JP5939530B2 - Aluminum alloy conductor - Google Patents

Aluminum alloy conductor Download PDF

Info

Publication number
JP5939530B2
JP5939530B2 JP2011184180A JP2011184180A JP5939530B2 JP 5939530 B2 JP5939530 B2 JP 5939530B2 JP 2011184180 A JP2011184180 A JP 2011184180A JP 2011184180 A JP2011184180 A JP 2011184180A JP 5939530 B2 JP5939530 B2 JP 5939530B2
Authority
JP
Japan
Prior art keywords
mass
wire
aluminum alloy
alloy conductor
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011184180A
Other languages
Japanese (ja)
Other versions
JP2013044040A (en
Inventor
茂樹 関谷
茂樹 関谷
京太 須齋
京太 須齋
吉田 和生
和生 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Automotive Systems Inc filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011184180A priority Critical patent/JP5939530B2/en
Publication of JP2013044040A publication Critical patent/JP2013044040A/en
Application granted granted Critical
Publication of JP5939530B2 publication Critical patent/JP5939530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

本発明は、電気配線体の導体として用いられるアルミニウム合金導体に関する。
The present invention relates to an aluminum alloy conductors used as a conductor of the electrical wiring member.

従来、自動車、電車、航空機等の移動体の電気配線体として、ワイヤーハーネスと呼ばれる銅または銅合金の導体を含む電線に銅または銅合金(例えば、黄銅)製の端子(コネクタ)を装着した部材が用いられていたが、近年の移動体の軽量化の中で、電気配線体の導体として、銅又は銅合金より軽量なアルミニウム又はアルミニウム合金を用いる検討が進められている。
アルミニウムの比重は銅の約1/3、アルミニウムの導電率は銅の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、純アルミニウムの導体線材に純銅の導体線材と同じ電流を流すためには、純アルミニウムの導体線材の断面積を純銅の導体線材の約1.5倍にする必要があるが、それでも質量では銅に比べて約半分となるので、有利な点がある。
なお、上記の%IACSとは、万国標準軟銅(International Annealed Copper Standard)の抵抗率1.7241×10−8Ωmを100%IACSとした場合の導電率を表したものである。
2. Description of the Related Art Conventionally, a member in which a terminal (connector) made of copper or copper alloy (for example, brass) is attached to an electric wire including a copper or copper alloy conductor called a wire harness as an electric wiring body of a moving body such as an automobile, a train, and an aircraft However, in light of the recent weight savings of moving bodies, studies are underway to use aluminum or aluminum alloys that are lighter than copper or copper alloys as conductors of electrical wiring bodies.
The specific gravity of aluminum is about 1/3 of copper, and the electrical conductivity of aluminum is about 2/3 of copper (pure aluminum is about 66% IACS when pure copper is used as the standard of 100% IACS). In order to pass the same current as that of a pure copper conductor wire, the cross-sectional area of the pure aluminum conductor wire needs to be about 1.5 times that of the pure copper conductor wire, but the mass is still about half that of copper. Therefore, there is an advantage.
In addition, said% IACS expresses the electrical conductivity when the resistivity 1.7241 × 10 −8 Ωm of universal standard annealed copper (International Annealed Copper Standard) is 100% IACS.

そのアルミニウムを移動体の電気配線体の導体として用いるためには幾つかの課題がある。そのひとつは耐屈曲疲労特性の向上である。ドアなどに取り付けられたワイヤーハーネスではドアの開閉により繰り返し曲げ応力を受けるためである。アルミニウムなどの金属材料は、ドアの開閉のように荷重を加えたり除いたりを繰り返し行なうと、一回の負荷では破断しないような低い荷重でも、ある繰り返し回数で破断を生じる(疲労破壊)。前記アルミニウム導体が開閉部に用いられたとき、耐屈曲疲労特性が悪いと、その使用中に導体が破断することが懸念され、耐久性、信頼性に欠ける。
一般に強度の高い材料ほど疲労特性は良好と言われている。そこで、強度の高いアルミニウム線材を適用すればよいが、ワイヤーハーネスはその設置時の取り回し(車体への取り付け作業)がしやすいことが要求されているために、一般的には伸びが10%以上確保できる鈍し材(焼鈍材)が使われていることが多い。
There are some problems in using the aluminum as a conductor of the electric wiring body of the moving body. One of them is improvement of bending fatigue resistance. This is because a wire harness attached to a door or the like is repeatedly subjected to bending stress by opening and closing the door. When a metal material such as aluminum is repeatedly applied and removed as when the door is opened and closed, it breaks at a certain number of repetitions (fatigue failure) even at a low load that does not break at a single load. When the aluminum conductor is used for an opening / closing part, if the bending fatigue resistance is poor, there is a concern that the conductor breaks during use, and durability and reliability are lacking.
Generally, it is said that a material having higher strength has better fatigue characteristics. Therefore, high-strength aluminum wire may be applied, but the wire harness is required to be easy to handle (installation work on the vehicle body) at the time of installation, so generally the elongation is 10% or more. In many cases, a dull material (annealed material) that can be secured is used.

よって、移動体の電気配線体に使用されるアルミニウム導体には、取扱い及び取り付け時に必要となる引張強度、及び電気を多く流すために必要となる導電率に加えて、耐屈曲疲労特性に優れ、取り回しがしやすい柔軟な材料が求められている。   Therefore, the aluminum conductor used for the electric wiring body of the moving body has excellent bending fatigue resistance, in addition to the tensile strength required during handling and installation, and the conductivity required to flow a lot of electricity, There is a need for flexible materials that are easy to handle.

このような要求のある用途に対して、送電線用アルミニウム合金線材(JIS A1060やJIS A1070)を代表とする純アルミニウム系では、ドアなどの開閉で生じる繰り返し曲げ応力に十分耐えることはできない。また、種々の添加元素を加えて合金化した材料は強度には優れるものの、アルミニウム中への添加元素の固溶現象により導電率の低下を招くこと、アルミニウム中に過剰な金属間化合物を形成することで伸線加工中に金属間化合物に起因する断線が生じることがあった。そのため、添加元素を限定、選択して断線しないことを必須とし、導電率低下を防ぎ、強度及び耐屈曲疲労特性を向上する必要があった。   For such demanding applications, pure aluminum systems such as power transmission line aluminum alloy wires (JIS A1060 and JIS A1070) cannot sufficiently withstand repeated bending stresses that occur when doors are opened and closed. Moreover, although the material alloyed by adding various additive elements is excellent in strength, it causes a decrease in conductivity due to a solid solution phenomenon of the additive element in aluminum, and forms an excessive intermetallic compound in aluminum. As a result, disconnection due to the intermetallic compound may occur during wire drawing. For this reason, it is essential to limit and select the additive element and not to disconnect, to prevent a decrease in conductivity, and to improve strength and bending fatigue resistance.

移動体の電気配線体に用いられるアルミニウム導体として代表的なものに特許文献1に記載のものがある。しかし、特許文献1に記載されている発明は、強度が高すぎであり、過度な力をかけずに取り回し可能なアルミニウム合金導体が望まれている。   A typical example of an aluminum conductor used for an electric wiring body of a moving body is that described in Patent Document 1. However, the invention described in Patent Document 1 has an excessively high strength, and an aluminum alloy conductor that can be handled without applying an excessive force is desired.

特開2010−67591号公報JP 2010-67591 A

本発明は、十分な導電率と引張強度を有し、耐屈曲疲労特性、柔軟性に優れたアルミニウム合金導体の提供を目的とする。   An object of the present invention is to provide an aluminum alloy conductor having sufficient electrical conductivity and tensile strength, and excellent in bending fatigue resistance and flexibility.

本発明者らは種々検討を重ね、伸線加工度と、最終熱処理工程での熱処理条件及び冷却条件などを制御することにより結晶粒の形状及び転位密度を制御して、優れた耐屈曲疲労特性、柔軟性、強度、及び導電率を具備するアルミニウム合金導体を製造しうることを見い出し、この知見に基づき本発明を完成するに至った。   The present inventors have made various studies and controlled the shape and dislocation density of crystal grains by controlling the degree of wire drawing and the heat treatment conditions and cooling conditions in the final heat treatment process, and have excellent bending fatigue resistance. The present inventors have found that an aluminum alloy conductor having flexibility, strength, and conductivity can be manufactured, and based on this finding, the present invention has been completed.

