JPS625972B2 - - Google Patents

Info

Publication number
JPS625972B2
JPS625972B2 JP56139766A JP13976681A JPS625972B2 JP S625972 B2 JPS625972 B2 JP S625972B2 JP 56139766 A JP56139766 A JP 56139766A JP 13976681 A JP13976681 A JP 13976681A JP S625972 B2 JPS625972 B2 JP S625972B2
Authority
JP
Japan
Prior art keywords
less
nitrogen
alloy
composition
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56139766A
Other languages
Japanese (ja)
Other versions
JPS5842741A (en
Inventor
Ryo Masumoto
Juetsu Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP56139766A priority Critical patent/JPS5842741A/en
Publication of JPS5842741A publication Critical patent/JPS5842741A/en
Publication of JPS625972B2 publication Critical patent/JPS625972B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は亀流磁界における磁気特性および耐摩
耗性がすぐれ、鍛造および加工が容易で磁気蚘録
再生ヘツドに奜適な高透磁率合金およびその補造
法ならびに磁気蚘録再生ヘツドに関するものであ
る。 テヌプレコヌダヌなどの磁気蚘録再生ヘツドは
亀流磁界においお䜜動するものであるから、これ
に甚いられる磁性合金は高呚波磁界における実効
透磁率が高いこずが必芁ずされ、たた磁気テヌプ
が接觊しお摺動するため耐摩耗性が良奜であるこ
ずが望たれおいる。珟圚耐摩耗性にすぐれた磁気
ヘツド甚磁性合金ずしおはセンダストFe―Si
―Al系合金およびプラむトMnO―ZnO―
Fe2O3があるが、これらは非垞に硬く脆いた
め、鍛造圧延加工が䞍可胜で、ヘツドコアの補
造には研削研磚の方法が甚いられおおり、埓぀
おその成品は高䟡である。たたセンダストは飜和
磁束密床は倧きいが、薄板にできないので高呚波
磁界における実効透磁率が比范的小さく、プラ
むトは実効透磁率は倧きいが、飜和磁束密床が
5000G以䞋で小さいのが欠点である。他方パヌマ
ロむNi―Fe系合金は鍛造圧延加工および
打抜きは容易で量産性にすぐれおいるが、軟く摩
耗しやすいのが倧きな欠点である。 本願人らはNi―Fe系合金の耐摩耗性に぀いお
の研究を行い、先に特公昭47―29690号においお
Ni―Fe―Nb系合金は、鍛造加工が容易で耐摩耗
性にすぐれ、磁気蚘録再生ヘツドに適した磁性合
金であるこずを蚘述しおおいたが、その埌、磁気
蚘録再生機においお蚘録密床を高めるため高保磁
力の磁気テヌプが採甚されるようになり、それに
䌎぀お磁気ヘツド甚磁性合金ずしおは高い飜和磁
束密床を有するこずが必芁ずされるようにな぀お
きた。このため、Ni―Fe―Nb系合金においお
も、飜和磁束密床を高めるため非磁性添加物であ
るNb量を枛ずる傟向にな぀おきた。しかし、Nb
量の枛少はNi―Fe―Nb系合金の硬床および電気
抵抗の䜎䞋をきたし、それによ぀お耐摩耗性およ
び高呚波磁界における実効透磁率を劣化させるこ
ずになり、適切な方法ずは考えられない。したが
぀お目䞋䜕等かの改善策が匷く芁望されおいる。 本発明はNi―Fe―Nb系合金の鍛造加工性を損
