electric wiring body is only intensified, and further improvement of the characteristics is desired. There is.
特開2008-112620号公報JP 2008-112620 A 特開2006-19163号公報JP, 2006-19163, A 特開2006-253109号公報JP, 2006-253109, A
 本発明は、耐屈曲疲労特性などに優れたアルミニウム合金導体の提供を課題とする。 An object of the present invention is to provide an aluminum alloy conductor excellent in bending fatigue resistance and the like.
 本発明者らは種々の検討を重ね、要求される耐屈曲疲労特性を満足するものとして、アルミニウム合金導体に含まれる成分、ならびに前記導体の仕上げ焼鈍製造工程を制御することにより、添加元素の効果を利用し、前記導体の結晶粒径を最適化することで、前記特性を改善し得ることを見出し、この知見に基づき、本発明を完成するに至った。 The present inventors have repeatedly conducted various studies and, as satisfying the required bending fatigue resistance, include the components contained in the aluminum alloy conductor, and the effect of the additive element by controlling the finish annealing production process of the conductor. The inventors have found that the above characteristics can be improved by optimizing the crystal grain size of the conductor using the above, and based on this finding, the present invention has been completed.
 すなわち、本発明は、以下の解決手段を提供するものである。
(1)Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金導体であって、その伸線方向の垂直断面における結晶粒径が5~25μmであることを特徴とするアルミニウム合金導体。
(2)引張強度が120MPa以上、及び導電率が57%IACS以上、±0.17%の曲げ歪みが与えられた際の繰返破断回数が90000回以上であることを特徴とする(1)に記載のアルミニウム合金導体。
(3)前記導体が移動体内で、バッテリーケーブル、ハーネス、またはモータ用線材として用いられることを特徴とする(1)または(2)に記載のアルミニウム合金導体。
(4)前記導体が車両、電車、または航空機に用いられることを特徴とする(1)~(3)のいずれか1項に記載のアルミニウム合金導体。
(5)Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなるアルミニウム合金導体の製造方法であって、前記焼鈍熱処理を、温度300~450℃で10分~6時間の条件で行うことを特徴とするアルミニウム合金導体の製造方法。
(6)Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金導体であって、その伸線方向の垂直断面における結晶粒径が5~25μmであることを特徴とするアルミニウム合金導体。
(7)(6)項に記載のアルミニウム合金導体に、さらにZrを0.001~0.1mass%を含むアルミニウム合金導体。
(8)Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量の総量(W1)と、Zrの含有量(W2)の質量比(W1/W2)が、0.6~2.6であることを特徴とする(7)項に記載のアルミニウム合金導体。
(9)引張強度が120MPa以上、及び導電率が52%IACS以上、±0.17%の曲げ歪みが与えられた際の繰返破断回数が80000回以上であることを特徴とする(6)~(8)のいずれか1項に記載のアルミニウム合金導体。
(10)前記導体が移動体内で、バッテリーケーブル、ハーネス、またはモータ用線材として用いられることを特徴とする(6)~(9)のいずれか1項に記載のアルミニウム合金導体。
(11)前記導体が車両、電車、または航空機に用いられることを特徴とする(6)~(10)のいずれか1項に記載のアルミニウム合金導体。
(12)Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなるアルミニウム合金導体の製造方法であって、前記焼鈍熱処理を、温度300~450℃で10分~6時間の条件で行うことを特徴とするアルミニウム合金導体の製造方法。
(13)Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、Zrを0.001~0.1mass%を含み、残部Alと不可避不純物からなるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなるアルミニウム合金導体の製造方法であって、前記焼鈍熱処理を、温度300~450℃で10分~6時間の条件で行うことを特徴とするアルミニウム合金導体の製造方法。
(14)Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、Zrを0.001~0.1mass%を含み、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量の総量(W1)と、Zrの含有量(W2)の質量比(W1/W2)が、0.6~2.6であり、残部Alと不可避不純物からなるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなるアルミニウム合金導体の製造方法であって、前記焼鈍熱処理を、温度300~450℃で10分~6時間の条件で行うことを特徴とするアルミニウム合金導体の製造方法。
(15)Cuを0.1~1mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、残部Alと不可避不純物からなるアルミニウム合金導体。
(16)Cuを0.1~1mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、Fe0.01mass%~1.0mass%と、Mg0.1~0.35mass%とを含有し、残部Alと不可避不純物からなるアルミニウム合金導体。
(17)(15)または(16)項に記載のアルミニウム合金導体に、さらにZrを0.001~0.1mass%を含むアルミニウム合金導体。
(18)Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量の総量(W1)と、Zrの含有量(W2)の質量比が、0.6~2.6であることを特徴とする(17)項に記載のアルミニウム合金導体。
(19)前記導体が移動体内で、バッテリーケーブル、ハーネス、またはモータ用線材として用いられることを特徴とする(15)~(18)のいずれか1項に記載のアルミニウム合金導体。
(20)前記導体が車両、電車、または航空機に用いられることを特徴とする(15)~(19)のいずれか1項に記載のアルミニウム合金導体。
(21)(15)~(18)のいずれか1項に記載のアルミニウム合金組成を与えるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなる(15)~(18)のいずれか1項に記載のアルミニウム合金導体を製造する方法であって、前記焼鈍熱処理を、急熱、急冷の工程を含む連続熱処理であって、下記<1>または<2>のいずれかを施すことによって行うことを特徴とするアルミニウム合金導体の製造方法:
<1>線材温度y(℃)と焼鈍時間x(秒)が、
  0.03≦x≦0.55、かつ
  26x-0.6+377≦y≦23.5x-0.6+423
の関係を満たす連続通電熱処理;または
<2>焼鈍炉温度z(℃)と焼鈍時間x(秒)が、
  1.5≦x≦5、かつ
  -50x+550≦z≦-36x+650
の関係を満たす連続走間熱処理。
That is, the present invention provides the following solutions.
(1) 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.02 to 0.3 mass% of Si An aluminum alloy conductor containing 0.001 to 0.01 mass% of Ti and V together and containing the balance Al and unavoidable impurities, and having a grain size of 5 to 25 μm in the vertical cross section in the wire drawing direction Aluminum alloy conductor characterized by being.
(2) It is characterized in that the number of repeated breakages is 90,000 or more when a bending strain of tensile strength of 120 MPa or more and conductivity of 57% IACS or more and ± 0.17% is applied (1) Aluminum alloy conductor as described in.
(3) The aluminum alloy conductor according to (1) or (2), wherein the conductor is used as a battery cable, a harness, or a motor wire in a moving body.
(4) The aluminum alloy conductor according to any one of (1) to (3), wherein the conductor is used for a vehicle, a train, or an aircraft.
(5) 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.02 to 0.3 mass% of Si Of aluminum and further containing 0.001 to 0.01 mass% of Ti and V and dissolving the aluminum alloy component consisting of the balance Al and unavoidable impurities, and then subjected to continuous casting and rolling to form a rough bar, which is cold drawn Heat treatment, wire drawing, wire drawing, and annealing heat treatment, wherein the annealing heat treatment is carried out at a temperature of 300 to 450. C., for 10 minutes to 6 hours.
(6) 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.02 to 0.3 mass% of Si , At least one element selected from the group consisting of Sn, Cd and In in a total amount of 0.01 to 0.5 mass%, and further containing 0.001 to 0.01 mass% of a total of Ti and V, the balance What is claimed is: 1. An aluminum alloy conductor comprising Al and unavoidable impurities, wherein the crystal grain size in a cross section perpendicular to the wire drawing direction is 5 to 25 μm.
(7) An aluminum alloy conductor according to (6), further containing 0.001 to 0.1 mass% of Zr.
(8) The mass ratio (W1 / W2) of the total content (W1) of the content of at least one element selected from the group consisting of Sn, Cd and In to the content (W2) of Zr is 0.6 to 2 The aluminum alloy conductor according to (7), characterized in that .6.
(9) The apparatus is characterized in that the number of repeated breakages is 80,000 or more when a bending strain of 120 MPa or more and a conductivity of 52% IACS or more and ± 0.17% is applied (6) The aluminum alloy conductor according to any one of (8) to (8).
(10) The aluminum alloy conductor according to any one of (6) to (9), wherein the conductor is used as a battery cable, a harness or a wire for a motor in a movable body.
(11) The aluminum alloy conductor according to any one of (6) to (10), wherein the conductor is used for a vehicle, a train, or an aircraft.
(12) 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.02 to 0.3 mass% of Si , At least one element selected from the group consisting of Sn, Cd and In in a total amount of 0.01 to 0.5 mass%, and further containing 0.001 to 0.01 mass% of a total of Ti and V, the balance After melting the aluminum alloy component consisting of Al and unavoidable impurities, it is continuously cast and rolled into a rough bar, cold drawn into a rough drawn wire, heat treated, drawn, into a wire, and further annealed. What is claimed is: 1. A method of manufacturing an aluminum alloy conductor comprising the step of performing heat treatment, wherein the annealing heat treatment is performed under conditions of a temperature of 300 to 450 ° C. for 10 minutes to 6 hours. Production method.
(13) 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.02 to 0.3 mass% of Si , At least one element selected from the group consisting of Sn, Cd and In in a total amount of 0.01 to 0.5 mass%, and further containing 0.001 to 0.01 mass% of a total of Ti and V, Zr The aluminum alloy component containing 0.001 to 0.1 mass% of Al and the balance Al and unavoidable impurities is melted and then subjected to continuous casting and rolling to obtain a rough bar, cold wire drawing to a rough draw wire, and heat treatment A method of manufacturing an aluminum alloy conductor comprising the steps of applying, drawing, forming a wire, and annealing heat treatment, wherein the annealing heat treatment is performed at a temperature of 300 to 450 ° C. for 10 minutes to 6 hours so Method for producing an aluminum alloy conductor, wherein Ukoto.
(14) 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.02 to 0.3 mass% of Si , At least one element selected from the group consisting of Sn, Cd and In in a total amount of 0.01 to 0.5 mass%, and further containing 0.001 to 0.01 mass% of a total of Ti and V, Zr Of the total content (W1) of the content of at least one element selected from the group consisting of Sn, Cd and In, containing 0.001 to 0.1 mass%, and the mass ratio (W1 /) of the content (W2) of Zr W2) is 0.6 to 2.6, and after melting the aluminum alloy component consisting of the balance Al and unavoidable impurities, it is subjected to continuous casting and rolling to obtain a rough bar, cold drawing and roughing wire, Heat treatment, wire drawing A method for producing an aluminum alloy conductor comprising the steps of annealing the wire as a wire rod, and performing the annealing heat treatment at a temperature of 300 to 450 ° C. for 10 minutes to 6 hours. Method of producing an aluminum alloy conductor.
(15) containing 0.1 to 1 mass% of Cu, and 0.01 to 0.5 mass% in total of at least one element selected from the group consisting of Sn, Cd and In, with the balance being Al and unavoidable impurities Aluminum alloy conductor.
(16) containing 0.1 to 1 mass% of Cu, and 0.01 to 0.5 mass% in total of at least one element selected from the group consisting of Sn, Cd and In; An aluminum alloy conductor containing 0 mass% and 0.1 to 0.35 mass% of Mg, with the balance being Al and unavoidable impurities.
(17) An aluminum alloy conductor according to item (15) or (16), further containing 0.001 to 0.1 mass% of Zr.
(18) The mass ratio of the total content (W1) of the content of at least one element selected from the group consisting of Sn, Cd and In to the content (W2) of Zr is 0.6 to 2.6 The aluminum alloy conductor according to (17), characterized in that
(19) The aluminum alloy conductor according to any one of (15) to (18), wherein the conductor is used as a battery cable, a harness or a wire for a motor in a movable body.
(20) The aluminum alloy conductor according to any one of (15) to (19), wherein the conductor is used for a vehicle, a train, or an aircraft.
(21) After melting the aluminum alloy component giving the aluminum alloy composition according to any one of (15) to (18), continuous casting and rolling are performed to obtain a rough bar, cold wire drawing and roughing wire Heat treatment, wire drawing, wire processing, and annealing heat treatment, which is a method for producing the aluminum alloy conductor according to any one of (15) to (18). The annealing heat treatment is a continuous heat treatment including the steps of rapid heating and quenching, and is performed by applying either of the following <1> or <2>:
<1> wire temperature y (° C.) and annealing time x (seconds),
0.03 ≦ x ≦ 0.55, and 26x -0.6 + 377 ≦ y ≦ 23.5x -0.6 +423
Continuous conduction heat treatment satisfying the relationship of; or <2> annealing furnace temperature z (° C.) and annealing time x (seconds),
1.5 ≦ x ≦ 5 and −50x + 550 ≦ z ≦ −36x + 650
Heat treatment during continuous running that satisfies the relationship of
 以下、前記(1)~(4)項記載のアルミニウム合金導体と前記(5)項記載のアルミニウム合金導体の製造方法とを併せて、本発明の第1の実施態様という。
 前記(6)~(11)項記載のアルミニウム合金導体と前記(12)~(14)項記載のアルミニウム合金導体の製造方法とを併せて、本発明の第1の実施態様という。
 前記(15)~(20)項記載のアルミニウム合金導体と前記(21)項記載のアルミニウム合金導体の製造方法とを併せて、本発明の第3の実施態様という。
 ここで、特に断らない限り、本発明とは、前記第1、第2および第3の実施態様を全て包含する意味である。
Hereinafter, the aluminum alloy conductor according to the items (1) to (4) and the method for producing an aluminum alloy conductor according to the item (5) are collectively referred to as a first embodiment of the present invention.
The aluminum alloy conductor according to the items (6) to (11) and the method for producing an aluminum alloy conductor according to the items (12) to (14) are collectively referred to as a first embodiment of the present invention.
The aluminum alloy conductor according to the items (15) to (20) and the method for producing an aluminum alloy conductor according to the item (21) are collectively referred to as a third embodiment of the present invention.
Here, unless otherwise specified, the present invention is meant to encompass all of the first, second and third embodiments.
 本発明のアルミニウム合金導体は強度、及び導電率に優れ、移動体に搭載されるバッテリーケーブル、ハーネスあるいはモータ用導体として有用なもので、優れた耐屈曲疲労特性が求められるドアやトランク、ボンネットなどにも好適に用いることができる。
 さらに、本発明のアルミニウム合金導体は、高温(例えば120℃)に曝されても屈曲疲労特性が低下しない優れたものであり、耐食性に優れるものである。
The aluminum alloy conductor of the present invention is excellent in strength and conductivity, is useful as a battery cable mounted on a moving body, a conductor for a harness or a motor, and is a door, trunk, bonnet, etc. for which excellent bending fatigue resistance is required. It can also be suitably used.
Furthermore, the aluminum alloy conductor of the present invention is excellent in that the bending fatigue property does not deteriorate even when exposed to high temperature (for example, 120 ° C.), and is excellent in corrosion resistance.
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings as appropriate.
図1は、実施例の繰返破断回数試験の説明図である。FIG. 1 is an explanatory view of the repeated breakage frequency test of the embodiment.
 まず、本発明の第1の実施態様について説明する。
 本発明の好ましい実施態様は、Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金導体であって、その伸線方向の垂直断面における結晶粒径が5~25μmのアルミニウム合金導体である。
First, the first embodiment of the present invention will be described.
In a preferred embodiment of the present invention, 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.02 to Si are included. An aluminum alloy conductor containing 0.3 mass%, further containing 0.001 to 0.01 mass% of Ti and V together, and the balance Al and unavoidable impurities, wherein the crystal grain in the vertical cross section in the wire drawing direction It is an aluminum alloy conductor with a diameter of 5 to 25 μm.