すなわち、上記課題は以下の発明により達成された。
(1)Feを0.01〜0.4mass%と、Mgを0.01mass%以上0.3mass%未満と、Siを0.01mass%以上0.3mass%未満と、Cuを0.01〜0.5mass%含有し、残部Alと不可避不純物からなり、
結晶粒の扁平率が0.6〜1.2であり、かつ、転位密度が25〜500/μmであることを特徴とするアルミニウム合金導体。
(2)Feを0.4〜1.5mass%含有し、残部Alと不可避不純物からなり、
結晶粒の扁平率が0.6〜1.2であり、かつ、転位密度が25〜500/μmであることを特徴とするアルミニウム合金導体。
(3)Feを0.4〜1.5mass%と、Mgを0.01mass%以上0.3mass%未満と、Siを0.01mass%以上0.3mass%未満含有し、残部Alと不可避不純物からなり、
結晶粒の扁平率が0.6〜1.2であり、かつ、転位密度が25〜500/μmであることを特徴とするアルミニウム合金導体。
(4)Feを0.01〜1.5mass%と、Mgを0.3〜1.0mass%と、Siを0.3〜1.0mass%含有し、残部Alと不可避不純物からなり、
結晶粒の扁平率が0.6〜1.2であり、かつ、転位密度が25〜500/μmであることを特徴とするアルミニウム合金導体。
(5)Feを0.01〜1.5mass%と、Mgを0.3〜1.0mass%と、Siを0.3〜1.0mass%と、Cuを0.01〜0.5mass%含有し、残部Alと不可避不純物からなり、
結晶粒の扁平率が0.6〜1.2であり、かつ、転位密度が25〜500/μmであることを特徴とするアルミニウム合金導体。
(6)移動体内のバッテリーケーブル、ハーネス、またはモータ用導線用であることを特徴とする(1)〜(5)のいずれか1項に記載のアルミニウム合金導体。
(7)前記移動体が自動車、電車、または航空機であることを特徴とする(6)に記載のアルミニウム合金導体。
)線径0.15〜1.0mmφの前記(1)〜(5)項のいずれか1項のアルミニウム合金導体を素線とし、該素線を撚り合わせた撚線を樹脂層で被覆したことを特徴とするアルミニウム導電線。
)移動体内のバッテリーケーブル、ハーネス、またはモータ用導線として用いられる特徴とする(8)に記載のアルミニウム導電線
10)前記移動体が自動車、電車、または航空機であることを特徴とする()項に記載のアルミニウム導電線
That is, the said subject was achieved by the following invention.
(1) Fe of 0.01 to 0.4 mass%, Mg of 0.01 mass% to less than 0.3 mass%, Si of 0.01 mass% to less than 0.3 mass%, and Cu of 0.01 to 0 .5 mass%, the balance being Al and inevitable impurities,
An aluminum alloy conductor having a crystal grain flatness of 0.6 to 1.2 and a dislocation density of 25 to 500 / μm 2 .
(2) Containing 0.4 to 1.5 mass% Fe, consisting of the balance Al and inevitable impurities,
An aluminum alloy conductor having a crystal grain flatness of 0.6 to 1.2 and a dislocation density of 25 to 500 / μm 2 .
(3) Fe is contained in an amount of 0.4 to 1.5 mass%, Mg is 0.01 mass% or more and less than 0.3 mass%, Si is contained in an amount of 0.01 mass% or more and less than 0.3 mass%, and the balance is Al and inevitable impurities. Become
An aluminum alloy conductor having a crystal grain flatness of 0.6 to 1.2 and a dislocation density of 25 to 500 / μm 2 .
(4) 0.01 to 1.5 mass% of Fe, 0.3 to 1.0 mass% of Mg, 0.3 to 1.0 mass% of Si, the balance consisting of Al and inevitable impurities,
An aluminum alloy conductor having a crystal grain flatness of 0.6 to 1.2 and a dislocation density of 25 to 500 / μm 2 .
(5) Fe containing 0.01 to 1.5 mass%, Mg containing 0.3 to 1.0 mass%, Si containing 0.3 to 1.0 mass%, and Cu containing 0.01 to 0.5 mass% And the balance Al and inevitable impurities,
An aluminum alloy conductor having a crystal grain flatness of 0.6 to 1.2 and a dislocation density of 25 to 500 / μm 2 .
(6) The aluminum alloy conductor according to any one of (1) to (5), wherein the aluminum alloy conductor is used for a battery cable, a harness, or a motor lead in a moving body.
(7) The aluminum alloy conductor according to (6), wherein the moving body is an automobile, a train, or an aircraft.
( 8 ) The aluminum alloy conductor according to any one of the items (1) to (5) having a wire diameter of 0.15 to 1.0 mmφ is used as a strand, and a stranded wire obtained by twisting the strands is covered with a resin layer. An aluminum conductive wire characterized by the above.
(9) aluminum conductive wire according to the moving body of the battery cable, shall be the features used as a harness or a motor lead wire (8).
( 10 ) The aluminum conductive wire according to the item ( 9 ), wherein the moving body is an automobile, a train, or an aircraft.

本発明のアルミニウム合金導体は強度、及び導電率に優れ、移動体に搭載されるバッテ
リーケーブル、ハーネスあるいはモータ用導線として有用である。前記移動体としては、自動車や電車の車両、航空機があげられる。また非常に高い耐屈曲疲労特性が求められるドアやトランク、ボンネットなどにも好適に用いることができる。
The aluminum alloy conductor of the present invention is excellent in strength and electrical conductivity, and is useful as a battery cable, a harness or a conductor for a motor mounted on a moving body. Examples of the moving body include automobiles, train vehicles, and aircraft. It can also be suitably used for doors, trunks, bonnets and the like that require extremely high bending fatigue resistance.

実施例で行なった繰返破断回数を測定する試験の説明図である。It is explanatory drawing of the test which measures the frequency | count of repeated fracture | rupture performed in the Example.

本発明のアルミニウム合金導体は、結晶粒の形状及び転位密度を以下のように規定することにより、優れた強度、導電率、柔軟性、及び耐屈曲疲労特性を具備したものとすることができる。   The aluminum alloy conductor of the present invention can have excellent strength, electrical conductivity, flexibility, and bending fatigue resistance by defining the crystal grain shape and dislocation density as follows.

(結晶粒の形状)
本発明のアルミニウム合金導体では、線材を構成する結晶粒の形状を規定する。結晶粒の形状は、伸線方向に垂直な方向での最大長さ/伸線方向での最大の長さで与えられる数値(扁平率)で表す。本発明では、扁平率が0.6〜1.2とする。結晶粒は、伸線工程で線材の伸線方向に伸ばされるため、伸線加工後であれば0に近づく。逆に熱処理工程では、再結晶粒が形成されるため、1前後の値となる。扁平率が0.6より小さい場合は、線材の伸びが不足し、電線取り付け時の取り回しに必要な柔軟性が得られない。扁平率が1.2より大きい場合は、材料に異方性が存在し、耐屈曲疲労特性が劣る。扁平率は好ましくは0.7〜1.1、より好ましくは0.8〜1.1である。
(Crystal shape)
In the aluminum alloy conductor of the present invention, the shape of the crystal grains constituting the wire is defined. The shape of the crystal grain is represented by a numerical value (flatness) given by the maximum length in the direction perpendicular to the drawing direction / the maximum length in the drawing direction. In the present invention, the aspect ratio is 0.6 to 1.2. Since the crystal grains are stretched in the wire drawing direction in the wire drawing step, they approach 0 if after wire drawing. On the contrary, in the heat treatment step, since recrystallized grains are formed, the value is around 1. When the flatness is less than 0.6, the wire material is insufficiently stretched, and the flexibility necessary for handling when attaching the electric wire cannot be obtained. When the aspect ratio is greater than 1.2, the material has anisotropy and the bending fatigue resistance is inferior. The aspect ratio is preferably 0.7 to 1.1, more preferably 0.8 to 1.1.

(転位密度)
本発明のアルミニウム合金導体では、転位密度を25〜500/μmとする。転位とは、材料中の線状の欠陥のことである。転位密度が25/μm未満であると、十分に優れる耐屈曲疲労特性が得られない。転位密度が500/μm超であると、線状の欠陥が導入されすぎであり、断線の原因になる場合がある。また、十分な柔軟性が得られない。転位密度は好ましくは25〜300/μm、より好ましくは50〜150/μmである。
(Dislocation density)
In the aluminum alloy conductor of the present invention, the dislocation density is 25 to 500 / μm 2 . A dislocation is a linear defect in a material. When the dislocation density is less than 25 / μm 2 , sufficiently excellent bending fatigue resistance characteristics cannot be obtained. If the dislocation density exceeds 500 / μm 2 , linear defects are introduced excessively, which may cause disconnection. Moreover, sufficient flexibility cannot be obtained. The dislocation density is preferably 25 to 300 / μm 2 , more preferably 50 to 150 / μm 2 .