わずに、たた飜和磁束密床をできるだけ䜎䞋させ
ずに、耐摩耗性および実効透磁率を優䜍に保持し
ようずするもので、Ni―Fe―Nb系合金に窒玠を
少量添加するずニオブず窒玠の盞乗効果により、
その目的が達成されたのである。 すなわち、䞀般に高透磁率合金では窒化物など
の非金属介圚物は磁気特性を劣化させるものずし
お、これを極力陀去するこずに努めおいるが、本
発明では埮量のNb系窒化物を積極的に利甚し
お、Ni―Fe―Nb系合金の耐摩耗性および実効透
磁率を改善しようずするものである。 本発明は重量比におニツケル70〜86、ニオブ
0.5〜10、窒玠0.0003〜0.3、少量の䞍玔物ず
残郚鉄からなるか、たたは重量比にお䞻成分ずし
おニツケル70〜86、ニオブ0.5〜14、窒玠
0.0003〜0.3、副成分ずしおモリブデンタン
グステンタンタルマンガン銅コバルトの
それぞれ以䞋、クロムバナゞりムチタ
ンゲルマニりムガリりムむンゞりムタリ
りムのそれぞれ以䞋、アルミニりムケむ
玠ゞルコニりムハフニりム垌土類元玠癜
金属元玠のそれぞれ以䞋、ベリリりム錫
アンチモンのそれぞれ以䞋、ホり玠の以
䞋の皮たたは皮以䞊の合蚈0.01〜、少量
の䞍玔物ず残郚鉄からなり、飜和磁束密床5000G
以䞊を有し、耐摩耗性および実効透磁率がすぐ
れ、鍛造加工が容易な磁気蚘録再生ヘツド等に䜿
甚し埗る高透磁率磁性合金に関するものである。
さらに本発明は䞊蚘の高透磁率合金をケヌスおよ
びコアに甚いお補造した耐摩耗性にすぐれた磁気
蚘録再生ヘツドに関するものである。 以䞋本発明を詳现に説明する。 本発明の合金を補造するには、たず䞻成分のニ
ツケル70〜86、ニオブ0.5〜10および残郚鉄
の適圓量を非酞化性雰囲気䞭あるいは真空䞭にお
いお適圓な溶解炉を甚いお溶解した埌、適圓な脱
酞剀脱硫剀を少量添加しおできるだけ䞍玔物を
取り陀き、そのたたか、曎にこれにモリブデン
タングステンタンタルマンガン銅コバル
トのそれぞれ以䞋、クロムバナゞりムチ
タンゲルマニりムガリりムむンゞりムタ
リりムのそれぞれ以䞋、アルミニりムケむ
玠ゞルコニりムハフニりム垌土類元玠癜
金属元玠のそれぞれ以䞋、ベリリりム錫
アンチモンのそれぞれ以䞋、ホり玠の以
䞋の皮たたは皮以䞊の合蚈0.01〜の定量
を添加しお充分に撹拌し、組成的に均䞀な溶融合
金を造る。぀いでN2およびN3H等のガスを炉内に
泚入しお調圧するか、あるいは合金成分の窒化物
を適圓量添加するこずにより、溶融合金に適圓量
の窒玠を添加する。その埌、これを適圓な圢およ
び倧きさの鋳型に泚入しお健党な鋳塊を埗、さら
にこれを高枩においお熱間鍛造および冷間圧延な
どの成圢加工を斜しお目的の圢状のもの、䟋えば
厚さ0.1mmの薄板を造る。次にその薄板から目的
の圢状寞法のものを打抜き、これを氎玠䞭、そ
の他適圓な非酞化性雰囲気䞭あるいは真空䞭で再
結晶枩床以䞊、すなわち玄600℃以䞊、特に800℃
以䞊融点以䞋の枩床に分間以䞊加熱し、぀いで
組成に察応した適圓な速床、䟋えば100℃秒〜
℃時で冷华する。合金の組成によ぀おはこれ
をさらに玄600℃以䞋の枩床芏則栌子―䞍芏則
栌子倉態点以䞋の枩床、特に200〜600℃に分
間以䞊再加熱し、冷华するこずにより、飜和磁束
密床5000G以䞊を有し、耐摩耗性にすぐれた高透
磁率磁性合金を埗るこずができる。 䞊蚘の溶䜓化枩床から芏則―䞍芏則栌子倉態点
玄600℃以䞊の枩床たでの冷华は、急冷しおも
埐冷しおも埗られる磁性には倧した倉りはない
が、この倉態点以䞋の冷华速床は磁性に倧きな圱
響を及がす。すなわちこの倉態点以䞊の枩床より
100℃秒〜℃時の組成に察応した適圓な速
床で垞枩迄冷华するこずにより、地の芏則床が適
床に調敎され、すぐれた磁性が埗られる。そしお
䞊蚘の冷华速床の内100℃秒に近い速床で急冷
するず、芏則床が小さくなり、これ以䞊速く冷华
するず芏則化が進たず、芏則床はさらに小さくな
り磁性は劣化する。しかしその芏則床の小さい合
金をその倉態点以䞋の200℃〜600℃に再加熱し冷