 本実施態様において、Feの含有量を0.01~0.4mass%とするのは、主にAl-Fe系の金属間化合物による様々な効果を利用するためである。Feはアルミニウム中には655℃において0.05mass%しか固溶せず、室温では更に少ない。残りはAl-Fe系の第2相粒子として晶出または析出する。この晶出物または析出物は結晶粒の微細化材として働くと共に、強度、及び耐屈曲疲労特性を向上させる。一方、Feの固溶によっても強度が上昇する。Feの含有量が少なすぎるとこれらの効果が不十分であり、多すぎると晶出物の粗大化により伸線加工及び撚線加工において断線の原因となる。目的の耐屈曲疲労特性も得られない。Feの含有量は好ましくは0.10~0.3mass%、さらに好ましくは0.15~0.25mass%である。 In the present embodiment, the reason for setting the content of Fe to 0.01 to 0.4 mass% is mainly to utilize various effects of the Al—Fe-based intermetallic compound. Fe dissolves only in 0.05 mass% at 655 ° C. in aluminum, and is less at room temperature. The remainder is crystallized or precipitated as Al-Fe second phase particles. The crystallized product or precipitate acts as a grain refining agent, and also improves strength and resistance to bending fatigue. On the other hand, the strength is also increased by the solid solution of Fe. When the content of Fe is too low, these effects are insufficient, and when it is too high, coarsening of the crystallized product causes breakage in wire drawing and twisting. The desired bending fatigue resistance can not be obtained. The content of Fe is preferably 0.10 to 0.3 mass%, more preferably 0.15 to 0.25 mass%.
 本実施態様において、Cuの含有量を0.3~0.5mass%とするのは、Cuはアルミニウム母材中に固溶して強化し、耐屈曲疲労特性を向上させるためであり、さらに、Al、Fe、Mg、Siと第2相粒子を形成し、耐屈曲疲労特性を向上させるためである。Cuの含有量が少なすぎると効果が不十分であり、多すぎると耐食性及び導電率の低下を招く。さらに加工性が悪くなる。Cuの含有量は好ましくは0.35~0.5mass%、さらに好ましくは0.4~0.5mass%である。 In the present embodiment, the reason why the content of Cu is 0.3 to 0.5 mass% is that Cu is solid-soluted in the aluminum base material to strengthen it, and to improve the bending fatigue resistance property, and further, This is for forming second phase particles with Al, Fe, Mg and Si to improve the bending fatigue resistance. When the content of Cu is too small, the effect is insufficient, and when too large, the corrosion resistance and the conductivity decrease. Furthermore, the processability becomes worse. The content of Cu is preferably 0.35 to 0.5 mass%, more preferably 0.4 to 0.5 mass%.
 本実施態様において、Mgの含有量を0.04~0.3mass%とするのは、Mgはアルミニウム母材中に固溶して強化すると共に、その一部はAl、Fe、Cu、Siと第2相粒子を形成して強度、耐屈曲疲労特性、及び耐熱性を向上させることができるためである。Mgの含有量が少なすぎると効果が不十分であり、多すぎると導電率を低下させる。また、Mgの含有量が多すぎると耐力が過剰となり、成形性、撚り性を劣化させ、加工性が悪くなることがある。Mgの含有量は好ましくは0.08~0.3mass%、さらに好ましくは0.1~0.28mass%である。 In the present embodiment, the content of Mg is set to 0.04 to 0.3 mass% because Mg dissolves in the aluminum base material and strengthens, and a part of it is Al, Fe, Cu, Si, etc. This is because the second phase particles can be formed to improve strength, bending fatigue resistance, and heat resistance. If the content of Mg is too low, the effect is insufficient, and if too high, the conductivity decreases. Moreover, when there is too much content of Mg, a yield strength will become excessive, a moldability, twistability may be degraded, and workability may worsen. The content of Mg is preferably 0.08 to 0.3 mass%, more preferably 0.1 to 0.28 mass%.
 本実施態様において、Siの含有量を0.02~0.3mass%とするのは、Siはアルミニウム母材中に固溶して強化すると共に、その一部はAl、Fe、Cu、Mgと第2相粒子を形成して強度、耐屈曲疲労特性、及び耐熱性を向上させることができるためである。Siの含有量が少なすぎると効果が不十分であり、多すぎると導電率が低下し、成形性、撚り性を劣化させ、加工性が悪くなる。また、線材製造中の熱処理過程におけるSi単体の析出が断線の原因になる。Siの含有量は好ましくは0.04~0.25mass%、さらに好ましくは0.04~0.20mass%である。 In the present embodiment, the reason why the content of Si is set to 0.02 to 0.3 mass% is that Si is solid solution in the aluminum base material to strengthen it, and a part thereof is Al, Fe, Cu, Mg This is because the second phase particles can be formed to improve strength, bending fatigue resistance, and heat resistance. When the content of Si is too small, the effect is insufficient. When the content of Si is too large, the conductivity decreases, the formability and the twistability are deteriorated, and the formability is deteriorated. In addition, precipitation of Si alone in the heat treatment process during wire production causes disconnection. The content of Si is preferably 0.04 to 0.25 mass%, more preferably 0.04 to 0.20 mass%.
 本実施態様において、TiとVは共に溶解鋳造時の鋳塊の微細化材として作用する。鋳塊の組織が粗大であると、線材加工工程で割れが発生して工業的に望ましくない。TiとVの含有量は、少なすぎると効果が不十分であり、多すぎると導電率を大きく低下させ、その効果も飽和する。TiとVの合計の含有量は好ましくは0.002~0.008mass%、さらに好ましくは0.003~0.006mass%である。 In this embodiment, both Ti and V act as a refining material of the ingot during melt casting. If the structure of the ingot is coarse, cracking occurs in the wire processing step, which is not desirable industrially. When the content of Ti and V is too small, the effect is insufficient, and when the content is too large, the conductivity is largely reduced and the effect is also saturated. The total content of Ti and V is preferably 0.002 to 0.008 mass%, more preferably 0.003 to 0.006 mass%.
 本発明のこの実施態様のアルミニウム合金導体によれば、上記の成分以外に結晶粒径を厳密に規定することにより、所望の優れた耐屈曲疲労特性、強度、及び導電率を具備したアルミニウム合金導体を得ることができる。 According to the aluminum alloy conductor of this embodiment of the present invention, the aluminum alloy conductor having desired excellent bending fatigue resistance, strength, and conductivity by defining the crystal grain size strictly in addition to the above components. You can get
 (結晶粒径)
 本発明のこの実施態様ではアルミニウム合金導体の伸線方向の垂直断面における結晶粒径を5~25μmとする。この理由は、5μm未満では部分的な未再結晶組織が残存して伸びが著しく低下するためであり、25μmを上限とするのは、これを超えた粗大な組織を形成すると変形挙動が不均一となり、同様に伸びが低下、さらに強度が著しく低下するためである。結晶粒径は、より好ましくは5~20μmである。
(Grain size)
In this embodiment of the present invention, the grain size in the cross section perpendicular to the wire drawing direction of the aluminum alloy conductor is 5 to 25 μm. The reason is that if the thickness is less than 5 μm, the partial unrecrystallized structure remains and the elongation is significantly reduced. The upper limit of 25 μm is that the deformation behavior is uneven when a coarse structure exceeding this is formed. In the same way, the elongation is reduced and the strength is significantly reduced. The crystal grain size is more preferably 5 to 20 μm.
 (引張強度)
 本発明のこの実施態様のアルミニウム合金導体の引張強度は120MPa以上である。これは、引張強度が120MPa未満では取り扱いを含めて強度不足であり、工業用導体として使用することが難しいためである。引張強度は好ましくは120~160MPaであり、さらに好ましくは120~150MPaである。
(Tensile strength)
The tensile strength of the aluminum alloy conductor of this embodiment of the present invention is 120 MPa or more. This is because if the tensile strength is less than 120 MPa, the strength including the handling is insufficient and it is difficult to use as an industrial conductor. The tensile strength is preferably 120 to 160 MPa, more preferably 120 to 150 MPa.
 (導電率)
 本発明のこの実施態様のアルミニウム合金導体の導電率は57%IACS以上である。これは、導電率が57%IACS未満では、動力線に用いる場合では数十A(アンペア)の高電流が流れるため、電流ロスが激しいためである。導電率は好ましくは57~62%IACS導電率であり、さらに好ましくは58~62%IACSである。
(conductivity)
The conductivity of the aluminum alloy conductor of this embodiment of the invention is 57% IACS or higher. This is because if the conductivity is less than 57% IACS, a high current of several tens of ampere (A) flows when used for a power line, and the current loss is severe. The conductivity is preferably 57-62% IACS conductivity, more preferably 58-62% IACS.
 (耐屈曲疲労特性)
 本発明のこの実施態様のアルミニウム合金導体は、優れた耐屈曲疲労特性を有する。耐屈曲疲労特性の基準として、本実施形態ではひずみ振幅±0.17%で試験を行う。耐屈曲疲労特性はひずみ振幅によって変化する。ひずみ振幅が大きい場合疲労寿命は短くなり、ひずみ振幅が小さい場合疲労寿命は長くなる。ひずみ振幅は図1記載の線材(アルミニウム合金導体)1の線径と曲げ冶具2、3の曲率半径により決定することができるため、線材1の線径と曲げ冶具2、3の曲率半径は任意に設定して屈曲疲労試験を実施することが可能である。
 次に、1日あたりの開閉回数を10回とし20年間の使用を想定した場合、開閉回数は73000回となる(1年365日として計算)。実際に使用される電線は単線ではなく、撚り線構造となり、さらに被覆処理がされているために電線導体への負担は数分の一となる。単線での評価値として十分な耐屈曲疲労特性が確保できる90000回以上の繰返破断回数が望ましいとし、表1及び表2に記載した。より好ましくは100000回以上である。
(Bending fatigue resistance)
The aluminum alloy conductor of this embodiment of the invention has excellent resistance to flex fatigue. In the present embodiment, the test is performed with a strain amplitude of ± 0.17% as a standard for the bending fatigue resistance. Flexural fatigue resistance changes with strain amplitude. When the strain amplitude is large, the fatigue life becomes short, and when the strain amplitude is small, the fatigue life becomes long. Since the strain amplitude can be determined by the wire diameter of the wire (aluminum alloy conductor) 1 and the curvature radius of the bending jigs 2 and 3 shown in FIG. 1, the wire diameter of the wire 1 and the curvature radius of the bending jigs 2 and 3 are arbitrary. It is possible to carry out a bending fatigue test by setting
Next, assuming that the number of times of opening and closing per day is 10 and the use for 20 years is assumed, the number of times of opening and closing is 73,000 times (calculated as 365 days a year). The wires actually used are not single wires, but have a stranded wire structure, and since the coating treatment is performed, the load on the wire conductors is a fraction of that. It was described in Table 1 and Table 2 that the number of times of repeated breakage of 90,000 times or more which can secure sufficient bending fatigue resistance as an evaluation value in a single wire is desirable. More preferably, it is 100,000 times or more.
 次に、本発明の第2の実施態様について説明する。
 本発明の別の好ましい実施態様は、Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金導体であって、その伸線方向の垂直断面における結晶粒径が5~25μmのアルミニウム合金導体である。
Next, a second embodiment of the present invention will be described.
Another preferred embodiment of the present invention is 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.1 to 0.5 of Si. Containing 0.2 to 0.3 mass% and at least one element selected from the group consisting of Sn, Cd and In in a total amount of 0.01 to 0.5 mass%, and further combining Ti and V into 0.001 to It is an aluminum alloy conductor containing 0.01 mass%, the balance Al and unavoidable impurities, and having a crystal grain size of 5 to 25 μm in a cross section perpendicular to the wire drawing direction.
 Fe、Cu、Mg、Si、Ti、Vの作用効果、添加量の範囲の制限理由、好ましい添加量の範囲、は、先記した通りである。 The functions and effects of Fe, Cu, Mg, Si, Ti and V, the reason for limitation of the range of addition amount, and the range of preferable addition amount are as described above.
 耐屈曲疲労特性を、先記の合金よりもさらに向上させるためには、Al、Fe、Cu、Mg、Siの二種以上を成分とする第二相粒子の生成を抑制することが好ましい。
 ところで、Sn、CdおよびInは、アルミニウム合金中の空孔を捕獲する作用を有しており、すなわち空孔を伴って進行する拡散作用を抑制する、あるいは遅延する働きがあり、それによりAl、Fe、Cu、Mg、Siの二種以上を成分とする第二相粒子の生成を抑制する。その結果、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の添加により、耐屈曲疲労特性をより向上させることができる。
 Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量を、総量で0.01~0.5mass%とするのは、0.01mass%未満では、第二相粒子生成の抑止効果が無く、0.5mass%を超えると生成を抑止する効果がなくなり逆に第二相粒子の生成を加速すると共に、伸びが低下し、また、この総量が多すぎると、伸線加工時に割れを生じやすくなり工業的な製造が成り立たないためである。
In order to improve the bending fatigue resistance further than the above-described alloy, it is preferable to suppress the formation of second phase particles containing two or more of Al, Fe, Cu, Mg, and Si as components.
By the way, Sn, Cd and In have the action of capturing the pores in the aluminum alloy, that is, they have the function of suppressing or delaying the diffusion action which proceeds with the pores, whereby Al, It suppresses the formation of second phase particles composed of two or more of Fe, Cu, Mg and Si. As a result, the bending fatigue resistance can be further improved by the addition of at least one element selected from the group consisting of Sn, Cd and In.
If the total content of at least one element selected from the group consisting of Sn, Cd and In is 0.01 to 0.5 mass%, the effect of suppressing the formation of second phase particles is less than 0.01 mass%. When the content is more than 0.5 mass%, the effect of suppressing formation is lost and the formation of second phase particles is accelerated, and the elongation decreases, and when the total amount is too large, cracking occurs during wire drawing. It is likely to occur and industrial production can not be realized.
 しかし、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の添加による、第二相粒子の生成を抑制する効果は、100℃以下の低温では顕著であるが、100℃を超える高温で、温度が高いほど、抑制の効果が現れなくなり、析出粒子が生成されることがある。そこで、さらにZrを添加することにより、析出抑制効果が消失してしまう現象をキャンセルすることができる。Zrは、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素と共に添加することにより、100℃を超える高温においても、Al、Fe、Cu、Mg、Siの二種以上を成分とする第二相粒子の生成を抑制する効果を有している。Zrの添加量を0.001~0.1mass%とするのは、0.001mass%未満では、その効果が不十分であり、0.1mass%を超えると、Al-Zr系の第二相粒子の生成量が多大となって、耐屈曲疲労特性を低下させるためである。 However, the effect of suppressing the formation of second phase particles by the addition of at least one element selected from the group consisting of Sn, Cd and In is remarkable at a low temperature of 100 ° C. or less, but at a high temperature exceeding 100 ° C. The higher the temperature, the less effective the suppression may be and precipitate particles may be produced. Therefore, by further adding Zr, it is possible to cancel the phenomenon that the precipitation suppressing effect disappears. By adding Zr together with at least one element selected from the group consisting of Sn, Cd and In, at least one of Al, Fe, Cu, Mg and Si is a component even at high temperatures exceeding 100 ° C. It has the effect of suppressing the formation of two-phase particles. If the addition amount of Zr is 0.001 to 0.1 mass%, the effect is insufficient if it is less than 0.001 mass%, and if it exceeds 0.1 mass%, the second phase particles of Al-Zr system The generation amount of is large to lower the bending fatigue resistance.
 Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量の総量(W1)と、Zrの含有量(W2)の質量比(W1/W2)において、より好ましい範囲は、0.6~2.6である。この範囲において、100℃を超える高温においても、Al、Fe、Cu、Mg、Siの二種以上を成分とする第二相粒子の生成をより効果的に抑制する効果を有する。 A more preferable range of the mass ratio (W1 / W2) of the total content (W1) of the content of at least one element selected from the group consisting of Sn, Cd and In to the content (W2) of Zr is 0.6 It is -2.6. Within this range, even at a high temperature exceeding 100 ° C., the generation of second phase particles containing two or more of Al, Fe, Cu, Mg and Si as a component is more effectively suppressed.