このような結晶粒の形状と転位密度を有するアルミニウム合金導体を得るには、アルミニウム合金導体の伸線加工度と、最終熱処理工程での熱処理条件及び冷却条件などを以下のように制御すること、また、合金組成を以下のように設定することにより実現できる。好ましい製造方法と合金組成を以下に述べる。
In order to obtain an aluminum alloy conductor having such a crystal grain shape and dislocation density, the degree of wire drawing of the aluminum alloy conductor, heat treatment conditions and cooling conditions in the final heat treatment step, and the like are controlled as follows: Furthermore, the alloy composition can be achieved by setting as follows. Preferred manufacturing methods and alloy compositions are described below.

(製造方法)
本発明のアルミニウム合金導体は、[1]溶解、[2]鋳造、[3]熱間または冷間加工(溝ロール加工など)、[4]伸線加工、[5]熱処理(中間焼鈍)、[6]伸線加工、[7]熱処理(仕上げ焼鈍)、[8]時効熱処理の各工程を経て製造することができる。
(Production method)
The aluminum alloy conductor of the present invention includes [1] melting, [2] casting, [3] hot or cold working (groove roll processing, etc.), [4] wire drawing, [5] heat treatment (intermediate annealing), It can be manufactured through each step of [6] wire drawing, [7] heat treatment (finish annealing), and [8] aging heat treatment.

溶解は、上述したアルミニウム合金組成のそれぞれの実施態様の濃度となるような分量で溶製する。   Melting is performed in an amount so as to be the concentration of each embodiment of the aluminum alloy composition described above.

次いで、鋳造輪とベルトを組み合わせたプロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で連続的に鋳造しながら圧延を行ない、約10mmφの棒材とする。このときの鋳造冷却速度は1〜20℃/秒である。鋳造及び熱間圧延は、ビレット鋳造、及び押出法などにより行なってもよい。   Next, rolling is performed while continuously casting the molten metal in a water-cooled mold using a Properti-type continuous casting and rolling machine in which a cast wheel and a belt are combined to obtain a bar of about 10 mmφ. The casting cooling rate at this time is 1 to 20 ° C./second. Casting and hot rolling may be performed by billet casting, extrusion, or the like.

次いで、表面の皮むきを実施して、9〜9.5mmφとし、これを伸線加工する。加工度は、1以上6以下とする。ここで加工度ηは、伸線加工前の線材断面積をA、伸線加工後の線材断面積をAとすると、η=ln(A/A)で表される。このときの加工度が小さすぎると、次工程の熱処理時、再結晶粒が粗大化し強度及び伸びが著しく低下し、断線の原因にもなることがある。大きすぎると、伸線加工が困難となり、伸線加工中に断線するなど品質の面で問題を生ずることがある。表面の皮むきは、行なうことによって表面の清浄化がなされるが、行なわなくてもよい。
Next, the surface is peeled to 9 to 9.5 mmφ, and this is drawn. Working ratio is 1 or more and 6 or less. Here working ratio eta is a wire sectional area before drawing A 0, when the wire cross-sectional area after drawing and A 1, represented by η = ln (A 0 / A 1). If the degree of work at this time is too small, the recrystallized grains become coarse during the heat treatment in the next step, and the strength and elongation are remarkably lowered, which may cause disconnection. If it is too large, the wire drawing process becomes difficult, and there may be a problem in terms of quality such as disconnection during the wire drawing process. Although the surface is cleaned by carrying out the peeling of the surface, it may not be carried out.

冷間伸線した加工材に中間焼鈍を施す。中間焼鈍は主に伸線加工で硬くなった線材の柔軟性を取り戻すために行なう。中間焼鈍温度が高すぎても低すぎても、後の伸線加工で断線を起し、線材が得られなくなる。中間焼鈍温度は300〜450℃、好ましくは350〜450℃である。中間焼鈍の時間は、10分以上とする。10分未満であると、再結晶粒形成及び成長に必要な時間が足りず、線材の柔軟性を取り戻すことができないためである。好ましくは1〜6時間である。また、中間焼鈍時の熱処理温度から100℃までの平均冷却速度は、0.1〜10℃/分が望ましい。
Intermediate annealing is applied to the cold-drawn workpiece. The intermediate annealing is performed mainly to regain the flexibility of the wire that has been hardened by wire drawing. If the intermediate annealing temperature is too high or too low, the wire is broken in the subsequent wire drawing process, and the wire cannot be obtained. Intermediate annealing temperature is 3 00 to 450 ° C., good Mashiku is 350 to 450 ° C.. The time for the intermediate annealing is 10 minutes or more. This is because if it is less than 10 minutes, the time required for recrystallized grain formation and growth is insufficient, and the flexibility of the wire cannot be regained. Preferably it is 1 to 6 hours. Moreover, as for the average cooling rate from the heat processing temperature at the time of intermediate annealing to 100 degreeC, 0.1-10 degreeC / min is desirable.

さらに伸線加工を施す。この際の加工度は1以上6以下とする。加工度は再結晶粒形成及び成長に多大に影響を及ぼす。加工度が小さすぎると、次工程の熱処理時、再結晶粒が粗大化し強度及び伸びが著しく低下し、断線の原因になる場合がある。また、転位密度が不足するため、耐屈曲疲労特性が低下する。大きすぎると、伸線加工が困難となり、伸線加工中に断線するなど品質の面で問題を生ずることがある。加工度はより好ましくは2以上6以下である。
Further, wire drawing is performed. Working ratio at this time is 1 to 6. The degree of work greatly affects the formation and growth of recrystallized grains. If the degree of work is too small, the recrystallized grains become coarse during the heat treatment in the next step, and the strength and elongation are significantly reduced, which may cause disconnection. Further, since the dislocation density is insufficient, the bending fatigue resistance is deteriorated. If it is too large, the wire drawing process becomes difficult, and there may be a problem in terms of quality such as disconnection during the wire drawing process. The degree of processing is more preferably 2 or more and 6 or less.

冷間伸線した加工材に連続熱処理により仕上げ焼鈍を行なう。連続熱処理は連続通電熱処理、連続走間熱処理の2つの方法のいずれかで行うことができる。   Finish annealing is performed on the cold-drawn workpiece by continuous heat treatment. The continuous heat treatment can be performed by one of two methods: continuous energization heat treatment and continuous running heat treatment.

連続通電熱処理は、2つの電極輪を連続的に通過する線材に電流を流すことによって自身から発生するジュール熱により焼鈍するものである。急熱、急冷の工程を含み、線材温度と焼鈍時間で制御し線材を焼鈍することができる。冷却は、急熱後、水中または窒素ガス雰囲気中に線材を連続的に通過させることによって行なう。線材温度または焼鈍時間の一方または両方が低すぎる場合は、結晶粒の扁平率が所定の範囲を満たさず、車載取り付けの際に必要な柔軟性が得られない。高すぎる場合は、転位密度が所定の範囲より低くなってしまい、耐屈曲疲労特性が低下する。さらに高い場合には、過焼鈍により結晶粒が粗大化し、強度、柔軟性が低下する。よって、連続通電熱処理においては線材温度をy(℃)、焼鈍時間をx(秒)とすると、
0.03≦x≦0.73、かつ
26x−0.6+377≦y≦19x−0.6+477
を満たすように行う。
なお、線材温度y(℃)は、線材として温度が最も高くなる、冷却工程に通過する直前の温度を表す。y(℃)は通常408〜633(℃)の範囲内である。
The continuous energization heat treatment is performed by annealing with Joule heat generated from itself by passing an electric current through a wire passing through two electrode wheels. It includes the steps of rapid heating and quenching, and the wire can be annealed by controlling the wire temperature and annealing time. Cooling is performed by passing the wire continuously in water or a nitrogen gas atmosphere after rapid heating. When one or both of the wire temperature and the annealing time are too low, the flatness of the crystal grains does not satisfy the predetermined range, and the flexibility required for in-vehicle mounting cannot be obtained. If it is too high, the dislocation density will be lower than the predetermined range, and the bending fatigue resistance will deteriorate. If it is higher, crystal grains are coarsened by over-annealing, and strength and flexibility are lowered. Therefore, in continuous energization heat treatment, if the wire temperature is y (° C.) and the annealing time is x (seconds),
0.03 ≦ x ≦ 0.73, and 26x -0.6 + 377 ≦ y ≦ 19x -0.6 +477
To meet.
The wire temperature y (° C.) represents the temperature immediately before passing through the cooling step, at which the temperature of the wire becomes the highest. y (° C.) is usually in the range of 408 to 633 (° C.).