华するず、芏則化が進んで適床な芏則床ずなり磁
性は向䞊する。他方、䞊蚘の倉態点以䞊の枩床か
ら、䟋えば℃時以䞋の速床で埐冷するず、芏
則化は進みすぎ、磁性は䜎䞋する。 次に本発明の実斜䟋に぀いお述べる。 実斜䟋  合金番号13組成Ni80.3Nb5.0
0.010残郚Fe 詊料を造るには、たず党重量800をアルミナ
坩堝に入れ、真空䞭で高呚波誘導炉によ぀お溶か
した埌、よく撹拌しお均質な溶融合金ずした。぀
いで窒玠ガスを炉内に泚入し、×10-1Torrに
調圧しお10分間保持した埌、これを盎埄25mm、高
さ170mmの孔をも぀鋳型に泚入し、埗られた鋳塊
を玄1000℃で鍛造しお厚さ玄mmの板ずした。さ
らに玄600〜900℃の間で厚さmmたで熱間圧延
し、぀いで垞枩で冷間圧延を斜しお0.1mmの薄板
ずし、それから倖埄45mm、内埄33mmの環状板およ
び磁気ヘツドのコアを打ち抜いた。぀ぎにこれら
に第衚に瀺す皮々な熱凊理を斜し、環状板で磁
気特性および硬床を、たたコアを甚いお磁気ヘツ
ドを補造し、タリサヌフ衚面粗さ蚈で磁気テヌプ
CrO2による200時間走行埌の摩耗量を枬定しお
第衚のような結果を埗た。
The present invention relates to a high magnetic permeability alloy that has excellent magnetic properties and wear resistance in an alternating magnetic field, is easy to forge and process, and is suitable for a magnetic recording/reproducing head, a method for producing the same, and a magnetic recording/reproducing head. Since magnetic recording/reproducing heads such as tape recorders operate in alternating magnetic fields, the magnetic alloys used therein must have high effective magnetic permeability in high-frequency magnetic fields, and magnetic tapes must slide in contact with each other. Therefore, it is desired that the wear resistance be good. Currently, Sendust (Fe-Si
-Al-based alloy) and ferrite (MnO-ZnO-
Fe 2 O 3 ), but these are extremely hard and brittle and cannot be forged or rolled. Grinding and polishing methods are used to manufacture head cores, and the finished product is therefore expensive. . Sendust has a high saturation magnetic flux density, but since it cannot be made into a thin plate, its effective permeability in a high-frequency magnetic field is relatively small. Ferrite has a high effective permeability, but its saturation magnetic flux density is relatively low.