 本発明のこの実施態様のアルミニウム合金導体によれば、上記の成分以外に結晶粒径を厳密に規定することにより、所望の優れた耐屈曲疲労特性、強度、及び導電率を具備したアルミニウム合金導体を得ることができる。 According to the aluminum alloy conductor of this embodiment of the present invention, the aluminum alloy conductor having desired excellent bending fatigue resistance, strength, and conductivity by defining the crystal grain size strictly in addition to the above components. You can get
 (結晶粒径)
 本発明のこの実施態様ではアルミニウム合金導体の伸線方向の垂直断面における結晶粒径を5~25μmとする。この理由は、5μm未満では部分的な未再結晶組織が残存して伸びが著しく低下するためであり、25μmを上限とするのは、これを超えた粗大な組織を形成すると変形挙動が不均一となり、同様に伸びが低下、さらに強度が著しく低下するためである。結晶粒径は、より好ましくは5~20μmである。
(Grain size)
In this embodiment of the present invention, the grain size in the cross section perpendicular to the wire drawing direction of the aluminum alloy conductor is 5 to 25 μm. The reason is that if the thickness is less than 5 μm, the partial unrecrystallized structure remains and the elongation is significantly reduced. The upper limit of 25 μm is that the deformation behavior is uneven when a coarse structure exceeding this is formed. In the same way, the elongation is reduced and the strength is significantly reduced. The crystal grain size is more preferably 5 to 20 μm.
 (引張強度)
 本発明のこの実施態様のアルミニウム合金導体の引張強度は120MPa以上である。これは、引張強度が120MPa未満では取り扱いを含めて強度不足であり、工業用導体として使用することが難しいためである。引張強度は好ましくは120~160MPaであり、さらに好ましくは120~150MPaである。
(Tensile strength)
The tensile strength of the aluminum alloy conductor of this embodiment of the present invention is 120 MPa or more. This is because if the tensile strength is less than 120 MPa, the strength including the handling is insufficient and it is difficult to use as an industrial conductor. The tensile strength is preferably 120 to 160 MPa, more preferably 120 to 150 MPa.
 (導電率)
 本発明のこの実施態様のアルミニウム合金導体の導電率は52%IACS以上である。本来、導電率が57%IACS未満では、動力線に用いる場合では数十A(アンペア)の高電流が流れるため、電流ロスが激しくなる懸念があるため、好ましくは57~62%IACS導電率である。しかし、例えば移動体内のバッテリーケーブルやワイヤハーネス等の通信線への適用に際しては、この57%IACS以上の範囲に限るものではなく、前記52%IACS以上であればよい。
(conductivity)
The conductivity of the aluminum alloy conductor of this embodiment of the invention is greater than 52% IACS. Essentially, if the conductivity is less than 57% IACS, a high current of several tens of ampere (A) flows when used for a power line, and current loss may be severe, so preferably 57-62% IACS conductivity is there. However, for example, in the case of application to a communication cable such as a battery cable or a wire harness in a moving body, the range is not limited to 57% IACS or more, and 52% IACS or more may be used.
 (耐屈曲疲労特性)
 本発明のこの実施態様のアルミニウム合金導体は、優れた耐屈曲疲労特性を有する。耐屈曲疲労特性の基準として、本実施形態ではひずみ振幅±0.17%で試験を行う。耐屈曲疲労特性はひずみ振幅によって変化する。ひずみ振幅が大きい場合疲労寿命は短くなり、ひずみ振幅が小さい場合疲労寿命は長くなる。ひずみ振幅は図1記載の線材(アルミニウム合金導体)1の線径と曲げ冶具2、3の曲率半径により決定することができるため、線材1の線径と曲げ冶具2、3の曲率半径は任意に設定して屈曲疲労試験を実施することが可能である。
 次に、1日あたりの開閉回数を10回とし20年間の使用を想定した場合、開閉回数は73000回となる(1年365日として計算)。実際に使用される電線は単線ではなく、撚り線構造となり、さらに被覆処理がされているために電線導体への負担は数分の一となる。単線での評価値として十分な耐屈曲疲労特性が確保できる80000回以上の繰返破断回数が望ましいとし、表3に記載した。より好ましくは100000回以上であり、さらに好ましくは150000回以上である。また、自動車用途では、過酷な使用環境下、電線は高温に曝されることがある。一般に、10年の使用を想定した場合、120℃の高温にて120時間曝す加速試験が適用される。よって、120℃、120時間の放置後にも、80000回以上の繰返し破断回数であることが好ましく、90000回以上の繰返し破断回数であることがより好ましい。
(Bending fatigue resistance)
The aluminum alloy conductor of this embodiment of the invention has excellent resistance to flex fatigue. In the present embodiment, the test is performed with a strain amplitude of ± 0.17% as a standard for the bending fatigue resistance. Flexural fatigue resistance changes with strain amplitude. When the strain amplitude is large, the fatigue life becomes short, and when the strain amplitude is small, the fatigue life becomes long. Since the strain amplitude can be determined by the wire diameter of the wire (aluminum alloy conductor) 1 and the curvature radius of the bending jigs 2 and 3 shown in FIG. 1, the wire diameter of the wire 1 and the curvature radius of the bending jigs 2 and 3 are arbitrary. It is possible to carry out a bending fatigue test by setting
Next, assuming that the number of times of opening and closing per day is 10 and the use for 20 years is assumed, the number of times of opening and closing is 73,000 times (calculated as 365 days a year). The wires actually used are not single wires, but have a stranded wire structure, and since the coating treatment is performed, the load on the wire conductors is a fraction of that. It was described in Table 3 that the number of repeated breakages of 80,000 times or more which can secure sufficient bending fatigue resistance as an evaluation value on a single wire is desirable. More preferably, it is 100,000 times or more, and more preferably 150,000 times or more. Also, in automotive applications, the wires may be exposed to high temperatures in harsh operating environments. In general, assuming 10 years of use, an accelerated test of 120 hours of exposure at a high temperature of 120 ° C. is applied. Therefore, even after standing at 120 ° C. for 120 hours, the number of repeated breakages is preferably 80,000 or more, and more preferably 90,000 or more.
(製造方法)
 本発明の第1および第2の実施態様のアルミニウム合金導体の製造方法について説明する。
 本発明の第1および第2の実施態様のアルミニウム合金導体は、[1]溶解、[2]鋳造、[3]熱間または冷間加工(溝ロール加工など)、[4]伸線加工、[5]熱処理(中間焼鈍)、[6]伸線加工、[7]熱処理(仕上げ焼鈍)の各工程を経て製造することができる。
(Production method)
The manufacturing method of the aluminum alloy conductor of the 1st and 2nd embodiment of this invention is demonstrated.
The aluminum alloy conductor according to the first and second embodiments of the present invention is [1] melting, [2] casting, [3] hot or cold working (such as groove rolling), [4] wire drawing, It can manufacture through each process of [5] heat treatment (intermediate annealing), [6] wire-drawing, and [7] heat treatment (finish annealing).
 本発明のアルミニウム合金組成を得るには、まず、Fe、Cu、Mg、Si、Ti、V及びAlの各合金成分、またはこれらにさらにSn、CdおよびInからなる群から選ばれる少なくとも1つの元素を併せた各合金成分、またはこれらいずれかの合金成分とさらにZrを併せた各合金成分を、所望の濃度となるような分量で溶製する。 In order to obtain the aluminum alloy composition of the present invention, first, at least one element selected from the group consisting of each alloy component of Fe, Cu, Mg, Si, Ti, V and Al, or in addition thereto Sn, Cd and In. The respective alloy components in combination or any of these alloy components and each alloy component in which Zr is further combined are melted in an amount such that the desired concentration is obtained.
 次いで、鋳造輪とベルトを組み合わせたプロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で連続的に鋳造しながら圧延を行ない、約10mmφの粗棒材とする。鋳造から約φ10mmの線材の加工まで連続的に行なうことができ、更に再熱工程などの工程を省略することが可能であるため、生産性を大幅に向上させることができる。このときの鋳造冷却速度は好ましくは1~20℃/秒である。 Next, rolling is performed while continuously casting the molten metal in a water-cooled mold using a properchi-type continuous casting-rolling machine combining a casting wheel and a belt to make a rough bar of about 10 mmφ. The process from casting to processing of a wire rod of about 10 mm in diameter can be performed continuously, and steps such as a reheating step can be omitted, so that productivity can be significantly improved. The casting cooling rate at this time is preferably 1 to 20 ° C./second.
 次いで、表面の皮むきを実施して、9~9.5mmφとし、これを伸線加工して荒引き線材とする。ここで、伸線加工前の線材断面積をA、伸線加工後の線材断面積をAとすると、η=ln(A/A)で表される加工度は、1以上6以下であることが好ましい。加工度が小さすぎると、次工程の熱処理時、再結晶粒が粗大化し強度及び伸びが著しく低下し、断線の原因にもなる。大きすぎると、伸線加工が困難となり、伸線加工中に断線するなど品質の面で問題がある。表面の皮むきは、行なうことによって表面の清浄化がなされるが、行なわなくてもよい。 Next, the surface is peeled off to make a diameter of 9 to 9.5 mm, and this is drawn to make a rough drawn wire. Here, the wire cross-sectional area before drawing A 0, when the wire cross-sectional area after drawing and A 1, eta = working ratio expressed by ln (A 0 / A 1) is 1 to 6 It is preferable that it is the following. If the degree of processing is too small, the recrystallized grains become coarse during the heat treatment of the next step, and the strength and the elongation are significantly reduced, which may cause a break. If the size is too large, wire drawing becomes difficult, and there are problems in terms of quality such as breakage during wire drawing. Peeling of the surface may, but does not have to, clean the surface.
 冷間伸線した荒引き線材にバッチ式焼鈍炉により中間焼鈍を施す。中間焼鈍の条件は、温度は300~450℃である。300℃未満であると、未再結晶粒が残存して、後工程の伸線加工中に断線する原因となる。また、450℃を超えると粗大な再結晶粒が形成され、引張強度、伸びが著しく低下し、やはりこの場合も伸線加工中に断線するなど品質の面で問題がある。時間は10分~6時間である。10分未満であると、未再結晶粒が残存して、後工程の伸線加工中に断線する原因となる。また、6時間を超えると熱処理温度によっては粗大な再結晶粒が形成され、引張強度、伸びが著しく低下し、伸線加工中に断線する恐れがある。生産性の点からも6時間を越えると良くない。中間焼鈍の条件は、好ましくは300~450℃、30分~4時間である。 Intermediate annealing is applied to the cold drawn rough drawn wire by a batch type annealing furnace. The condition of the intermediate annealing is a temperature of 300 to 450.degree. If the temperature is less than 300 ° C., non-recrystallized grains remain, which causes breakage during wire drawing in a later step. When the temperature exceeds 450 ° C., coarse recrystallized grains are formed, and the tensile strength and the elongation are significantly reduced. Also in this case, there are problems in quality such as breakage during wire drawing. The time is 10 minutes to 6 hours. If it is less than 10 minutes, non-recrystallized grains remain and cause breakage during wire drawing in a later step. If the heat treatment temperature exceeds 6 hours, coarse recrystallized grains may be formed depending on the heat treatment temperature, the tensile strength and the elongation may be significantly reduced, and the wire may be broken during wire drawing. It is not good to exceed 6 hours from the viewpoint of productivity. The conditions for the intermediate annealing are preferably 300 to 450 ° C. and 30 minutes to 4 hours.
 さらに伸線加工を施して線材とする。この際も加工度は前述の理由により1以上6以下である。 Wire drawing is further applied to make a wire. Also in this case, the processing degree is 1 or more and 6 or less for the above-mentioned reason.
 冷間伸線した所定線径の線材にバッチ式焼鈍炉により仕上げ焼鈍を行ない、アルミニウム合金導体を得る。仕上げ焼鈍の条件は、温度は300~450℃である。300℃未満であると、未再結晶粒が残存して、柔軟性が十分に確保できないためである。また、450℃を超えると粗大な再結晶粒が形成され、引張強度、伸びが著しく低下するためである。時間は10分~6時間である。10分未満であると、未再結晶粒が残存して、柔軟性が十分に確保できないためである。また、6時間を超えると熱処理温度によっては粗大な再結晶粒が形成され、引張強度、伸びが著しく低下するためである。生産性の点からも6時間を越えると良くない。仕上げ焼鈍の条件は、好ましくは300~450℃、30分~4時間である。
 なお、仕上げ焼鈍はバッチ式焼鈍の他に、例えば、導体に電気を流してジュール熱で焼鈍する通電焼鈍や、高温に保持した焼鈍炉中を線材が連続的に通過して焼鈍させる走間焼鈍や、磁場中を線材が連続的に通過して焼鈍させる誘導加熱でもよい。この場合、一般的に高温短時間の熱処理となるため、仕上げ焼鈍の条件はバッチ式焼鈍とは異なる。
The cold drawn wire of a predetermined diameter is subjected to finish annealing in a batch annealing furnace to obtain an aluminum alloy conductor. The conditions for the finish annealing are a temperature of 300 to 450.degree. If the temperature is less than 300 ° C., non-recrystallized grains remain, and sufficient flexibility can not be secured. Moreover, when it exceeds 450 ° C., coarse recrystallized grains are formed, and the tensile strength and the elongation are significantly reduced. The time is 10 minutes to 6 hours. If it is less than 10 minutes, non-recrystallized grains remain, and sufficient flexibility can not be secured. Also, if it exceeds 6 hours, coarse recrystallized grains are formed depending on the heat treatment temperature, and the tensile strength and elongation are significantly reduced. It is not good to exceed 6 hours from the viewpoint of productivity. The conditions for the finish annealing are preferably 300 to 450 ° C. for 30 minutes to 4 hours.
In addition, as for the final annealing, in addition to the batch type annealing, for example, an electric current annealing in which electricity is supplied to a conductor and annealing is performed by Joule heat, or a wire annealing in which a wire is continuously passed and annealed in an annealing furnace kept at high temperature. Alternatively, induction heating may be employed in which the wire passes continuously through the magnetic field for annealing. In this case, since the heat treatment is generally performed at a high temperature for a short time, the conditions for the finish annealing are different from the batch annealing.
 以上詳述したように適正に熱処理を施して作製した本発明のこれらの実施態様のアルミニウム合金導体は、上記所定の結晶粒径を有することに加えて、再結晶組織を有する。再結晶組織とは、塑性加工により導入される転位などの格子欠陥が少ない結晶粒で構成された組織状態のことである。再結晶組織を有することにより、引張破断伸び、導電率が回復し、十分な柔軟性を得ることができる。 The aluminum alloy conductors of these embodiments of the present invention prepared by heat treatment appropriately as described in detail above have a recrystallized structure in addition to having the predetermined crystal grain size. The recrystallized structure is a structural state composed of crystal grains with few lattice defects such as dislocations introduced by plastic working. By having a recrystallized structure, tensile elongation at break, conductivity can be recovered, and sufficient flexibility can be obtained.
 次に、本発明の第3の実施態様について説明する。
 本発明のさらに別の好ましい実施態様は、Cuを0.1~1mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、残部Alと不可避不純物からなるアルミニウム合金導体である。ここで、この実施態様のアルミニウム合金導体の合金組成における不可避不純物としては、JISH2110(電気用アルミニウム合金地金)に開示されており、Fe0.25mass%以下、Si0.1mass%以下、Cu0.005mass%以下、Mn0.005mass%以下、Ti+V0.005mass%以下が挙げられる。
 また、実際に工業的に製造される地金中の不可避的不純物は、一般に、Fe0.05~0.15mass%、Si0.04~0.1mass%の範囲にある。なお、FeやSiの含有量が0.01mass%を下回るものは、一般に高純度アルミニウムとして取り扱われるが、高純度アルミニウムそのものは、FeやSiの含有量が低いため、前述の各実施態様と同様に、この実施態様においても好ましい範囲には含まれない。
 また、この実施態様のアルミニウム合金導体の合金組成は、Mg0.1~0.35mass%を含有していてもよい。また、Feは、前記不可避不純物の含有量を超えて、1.0mass%以下の量で含有してもよい。
Next, a third embodiment of the present invention will be described.
Yet another preferred embodiment of the present invention contains 0.1 to 1 mass% of Cu, and 0.01 to 0.5 mass% in total of at least one element selected from the group consisting of Sn, Cd and In. And an aluminum alloy conductor consisting of the balance Al and unavoidable impurities. Here, as an unavoidable impurity in the alloy composition of the aluminum alloy conductor of this embodiment, it is disclosed in JISH2110 (Aluminum alloy base metal for electricity), and it is not more than 0.25 mass% of Fe, not more than 0.1 mass% of Si, and 0.005 mass% of Cu. Hereinafter, Mn of 0.005 mass% or less and Ti + V 0.005 mass% or less can be mentioned.