連続通電熱処理では、熱処理後100℃以下に到達するまでの冷却速度を300℃/s以上と定める。これは、冷却速度が遅すぎると転位密度が低くなり、耐屈曲疲労特性が劣る場合があるためである。好ましくは400℃/s以上である。熱処理後の冷却速度Vは、連続通電熱処理において最も温度が高くなる地点と、線材が通過する任意のライン上において、連続通電熱処理後最も早く100℃になる地点間の距離Lと、温度(Tmax、100℃)、ライン線速vを用いて、
V=(Tmax−100)v/L (単位:℃/s)
の式より算出した。上限は特に制限はないが仕上げ焼鈍後の冷却速度は2000℃/s以下が好ましい。
In the continuous energization heat treatment, the cooling rate until reaching 100 ° C. or lower after the heat treatment is set to 300 ° C./s or higher. This is because if the cooling rate is too slow, the dislocation density is lowered and the bending fatigue resistance may be inferior. Preferably it is 400 degrees C / s or more. The cooling rate V after the heat treatment is the distance L between the point at which the temperature becomes highest in the continuous energization heat treatment and the point L at which the temperature becomes 100 ° C earliest after the continuous energization heat treatment on any line through which the wire passes. max , 100 ° C.), using the line speed v
V = (T max −100) v / L (unit: ° C./s)
It was calculated from the following formula. The upper limit is not particularly limited, but the cooling rate after finish annealing is preferably 2000 ° C./s or less.

連続走間熱処理は、高温に保持した焼鈍炉中を線材が連続的に通過して焼鈍させるものである。急熱、急冷の工程を含み、焼鈍炉温度と焼鈍時間で制御し線材を焼鈍することができる。冷却は、急熱後、水中または窒素ガス雰囲気中に線材を連続的に通過させることによって行なう。焼鈍炉温度または焼鈍時間の一方または両方が低すぎる場合は、結晶粒の扁平率が所定の範囲を満たさず、車載取り付けの際に必要な柔軟性が得られない。高すぎる場合は、転位密度が所定の範囲より低くなってしまい、耐屈曲疲労特性が低下する。さらに高い場合には、過焼鈍により結晶粒が粗大化し、強度、柔軟性が低下する。よって、連続走間熱処理においては焼鈍炉温度をz(℃)、焼鈍時間をx(秒)とすると、
1.5≦x≦5、かつ
−50x+550≦z≦−36x+650
を満たすように行う。焼鈍炉温度z(℃)は、通常300〜596(℃)の範囲内である。
In the continuous running heat treatment, the wire is continuously passed through an annealing furnace kept at a high temperature and annealed. It includes the steps of rapid heating and rapid cooling, and the wire can be annealed under the control of the annealing furnace temperature and annealing time. Cooling is performed by passing the wire continuously in water or a nitrogen gas atmosphere after rapid heating. When one or both of the annealing furnace temperature and the annealing time are too low, the flatness of the crystal grains does not satisfy the predetermined range, and the flexibility required for mounting on the vehicle cannot be obtained. If it is too high, the dislocation density will be lower than the predetermined range, and the bending fatigue resistance will deteriorate. If it is higher, crystal grains are coarsened by over-annealing, and strength and flexibility are lowered. Therefore, in the continuous running heat treatment, if the annealing furnace temperature is z (° C.) and the annealing time is x (seconds),
1.5 ≦ x ≦ 5, and −50x + 550 ≦ z ≦ −36x + 650
To meet. The annealing furnace temperature z (° C.) is usually in the range of 300 to 596 (° C.).

連続走間熱処理では、この熱処理後100℃以下に到達するまでの冷却速度を300℃/s以上と定める。これは、冷却速度が遅すぎると転位密度が低くなり、耐屈曲疲労特性が劣る場合があるためである。好ましくは400℃/s以上である。上限は特に制限はないが仕上げ焼鈍後の冷却速度は2000℃/s以下が好ましい。熱処理後の冷却速度Vは、連続送間熱処理において焼鈍炉後端と、線材が通過する任意のライン上において、連続送間熱処理後最も早く100℃になる地点間の距離Lと、温度(Tmax、100℃)、ライン線速vを用いて、
V=(Tmax−100)v/L (単位:℃/s)
の式より算出した。
In the continuous running heat treatment, the cooling rate until reaching 100 ° C. or lower after this heat treatment is determined to be 300 ° C./s or higher. This is because if the cooling rate is too slow, the dislocation density is lowered and the bending fatigue resistance may be inferior. Preferably it is 400 degrees C / s or more. The upper limit is not particularly limited, but the cooling rate after finish annealing is preferably 2000 ° C./s or less. The cooling rate V after the heat treatment is determined by the distance L between the rear end of the annealing furnace in the continuous heat treatment and the point at which the temperature reaches 100 ° C. the first time after the continuous heat treatment, and the temperature (T max , 100 ° C.), using the line speed v
V = (T max −100) v / L (unit: ° C./s)
It was calculated from the following formula.

次いで、合金成分によっては耐屈曲疲労特性が向上するため、時効熱処理を行なうと良い。   Next, an aging heat treatment is preferably performed because the bending fatigue resistance is improved depending on the alloy components.

(合金組成)
本発明の第1の実施態様の成分構成は、Feを0.01〜0.4mass%と、Mgを0.01mass%以上0.3mass%未満と、Siを0.01mass%以上0.3mass%未満と、Cuを0.01〜0.5mass%含有し、残部Alと不可避不純物からなる。
(Alloy composition)
The component constitution of the first embodiment of the present invention is as follows: Fe is 0.01 to 0.4 mass%, Mg is 0.01 mass% or more and less than 0.3 mass%, and Si is 0.01 mass% or more and 0.3 mass%. Less than, Cu is contained in an amount of 0.01 to 0.5 mass%, and the balance is Al and inevitable impurities.

本実施態様において、Feの含有量を0.01〜0.4mass%とするのは、主にAl−Fe系の金属間化合物による様々な効果を利用するためである。Feはアルミニウム中には655℃において0.05mass%しか固溶せず、室温では更に少ない。残りはAl−Fe、Al−Fe−Si、Al−Fe−Si−Mg、Al−Fe−Cu−Siなどの金属間化合物として晶出または析出する。この晶出物または析出物は結晶粒の微細化材として働くと共に、強度、及び耐屈曲疲労特性を向上させる。一方、Feの固溶によっても強度が上昇する。Feの含有量が少なすぎるとこれらの効果が不十分であり、多すぎると金属間化合物の粗大化により、逆に強度、耐屈曲性を低下させ、場合によっては金属間化合物が起点となり断線が生じる。また、過飽和固溶状態となり導電率が低下する。Feの含有量は好ましくは0.1〜0.3mass%、さらに好ましくは0.15〜0.3mass%である。   In the present embodiment, the reason why the Fe content is set to 0.01 to 0.4 mass% is mainly to utilize various effects of the Al—Fe-based intermetallic compound. Fe dissolves only 0.05 mass% in aluminum at 655 ° C., and is even less at room temperature. The remainder is crystallized or precipitated as an intermetallic compound such as Al-Fe, Al-Fe-Si, Al-Fe-Si-Mg, Al-Fe-Cu-Si. This crystallized product or precipitate acts as a crystal grain refining material, and improves strength and bending fatigue resistance. On the other hand, the strength also increases due to the solid solution of Fe. If the Fe content is too small, these effects are insufficient. If the Fe content is too large, the intermetallic compound is coarsened, which decreases the strength and bending resistance. Arise. Moreover, it will be in a supersaturated solid solution state and electrical conductivity will fall. The content of Fe is preferably 0.1 to 0.3 mass%, more preferably 0.15 to 0.3 mass%.

本実施態様において、Mgの含有量を0.01mass%以上0.3mass%未満とするのは、Mgはアルミニウム母材中に固溶して強化すると共に、その一部はSiと析出物を形成して強度、耐屈曲疲労特性、及び耐熱性を向上させることができるためである。Mgの含有量が少なすぎると効果が不十分であり、多すぎると導電率を低下させる。また、Mgの含有量が多いと耐力が過剰となり、成形性、撚り性を劣化させ、加工性が悪くなる。Mgの含有量は好ましくは0.05〜0.3mass%未満、さらに好ましくは0.10〜0.25mass%である。   In the present embodiment, the Mg content is set to 0.01 mass% or more and less than 0.3 mass% because Mg is strengthened by solid solution in the aluminum base material, and a part thereof forms a precipitate with Si. This is because the strength, bending fatigue resistance, and heat resistance can be improved. If the Mg content is too low, the effect is insufficient, and if it is too high, the conductivity is lowered. Moreover, when there is much content of Mg, yield strength will become excess, a moldability and twist property will deteriorate, and workability will worsen. The content of Mg is preferably 0.05 to less than 0.3 mass%, more preferably 0.10 to 0.25 mass%.