The disadvantage is that it is small, less than 5000G. On the other hand, permalloy (Ni-Fe alloy) is easy to forge, roll, and punch, making it suitable for mass production, but its major drawback is that it is soft and easily wears out. The applicants conducted research on the wear resistance of Ni-Fe alloys, and previously published
As mentioned above, Ni-Fe-Nb alloy is a magnetic alloy that is easy to forge, has excellent wear resistance, and is suitable for magnetic recording/reproducing heads. In order to increase the coercivity, magnetic tapes with high coercivity have come to be used, and along with this, magnetic alloys for magnetic heads are required to have a high saturation magnetic flux density. For this reason, even in Ni--Fe--Nb alloys, there has been a trend to reduce the amount of Nb, which is a non-magnetic additive, in order to increase the saturation magnetic flux density. However, Nb
Reducing the amount will lead to a decrease in the hardness and electrical resistance of the Ni--Fe--Nb alloy, thereby deteriorating its wear resistance and effective magnetic permeability in high-frequency magnetic fields, and is not considered a suitable method. Therefore, there is a strong demand for some improvement measures. The present invention aims to maintain superior wear resistance and effective magnetic permeability without impairing the forging workability of Ni-Fe-Nb alloys or reducing the saturation magnetic flux density as much as possible. When a small amount of nitrogen is added to Fe-Nb alloy, due to the synergistic effect of niobium and nitrogen,
That purpose was achieved. In other words, generally in high permeability alloys, non-metallic inclusions such as nitrides deteriorate the magnetic properties, and efforts are made to remove them as much as possible, but in the present invention, we actively remove trace amounts of Nb-based nitrides. The aim is to improve the wear resistance and effective magnetic permeability of Ni-Fe-Nb alloys. The present invention has a weight ratio of 70 to 86% nickel and niobium.
0.5-10%, nitrogen 0.0003-0.3%, a small amount of impurities and the balance iron, or the main components by weight are nickel 70-86%, niobium 0.5-14%, nitrogen
0.0003 to 0.3%, as subcomponents molybdenum, tungsten, tantalum, manganese, copper, cobalt each up to 7%, chromium, vanadium, titanium, germanium, gallium, indium, thallium each up to 5%, aluminum, silicon, zirconium, Less than 3% each of hafnium, rare earth elements, and white metal elements, beryllium, tin,
Consists of less than 2% each of antimony, less than 1% of boron, a total of 0.01 to 7% of one or more types, a small amount of impurities and the balance iron, saturation magnetic flux density 5000G
The present invention relates to a high permeability magnetic alloy that has the above properties, has excellent wear resistance and effective magnetic permeability, and can be easily forged and used for magnetic recording/reproducing heads and the like.
Furthermore, the present invention relates to a magnetic recording/reproducing head with excellent wear resistance manufactured using the above-mentioned high magnetic permeability alloy for the case and core. The present invention will be explained in detail below. To produce the alloy of the present invention, the main components, 70 to 86% nickel, 0.5 to 10% niobium, and an appropriate amount of the balance iron, were first melted in a non-oxidizing atmosphere or in a vacuum using a suitable melting furnace. After that, add a small amount of a suitable deoxidizing agent or desulfurizing agent to remove as much impurity as possible, and then add molybdenum,
7% or less each of tungsten, tantalum, manganese, copper, and cobalt; 5% or less each of chromium, vanadium, titanium, germanium, gallium, indium, and thallium; each of aluminum, silicon, zirconium, hafnium, rare earth elements, and platinum metal elements 3% or less, beryllium, tin,
A total amount of 0.01 to 7% of one or more types of antimony (2% or less) and boron (1% or less) are added and sufficiently stirred to produce a compositionally uniform molten alloy. Next, an appropriate amount of nitrogen is added to the molten alloy by injecting gases such as N 2 and N 3 H into the furnace to adjust the pressure, or by adding an appropriate amount of nitride as an alloy component. Thereafter, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then subjected to forming processes such as hot forging and cold rolling at high temperatures to obtain the desired shape, such as thickness. Build a thin plate with a thickness of 0.1mm. Next, punch out a piece of the desired shape and size from the thin plate, and heat it in hydrogen, other suitable non-oxidizing atmosphere, or vacuum at a temperature higher than the recrystallization temperature, that is, about 600℃ or higher, especially 800℃.
Heating for 1 minute or more at a temperature below the melting point, then at an appropriate rate depending on the composition, e.g. 100°C/sec.