In addition, unavoidable impurities in the industrially manufactured bare metal are generally in the range of Fe 0.05 to 0.15 mass% and Si 0.04 to 0.1 mass%. In addition, although the thing whose content of Fe or Si is less than 0.01 mass% is generally handled as high purity aluminum, since high purity aluminum itself has a low content of Fe or Si, it is the same as the above-mentioned each embodiment. Also in this embodiment, it is not included in the preferable range.
The alloy composition of the aluminum alloy conductor of this embodiment may contain 0.1 to 0.35 mass% of Mg. In addition, Fe may be contained in an amount of 1.0 mass% or less exceeding the content of the unavoidable impurities.
 耐屈曲疲労特性を、先記の合金よりもさらに向上させるためには、Cuが第二相粒子を形成せずに、アルミニウム中に固溶した状態とすることである。しかし、CuはAlと第二相粒子を容易に形成しやすく、この第二相粒子の形成量は、添加するCu量の増加と共に増え、形成された第二相粒子は、屈曲疲労特性に劣化をもたらす。
 Cuを0.1~1mass%としたのは、0.1mass%未満では、固溶量が少ないため耐屈曲疲労特性が良くないためであり、1mass%以上になると、以下に示す特定の製造方法においても、CuとAlの第二相粒子の形成を阻止することができず、その粒子が介在した腐食性が顕著となって耐食性が劣ると共に、その粒子により耐屈曲疲労特性の低下を招くことがあるためである。
 ところで、Sn、CdおよびInは、アルミニウム合金中の空孔を捕獲する作用を有しており、すなわち空孔を伴って進行する拡散作用を抑制する、あるいは遅延する働きがあり、それによりAlとCuを成分とする第二相粒子の生成を抑制する。その結果、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の添加により、耐屈曲疲労特性をより向上させることができる。
 Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量を、総量で0.01~0.5mass%とするのは、0.01mass%未満では、第二相粒子生成の抑止効果が無く、0.5mass%を超えると生成を抑止する効果が飽和するとともに伸びが低下し、また、この総量が多すぎると、伸線加工時に割れを生じやすくなり工業的な製造が成り立たないためである。
In order to improve the bending fatigue resistance further than the above-described alloy, Cu should be in a solid solution state in aluminum without forming second phase particles. However, Cu tends to easily form second phase particles with Al, and the formation amount of the second phase particles increases with the increase of the added Cu amount, and the formed second phase particles deteriorate in bending fatigue characteristics. Bring
The reason why Cu is set to 0.1 to 1 mass% is that if it is less than 0.1 mass%, the amount of solid solution is small and the resistance to bending fatigue is not good, and if it is 1 mass% or more, the specific manufacturing method shown below Also in the second phase, the formation of second phase particles of Cu and Al can not be prevented, and the corrosivity due to the particles becomes remarkable to make the corrosion resistance inferior, and the particles cause the deterioration of the bending fatigue resistance characteristics. There is
By the way, Sn, Cd and In have the action of capturing the pores in the aluminum alloy, that is, have the function of suppressing or delaying the diffusion action which proceeds with the pores, thereby making it possible to Suppress the formation of second phase particles containing Cu as a component. As a result, the bending fatigue resistance can be further improved by the addition of at least one element selected from the group consisting of Sn, Cd and In.
If the total content of at least one element selected from the group consisting of Sn, Cd and In is 0.01 to 0.5 mass%, the effect of suppressing the formation of second phase particles is less than 0.01 mass%. If the content is more than 0.5 mass%, the effect of suppressing formation is saturated and the elongation is reduced, and if the total amount is too large, cracking tends to occur at the time of wire drawing, and industrial production can not be realized It is.
 しかし、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の添加による、第二相粒子の生成を抑制する効果は、100℃以下の低温では顕著であるが、100℃を超える高温で、温度が高いほど、抑制の効果が現れなくなり、析出粒子が生成されることがある。そこで、さらにZrを添加することにより、析出抑制効果が消失してしまう現象をキャンセルすることができる。Zrは、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素と共に添加することにより、100℃を超える高温においても、Al、Cuを成分とする第二相粒子の生成を抑制する効果を有している。Zrの添加量を0.001~0.1mass%とするのは、0.001mass%未満では、その効果が不十分であり、0.1mass%を超えると、Al-Zr系の第二相粒子の生成量が多大となって、耐屈曲疲労特性を低下させるためである。 However, the effect of suppressing the formation of second phase particles by the addition of at least one element selected from the group consisting of Sn, Cd and In is remarkable at a low temperature of 100 ° C. or less, but at a high temperature exceeding 100 ° C. The higher the temperature, the less effective the suppression may be and precipitate particles may be produced. Therefore, by further adding Zr, it is possible to cancel the phenomenon that the precipitation suppressing effect disappears. Zr, together with at least one element selected from the group consisting of Sn, Cd and In, has the effect of suppressing the formation of second phase particles containing Al and Cu even at high temperatures exceeding 100 ° C. Have. If the addition amount of Zr is 0.001 to 0.1 mass%, the effect is insufficient if it is less than 0.001 mass%, and if it exceeds 0.1 mass%, the second phase particles of Al-Zr system The generation amount of is large to lower the bending fatigue resistance.
 Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量の総量(W1)と、Zrの含有量(W2)の質量比(W1/W2)において、より好ましい範囲は、0.6~2.6である。この範囲において、100℃を超える高温においても、Al、Cuを成分とする第二相粒子の生成をより抑制する効果を有する。 A more preferable range of the mass ratio (W1 / W2) of the total content (W1) of the content of at least one element selected from the group consisting of Sn, Cd and In to the content (W2) of Zr is 0.6 It is -2.6. Within this range, even at a high temperature exceeding 100 ° C., it has the effect of further suppressing the formation of second phase particles containing Al and Cu as components.
 本発明のこの実施態様のアルミニウム合金導体によれば、上記の成分以外に製造方法を厳密に制御することにより、所望の優れた耐屈曲疲労特性、強度、及び導電率を具備したアルミニウム合金導体を得ることができる。 According to the aluminum alloy conductor of this embodiment of the present invention, the aluminum alloy conductor having the desired excellent bending fatigue resistance characteristics, strength and conductivity by strictly controlling the manufacturing method other than the above components You can get it.
 (引張強度)
 本発明のこの実施態様のアルミニウム合金導体の引張強度は120MPa以上である。これは、引張強度が120MPa未満では取り扱いを含めて強度不足であり、工業用導体として使用することが難しいためである。引張強度は好ましくは120~160MPaであり、さらに好ましくは120~150MPaである。
(Tensile strength)
The tensile strength of the aluminum alloy conductor of this embodiment of the present invention is 120 MPa or more. This is because if the tensile strength is less than 120 MPa, the strength including the handling is insufficient and it is difficult to use as an industrial conductor. The tensile strength is preferably 120 to 160 MPa, more preferably 120 to 150 MPa.
 (導電率)
 本発明のこの実施態様のアルミニウム合金導体の導電率は52%IACS以上である。本来、導電率が57%IACS未満では、動力線に用いる場合では数十A(アンペア)の高電流が流れるため、電流ロスが激しくなる懸念があるため、好ましくは57~62%IACS導電率である。しかし、例えば移動体内のバッテリーケーブルやワイヤハーネス等の通信線への適用に際しては、この57%IACS以上の範囲に限るものではなく、前記52%IACS以上であればよい。
(conductivity)
The conductivity of the aluminum alloy conductor of this embodiment of the invention is greater than 52% IACS. Essentially, if the conductivity is less than 57% IACS, a high current of several tens of ampere (A) flows when used for a power line, and current loss may be severe, so preferably 57-62% IACS conductivity is there. However, for example, in the case of application to a communication cable such as a battery cable or a wire harness in a moving body, the range is not limited to 57% IACS or more, and 52% IACS or more may be used.
 (耐屈曲疲労特性)
 本発明のこの実施態様のアルミニウム合金導体は、優れた耐屈曲疲労特性を有する。耐屈曲疲労特性の基準として、本実施形態ではひずみ振幅±0.17%で試験を行う。耐屈曲疲労特性はひずみ振幅によって変化する。ひずみ振幅が大きい場合疲労寿命は短くなり、ひずみ振幅が小さい場合疲労寿命は長くなる。ひずみ振幅は図1記載の線材(アルミニウム合金導体)1の線径と曲げ冶具2、3の曲率半径により決定することができるため、線材1の線径と曲げ冶具2、3の曲率半径は任意に設定して屈曲疲労試験を実施することが可能である。
 次に、1日あたりの開閉回数を10回とし20年間の使用を想定した場合、開閉回数は73000回となる(1年365日として計算)。実際に使用される電線は単線ではなく、撚り線構造となり、さらに被覆処理がされているために電線導体への負担は数分の一となる。単線での評価値として十分な耐屈曲疲労特性が確保できる80000回以上の繰返破断回数が望ましいとし、表6に記載した。より好ましくは100000回以上であり、さらに好ましくは150000回以上である。また、自動車用途では、過酷な使用環境下、電線は高温に曝されることがある。一般に、10年の使用を想定した場合、120℃の高温にて120時間曝す加速試験が適用される。よって、120℃、120時間の放置後にも、80000回以上の繰返し破断回数であることが好ましく、90000回以上の繰返し破断回数であることがより好ましい。
(Bending fatigue resistance)
The aluminum alloy conductor of this embodiment of the invention has excellent resistance to flex fatigue. In the present embodiment, the test is performed with a strain amplitude of ± 0.17% as a standard for the bending fatigue resistance. Flexural fatigue resistance changes with strain amplitude. When the strain amplitude is large, the fatigue life becomes short, and when the strain amplitude is small, the fatigue life becomes long. Since the strain amplitude can be determined by the wire diameter of the wire (aluminum alloy conductor) 1 and the curvature radius of the bending jigs 2 and 3 shown in FIG. 1, the wire diameter of the wire 1 and the curvature radius of the bending jigs 2 and 3 are arbitrary. It is possible to carry out a bending fatigue test by setting
Next, assuming that the number of times of opening and closing per day is 10 and the use for 20 years is assumed, the number of times of opening and closing is 73,000 times (calculated as 365 days a year). The wires actually used are not single wires, but have a stranded wire structure, and since the coating treatment is performed, the load on the wire conductors is a fraction of that. It was described in Table 6 that the number of repeated breakages of 80,000 times or more which can secure sufficient bending fatigue resistance as an evaluation value for a single wire is desirable. More preferably, it is 100,000 times or more, and more preferably 150,000 times or more. Also, in automotive applications, the wires may be exposed to high temperatures in harsh operating environments. In general, assuming 10 years of use, an accelerated test of 120 hours of exposure at a high temperature of 120 ° C. is applied. Therefore, even after standing at 120 ° C. for 120 hours, the number of repeated breakages is preferably 80,000 or more, and more preferably 90,000 or more.
(製造方法)
 次に、本発明の第3の実施態様のアルミニウム合金導体の製造方法について説明する。
 本発明の第3の実施態様のアルミニウム合金導体は、前記第1および第2の実施態様とは別の製造方法として、[1]溶解、[2]鋳造、[3]熱間または冷間加工(溝ロール加工など)、[4]伸線加工、[5]熱処理(中間焼鈍)、[6]伸線加工、[7]熱処理(仕上げ焼鈍)の各工程を経て製造することができる。
(Production method)
Next, a method of manufacturing the aluminum alloy conductor of the third embodiment of the present invention will be described.
The aluminum alloy conductor according to the third embodiment of the present invention may be manufactured by [1] melting, [2] casting, [3] hot or cold working as a manufacturing method different from the first and second embodiments. It can manufacture through each process of (4 groove drawing, etc.), [4] wire drawing, [5] heat treatment (intermediate annealing), [6] wire drawing, and [7] heat treatment (finish annealing).
 溶解は、前述のアルミニウム合金組成の合金成分をそれぞれの実施態様の濃度となるような分量で溶製する。 The melting is performed by melting the alloy components of the aluminum alloy composition described above in such amounts as to achieve the concentrations of the respective embodiments.
 次いで、鋳造輪とベルトを組み合わせたプロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で連続的に鋳造しながら圧延を行ない、約10mmφの粗棒材とする。このときの鋳造冷却速度は好ましくは1~20℃/秒である。鋳造及び熱間圧延は、ビレット鋳造、及び押出法などにより行なってもよい。 Next, rolling is performed while continuously casting the molten metal in a water-cooled mold using a properchi-type continuous casting-rolling machine combining a casting wheel and a belt to make a rough bar of about 10 mmφ. The casting cooling rate at this time is preferably 1 to 20 ° C./second. Casting and hot rolling may be performed by billet casting, extrusion and the like.
 次いで、表面の皮むきを実施して、9~9.5mmφとし、これを伸線加工して荒引き線材とする。加工度は、1以上6以下が好ましい。ここで加工度ηは、伸線加工前の線材断面積をA、伸線加工後の線材断面積をAとすると、η=ln(A/A)で表される。このときの加工度が小さすぎると、次工程の熱処理時、再結晶粒が粗大化し強度及び伸びが著しく低下し、断線の原因にもなることがある。大きすぎると、伸線加工が困難となり、伸線加工中に断線するなど品質の面で問題を生ずることがある。表面の皮むきは、行なうことによって表面の清浄化がなされるが、行なわなくてもよい。 Next, the surface is peeled off to make a diameter of 9 to 9.5 mm, and this is drawn to make a rough drawn wire. The processing degree is preferably 1 or more and 6 or less. Here, when the wire cross-sectional area before wire drawing is A 0 and the wire cross-sectional area after wire drawing is A 1 , the working degree η is represented by η = ln (A 0 / A 1 ). If the degree of processing at this time is too small, the recrystallized grains may become coarse during the heat treatment of the next step, and the strength and the elongation may be significantly reduced, which may cause a break. If the size is too large, wire drawing becomes difficult, and problems may occur in quality such as breakage during wire drawing. Peeling of the surface may, but does not have to, clean the surface.
 冷間伸線した荒引き線材に中間焼鈍を施す。中間焼鈍は主に伸線加工で硬くなった線材の柔軟性を取り戻すために行なう。中間焼鈍温度が高すぎても低すぎても、後の伸線加工で断線を起し、線材が得られなくなる。中間焼鈍温度は好ましくは300~450℃、より好ましくは350~450℃である。中間焼鈍の時間は、10分以上とする。10分未満であると、再結晶粒形成及び成長に必要な時間が足りず、線材の柔軟性を取り戻すことができないためである。好ましくは1~6時間である。また、中間焼鈍時の熱処理温度から100℃までの平均冷却速度は特に規定しないが、0.1~10℃/分が望ましい。 Intermediate annealing is applied to the cold drawn wire rod. Intermediate annealing is mainly performed to restore the flexibility of the wire rod that has been hardened by wire drawing. If the intermediate annealing temperature is too high or too low, wire breakage will occur in the subsequent wire drawing process, and the wire can not be obtained. The intermediate annealing temperature is preferably 300 to 450 ° C., more preferably 350 to 450 ° C. The time of intermediate annealing is 10 minutes or more. If it is less than 10 minutes, the time required for recrystallized grain formation and growth is insufficient, and the flexibility of the wire can not be recovered. Preferably, it is 1 to 6 hours. Although the average cooling rate from the heat treatment temperature to 100 ° C. during the intermediate annealing is not particularly specified, it is preferably 0.1 to 10 ° C./min.
 さらに伸線加工を施して線材とする。上記のような再結晶集合組織を得るため、この際の加工度(連続熱処理前の加工度)を1以上6以下とする。加工度は再結晶粒形成及び成長に多大に影響を及ぼす。加工度が小さすぎると、次工程の熱処理時、再結晶粒が粗大化し強度及び伸びが著しく低下し、断線の原因になる場合がある。また、再結晶粒界が移動するための駆動力が不十分で目的の再結晶集合組織を形成できない場合がある。大きすぎると、伸線加工が困難となり、伸線加工中に断線するなど品質の面で問題を生ずることがある。加工度は好ましくは2以上6以下である。 Wire drawing is further applied to make a wire. In order to obtain the above recrystallization texture, the degree of processing (the degree of processing before the continuous heat treatment) at this time is made 1 or more and 6 or less. The degree of processing greatly affects recrystallized grain formation and growth. If the degree of processing is too small, during the heat treatment of the next step, the recrystallized grains may be coarsened, the strength and the elongation may be significantly reduced, which may cause a break. In addition, the driving force for moving the recrystallized grain boundaries may be insufficient to form a target recrystallized texture. If the size is too large, wire drawing becomes difficult, and problems may occur in quality such as breakage during wire drawing. The processing degree is preferably 2 or more and 6 or less.