本実施態様において、Siの含有量を0.01mass%以上0.3mass%未満とするのは、上記したようにSiはMgと化合物を形成して強度、耐屈曲疲労特性、及び耐熱性を向上させる働きを示すためである。Siの含有量が少なすぎると効果が不十分であり、多すぎると導電率が低下する。また、Siの含有量が多いとSi単体の析出が生じ、断線が起こりやすくなる。Siの含有量は好ましくは0.02〜0.25mass%、さらに好ましくは0.04〜0.20mass%である。   In the present embodiment, the Si content is set to 0.01 mass% or more and less than 0.3 mass%, as described above, Si forms a compound with Mg to improve strength, bending fatigue resistance, and heat resistance. This is to show the function of making it happen. If the Si content is too low, the effect is insufficient, and if it is too high, the conductivity decreases. Moreover, when there is much Si content, precipitation of Si single-piece | unit will arise and it will become easy to cause a disconnection. The Si content is preferably 0.02 to 0.25 mass%, more preferably 0.04 to 0.20 mass%.

本実施態様において、Cuの含有量を0.01〜0.5mass%とするのは、Cuをアルミニウム母材中に固溶させ強化するためである。また、耐クリープ性、耐屈曲疲労特性、耐熱性の向上に寄与する。Cuの含有量が少なすぎると効果が不十分であり、多すぎると耐食性及び導電率の低下を招く。Cuの含有量は好ましくは0.10〜0.45mass%、さらに好ましくは0.20〜0.40mass%である。   In the present embodiment, the reason why the Cu content is 0.01 to 0.5 mass% is to strengthen and dissolve Cu in the aluminum base material. It also contributes to the improvement of creep resistance, bending fatigue resistance and heat resistance. If the Cu content is too low, the effect is insufficient, and if it is too high, the corrosion resistance and the conductivity are lowered. The Cu content is preferably 0.10 to 0.45 mass%, more preferably 0.20 to 0.40 mass%.

本発明の第2の実施態様の成分構成は、Feを0.4〜1.5mass%含有し、残部Alと不可避不純物からなる。
The component constitution of the second embodiment of the present invention contains 0.4 to 1.5 mass% of Fe and consists of the balance Al and inevitable impurities.

第2の実施態様では、Feの含有量を0.4〜1.5mass%とするのは、第1の実施態様で述べたように金属間化合物による様々な効果を利用するためである。Feの含有量が少なすぎると第2の実施態様ではCu、Mgを含まないため引張強度が低く、多すぎると金属間化合物の粗大化により、逆に強度、耐屈曲性を低下させ、場合によっては金属間化合物が起点となり断線が生じる。また、過飽和固溶状態となり導電率が低下する。Feの含有量は好ましくは0.6〜1.3mass%、さらに好ましくは0.8〜1.1mass%である。   In the second embodiment, the Fe content is set to 0.4 to 1.5 mass% in order to use various effects of the intermetallic compound as described in the first embodiment. If the Fe content is too small, the second embodiment does not contain Cu or Mg, so the tensile strength is low. If it is too much, the intermetallic compound is coarsened, and on the contrary, the strength and flex resistance are lowered. In this case, disconnection occurs from an intermetallic compound. Moreover, it will be in a supersaturated solid solution state and electrical conductivity will fall. The content of Fe is preferably 0.6 to 1.3 mass%, more preferably 0.8 to 1.1 mass%.

本発明の第3の実施態様の成分構成は、Feを0.4〜1.5mass%と、Mgを0.01mass%以上0.3mass%未満と、Siを0.01mass%以上0.3mass%未満含有し、残部Alと不可避不純物からなる。
The component constitution of the third embodiment of the present invention is as follows. Fe is 0.4 to 1.5 mass%, Mg is 0.01 mass% or more and less than 0.3 mass%, and Si is 0.01 mass% or more and 0.3 mass%. Less than, it consists of the balance Al and inevitable impurities.

第3の実施態様では、上述の第1の実施態様の合金組成と比較してFeの含有量が多く、Cuが含有されていない。Feの含有量を0.4〜1.5mass%とするのは、主にAl−Fe系の金属間化合物による様々な効果を利用するためである。その効果は第1の実施態様で述べた通りである。Feの含有量が少なすぎると第3の実施態様ではCuを含まないため引張強度が低く、多すぎると金属間化合物の粗大化により、逆に強度、耐屈曲性を低下させ、場合によっては金属間化合物が起点となり断線が生じる。また、過飽和固溶状態となり導電率が低下する。Feの含有量は、好ましくは0.6〜1.3mass%、さらに好ましくは0.8〜1.1mass%である。
その他の合金組成とその作用については上述の第1の実施態様と同様である。
In the third embodiment, the content of Fe is larger than that of the alloy composition of the first embodiment described above, and Cu is not contained. The reason why the Fe content is set to 0.4 to 1.5 mass% is mainly to use various effects of the Al—Fe-based intermetallic compound. The effect is as described in the first embodiment. If the Fe content is too low, the third embodiment does not contain Cu, so the tensile strength is low. If it is too high, the intermetallic compound is coarsened, and on the contrary, the strength and flex resistance are lowered. The intermetallic compound is the starting point and disconnection occurs. Moreover, it will be in a supersaturated solid solution state and electrical conductivity will fall. The content of Fe is preferably 0.6 to 1.3 mass%, more preferably 0.8 to 1.1 mass%.
Other alloy compositions and their actions are the same as in the first embodiment described above.

本発明の第4の実施態様の成分構成は、Feを0.01〜1.5mass%と、Mgを0.3〜1.0mass%と、Siを0.3〜1.0mass%含有し、残部Alと不可避不純物からなるアルミニウム合金導体である。
The component constitution of the fourth embodiment of the present invention includes Fe of 0.01 to 1.5 mass%, Mg of 0.3 to 1.0 mass%, Si of 0.3 to 1.0 mass%, It is an aluminum alloy conductor composed of the balance Al and inevitable impurities.

本実施態様においてFeの含有量を0.01〜1.5mass%とするのは、第1の実施態様で述べたように金属間化合物による様々な効果を利用するためである。Feの含有量が少なすぎると効果が不十分であり、多すぎると金属間化合物の粗大化により、逆に強度、耐屈曲性を低下させ、場合によっては金属間化合物が起点となり断線が生じる。また、過飽和固溶状態となり導電率が低下する。Feの含有量は好ましくは0.15〜1.1mass%、さらに好ましくは0.15〜0.9mass%である。   The reason why the Fe content is set to 0.01 to 1.5 mass% in the present embodiment is to use various effects of the intermetallic compound as described in the first embodiment. If the Fe content is too small, the effect is insufficient. If the Fe content is too large, the intermetallic compound is coarsened, and on the contrary, the strength and bending resistance are lowered. Moreover, it will be in a supersaturated solid solution state and electrical conductivity will fall. The Fe content is preferably 0.15 to 1.1 mass%, more preferably 0.15 to 0.9 mass%.

Mgの含有量を0.3〜1.0mass%とするのは、Mg−Si系析出物を多く析出させ、導電率を適切に保ちつつ強度を向上させるためである。Mgの含有量が少なすぎると強度の上昇があまり期待できず、多すぎると導電率を低下させる。また、Mgの含有量が多いと耐力が過剰となり、成形性、撚り性を劣化させ、加工性が悪くなる。Mgの含有量は好ましくは0.4〜0.9mass%、さらに好ましくは0.5〜0.8mass%である。   The reason why the Mg content is 0.3 to 1.0 mass% is to precipitate a large amount of Mg-Si-based precipitates and to improve the strength while keeping the electrical conductivity appropriately. If the content of Mg is too small, an increase in strength cannot be expected so much, and if it is too large, the conductivity is lowered. Moreover, when there is much content of Mg, yield strength will become excess, a moldability and twist property will deteriorate, and workability will worsen. The Mg content is preferably 0.4 to 0.9 mass%, more preferably 0.5 to 0.8 mass%.

Siの含有量を0.3〜1.0mass%とするのは、上述のMgと同様、Mg−Si系析出物を多く析出させ、導電率を適切に保ちつつ強度を向上させるためである。Siの含有量が少なすぎると強度の上昇があまり期待できず、多すぎると導電率が低下する。また、Siの含有量が多いとSi単体の析出が生じ、断線が起こりやすくなる。Siの含有量は好ましくは0.4〜0.9mass%、さらに好ましくは0.5〜0.8mass%
である。
The reason why the Si content is set to 0.3 to 1.0 mass% is to increase the strength of the Mg-Si-based precipitates by depositing a large amount of Mg-Si-based precipitates and maintaining the conductivity appropriately. If the Si content is too small, an increase in strength cannot be expected so much, and if it is too much, the conductivity decreases. Moreover, when there is much Si content, precipitation of Si single-piece | unit will arise and it will become easy to cause a disconnection. The Si content is preferably 0.4 to 0.9 mass%, more preferably 0.5 to 0.8 mass%.
It is.