Cool at 1°C/hour. Depending on the composition of the alloy, this may be further reheated to a temperature of approximately 600°C or below (temperature below the ordered lattice-irregular lattice transformation point), particularly 200 to 600°C for 1 minute or more, and then cooled to reduce the saturation magnetic flux. A high permeability magnetic alloy with a density of 5000G or more and excellent wear resistance can be obtained. Cooling from the above solution temperature to a temperature above the ordered-irregular lattice transformation point (approximately 600°C) shows that there is no significant difference in the magnetic properties obtained whether the cooling is rapid or gradual; The following cooling rates have a significant effect on magnetism. In other words, from the temperature above this transformation point
By cooling to room temperature at an appropriate rate corresponding to the composition of 100° C./sec to 1° C./hour, the regularity of the ground can be appropriately adjusted and excellent magnetism can be obtained. If the material is rapidly cooled at a rate close to 100° C./second among the above cooling rates, the degree of order decreases, and if it is cooled any faster, the degree of order does not proceed, and the degree of order decreases further, resulting in deterioration of magnetism. However, when an alloy with a low degree of order is reheated to 200 to 600 degrees Celsius, below its transformation point, and cooled, ordering progresses and the degree of order becomes moderate, improving magnetism. On the other hand, if it is slowly cooled from a temperature above the above-mentioned transformation point at a rate of, for example, 1° C./hour or less, ordering will proceed too much and the magnetism will decrease. Next, examples of the present invention will be described. Example 1 Alloy number 13 (composition Ni=80.3%, Nb=5.0%, N
= 0.010%, remainder Fe) To prepare the sample, first, a total weight of 800 g was placed in an alumina crucible, melted in a high frequency induction furnace in a vacuum, and then thoroughly stirred to form a homogeneous molten alloy. Next, nitrogen gas was injected into the furnace, the pressure was adjusted to 1 × 10 -1 Torr, and the pressure was maintained for 10 minutes. This was then injected into a mold with holes of 25 mm in diameter and 170 mm in height, and the resulting ingot was It was forged at 1000℃ into a plate approximately 7mm thick. Further, it is hot-rolled to a thickness of 1 mm between approximately 600 and 900°C, then cold-rolled at room temperature to form a thin plate of 0.1 mm. Then, an annular plate with an outer diameter of 45 mm and an inner diameter of 33 mm and the core of the magnetic head are punched out. Ta. Next, these were subjected to various heat treatments shown in Table 1, and the annular plate was used to check the magnetic properties and hardness, and the core was used to manufacture a magnetic head. The amount of wear after running was measured and the results shown in Table 1 were obtained.

【衚】 実斜䟋  合金番号74組成Ni79.8Nb7.0Mn
2.50.013残郚Fe 詊料を造るにはたずニツケル鉄ニオブの
780をアルミナ坩堝に入れ、真空䞭で高呚波誘
導電気炉によ぀お溶かし、぀いで炉内にアルゎン
ガスを充填した埌マンガン―窒玠合金窒玠
含有20を添加し、よく撹拌しお均質な溶融合
金ずした。その埌の補造工皋は実斜䟋ず同じで
ある。詊料に皮々の熱凊理を斜しお第衚に瀺す
ような特性が埗られた。
[Table] Example 2 Alloy number 74 (composition Ni=79.8%, Nb=7.0%, Mn
= 2.5%, N = 0.013%, balance Fe) To make the sample, first nickel, iron, and niobium were used.
780g was placed in an alumina crucible and melted in a high-frequency induction electric furnace in a vacuum. After filling the furnace with argon gas, a manganese-nitrogen alloy (8% nitrogen) was melted.
(containing) was added and stirred well to obtain a homogeneous molten alloy. The subsequent manufacturing steps are the same as in Example 1. The samples were subjected to various heat treatments and the properties shown in Table 2 were obtained.