 また、伸線速度は目的の再結晶集合組織を得るために制御する。伸線速度は、好ましくは500~2000m/分とする。伸線速度が500m/分未満では次工程の仕上げ焼鈍時に目的の再結晶集合組織を得ることができない場合がある。伸線速度が2000m/分超では、線材に負荷される摩擦力が大きく、次工程の仕上げ焼鈍時に目的の再結晶集合組織を得ることができない場合があるばかりか、伸線加工中に断線するなど品質の面で問題を生ずることがある。伸線速度は、より好ましくは800~1800m/分である。 Also, the drawing speed is controlled to obtain a desired recrystallization texture. The wire drawing speed is preferably 500 to 2000 m / min. If the drawing speed is less than 500 m / min, it may not be possible to obtain the desired recrystallized texture during the final annealing in the next step. If the drawing speed is more than 2000 m / min, the frictional force applied to the wire is large, and it may not be possible to obtain the intended recrystallization texture during the final annealing in the next step, and the wire breaks during drawing May cause problems in terms of quality. The wire drawing speed is more preferably 800 to 1800 m / min.
 冷間伸線した所定線径の線材に、バッチ式熱処理又は連続熱処理により仕上げ焼鈍を行ない、アルミニウム合金導体を得る。
 仕上げ焼鈍としてのバッチ式熱処理の条件は、前記と同様である。
 この内、連続熱処理は、連続通電熱処理、連続走間熱処理の2つの方法のいずれかで行うことができる。
The cold drawn wire of a predetermined diameter is subjected to finish annealing by batch heat treatment or continuous heat treatment to obtain an aluminum alloy conductor.
The conditions of the batch type heat treatment as the finish annealing are the same as described above.
Among them, the continuous heat treatment can be performed by any of the two methods of the continuous current heat treatment and the continuous running heat treatment.
 連続通電熱処理は、2つの電極輪を連続的に通過する線材に電流を流すことによって自身から発生するジュール熱により焼鈍するものである。急熱、急冷の工程を含み、線材温度と焼鈍時間で制御し線材を焼鈍することができる。冷却は、急熱後、水中または窒素ガス雰囲気中に線材を連続的に通過させることによって行なう。線材温度が低すぎるかまたは焼鈍時間が短すぎるかの一方または両方の場合は車載取り付け等の際に必要な柔軟性が得られず、一方、線材温度が高すぎるかまたは焼鈍時間が長すぎるかの一方または両方の場合は、過焼鈍により結晶方位が過剰に回転してしまい、目的の再結晶集合組織が得られず、さらには耐屈曲疲労特性も悪くなる。よって、以下の関係を満たす条件で行うと上記の所望の再結晶集合組織とすることができる。
 連続通電熱処理においては線材温度をy(℃)、焼鈍時間をx(秒)とすると、
  0.03≦x≦0.55、かつ
  26x-0.6+377≦y≦23.5x-0.6+423
を満たすように行う。
 なお、線材温度y(℃)は、線材として温度が最も高くなる、冷却工程に通過する直前の温度を表す。y(℃)は通常414~616(℃)の範囲内である。
In the continuous electric heat treatment, annealing is performed by Joule heat generated from itself by applying an electric current to a wire which passes continuously through two electrode wheels. The wire can be annealed by controlling the temperature of the wire and the annealing time including the rapid heating and quenching steps. Cooling is performed by passing the wire continuously through water or nitrogen gas atmosphere after rapid heating. Whether the wire temperature is too low or the annealing time is too short, or if both do not provide the flexibility needed for in-vehicle installation etc, while the wire temperature is too high or the annealing time is too long In one or both of the cases, the crystal orientation is excessively rotated by over-annealing, and a desired recrystallization texture can not be obtained, and furthermore, the resistance to bending fatigue also deteriorates. Therefore, if it carries out on the conditions with which the following relationships are satisfied, it can be set as the above-mentioned desired recrystallization texture.
Assuming that the wire temperature is y (° C.) and the annealing time is x (seconds) in the continuous current heat treatment,
0.03 ≦ x ≦ 0.55, and 26x -0.6 + 377 ≦ y ≦ 23.5x -0.6 +423
Do as you meet.
The wire temperature y (° C.) represents the temperature immediately before passing through the cooling step, at which the temperature as the wire becomes the highest. y (° C.) is usually in the range of 414 to 616 (° C.).
 連続走間熱処理は、高温に保持した焼鈍炉中を線材が連続的に通過して焼鈍させるものである。急熱、急冷の工程を含み、焼鈍炉温度と焼鈍時間で制御し線材を焼鈍することができる。冷却は、急熱後、水中または窒素ガス雰囲気中に線材を連続的に通過させることによって行なう。焼鈍炉温度が低すぎるかまたは焼鈍時間が短すぎるかの一方または両方の場合は車載取り付け等の際に必要な柔軟性が得られず、一方、焼鈍炉温度が高すぎるかまたは焼鈍時間が長すぎるかの一方または両方の場合は、過焼鈍により結晶方位が過剰に回転してしまい、目的の再結晶集合組織が得られず、さらには耐屈曲疲労特性も悪くなる。よって、以下の関係を満たす条件で行うと上記の所望の再結晶集合組織とすることができる。
 連続走間熱処理においては焼鈍炉温度をz(℃)、焼鈍時間をx(秒)とすると、
  1.5≦x≦5、かつ
  -50x+550≦z≦-36x+650
を満たすように行う。
 なお、焼鈍炉温度z(℃)は、線材として温度が最も高くなる、冷却工程に通過する直前の温度を表す。z(℃)は通常300~596(℃)の範囲内である。
 また、連続熱処理による仕上げ焼鈍は上記2つの方法の他に、磁場中を線材が連続的に通過して焼鈍させる誘導加熱でもよい。
The heat treatment during continuous running is to allow the wire to continuously pass through the annealing furnace maintained at high temperature for annealing. The wire can be annealed by controlling the temperature of the annealing furnace and the annealing time including the rapid heating and quenching steps. Cooling is performed by passing the wire continuously through water or nitrogen gas atmosphere after rapid heating. If the annealing furnace temperature is too low or the annealing time is too short or both cases, the flexibility required for in-vehicle installation etc. is not obtained, while the annealing furnace temperature is too high or the annealing time is long In one or both cases, the crystal orientation is excessively rotated by over-annealing, and a desired recrystallization texture can not be obtained, and furthermore, the resistance to bending fatigue is deteriorated. Therefore, if it carries out on the conditions with which the following relationships are satisfied, it can be set as the above-mentioned desired recrystallization texture.
Assuming that the annealing furnace temperature is z (° C.) and the annealing time is x (seconds) in the continuous running heat treatment,
1.5 ≦ x ≦ 5 and −50x + 550 ≦ z ≦ −36x + 650
Do as you meet.
In addition, annealing furnace temperature z (degreeC) represents the temperature just before passing through a cooling process where temperature becomes the highest as a wire material. z (° C.) is usually in the range of 300 to 596 (° C.).
In addition to the above two methods, the finish annealing by the continuous heat treatment may be induction heating in which the wire is continuously passed and annealed in a magnetic field.
 以上詳述したように適正に熱処理を施して作製した本発明のこの実施態様のアルミニウム合金導体は、上記所定の合金組成を有することに加えて、再結晶組織を有する。再結晶組織とは、塑性加工により導入される転位などの格子欠陥が少ない結晶粒で構成された組織状態のことである。再結晶組織を有することにより、引張破断伸び、導電率が回復し、十分な柔軟性を得ることができる。 The aluminum alloy conductor of this embodiment of the present invention produced by heat treatment properly as described in detail above has a recrystallized structure in addition to having the above-mentioned predetermined alloy composition. The recrystallized structure is a structural state composed of crystal grains with few lattice defects such as dislocations introduced by plastic working. By having a recrystallized structure, tensile elongation at break, conductivity can be recovered, and sufficient flexibility can be obtained.
 本発明を以下の実施例に基づきさらに詳細に説明する。なお本発明は、以下に示す実施例に限定されるものではない。 The invention will be described in more detail on the basis of the following examples. The present invention is not limited to the examples shown below.
 実施例No.1~24、比較例No.1~12
(本発明の第1の実施態様、つまり前記(1)~(5)項記載の発明の実施例および比較例)
 後記の表1(実施例)及び表2(比較例)に示すように、Fe、Cu、Mg、Si、Ti、V及びAlを、所定量比(質量%)で用いて合金とした。ここで、Alについては、JIS-H4040 合金番号1070であって、不可避不純物の含有量が表1及び表2の値を超えないものとした。比較例No.1(純Al)、比較例No.2、比較例No.8については、Alとして高純度アルミニウム(フォーナイン(4N))を用いた。
 この合金を、プロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で連続的に鋳造しながら圧延を行ない、約10mmφの粗棒材とした。このときの鋳造冷却速度は1~20℃/秒であった。
 次いで、表面の皮むきを実施して、9~9.5mmφとし、これを伸線加工して、2.6mmφの荒引き線材とした。次に表1及び表2に示すように、この冷間伸線した加工材に温度300~450℃で0.5~4時間の中間焼鈍を施し、更に、伸線加工を行って線径0.31mmφの線材とした。
 最後に仕上げ焼鈍として、温度300~450℃(比較例では250℃、500℃を含む)で0.5~4時間のバッチ式熱処理を仕上げ焼鈍として施して、アルミニウム合金導体を得た。
Example No. Comparative Examples 1 to 24 1 to 12
(First Embodiment of the Present Invention, That is, Embodiments and Comparative Examples of the Invention According to the Items (1) to (5))
As shown in Table 1 (Examples) and Table 2 (Comparative Examples) described later, Fe, Cu, Mg, Si, Ti, V, and Al were used at a predetermined amount ratio (mass%) to form an alloy. Here, with regard to Al, the JIS-H4040 alloy No. 1070 was used, and the content of unavoidable impurities did not exceed the values in Tables 1 and 2. Comparative example No. 1 (pure Al), comparative example No. 1 2, Comparative Example No. 2 As for No. 8, high purity aluminum (four nines (4N)) was used as Al.
This alloy was rolled while continuously casting the molten metal in a water-cooled mold using a properch-type continuous cast-rolling machine to give a rough bar of about 10 mmφ. The casting cooling rate at this time was 1 to 20 ° C./second.
Next, the surface was peeled off to 9 to 9.5 mmφ, which was then drawn to a rough drawn wire of 2.6 mmφ. Next, as shown in Tables 1 and 2, this cold drawn material is subjected to intermediate annealing at a temperature of 300 to 450 ° C. for 0.5 to 4 hours, and further subjected to wire drawing to obtain a wire diameter of 0. It was a wire of .31 mmφ.
Finally, as a final annealing, a batch type heat treatment at a temperature of 300 to 450 ° C. (comparative example includes 250 ° C. and 500 ° C.) for 0.5 to 4 hours is applied as a final annealing to obtain an aluminum alloy conductor.
 比較例No.13
 後記の表2に示すように、Fe、Cu、Mg、及びAlを、所定量比(質量%)で用いて常法により溶解し、25.4mm角の鋳型に鋳込んで鋳塊を得た。次に400℃に1時間鋳塊を保持し、溝ロールで熱間圧延を行い線径9.5mmの荒引線に加工した。
 次いで、この荒引き線を線径0.9mmまで伸線加工した後、350℃で2時間保持の熱処理を加え焼き入れ後、更に伸線加工を続けて線径0.32mmのアルミニウム合金素線を作製した。
 最後に、作製した線径0.32mmのアルミニウム合金素線を350℃で2時間保持の熱処理を加え徐冷した。
Comparative example No. 13
As shown in Table 2 below, Fe, Cu, Mg, and Al were melted by a conventional method using a predetermined amount ratio (% by mass) and cast into a 25.4 mm square mold to obtain an ingot . Next, the ingot was held at 400 ° C. for 1 hour, hot-rolled with a grooved roll, and processed into a rough drawn wire having a wire diameter of 9.5 mm.
Next, this rough drawn wire is drawn to a wire diameter of 0.9 mm, then heat treated by holding at 350 ° C. for 2 hours for quenching, and then wire drawing is continued to continue an aluminum alloy wire with a wire diameter of 0.32 mm. Was produced.
Finally, the manufactured aluminum alloy wire having a wire diameter of 0.32 mm was heat-treated at 350 ° C. for 2 hours and gradually cooled.
 比較例No.14
 後記の表2に示すように、Fe、Mg、Si及びAlを、所定量比(質量%)で用いて常法により溶解し、連続鋳造圧延法により線径9.5mmの荒引き線に加工した。
 次いで、この荒引き線を線径2.6mmまで伸線加工した後、熱処理上がりの引張強度が150MPa以下となるような350℃で2時間保持の熱処理を加え、更に伸線加工を続けて線径0.32mmのアルミ合金素線を作製した。
Comparative example No. 14
As shown in Table 2 below, Fe, Mg, Si and Al are melted by a conventional method using a predetermined amount ratio (% by mass) and processed into a rough drawn wire having a wire diameter of 9.5 mm by a continuous casting and rolling method did.
Next, after drawing this rough drawn wire to a wire diameter of 2.6 mm, heat treatment is performed by holding for 2 hours at 350 ° C. so that the tensile strength after heat treatment is 150 MPa or less, and wire drawing is continued to continue the wire An aluminum alloy wire of 0.32 mm in diameter was produced.
 比較例No.15
 後記の表2に示すように、Fe、Mg、Si及びAlを、所定量比(質量%)で用いて溶製した合金溶湯を連続鋳造機により鋳造して、キャストバーを作製した。次いで、熱間圧延機によりφ9.5mmのワイヤロッドを作製し、得られたワイヤロッドに冷間伸線加工を施して、φ0.26mmの電線素線を作製した。次いで、電線素線7本を撚り合わせて撚線とした。その後、溶体化処理、冷却、時効熱処理を行ない、電線導体を得た。このときの溶体化処理温度は550℃、時効熱処理の焼き戻し温度は170℃、焼き戻し時間は12時間である。なお、表2に示す各特性は、撚線をばらして1本の素線とし、評価を行なった。
Comparative example No. 15
As shown in Table 2 below, an alloy melt prepared by melting using Fe, Mg, Si and Al at a predetermined ratio (mass%) was cast by a continuous casting machine to produce a cast bar. Then, a wire rod of φ 9.5 mm was produced by a hot rolling machine, and the obtained wire rod was subjected to cold drawing to produce an electric wire of φ 0.26 mm. Subsequently, seven wire strands were twisted together to make a stranded wire. Thereafter, solution treatment, cooling, and aging heat treatment were performed to obtain a wire conductor. The solution treatment temperature at this time is 550 ° C., the tempering temperature of the aging heat treatment is 170 ° C., and the tempering time is 12 hours. In addition, each characteristic shown in Table 2 evaluated the twisted wire by breaking it into one strand.
 作製した各々の実施例及び比較例のアルミニウム合金導体について下記の方法により各特性を測定した。その結果を後記の表1及び表2に示す。 Each characteristic was measured by the following method about the produced aluminum alloy conductor of each Example and comparative example. The results are shown in Tables 1 and 2 below.
(a)結晶粒径(GS)
 伸線方向に垂直に切り出した供試材の横断面を樹脂で埋め、機械研磨後、電解研磨を行った。電解研磨条件は、研磨液が過塩素酸20%のエタノール溶液、液温は0~5℃、電圧は10V、電流は10mA、時間は30~60秒である。次いで、結晶粒コントラストを得るため、2%ホウフッ化水素酸を用いて、電圧20V、電流20mA、時間2~3分の条件でアノーダイジング仕上げを行なった。この組織を200~400倍の光学顕微鏡で撮影し、交差法による粒径測定を行った。具体的には、撮影された写真に直線を引いて、その直線の長さと粒界が交わる数を測定して平均粒径を求めた。なお、粒径は50~100個が数えられるように直線の長さと数を変えて算出した。
(b)引張強度(TS)及び柔軟性(引張破断伸び、El)
 JIS Z 2241に準じて各3本ずつ試験し、その平均値を求めた。柔軟性については引張破断伸びを用いて評価し、引張破断伸びが10%以上を合格とした。
(c)導電率(EC)
 長さ300mmの試験片を20℃(±0.5℃)に保持した恒温漕中で、四端子法を用いて比抵抗を各3本ずつ測定し、その平均導電率を算出した。端子間距離は200mmとした。
(d)繰返破断回数
 藤井精機株式会社(現 株式会社フジイ)製の両振屈曲疲労試験機を用い、線材(アルミニウム合金導体)に±0.17%の曲げ歪みが与えられる治具を使用して、繰り返し曲げを実施することにより、繰返破断回数を測定した。繰返破断回数は各4本ずつ測定し、その平均値を求めた。図1の説明図に示すように、線材1を、曲げ治具2及び3の間を1mm空けて挿入し、冶具2及び3に沿わせるような形で繰り返し運動をさせた。線材の一端は繰り返し曲げが実施できるよう押さえ冶具5に固定し、もう一端には約10gの重り4をぶら下げた。試験中は押さえ冶具5が動くため、それに固定されている線材1も動き、繰り返し曲げが実施できる。繰り返しは1.5Hz(1秒間に往復1.5回)の条件で行い、線材の試験片1が破断すると、重り4が落下し、カウントを停止する仕組みになっている。
(A) Grain size (GS)