本発明の第5の実施態様の成分構成は、Feを0.01〜1.5mass%と、Mgを0.3〜1.0mass%と、Siを0.3〜1.0mass%と、Cuを0.01〜0.5mass%含有し、残部Alと不可避不純物からなるアルミニウム合金導体である。
The component constitution of the fifth embodiment of the present invention is as follows: Fe is 0.01 to 1.5 mass%, Mg is 0.3 to 1.0 mass%, Si is 0.3 to 1.0 mass%, Cu Is an aluminum alloy conductor containing 0.01 to 0.5 mass% and the balance Al and inevitable impurities.

第5の実施態様の合金組成とその作用については、Fe、Mg、及びSiについては第4の実施態様と同様であり、Cuについては、第1の実施態様と同様である。   The alloy composition and its action of the fifth embodiment are the same as those of the fourth embodiment for Fe, Mg, and Si, and are the same as those of the first embodiment for Cu.

不可避不純物は製造工程上含まれる含有レベルである。不可避不純物は導電率を若干低下させる要因にはなるが、製造工程上含まれるものであるため、導電率の低下を加味して考えておく必要がある。不可避不純物としては、例えば、0.10mass%以下のSi、0.005mass%以下のCu、0.005mass%以下のMnなどがある。なお、これらの元素はJIS H 2110を参照した。   Inevitable impurities are contained levels included in the manufacturing process. Inevitable impurities cause a slight decrease in electrical conductivity, but they are included in the manufacturing process, so it is necessary to consider the decrease in electrical conductivity. Inevitable impurities include, for example, Si of 0.10 mass% or less, Cu of 0.005 mass% or less, Mn of 0.005 mass% or less, and the like. These elements referred to JIS H 2110.

本発明のアルミニウム合金線の導体の線径は、特に制限はなく用途に応じて適宜定めることができるが、好ましくは0.15〜1.0mmφ、より好ましくは0.20〜0.8mmφである。本発明の線材はアルミニウム合金線として、単線で細くして使用できることが利点の一つであるが、複数本束ねて(撚り線として)使用することもできる。   The wire diameter of the conductor of the aluminum alloy wire of the present invention is not particularly limited and can be appropriately determined according to the application, but is preferably 0.15 to 1.0 mmφ, more preferably 0.20 to 0.8 mmφ. . One of the advantages of the wire rod of the present invention is that it can be used as an aluminum alloy wire by thinning it with a single wire, but it can also be used by bundling a plurality of wires (as a stranded wire).

本発明を以下の実施例に基づき詳細に説明する。なお本発明は、以下に示す実施例に限定されるものではない。   The present invention will be described in detail based on the following examples. In addition, this invention is not limited to the Example shown below.

実施例1〜13、比較例1〜5
Fe、Mg、Si、Cu、及びAlが表1に示す量(質量%)になるようにプロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で連続的に鋳造しながら圧延を行ない、約10mmφの棒材とした。このときの鋳造冷却速度は1〜20℃/秒である。
次いで、表面の皮むきを実施して、約9.5mmφとし、これを所定の加工度が得られるように伸線加工した。次に、この冷間伸線した加工材に温度300〜450℃で0.5〜4時間の中間焼鈍を施し、さらに、所定の線径まで伸線加工を行った。
Examples 1-13, Comparative Examples 1-5
Rolling is carried out while continuously casting the molten metal in a water-cooled mold using a Properti type continuous casting and rolling machine so that Fe, Mg, Si, Cu, and Al are in the amounts (mass%) shown in Table 1. The bar was about 10 mmφ. The casting cooling rate at this time is 1 to 20 ° C./second.
Next, the surface was peeled to about 9.5 mmφ, and this was drawn so as to obtain a predetermined degree of processing. Next, this cold-drawn workpiece was subjected to intermediate annealing at a temperature of 300 to 450 ° C. for 0.5 to 4 hours, and further drawn to a predetermined wire diameter.

なお、伸線加工履歴と連続熱処理前の加工度ηの対応は以下の通りである。
9.5mmφ→0.55mmφ→中間焼鈍→0.37mmφ(η=0.8)
9.5mmφ→0.54mmφ→中間焼鈍→0.31mmφ(η=1.1)
9.5mmφ→0.9mmφ →中間焼鈍→0.31mmφ(η=2.1)
9.5mmφ→1.5mmφ →中間焼鈍→0.31mmφ(η=3.2)
9.5mmφ→2.6mmφ →中間焼鈍→0.43mmφ(η=3.6)
9.5mmφ→2.6mmφ →中間焼鈍→0.37mmφ(η=3.9)
9.5mmφ→2.6mmφ →中間焼鈍→0.31mmφ(η=4.3)
9.5mmφ→5.7mmφ →中間焼鈍→0.31mmφ(η=5.8)
加工度6以上に伸線したものについては、9.5mmφから伸線し6.2の加工度となる線径(0.43mmφ)で断線した。
The correspondence between the wire drawing history and the processing degree η before continuous heat treatment is as follows.
9.5 mmφ → 0.55 mmφ → intermediate annealing → 0.37 mmφ (η = 0.8)
9.5 mmφ → 0.54 mmφ → intermediate annealing → 0.31 mmφ (η = 1.1)
9.5 mmφ → 0.9 mmφ → Intermediate annealing → 0.31 mmφ (η = 2.1)
9.5 mmφ → 1.5 mmφ → intermediate annealing → 0.31 mmφ (η = 3.2)
9.5 mmφ → 2.6 mmφ → intermediate annealing → 0.43 mmφ (η = 3.6)
9.5 mmφ → 2.6 mmφ → intermediate annealing → 0.37 mmφ (η = 3.9)
9.5 mmφ → 2.6 mmφ → intermediate annealing → 0.31 mmφ (η = 4.3)
9.5 mmφ → 5.7 mmφ → intermediate annealing → 0.31 mmφ (η = 5.8)
The wire drawn to a working degree of 6 or more was drawn from 9.5 mmφ and disconnected at a wire diameter (0.43 mmφ) at a working degree of 6.2.

次いで表1に示す条件で熱処理を行なった。連続通電熱処理では、ファイバ型放射温度計(ジャパンセンサ社製)で線材の温度が最も高くなる水中を通過する直前の線材温度y(℃)を測定した。連続走間熱処理では、焼鈍炉温度z(℃)を記載した。また、熱処理後、最も早く100℃になる地点を測定し、冷却速度を算出した。   Next, heat treatment was performed under the conditions shown in Table 1. In the continuous energization heat treatment, the wire temperature y (° C.) immediately before passing through the water where the temperature of the wire becomes the highest was measured with a fiber-type radiation thermometer (manufactured by Japan Sensor). In the continuous running heat treatment, the annealing furnace temperature z (° C.) is described. Further, the point at which the temperature reached 100 ° C. the earliest after the heat treatment was measured, and the cooling rate was calculated.

作製した各々の実施例及び比較例の線材について以下に記す方法により各特性を測定した。その結果を表1に示す。   Each characteristic was measured with the method described below about the produced wire of each Example and a comparative example. The results are shown in Table 1.