【衚】 ぀ぎに第衚には1150℃の氎玠䞭で時間加熱
した埌、600℃から皮々な速床で垞枩たで冷华す
るか、あるいはこれをさらに600℃以䞋の枩床で
再加熱しお、垞枩で枬定された代衚的な合金の諞
特性が瀺しおある。
[Table] Next, Table 3 shows that after heating in hydrogen at 1150°C for 2 hours, cooling from 600°C to room temperature at various rates, or further heating at a temperature below 600°C, The properties of representative alloys measured at room temperature are shown.

【衚】【table】

【衚】 ぀ぎに本発明合金の窒玠添加効果に぀いお図面
によ぀お詳现に述べる。第図には80.3Ni―
Fe―Nb―合金に぀いお量ず飜和磁束密
床実効透磁率硬床および摩耗量ずの関係が瀺
しおある。䞀般に窒玠量の増加ずずもに硬床は著
しく増倧し、同時に摩耗量は著しく枛少するが、
特に窒玠の埮量添加で極めおその効果が倧きい。 たた、䞀般に窒玠の添加は磁気蚘録再生ヘツド
を䜜動させる亀流磁界、特に高呚波磁界においお
実効透磁率を高める効果が倧きい。しかし窒玠が
0.3以䞊では鍛造加工が困難ずなり、たた磁
気特性も磁気ヘツド甚磁性合金ずしお䞍適圓にな
るこずがわかる。 第図は80.3Ni―Fe―Nb合金ず窒玠を0.010
含んだ80.3Ni―Fe―Nb―0.010合金に
぀いお、ニオブ量ず硬床および摩耗量ずの関係を
瀺したもので、ニオブ量の増加ずずもに窒玠添加
の効果が著しく増倧するこずがわかる。 第図はNo.1380.3Ni―Fe―5.0Nb―0.01
、No.3679.6Ni―Fe―6.3Nb―0.003
―2.0Mo、No.6074.5Ni―Fe―3.0Nb―
0.009―5.0TaおよびNo.12881.5Ni―
Fe―3.5Nb―0.013―3.0Crの各合金を
1150℃においお加熱した埌400℃時の速床で冷
华したずきの加熱時間ず実効透磁率ずの関係を瀺
したもので、各合金にはそれぞれ最適な加熱時間
が存圚するこずがわかる。第図はNo.13No.36
No.60及びNo.128の各合金を1150℃においお適圓時
間加熱した埌芏則―䞍芏則栌子倉態点以䞊の枩床
から冷华したずきの冷华速床ず実効透磁率ずの関
係を瀺したもので、各合金にはそれぞれ最適な冷
华速床が存圚するこずがわかる。第図はNo.13
No.36No.60及びNo.128の各合金を1150℃においお
適圓時間加熱した埌芏則―䞍芏則栌子倉態点以䞊
の枩床から400℃時の速床で冷华し、さらに芏
則―䞍芏則栌子倉態点以䞋の適圓な枩床で再加熱
したずきの再加熱時間ず実効透磁率ずの関係を瀺
したもので、各合金にはそれぞれ最適な再加熱枩
床および再加熱時間が存圚するこずがわかる。 本発明合金のこのような高い硬床および耐摩耗
性の向䞊はニオブの効果により、Ni―Fe合金の
地が固溶䜓硬化するが、これに窒玠を添加するず
栌子間に窒玠原子が䟵入しお地をさらに硬化する
ずずもに、匷固なニオブ系窒化物その他ニツケル
系鉄系窒化物などが地に埮现に析出しお、さら
に硬化が進むものず考えられる。たた、これらの
窒化物の埮现な析出は磁区を分割しお磁壁を増加
させるので、亀流磁界における磁壁の移動速床を
盞察的に枛少させ、そのため枊電流損倱が小さく
なり、倧きな実効透磁率が埗られるものず考えら
れる。 さらに副成分ずしお添加するMoTa
MnCuCoCrTiGeGaInTl
AlSiZrHf垌土類元玠癜金族元玠
BeSnSbおよび等は本発明合金の比電気抵
抗を高める効果があり、たたCoは飜和磁束密床
を高めるのに有効であり、さらにTa
TiGeGaInTlAlSiZrHf垌土類
元玠癜金族元玠BeSnSbおよび等は本