The cross section of the test material cut out perpendicularly to the wire drawing direction was filled with a resin, and after mechanical polishing, electrolytic polishing was performed. Electropolishing conditions are as follows: polishing solution is an ethanol solution of 20% perchloric acid, solution temperature is 0-5 ° C., voltage is 10 V, current is 10 mA, and time is 30-60 seconds. Then, in order to obtain grain contrast, anodizing was performed using 2% hydrofluoric acid under the conditions of a voltage of 20 V, a current of 20 mA, and a time of 2 to 3 minutes. The tissue was photographed with a 200 to 400 × optical microscope and particle size measurement was performed by the cross method. Specifically, a straight line was drawn on the photographed photograph, and the number of intersections of the length of the straight line and the grain boundary was measured to determine the average grain size. The particle diameter was calculated by changing the length and number of the straight line so that 50 to 100 particles could be counted.
(B) Tensile strength (TS) and flexibility (tensile elongation at break, El)
Three samples were tested in accordance with JIS Z 2241 and the average value was determined. The flexibility was evaluated using a tensile elongation at break, and a tensile elongation at break of 10% or more was accepted.
(C) Conductivity (EC)
Three pieces of specific resistance were measured using a four-terminal method in a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.) for a test piece of 300 mm in length, and the average conductivity was calculated. The distance between the terminals was 200 mm.
(D) Number of times of repeated breakage Using a double-acting bending fatigue tester manufactured by Fujii Seiki Co., Ltd. (now Fujii Co., Ltd.), using a jig which gives ± 0.17% bending strain to the wire (aluminum alloy conductor) Then, by repeatedly performing bending, the number of times of repeated breakage was measured. The number of times of repeated breakage was measured four each, and the average value was determined. As shown in the explanatory view of FIG. 1, the wire 1 was inserted with 1 mm between the bending jigs 2 and 3 at an interval of 1 mm, and was repeatedly made to move along the jigs 2 and 3. One end of the wire was fixed to the holding jig 5 so that bending could be repeatedly performed, and a weight 4 of about 10 g was hung at the other end. Since the holding jig 5 moves during the test, the wire 1 fixed to the holding jig also moves and can be repeatedly bent. The repetition is performed under the condition of 1.5 Hz (1.5 times of reciprocation in 1 second), and when the test piece 1 of the wire is broken, the weight 4 is dropped and the counting is stopped.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から明らかなように、純Alからなる比較例No.1の導体では結晶粒径が大きく、引張強度が低く、さらに、耐屈曲疲労特性に劣るため繰返破断回数の値が小さくなっている。比較例No.2~10のアルミニウム合金導体では合金組成が本発明の規定範囲外となる例であるが、比較例No.2~4、6、8~10のアルミニウム合金導体では繰返破断回数が不足する。比較例No.5、7、9、10のアルミニウム合金導体では導電率が不足する。さらに、比較例2、4、6のアルミニウム合金導体では引張強度が不足する。比較例No.11、12のアルミニウム合金導体は製造条件が本発明の規定範囲外となる例であるが、どちらも引張破断伸びが不足し、比較例No.12のアルミニウム合金導体では引張強度及び繰返破断回数も不足する。比較例No.13のアルミニウム合金導体は特開2006-253109の実施例2を再現したものであるが、繰返破断回数が不足する。比較例No.14のアルミニウム合金導体は特開2006-19163の実施例6を再現したものであるが、本発明の結晶粒径が得られず、引張破断伸びが不足する。比較例No.15のアルミニウム合金導体は特開2008-112620の実施例3を再現したものであるが、本発明の結晶粒径が得られず、引張破断伸び及び導電率が不足する。
 これに対し、実施例No.1~24のアルミニウム合金導体では耐屈曲疲労特性、引張特性および導電性に優れ、移動車体のドアやトランク、ボンネットなどに用いられるワイヤハーネス等の用途に好適なアルミニウム合金導体であった。
As apparent from Tables 1 and 2, Comparative Example No. 1 made of pure Al. In the conductor No. 1, the crystal grain size is large, the tensile strength is low, and furthermore, the value of the number of repeated breakages is small because the bending fatigue resistance is inferior. Comparative example No. In the aluminum alloy conductors of 2 to 10, the alloy composition is an example out of the specified range of the present invention. In the case of 2 to 4, 6 and 8 to 10 aluminum alloy conductors, the number of repeated breakages is insufficient. Comparative example No. In the case of the 5, 7, 9, 10 aluminum alloy conductors, the conductivity is insufficient. Furthermore, in the aluminum alloy conductors of Comparative Examples 2, 4 and 6, the tensile strength is insufficient. Comparative example No. The aluminum alloy conductors of Examples 11 and 12 are examples in which the manufacturing conditions are out of the specified range of the present invention. In the case of the 12 aluminum alloy conductors, the tensile strength and the number of repeated breakages are also insufficient. Comparative example No. The aluminum alloy conductor No. 13 reproduces Example 2 of JP-A-2006-253109, but the number of repeated breakages is insufficient. Comparative example No. The aluminum alloy conductor No. 14 reproduces Example 6 of JP-A-2006-19163, but the crystal grain size of the present invention can not be obtained, and the tensile elongation at break is insufficient. Comparative example No. The aluminum alloy conductor No. 15 reproduces Example 3 of JP-A-2008-112620, but the crystal grain size of the present invention can not be obtained, and the tensile elongation at break and the electrical conductivity are insufficient.
On the other hand, Example No. The aluminum alloy conductors of 1 to 24 are excellent in bending fatigue resistance, tensile properties and conductivity, and are suitable for applications such as wire harnesses used for doors, trunks and bonnets of moving vehicle bodies.
実施例No.101~120、比較例No.121~127
(本発明の第2の実施態様、つまり前記(6)~(14)項記載の発明の実施例および比較例)
 後記の表3、表4に示すように、Fe、Cu、Mg、Si、Ti、V、Sn、Cd、In、Zr及びAlを、所定量比(質量%)で用いて、先述の実施例と同様にして、アルミニウム合金導体を作成した。
 作製した各々の実施例及び比較例のアルミニウム合金導体について、先述の実施例と同様に各特性を測定した。また、繰り返し破断回数については、120℃に120時間放置した後の特性についても、計測した。その結果を表3及び表4に示す。また、先述の実施例中の表1に記載のアルミニウム合金導体No.1~20について、120℃、120時間放置した後の繰り返し破断回数を測定した。その結果を表5に示す。
Example No. 101 to 120, Comparative Example No. 1 121-127
(The second embodiment of the present invention, that is, the embodiment and the comparative example of the invention described in the items (6) to (14))
As shown in Tables 3 and 4 below, the above-described example using Fe, Cu, Mg, Si, Ti, V, Sn, Cd, In, Zr, and Al in a predetermined amount ratio (mass%) In the same manner as in, an aluminum alloy conductor was produced.
Each characteristic was measured about the produced aluminum alloy conductor of each Example and comparative example similarly to the above-mentioned Example. Moreover, about the number of times of repeated breakage, it measured also about the characteristic after leaving to stand at 120 degreeC for 120 hours. The results are shown in Tables 3 and 4. In addition, for the aluminum alloy conductor No. 1 described in Table 1 in the above-mentioned example, With respect to 1 to 20, the number of repeated breakages after leaving at 120 ° C. for 120 hours was measured. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3より、No.101~120のSn、Cd、In、Zrを含有するアルミニウム合金導体における、繰り返し破断回数は、表1記載のSn、Cd、In、Zrを含有しないアルミニウム合金導体に比べ、やや低いものであった。しかし、No.101~114のアルミニウム合金導体は、120℃放置後の繰り返し破断回数が、該加熱放置をしない場合と比べてあまり低下しておらず、高い耐屈曲性を維持した。なお、表5は、表1記載の線材の、120℃放置後の繰り返し破断回数であるが、該加熱放置による低下が著しいことが分かる。
 また、No.115~120のアルミニウム合金導体は、120℃放置により繰り返し破断回数が逆に向上する結果であった。
 以上より、No.101~120のSn、Cd、In、Zrを含有するアルミニウム合金導体が、120℃放置後も、繰り返し破断回数を大幅に劣化させることはなく、あるいは逆に向上させることが分かった。
 これに対し、Sn、Cd、Inの添加量の少なすぎたNo.121~123のアルミニウム合金導体、および表5のSn、Cd、In、Zrを添加しなかったアルミニウム合金導体における、120℃放置後の繰り返し破断回数は全て120℃加熱放置前に比べて著しく低減する結果であった。また、Sn、Cd、In、Zrを過剰に添加した場合(表4、No.124~126)は、120℃放置後の繰り返し破断回数が、放置しなかった場合に比べ大幅に低減しており、また、伸びの低下、導電率の低下が大きかった。また、過剰Zrを添加した場合(表4、No.127)は、120℃放置せずともくり返し破断回数が低かった。
From Table 3, No. The number of repeated breakages in the aluminum alloy conductor containing 101 to 120 Sn, Cd, In, and Zr was slightly lower than that of the aluminum alloy conductor not containing Sn, Cd, In, and Zr described in Table 1. . However, no. In the aluminum alloy conductors 101 to 114, the number of repeated breakages after being left at 120 ° C. was not significantly reduced as compared with the case where the heating and leaving was not performed, and the high bending resistance was maintained. In addition, although Table 5 is the frequency | count of repeating breakage after 120 degreeC leaving-to-stand of the wire of Table 1, it turns out that the fall by this heating and leaving is remarkable.
Also, no. In the case of the aluminum alloy conductor 115 to 120, the number of breakages was repeatedly improved by leaving it at 120 ° C.
From the above, No. It has been found that an aluminum alloy conductor containing Sn, Cd, In and Zr of 101 to 120 does not significantly deteriorate the number of repeated breakages even after leaving at 120 ° C., or conversely improves it.
On the other hand, when the amount of addition of Sn, Cd and In was too small. The number of repeated breakages after leaving at 120 ° C for the aluminum alloy conductors of 121 to 123 and the aluminum alloy conductors without Sn, Cd, In and Zr in Table 5 are all significantly reduced compared to before leaving at 120 ° C for heating It was the result. In addition, when Sn, Cd, In, and Zr are added in excess (Table 4, No. 124 to 126), the number of repeated breakages after leaving at 120 ° C. is significantly reduced compared to the case where they are not left standing. Also, the decrease in elongation and the decrease in conductivity were large. Moreover, when excess Zr was added (Table 4, No. 127), the number of times of repeated breakage was low without being left at 120 ° C.
実施例No.201~212、比較例No.213~218
(本発明の第3の実施態様、つまり前記(15)~(21)項記載の発明の実施例および比較例)
 後記の表6に示すように、各成分を所定量比(質量%)で用いて、先述の実施例と同様にして、アルミニウム合金導体を作成した。この実施例では、線材の伸線速度を1500m/分とし、加工度ηを2.1とし、最終線径は0.31mmとした。また、仕上げ焼鈍としての熱処理は、表6に示したように、連続通電熱処理またはバッチ式熱処理により、表6に記載の条件で行った。
 作製した各々の実施例及び比較例のアルミニウム合金導体について、先述の実施例と同様に各特性を測定した。また、繰り返し破断回数については、120℃に120時間放置した後の特性についても、計測した。その結果を表6に示す。
 さらに、これらの試験に加え、電線(アルミニウム合金導体)に対して塩水噴霧試験を実施した。作製したアルミニウム合金導体を1mほどの長さに切り出し、中性5%塩水噴霧試験(JISH8502)に96時間曝した。試験後の試料断面を樹脂埋め研磨し、光学顕微鏡にて観察した際に、アルミニウム合金導体表面側に、線径の1/5以上の長さの孔食、あるいは、アルミニウム合金導体表面から深さ方向に向かって線径の1/5以上の深さまで粒界腐食の様相が検出された場合を×と判定した、一方、孔食や粒界腐食があっても、その長さが1/5未満のものを○、ほとんど見られないものを◎と判定した。
Example No. 201-212, comparative example No. 213-218
(Third Embodiment of the Invention, That is, Embodiments and Comparative Examples of the Invention According to the Items (15) to (21))
As shown in Table 6 below, an aluminum alloy conductor was produced in the same manner as in the above-mentioned Example, using each component at a predetermined amount ratio (% by mass). In this example, the wire drawing speed is 1500 m / min, the working degree を is 2.1, and the final wire diameter is 0.31 mm. Further, as shown in Table 6, heat treatment as finish annealing was performed by continuous current heat treatment or batch heat treatment under the conditions described in Table 6.
Each characteristic was measured about the produced aluminum alloy conductor of each Example and comparative example similarly to the above-mentioned Example. Moreover, about the number of times of repeated breakage, it measured also about the characteristic after leaving to stand at 120 degreeC for 120 hours. The results are shown in Table 6.
Furthermore, in addition to these tests, a salt spray test was performed on a wire (aluminum alloy conductor). The produced aluminum alloy conductor was cut into a length of about 1 m and exposed to a neutral 5% salt spray test (JISH 8502) for 96 hours. When the cross section of the sample after the test is resin-polished and observed with an optical microscope, pitting corrosion of 1/5 or more of the wire diameter or depth from the surface of the aluminum alloy conductor on the aluminum alloy conductor surface side When the appearance of intergranular corrosion was detected to a depth of 1/5 or more of the wire diameter in the direction, it was determined to be x. On the other hand, even if there was pitting or intergranular corrosion, its length was 1/5 The less than thing was determined to be ○, the one hardly to be seen to be ◎.
Figure JPOXMLDOC01-appb-T000006
 表6より、No.201~212のSn、Cd、In、Zrを含有するアルミニウム合金導体における、繰り返し破断回数は、いずれも10万回を超えており、優れた屈曲特性であることが分かり、また、120℃放置後においても破断回数の低下はわずかであり、繰り返し破断回数は9万5千回を超えた。
 これに対し、Cu添加の少なすぎたNo.213、214のアルミニウム合金導体は、繰り返し破断回数が9万回を大きく下回り、さらに120℃放置後に低下が顕著であった。また、Cu過剰のNo.215、216のアルミニウム合金導体は、120℃放置後の繰り返し破断回数低下が顕著であるとともに、塩水噴霧試験における劣化が悪かった。また、比較例No.217、218のアルミニウム合金導体は製造条件が本発明の規定範囲外となる例であるが、どちらも引張破断伸びが不足し、比較例No.218のアルミニウム合金導体では引張強度及び繰返破断回数も不足する。
Figure JPOXMLDOC01-appb-T000006
From Table 6, No. The aluminum alloy conductor containing 201 to 212 Sn, Cd, In, and Zr each has a number of repeated breakage exceeding 100,000, which proves to be an excellent bending characteristic, and after leaving at 120 ° C. The reduction in the number of breakages was slight even in the case of the above, and the number of repeated breakages exceeded 95,000.
On the contrary, No. 1 with too little Cu added. In the aluminum alloy conductors 213 and 214, the number of repeated breakages was significantly lower than 90,000 times, and the decrease was remarkable after leaving at 120 ° C. Moreover, Cu excess No. The aluminum alloy conductors 215 and 216 had remarkable reduction in the number of repeated breakages after being left at 120 ° C., and deteriorated in the salt spray test. Moreover, comparative example No. The aluminum alloy conductors 217 and 218 are examples in which the manufacturing conditions are out of the specified range of the present invention, but both are insufficient in tensile elongation at break, and Comparative Example No. In the case of the aluminum alloy conductor 218, the tensile strength and the number of repeated breakages are also insufficient.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While the present invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified, which is contrary to the spirit and scope of the invention as set forth in the appended claims. I think that it should be interpreted broadly without.
 本願は、2010年7月20日に日本国で特許出願された特願2010-163416に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 The present application claims priority based on Japanese Patent Application No. 2010-163416 filed in Japan on July 20, 2010, the contents of which are incorporated herein by reference. Capture as part.
1 試験片(線材、アルミニウム合金導体)
2、3 曲げ治具
4 重り
5 押さえ冶具
1 Test piece (wire, aluminum alloy conductor)
2, 3 Bending jig 4 Weight 5 Holding jig