(a)結晶粒の扁平率
伸線方向に平行に切り出した供試材の縦断面を樹脂で埋め、機械研磨後、電解研磨を行った。電解研磨条件は、研磨液が過塩素酸20%のエタノール溶液、液温は0〜5℃、電圧は10V、電流は10mA、時間は30〜60秒である。次いで、結晶粒コントラストを得るため、2%ホウフッ化水素酸を用いて、電圧20V、電流20mA、時間2〜3分の条件でアノーダイジング仕上げを行なった。この組織を200〜400倍の光学顕微鏡で撮影し、結晶粒の扁平率を測定した。扁平率は、1つの結晶粒に対し、伸線方向に垂直な方向での最大長さ/伸線方向での最大の長さ、で求め、任意に選んだ15個の結晶粒の平均を算出した。縦断面は線材の中央を通るように、具体的には伸線方向に垂直な方向の長さが線材の直径に対し0〜−10%となるように、樹脂に埋めた。
(b)転位密度
実施例および比較例の線材をFIB法にて薄膜にして、透過電子顕微鏡(TEM)を用い、任意の1μmの視野を3枚撮影した。転位密度ρは、Hamの方法と呼ばれる手法にて測定した。つまり、撮影された写真に縦横10本ずつの平行線を引き、その線の合計の長さL(μm)と転位が交わる数N、そして試料厚さt(μm)を用いて、
ρ=2N/Lt (単位 本数/μm
の式より求め、n3の平均を求めた。n3の測定で得られた転位密度の最大値から最小値を引き、最大値で割って100をかけた値(%)が25%以上異なる際には、5枚の写真を撮影して上記と同様の方法で転位密度を算出し、n5の平均を求めた。転位は回折条件によって出現したり消滅したりするため、任意の視野を観察する際には、試料軸となるx軸またはy軸方向に試料を傾けて回折条件を変えながら観察し、目視で最も転位が出現している視野を選び撮影した。上記薄膜の試料厚さは、本実施例および比較例では、FIB法によりすべての試料において試料厚さを約0.15μmに設定し作製した。
(c)引張強度(TS)及び柔軟性(引張破断伸び)
JIS Z 2241に準じて各3本ずつ試験し、その平均値を求めた。引張強度は80MPa以上240MPa未満を合格とした。柔軟性は引張破断伸びが10%以上を合格とした。
(d)導電率(EC)
長さ300mmの試験片を20℃(±0.5℃)に保持した恒温漕中で、四端子法を用いて比抵抗を各3本ずつ測定し、その平均導電率を算出した。端子間距離は200mmとした。導電率は特に限定しないが、50%IACS以上が好ましく、更に好ましくは54%以上である。
(e)繰返破断回数
耐屈曲疲労特性の基準として、常温におけるひずみ振幅は±0.17%とした。耐屈曲疲労特性はひずみ振幅によって変化する。ひずみ振幅が大きい場合疲労寿命は短くなり、ひずみ振幅が小さい場合疲労寿命は長くなる。ひずみ振幅は図1記載の線材1の線径と曲げ冶具2、3の曲率半径により決定することができるため、線材1の線径と曲げ冶具2、3の曲率半径は任意に設定して屈曲疲労試験を実施することが可能である。
藤井精機株式会社(現株式会社フジイ)製の両振屈曲疲労試験機を用い、0.17%の曲げ歪みが与えられる治具を使用して、繰り返し曲げを実施することにより、繰返破断回数を測定した。繰返破断回数は各4本ずつ測定し、その平均値を求めた。図1の説明図に示すように、線材1を、曲げ治具2及び3の間を1mm空けて挿入し、冶具2及び3に沿わせるような形で繰り返し運動をさせた。線材の一端は繰り返し曲げが実施できるよう押さえ冶具5に固定し、もう一端には約10gの重り4をぶら下げた。試験中は押さえ冶具5が動くため、それに固定されている線材1も動き、繰り返し曲げが実施できる。繰り返しは1.5Hz(1秒間に往復1.5回)の条件で行い、線材の試験片1が破断すると、重り4が落下し、カウントを停止する仕組みになっている。繰返破断回数は、好ましくは10万回以上であり、より好ましくは12万回以上、さらに好ましくは15万回以上である。
(A) Flatness of crystal grains A longitudinal section of a specimen cut out in parallel with the wire drawing direction was filled with a resin, subjected to electropolishing after mechanical polishing. The electrolytic polishing conditions are: an ethanol solution containing 20% perchloric acid as the polishing liquid, a liquid temperature of 0 to 5 ° C., a voltage of 10 V, a current of 10 mA, and a time of 30 to 60 seconds. Next, in order to obtain crystal grain contrast, anodic finishing was performed using 2% borohydrofluoric acid under the conditions of a voltage of 20 V, a current of 20 mA, and a time of 2 to 3 minutes. This structure was photographed with an optical microscope of 200 to 400 times, and the flatness of crystal grains was measured. The flatness is calculated as the maximum length in the direction perpendicular to the drawing direction / the maximum length in the drawing direction for one crystal grain, and the average of 15 arbitrarily selected crystal grains is calculated. did. The longitudinal section was embedded in the resin so that it passed through the center of the wire, specifically, the length in the direction perpendicular to the wire drawing direction was 0-10% with respect to the diameter of the wire.
(B) Dislocation density The wires of Examples and Comparative Examples were thinned by the FIB method, and three arbitrary 1 μm 2 fields of view were photographed using a transmission electron microscope (TEM). The dislocation density ρ was measured by a method called the Ham method. In other words, 10 parallel lines are drawn vertically and horizontally on the photographed photo, and the total length L (μm) of the lines and the number N at which dislocations intersect, and the sample thickness t (μm),
ρ = 2N / Lt (number of units / μm 2 )
The average of n3 was calculated from the formula of When the value (%) obtained by subtracting the minimum value from the maximum value of the dislocation density obtained by the measurement of n3 and dividing by the maximum value and multiplying by 100 differs by 25% or more, take five pictures and The dislocation density was calculated by the same method, and the average of n5 was obtained. Since dislocations appear and disappear depending on the diffraction conditions, when observing an arbitrary field of view, tilt the sample in the x-axis or y-axis direction, which is the sample axis, and observe while changing the diffraction conditions. A field of view where dislocations appeared was selected and photographed. In the present example and the comparative example, the sample thickness of the thin film was prepared by setting the sample thickness to about 0.15 μm in all samples by the FIB method.
(C) Tensile strength (TS) and flexibility (tensile elongation at break)
Three each were tested according to JIS Z 2241 and the average value was determined. The tensile strength was 80 MPa or more and less than 240 MPa. For the flexibility, the tensile elongation at break was 10% or more.
(D) Conductivity (EC)
Three specific resistances were measured using a four-terminal method in a constant temperature bath holding a 300 mm long test piece at 20 ° C. (± 0.5 ° C.), and the average conductivity was calculated. The distance between the terminals was 200 mm. The electrical conductivity is not particularly limited, but is preferably 50% IACS or more, and more preferably 54% or more.
(E) Number of repeated fractures As a standard for bending fatigue resistance, the strain amplitude at room temperature was ± 0.17%. Bending fatigue resistance varies with strain amplitude. When the strain amplitude is large, the fatigue life is shortened, and when the strain amplitude is small, the fatigue life is lengthened. Since the strain amplitude can be determined by the wire diameter of the wire rod 1 and the bending radii of the bending jigs 2 and 3 shown in FIG. 1, the wire diameter of the wire rod 1 and the bending radii of the bending jigs 2 and 3 are arbitrarily set and bent. It is possible to conduct a fatigue test.
The number of repeated ruptures by repeatedly bending using a jig that gives a bending strain of 0.17% using a double-bending fatigue tester manufactured by Fujii Seiki Co., Ltd. (currently Fujii Co., Ltd.) Was measured. The number of repeated ruptures was measured four by four and the average value was determined. As shown in the explanatory view of FIG. 1, the wire 1 was inserted with a gap of 1 mm between the bending jigs 2 and 3, and repeatedly moved in such a manner as to be along the jigs 2 and 3. One end of the wire was fixed to a holding jig 5 so that it could be bent repeatedly, and a weight 4 of about 10 g was hung from the other end. Since the holding jig 5 moves during the test, the wire 1 fixed to the holding jig 5 also moves and can be bent repeatedly. The repetition is performed under the condition of 1.5 Hz (1.5 reciprocations per second), and when the wire specimen 1 breaks, the weight 4 falls and stops counting. The number of repeated fractures is preferably 100,000 times or more, more preferably 120,000 times or more, and further preferably 150,000 times or more.

Figure 0005939530
Figure 0005939530

比較例No.1〜5はアルミニウム合金の製造条件によって本発明の規定するアルミニウム合金導体が得られなかった例である。比較例No.1では、伸線加工度が小さすぎるため、引張強度、引張破断伸び、繰返破断特性が悪かった。比較例No.2では、伸線加工度が大きすぎるため伸線加工中に断線した。比較例No.3では、連続通電熱処理の温度が低すぎるため引張破断伸びが悪かった。比較例No.4では、連続通電熱処理の温度が高すぎるため引張強度、引張破断伸び、繰返破断特性が悪かった。比較例No.5では、冷却速度が低すぎるため繰返破断特性が悪かった。
これに対し、実施例No,1〜13では、引張強度、導電率、引張破断伸び(柔軟性)、及び繰返破断特性(耐屈曲疲労特性)に優れたアルミニウム合金導体が得られた。
Comparative Example No. Examples 1 to 5 are examples in which the aluminum alloy conductor defined by the present invention was not obtained depending on the production conditions of the aluminum alloy. Comparative Example No. In No. 1, since the degree of wire drawing was too small, the tensile strength, tensile elongation at break, and repeated breaking characteristics were poor. Comparative Example No. In No. 2, since the degree of wire drawing was too large, the wire was broken during wire drawing. Comparative Example No. In No. 3, since the temperature of the continuous energization heat treatment was too low, the tensile elongation at break was poor. Comparative Example No. In No. 4, since the temperature of the continuous energization heat treatment was too high, the tensile strength, tensile elongation at break, and repeated fracture characteristics were poor. Comparative Example No. In No. 5, since the cooling rate was too low, the repeated fracture characteristics were poor.
In contrast, in Examples Nos. 1 to 13, aluminum alloy conductors excellent in tensile strength, electrical conductivity, tensile fracture elongation (flexibility), and repeated fracture characteristics (flexural fatigue resistance) were obtained.