発明合金の耐摩耗性を改善する効果が倧きい。た
たこれらの副成分も窒化物を生成し、䞊蚘のよう
に実効透磁率および耐摩耗性を改善する。 本発明合金は飜和磁束密床が5000G以䞊である
ので、磁気ヘツド甚磁性合金ずしお奜適であるば
かりでなく、実効透磁率が倧きく、硬床が高く、
耐摩耗性がすぐれ、䞔぀加工性が良奜なので
VTRおよび電子蚈算機の磁気蚘録再生ヘツドな
らびに普通の電気機噚などに甚いる磁性材料ずし
おも非垞に奜適である。 次に本発明においお合金の組成をニツケル70〜
86、ニオブ0.5〜10、窒玠0.0003〜0.3およ
び残郚鉄ず限定し、たたこれに添加する元玠をモ
リブデンタングステンタンタルマンガン
銅コバルトのそれぞれ以䞋、クロムバナ
ゞりムチタンゲルマニりムガリりムむン
ゞりムタリりムのそれぞれ以䞋、アルミニ
りムケむ玠ゞルコニりムハフニりム垌土
類元玠癜金族元玠のそれぞれ以䞋、ベリリ
りム錫アンチモンのそれぞれ以䞋、ホり
玠の以䞋の皮たたは皮以䞊の合蚈0.01〜
ず限定した理由は、実斜䟋第衚第図およ
び第図で明らかなように、その組成範囲の飜和
磁束密床は5000G以䞊で、実効透磁率および硬床
が高く耐摩耗性にすぐれ、䞔぀加工性も良奜であ
るが、組成がこの範囲をはずれるず、飜和磁束密
床が5000G以䞋ずなり、実効透磁率および硬床が
䜎く摩耗が倧きくなり、か぀加工が困難ずなり、
磁気蚘録再生ヘツドの材料ずしお䞍適圓ずなるか
らである。すなわち、ニオブが0.5以䞋および
窒玠が0.0003未満では添加効果が小さく、ニオ
ブが10を越えるず飜和磁束密床が5000G以䞋ず
なり、たた窒玠が0.3を越えるず鍛造加工が困
難ずなる。そしおこれに副成分ずしおモリブデン
、タングステン、マンガン、銅
、クロム、バナゞりム、チタン、
ゲルマニりム、ガリりム、むンゞりム
、タリりム、アルミニりム、ケむ玠
、ハフニりム、垌土類元玠、癜金族元
玠のそれぞれを越え添加するず飜和磁束密床
が5000G以䞋ずなるからであり、ベリリりム
、錫、アンチモン、ホり玠のそれ
ぞれを越えお添加するず鍛造あるいは加工が困難
ずなるからであり、Coをを越え添加するず
実効透磁率が小さくなるからである。 なお、第衚より明らかなように、Ni―Fe―
Nb―系合金に副成分の䜕れかを入れるず実効
透磁率は倧きくなり、たた、硬床も高くなり、耐
摩耗性が改善されるのでこれらの副成分の添加は
同䞀効果であり、同効成分ず芋做し埗る。たた垌
土類元玠はスカンゞりムむツトリりムおよびラ
ンタン系元玠からなるものであるが、その効果は
党く同䞀であり、癜金族元玠は癜金むリゞり
ムルテニりムロゞりムパラゞりムオスミ
りムからなるが、その効果も党く同䞀である。 なお、炭玠および酞玠は硬床を高め耐摩耗性を
改善するので、加工性および磁気特性を損なわな
い皋床のそれぞれ0.1添加たでは有効であり、
本発明合金に含有されおも差支えない。
[Table] Next, the effect of adding nitrogen to the alloy of the present invention will be described in detail with reference to the drawings. Figure 1 shows 80.3%Ni-
The relationship between the amount of N, saturation magnetic flux density, effective magnetic permeability, hardness, and amount of wear is shown for the Fe-5%Nb-N alloy. Generally, as the amount of nitrogen increases, the hardness increases significantly, and at the same time the amount of wear decreases significantly.