Claims (21)

  1.  Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金導体であって、その伸線方向の垂直断面における結晶粒径が5~25μmであることを特徴とするアルミニウム合金導体。 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.02 to 0.3 mass% of Si Further, it is an aluminum alloy conductor containing 0.001 to 0.01 mass% of total of Ti and V, and the balance Al and unavoidable impurities, and having a grain size of 5 to 25 μm in a vertical cross section in the drawing direction Aluminum alloy conductor characterized by
  2.  引張強度が120MPa以上、及び導電率が57%IACS以上、±0.17%の曲げ歪みが与えられた際の繰返破断回数が90000回以上であることを特徴とする請求項1に記載のアルミニウム合金導体。 The tensile strength is 120 MPa or more, and the conductivity is 57% IACS or more, when the bending strain of ± 0.17% is given, the number of repeated breakages is 90,000 times or more. Aluminum alloy conductor.
  3.  前記導体が移動体内で、バッテリーケーブル、ハーネス、またはモータ用線材として用いられることを特徴とする請求項1または請求項2に記載のアルミニウム合金導体。 The aluminum alloy conductor according to claim 1 or 2, wherein the conductor is used as a battery cable, a harness or a wire for a motor in a movable body.
  4.  前記導体が車両、電車、または航空機に用いられることを特徴とする請求項1~請求項3のいずれか1項に記載のアルミニウム合金導体。 The aluminum alloy conductor according to any one of claims 1 to 3, wherein the conductor is used for a vehicle, a train, or an aircraft.
  5.  Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなるアルミニウム合金導体の製造方法であって、前記焼鈍熱処理を、温度300~450℃で10分~6時間の条件で行うことを特徴とするアルミニウム合金導体の製造方法。 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, and 0.02 to 0.3 mass% of Si Further, after dissolving the aluminum alloy component containing 0.001 to 0.01 mass% of the total of Ti and V and containing the balance Al and the inevitable impurities, it is subjected to continuous casting and rolling to form a rough bar, cold wire drawing and rough A method of manufacturing an aluminum alloy conductor comprising the steps of: drawing wire; heat treatment; drawing to form a wire; and annealing heat treatment, wherein the annealing heat treatment is carried out at a temperature of 300 to 450 ° C. A method for producing an aluminum alloy conductor, characterized in that the method is carried out under conditions of minutes to 6 hours.
  6.  Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金導体であって、その伸線方向の垂直断面における結晶粒径が5~25μmであることを特徴とするアルミニウム合金導体。 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, 0.02 to 0.3 mass% of Si, Sn, It contains 0.01 to 0.5 mass% in total of at least one element selected from the group consisting of Cd and In, further contains 0.001 to 0.01 mass% of total of Ti and V, and the balance Al and unavoidable What is claimed is: 1. An aluminum alloy conductor comprising an impurity, wherein the crystal grain size in the cross section perpendicular to the wire drawing direction is 5 to 25 μm.
  7.  請求項6に記載のアルミニウム合金導体に、さらにZrを0.001~0.1mass%を含むアルミニウム合金導体。 The aluminum alloy conductor according to claim 6, further comprising 0.001 to 0.1 mass% of Zr.
  8.  Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量の総量(W1)と、Zrの含有量(W2)の質量比(W1/W2)が、0.6~2.6であることを特徴とする請求項7に記載のアルミニウム合金導体。 The mass ratio (W1 / W2) of the total content (W1) of the content of at least one element selected from the group consisting of Sn, Cd and In to the content (W2) of Zr is 0.6 to 2.6 The aluminum alloy conductor according to claim 7, characterized in that:
  9.  引張強度が120MPa以上、及び導電率が52%IACS以上、±0.17%の曲げ歪みが与えられた際の繰返破断回数が80000回以上であることを特徴とする請求項6~8のいずれか1項に記載のアルミニウム合金導体。 The number of repeated fractures is 80,000 times or more when a tensile strength of 120 MPa or more and a conductivity of 52% IACS or more and a bending strain of ± 0.17% is applied. The aluminum alloy conductor according to any one of the items.
  10.  前記導体が移動体内で、バッテリーケーブル、ハーネス、またはモータ用線材として用いられることを特徴とする請求項6~9のいずれか1項に記載のアルミニウム合金導体。 The aluminum alloy conductor according to any one of claims 6 to 9, wherein the conductor is used as a battery cable, a harness or a wire for a motor in a moving body.
  11.  前記導体が車両、電車、または航空機に用いられることを特徴とする請求項6~請求項10のいずれか1項に記載のアルミニウム合金導体。 The aluminum alloy conductor according to any one of claims 6 to 10, wherein the conductor is used for a vehicle, a train, or an aircraft.
  12.  Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなるアルミニウム合金導体の製造方法であって、前記焼鈍熱処理を、温度300~450℃で10分~6時間の条件で行うことを特徴とするアルミニウム合金導体の製造方法。 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, 0.02 to 0.3 mass% of Si, Sn, It contains 0.01 to 0.5 mass% in total of at least one element selected from the group consisting of Cd and In, further contains 0.001 to 0.01 mass% of total of Ti and V, and the balance Al and unavoidable After melting the aluminum alloy component consisting of impurities, it is subjected to continuous casting and rolling to form a rough bar, cold wire drawing to a rough draw wire, heat treatment, wire drawing to a wire, and annealing heat treatment A method for producing an aluminum alloy conductor, comprising the steps of: performing the annealing heat treatment at a temperature of 300 to 450 ° C. for 10 minutes to 6 hours. .
  13.  Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、Zrを0.001~0.1mass%を含み、残部Alと不可避不純物からなるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなるアルミニウム合金導体の製造方法であって、前記焼鈍熱処理を、温度300~450℃で10分~6時間の条件で行うことを特徴とするアルミニウム合金導体の製造方法。 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, 0.02 to 0.3 mass% of Si, Sn, A total of 0.01 to 0.5 mass% of at least one element selected from the group consisting of Cd and In, further containing 0.001 to 0.01 mass% of a combination of Ti and V, and Zr of 0. After melting the aluminum alloy component which contains 001 to 0.1 mass% and consists of the balance Al and unavoidable impurities, it is continuously cast and rolled into a rough bar, cold drawn into a rough drawn wire, heat treated, and drawn. It is a manufacturing method of aluminum alloy conductor which performs the process of performing wire processing, making it a wire rod, and also performing annealing heat treatment, and performing the above-mentioned annealing heat treatment under conditions of temperature 300-450 ° C for 10 minutes-6 hours. Method for producing an aluminum alloy conductor, wherein.
  14.  Feを0.01~0.4mass%と、Cuを0.3~0.5mass%と、Mgを0.04~0.3mass%と、Siを0.02~0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、さらにTiとVを合わせて0.001~0.01mass%含み、Zrを0.001~0.1mass%を含み、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量の総量(W1)と、Zrの含有量(W2)の質量比(W1/W2)が、0.6~2.6であり、残部Alと不可避不純物からなるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなるアルミニウム合金導体の製造方法であって、前記焼鈍熱処理を、温度300~450℃で10分~6時間の条件で行うことを特徴とするアルミニウム合金導体の製造方法。 0.01 to 0.4 mass% of Fe, 0.3 to 0.5 mass% of Cu, 0.04 to 0.3 mass% of Mg, 0.02 to 0.3 mass% of Si, Sn, A total of 0.01 to 0.5 mass% of at least one element selected from the group consisting of Cd and In, further containing 0.001 to 0.01 mass% of a combination of Ti and V, and Zr of 0. The mass ratio (W1 / W2) of the total content (W1) of the content of at least one element selected from the group consisting of Sn, Cd and In, including 001 to 0.1 mass%, and the content (W2) of Zr is The aluminum alloy component consisting of the balance Al and the inevitable impurities is melted and then subjected to continuous casting and rolling to form a rough bar, cold wire drawing to a rough draw wire, and heat treatment , Wire drawing A method of manufacturing an aluminum alloy conductor comprising: a step of annealing and heat treatment, wherein the annealing heat treatment is performed at a temperature of 300 to 450 ° C. for 10 minutes to 6 hours. Method of manufacturing alloy conductor.
  15.  Cuを0.1~1mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、残部Alと不可避不純物からなるアルミニウム合金導体。 An aluminum alloy containing 0.1 to 1 mass% of Cu, and 0.01 to 0.5 mass% in total of at least one element selected from the group consisting of Sn, Cd, and In, with the balance being Al and unavoidable impurities conductor.
  16.  Cuを0.1~1mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01~0.5mass%とを含有し、Fe0.01mass%~1.0mass%と、Mg0.1~0.35mass%とを含有し、残部Alと不可避不純物からなるアルミニウム合金導体。 Containing 0.1 to 1 mass% of Cu, and 0.01 to 0.5 mass% in total of at least one element selected from the group consisting of Sn, Cd, and In; Fe 0.01 mass% to 1.0 mass% And an aluminum alloy conductor containing 0.1 to 0.35 mass% of Mg, the balance being Al and unavoidable impurities.
  17.  請求項15または16に記載のアルミニウム合金導体に、さらにZrを0.001~0.1mass%を含むアルミニウム合金導体。 The aluminum alloy conductor according to claim 15 or 16, further comprising 0.001 to 0.1 mass% of Zr.
  18.  Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量の総量(W1)と、Zrの含有量(W2)の質量比が、0.6~2.6であることを特徴とする請求項17に記載のアルミニウム合金導体。 Characterized in that a mass ratio of the total content (W1) of the content of at least one element selected from the group consisting of Sn, Cd and In to the content (W2) of Zr is 0.6 to 2.6. The aluminum alloy conductor according to claim 17.
  19.  前記導体が移動体内で、バッテリーケーブル、ハーネス、またはモータ用線材として用いられることを特徴とする請求項15~18のいずれか1項に記載のアルミニウム合金導体。 The aluminum alloy conductor according to any one of claims 15 to 18, wherein the conductor is used as a battery cable, a harness or a wire for a motor in a moving body.
  20.  前記導体が車両、電車、または航空機に用いられることを特徴とする請求項15~請求項19のいずれか1項に記載のアルミニウム合金導体。 The aluminum alloy conductor according to any one of claims 15 to 19, wherein the conductor is used for a vehicle, a train, or an aircraft.
  21.  請求項15~18のいずれか1項に記載のアルミニウム合金組成を与えるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなる請求項15~18のいずれか1項に記載のアルミニウム合金導体を製造する方法であって、前記焼鈍熱処理を、急熱、急冷の工程を含む連続熱処理であって、下記<1>または<2>のいずれかを施すことによって行うことを特徴とするアルミニウム合金導体の製造方法:
    <1>線材温度y(℃)と焼鈍時間x(秒)が、
      0.03≦x≦0.55、かつ
      26x-0.6+377≦y≦23.5x-0.6+423
    の関係を満たす連続通電熱処理;または
    <2>焼鈍炉温度z(℃)と焼鈍時間x(秒)が、
      1.5≦x≦5、かつ
      -50x+550≦z≦-36x+650
    の関係を満たす連続走間熱処理。
    The aluminum alloy component giving the aluminum alloy composition according to any one of claims 15 to 18 is melted and then subjected to continuous casting and rolling to form a rough bar, cold wire drawing to a rough draw, and heat treatment 19. A method of manufacturing an aluminum alloy conductor according to any one of claims 15 to 18, comprising the steps of drawing a wire to form a wire and further performing annealing heat treatment, wherein the annealing heat treatment is carried out A method for producing an aluminum alloy conductor, which is a continuous heat treatment including rapid heating and quenching steps, which is performed by applying either of the following <1> or <2>:
    <1> wire temperature y (° C.) and annealing time x (seconds),
    0.03 ≦ x ≦ 0.55, and 26x -0.6 + 377 ≦ y ≦ 23.5x -0.6 +423
    Continuous conduction heat treatment satisfying the relationship of; or <2> annealing furnace temperature z (° C.) and annealing time x (seconds),
    1.5 ≦ x ≦ 5 and −50x + 550 ≦ z ≦ −36x + 650
    Heat treatment during continuous running that satisfies the relationship of
PCT/JP2011/066499 2010-07-20 2011-07-20 Aluminium alloy conductor and manufacturing method for same WO2012011513A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011553225A JP5228118B2 (en) 2010-07-20 2011-07-20 Method for producing aluminum alloy conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010163416 2010-07-20
JP2010-163416 2010-07-20