1 試験片(線材)
2、3 曲げ治具
4 重り
5 押さえ冶具
1 Test piece (wire)
2, 3 Bending jig 4 Weight 5 Holding jig

Claims (10)

Feを0.01〜0.4mass%と、Mgを0.01mass%以上0.3mass%未満と、Siを0.01mass%以上0.3mass%未満と、Cuを0.01〜0.5mass%含有し、残部Alと不可避不純物からなり、
結晶粒の扁平率が0.6〜1.2であり、かつ、転位密度が25〜500/μmであることを特徴とするアルミニウム合金導体。
Fe is 0.01 to 0.4 mass%, Mg is 0.01 mass% or more and less than 0.3 mass%, Si is 0.01 mass% or more and less than 0.3 mass%, and Cu is 0.01 to 0.5 mass%. Containing, balance Al and inevitable impurities,
An aluminum alloy conductor having a crystal grain flatness of 0.6 to 1.2 and a dislocation density of 25 to 500 / μm 2 .
Feを0.4〜1.5mass%含有し、残部Alと不可避不純物からなり、
結晶粒の扁平率が0.6〜1.2であり、かつ、転位密度が25〜500/μmであることを特徴とするアルミニウム合金導体。
Fe containing 0.4 to 1.5 mass%, consisting of the balance Al and inevitable impurities,
An aluminum alloy conductor having a crystal grain flatness of 0.6 to 1.2 and a dislocation density of 25 to 500 / μm 2 .
Feを0.4〜1.5mass%と、Mgを0.01mass%以上0.3mass%未満と、Siを0.01mass%以上0.3mass%未満含有し、残部Alと不可避不純物からなり、
結晶粒の扁平率が0.6〜1.2であり、かつ、転位密度が25〜500/μmであることを特徴とするアルミニウム合金導体。
Fe containing 0.4 to 1.5 mass%, Mg containing 0.01 mass% or more and less than 0.3 mass%, Si containing 0.01 mass% or more and less than 0.3 mass%, the balance consisting of Al and inevitable impurities,
An aluminum alloy conductor having a crystal grain flatness of 0.6 to 1.2 and a dislocation density of 25 to 500 / μm 2 .
Feを0.01〜1.5mass%と、Mgを0.3〜1.0mass%と、Siを0.3〜1.0mass%含有し、残部Alと不可避不純物からなり、
結晶粒の扁平率が0.6〜1.2であり、かつ、転位密度が25〜500/μmであることを特徴とするアルミニウム合金導体。
Fe containing 0.01 to 1.5 mass%, Mg containing 0.3 to 1.0 mass%, Si containing 0.3 to 1.0 mass%, the balance consisting of Al and inevitable impurities,
An aluminum alloy conductor having a crystal grain flatness of 0.6 to 1.2 and a dislocation density of 25 to 500 / μm 2 .
Feを0.01〜1.5mass%と、Mgを0.3〜1.0mass%と、Siを0.3〜1.0mass%と、Cuを0.01〜0.5mass%含有し、残部Alと不可避不純物からなり、
結晶粒の扁平率が0.6〜1.2であり、かつ、転位密度が25〜500/μmであることを特徴とするアルミニウム合金導体。
Fe containing 0.01 to 1.5 mass%, Mg 0.3 to 1.0 mass%, Si 0.3 to 1.0 mass%, Cu 0.01 to 0.5 mass%, the balance Consists of Al and inevitable impurities,
An aluminum alloy conductor having a crystal grain flatness of 0.6 to 1.2 and a dislocation density of 25 to 500 / μm 2 .
移動体内のバッテリーケーブル、ハーネス、またはモータ用導線用であることを特徴とする請求項1〜5のいずれか1項に記載のアルミニウム合金導体。  The aluminum alloy conductor according to any one of claims 1 to 5, wherein the aluminum alloy conductor is for a battery cable, a harness, or a motor lead in a moving body. 前記移動体が自動車、電車、または航空機であることを特徴とする請求項6に記載のアルミニウム合金導体。  The aluminum alloy conductor according to claim 6, wherein the moving body is an automobile, a train, or an aircraft. 線径0.15〜1.0mmφの前記請求項1〜5のいずれか1項のアルミニウム合金導体を素線とし、該素線を撚り合わせた、撚線を樹脂層で被覆したことを特徴とするアルミニウム導電線。   The aluminum alloy conductor according to any one of claims 1 to 5 having a wire diameter of 0.15 to 1.0 mmφ is used as a strand, the strands are twisted together, and the stranded wire is covered with a resin layer. Aluminum conductive wire. 移動体内のバッテリーケーブル、ハーネス、またはモータ用導線として用いられることを特徴とする請求項8に記載のアルミニウム導電線The aluminum conductive wire according to claim 8, wherein the aluminum conductive wire is used as a battery cable, a harness, or a motor lead in a moving body. 前記移動体が自動車、電車、または航空機であることを特徴とする請求項に記載のアルミニウム導電線
The aluminum conductive wire according to claim 9 , wherein the moving body is an automobile, a train, or an aircraft.
JP2011184180A 2011-08-25 2011-08-25 Aluminum alloy conductor Active JP5939530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011184180A JP5939530B2 (en) 2011-08-25 2011-08-25 Aluminum alloy conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011184180A JP5939530B2 (en) 2011-08-25 2011-08-25 Aluminum alloy conductor

Publications (2)

Publication Number Publication Date
JP2013044040A JP2013044040A (en) 2013-03-04
JP5939530B2 true JP5939530B2 (en) 2016-06-22

Family

ID=48008178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011184180A Active JP5939530B2 (en) 2011-08-25 2011-08-25 Aluminum alloy conductor

Country Status (1)

Country Link
JP (1) JP5939530B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146762A1 (en) * 2012-03-29 2013-10-03 大電株式会社 Microcrystal metal conductor and method for manufacturing same
KR101910702B1 (en) 2013-03-29 2018-10-22 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy wire rod, aluminum alloy twisted wire, coated electric wire, wire harness, and production method for aluminum alloy wire rod
JP6108951B2 (en) 2013-05-17 2017-04-05 矢崎総業株式会社 Method for manufacturing aluminum wire
JP6420553B2 (en) * 2014-03-03 2018-11-07 住友電気工業株式会社 Aluminum alloy, aluminum alloy wire, aluminum alloy wire manufacturing method, aluminum alloy member manufacturing method, and aluminum alloy member
JP2018056101A (en) * 2016-09-30 2018-04-05 住友電気工業株式会社 Wire and wire with terminal
JP6927685B2 (en) * 2016-10-25 2021-09-01 矢崎総業株式会社 Aluminum wire, and aluminum wire and wire harness using it
CN113025856B (en) * 2021-03-08 2022-04-12 上海工程技术大学 Al-Fe-Mg-Si-Cu aluminum alloy for cable shielding and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227072B2 (en) * 1995-03-06 2001-11-12 三菱電線工業株式会社 Method of manufacturing aluminum alloy wire for electric conduction
JP4787885B2 (en) * 2008-08-11 2011-10-05 住友電気工業株式会社 Wire harness for wire harness and wire harness for automobile
JP5193375B2 (en) * 2010-07-15 2013-05-08 古河電気工業株式会社 Method for producing aluminum alloy conductor
JP5155464B2 (en) * 2011-04-11 2013-03-06 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness
JP5846360B2 (en) * 2011-08-25 2016-01-20 古河電気工業株式会社 Aluminum alloy conductor

Also Published As

Publication number Publication date
JP2013044040A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5193374B2 (en) Aluminum alloy conductor and method for producing the same
JP4986251B2 (en) Aluminum alloy conductor
US9580784B2 (en) Aluminum alloy wire and method of producing the same
JP5193375B2 (en) Method for producing aluminum alloy conductor
EP2383357B1 (en) Aluminum alloy wire
JP4986252B2 (en) Aluminum alloy conductor
JP5184719B2 (en) Aluminum alloy conductor
JP5939530B2 (en) Aluminum alloy conductor
JP2013044038A (en) Aluminum alloy conductor
KR20150140709A (en) Aluminum alloy conductor, alum1inum alloy stranded wire, sheathed wire, wire harness, and method for manufacturing aluminum alloy conductor
JP6440476B2 (en) Aluminum alloy wire, aluminum alloy twisted wire, covered electric wire and wire harness, and method for producing aluminum alloy wire
JP5469262B2 (en) Aluminum alloy conductor and method for producing the same
JP5846360B2 (en) Aluminum alloy conductor
JP4986253B2 (en) Aluminum alloy conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160510

R151 Written notification of patent or utility model registration

Ref document number: 5939530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350