Publications (1)

Publication Number Publication Date
WO2012011513A1 true WO2012011513A1 (en) 2012-01-26

Family

ID=45496932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066499 WO2012011513A1 (en) 2010-07-20 2011-07-20 Aluminium alloy conductor and manufacturing method for same

Country Status (2)

Country Link
JP (2) JP5228118B2 (en)
WO (1) WO2012011513A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538116A (en) * 2014-12-16 2015-04-22 广东省工业技术研究院(广州有色金属研究院) Method for producing high-strength high-conductivity aluminum alloy conductor
EP2597168A4 (en) * 2010-07-15 2018-01-03 Furukawa Electric Co., Ltd. Aluminum alloy conductor
JP2019534380A (en) * 2016-09-30 2019-11-28 オプシチェストボ エス オグラニチェンノイ オトヴェストヴェンノストユ “オベディネンナヤ カンパニアルサール インゼネルノ−テクノロギケスキー チェントル”Obshchestvo S Ogranichennoy Otvetstvennost’Yu ‘Obedinennaya Kompaniya Rusal Inzhenerno−Tekhnologicheskiy Tsentr’ Method for producing deformed semi-finished product from aluminum-based alloy
WO2022030620A1 (en) * 2020-08-06 2022-02-10 古河電気工業株式会社 Aluminum wire rod, aluminum twisted wire, covered wire, covered wire with crimp terminal, and cvt cable or cvt cable with crimp terminal
CN116435003A (en) * 2023-05-24 2023-07-14 中天科技海缆股份有限公司 Modified aluminum alloy conductor, production process thereof and modified aluminum alloy conductor cable

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104032191A (en) * 2014-06-24 2014-09-10 江苏长峰电缆有限公司 Energy-saving high-elongation soft aluminum alloy wire and preparation method thereof
CN105018803B (en) * 2015-07-10 2016-11-09 南通玖伍捌科技企业孵化器有限公司 A kind of aluminium alloy conductor material of anti-folding stretch-proof and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495807B1 (en) * 1966-04-23 1974-02-09
JPS4943162B1 (en) * 1970-05-06 1974-11-19
JPS50110915A (en) * 1974-02-08 1975-09-01
JP2001254160A (en) * 2000-03-09 2001-09-18 Mitsubishi Cable Ind Ltd Method of manufacturing aluminum alloy wire, and aluminum alloy
JP2005174554A (en) * 2003-12-05 2005-06-30 Furukawa Electric Co Ltd:The Aluminum conductive wire
JP2006176833A (en) * 2004-12-22 2006-07-06 Hitachi Cable Ltd Aluminum alloy for conduction, and aluminum alloy wire for conduction and method for producing the same
JP2006253109A (en) * 2005-02-08 2006-09-21 Furukawa Electric Co Ltd:The Aluminum conductive wire
WO2010082671A1 (en) * 2009-01-19 2010-07-22 古河電気工業株式会社 Aluminum alloy wire
WO2010082670A1 (en) * 2009-01-19 2010-07-22 古河電気工業株式会社 Aluminum alloy wire
JP2010163676A (en) * 2009-01-19 2010-07-29 Furukawa Electric Co Ltd:The Aluminum alloy wire rod
WO2011105584A1 (en) * 2010-02-26 2011-09-01 古河電気工業株式会社 Aluminum alloy conductor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163675A (en) * 2009-01-19 2010-07-29 Furukawa Electric Co Ltd:The Aluminum alloy wire rod
WO2012011447A1 (en) * 2010-07-20 2012-01-26 古河電気工業株式会社 Aluminium alloy conductor and manufacturing method for same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495807B1 (en) * 1966-04-23 1974-02-09
JPS4943162B1 (en) * 1970-05-06 1974-11-19
JPS50110915A (en) * 1974-02-08 1975-09-01
JP2001254160A (en) * 2000-03-09 2001-09-18 Mitsubishi Cable Ind Ltd Method of manufacturing aluminum alloy wire, and aluminum alloy
JP2005174554A (en) * 2003-12-05 2005-06-30 Furukawa Electric Co Ltd:The Aluminum conductive wire
JP2006176833A (en) * 2004-12-22 2006-07-06 Hitachi Cable Ltd Aluminum alloy for conduction, and aluminum alloy wire for conduction and method for producing the same
JP2006253109A (en) * 2005-02-08 2006-09-21 Furukawa Electric Co Ltd:The Aluminum conductive wire
WO2010082671A1 (en) * 2009-01-19 2010-07-22 古河電気工業株式会社 Aluminum alloy wire
WO2010082670A1 (en) * 2009-01-19 2010-07-22 古河電気工業株式会社 Aluminum alloy wire
JP2010163676A (en) * 2009-01-19 2010-07-29 Furukawa Electric Co Ltd:The Aluminum alloy wire rod
WO2011105584A1 (en) * 2010-02-26 2011-09-01 古河電気工業株式会社 Aluminum alloy conductor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597168A4 (en) * 2010-07-15 2018-01-03 Furukawa Electric Co., Ltd. Aluminum alloy conductor
CN104538116A (en) * 2014-12-16 2015-04-22 广东省工业技术研究院(广州有色金属研究院) Method for producing high-strength high-conductivity aluminum alloy conductor
CN104538116B (en) * 2014-12-16 2016-09-28 广东省材料与加工研究所 A kind of high intensity, the production method of high-conductivity aluminum alloy wire
JP2019534380A (en) * 2016-09-30 2019-11-28 オプシチェストボ エス オグラニチェンノイ オトヴェストヴェンノストユ “オベディネンナヤ カンパニアルサール インゼネルノ−テクノロギケスキー チェントル”Obshchestvo S Ogranichennoy Otvetstvennost’Yu ‘Obedinennaya Kompaniya Rusal Inzhenerno−Tekhnologicheskiy Tsentr’ Method for producing deformed semi-finished product from aluminum-based alloy
JP2021130878A (en) * 2016-09-30 2021-09-09 オプシチェストボ エス オグラニチェンノイ オトヴェストヴェンノストユ “オベディネンナヤ カンパニア ルサール インゼネルノ−テクノロギケスキー チェントル”Obshchestvo S Ogranichennoy Otvetstvennost’Yu ‘Obedinennaya Kompaniya Rusal Inzhenerno−Tekhnologicheskiy Tsentr’ Method for making deformed semi-finished products from aluminum-based alloys
JP7350805B2 (en) 2016-09-30 2023-09-26 オプシチェストボ エス オグラニチェンノイ オトヴェストヴェンノストユ “オベディネンナヤ カンパニア ルサール インゼネルノ-テクノロギケスキー チェントル” Method for manufacturing deformed semi-finished products from aluminum-based alloy
WO2022030620A1 (en) * 2020-08-06 2022-02-10 古河電気工業株式会社 Aluminum wire rod, aluminum twisted wire, covered wire, covered wire with crimp terminal, and cvt cable or cvt cable with crimp terminal
CN114402401A (en) * 2020-08-06 2022-04-26 古河电气工业株式会社 Aluminum wire material, aluminum twisted wire, coated electric wire with crimp terminal, and CVT cable or CVT cable with crimp terminal
CN116435003A (en) * 2023-05-24 2023-07-14 中天科技海缆股份有限公司 Modified aluminum alloy conductor, production process thereof and modified aluminum alloy conductor cable

Also Published As

Publication number Publication date
JP5228118B2 (en) 2013-07-03
JP5469262B2 (en) 2014-04-16
JP2013151750A (en) 2013-08-08
JPWO2012011513A1 (en) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5607855B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
JP5607856B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
JP5193375B2 (en) Method for producing aluminum alloy conductor
KR101813772B1 (en) Aluminum alloy conductor, alum1inum alloy stranded wire, sheathed wire, wire harness, and method for manufacturing aluminum alloy conductor
JP5193374B2 (en) Aluminum alloy conductor and method for producing the same
JP6462662B2 (en) Aluminum alloy wire, aluminum alloy twisted wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
US9997276B2 (en) Aluminum alloy wire rod, aluminum alloy stranded wire, covered wire, and wire harness, and method of manufacturing aluminum alloy wire rod
WO2011105584A1 (en) Aluminum alloy conductor
KR101982913B1 (en) Aluminum alloy conductor wire, aluminum alloy twisted wire, sheathed electrical cable, wire harness, and method for manufacturing aluminum alloy conductor wire
JP6147167B2 (en) Aluminum alloy conductor, aluminum alloy stranded wire, covered electric wire and wire harness
WO2012011513A1 (en) Aluminium alloy conductor and manufacturing method for same
JP2013044038A (en) Aluminum alloy conductor
JP6440476B2 (en) Aluminum alloy wire, aluminum alloy twisted wire, covered electric wire and wire harness, and method for producing aluminum alloy wire
CN113039302B (en) Aluminum alloy material, conductive member using same, battery member, fastening member, spring member, structural member, and rubber-insulated cable
JP5939530B2 (en) Aluminum alloy conductor
US10553327B2 (en) Aluminum alloy conductor wire, aluminum alloy stranded wire, coated wire, wire harness and method of manufacturing aluminum alloy conductor wire

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011553225

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809683

Country of ref document: EP

Kind code of ref document: A1