In particular, the effect of adding a small amount of nitrogen is extremely large. Further, in general, the addition of nitrogen has a great effect of increasing the effective magnetic permeability in an alternating magnetic field that operates a magnetic recording/reproducing head, especially in a high frequency magnetic field. But nitrogen
It can be seen that if the content exceeds 0.3%, forging and processing become difficult, and the magnetic properties become unsuitable as a magnetic alloy for magnetic heads. Figure 2 shows 80.3%Ni-Fe-Nb alloy and nitrogen at 0.010%
This graph shows the relationship between the amount of niobium, hardness, and wear amount for the 80.3%Ni-Fe-Nb%-0.010%N alloy, which shows that the effect of nitrogen addition increases significantly as the amount of niobium increases. . Figure 3 shows No. 13 (80.3%Ni-Fe-5.0%Nb-0.01
%N), No.36 (79.6%Ni-Fe-6.3%Nb-0.003%
N-2.0%Mo), No.60 (74.5%Ni-Fe-3.0%Nb-
0.009%N-5.0%Ta) and No.128 (81.5%Ni-
Fe-3.5%Nb-0.013%N-3.0%Cr) alloys
This graph shows the relationship between heating time and effective magnetic permeability when heated at 1150°C and then cooled at a rate of 400°C/hour, showing that each alloy has its own optimal heating time. Figure 4 shows No.13, No.36,
This graph shows the relationship between the cooling rate and effective magnetic permeability when each alloy No. 60 and No. 128 is heated at 1150℃ for an appropriate time and then cooled from a temperature above the regular-irregular lattice transformation point. It can be seen that each alloy has its own optimal cooling rate. Figure 5 is No. 13,
After heating the alloys No. 36, No. 60 and No. 128 at 1150℃ for an appropriate time, they were cooled at a rate of 400℃/hour from a temperature above the ordered-irregular lattice transformation point, and then the ordered-irregular lattice alloys were heated at a rate of 400℃/hour. This shows the relationship between reheating time and effective magnetic permeability when reheated at an appropriate temperature below the transformation point, and it can be seen that each alloy has its own optimal reheating temperature and reheating time. Such high hardness and improved wear resistance of the alloy of the present invention are due to the effect of niobium, which causes solid solution hardening of the base of the Ni-Fe alloy, but when nitrogen is added to this, nitrogen atoms enter between the lattices and harden the base. It is thought that as it hardens further, strong niobium-based nitrides, nickel-based nitrides, iron-based nitrides, etc. are finely precipitated on the ground, causing further hardening. In addition, these fine nitride precipitations divide the magnetic domain and increase the domain wall, which relatively reduces the movement speed of the domain wall in an alternating magnetic field, which reduces eddy current loss and provides a large effective magnetic permeability. It is considered that the Furthermore, Mo, W, Ta, added as subcomponents,
Mn, Cu, Co, Cr, V, Ti, Ge, Ga, In, Tl,
Al, Si, Zr, Hf, rare earth elements, platinum group elements,
Be, Sn, Sb, B, etc. have the effect of increasing the specific electrical resistance of the alloy of the present invention, Co is effective in increasing the saturation magnetic flux density, and W, Ta, V,
Ti, Ge, Ga, In, Tl, Al, Si, Zr, Hf, rare earth elements, platinum group elements, Be, Sn, Sb, B, and the like are highly effective in improving the wear resistance of the alloy of the present invention. These subcomponents also form nitrides, which improve the effective permeability and wear resistance as described above. Since the alloy of the present invention has a saturation magnetic flux density of 5000G or more, it is not only suitable as a magnetic alloy for magnetic heads, but also has a large effective magnetic permeability, high hardness,
It has excellent wear resistance and good workability.
It is also very suitable as a magnetic material for use in magnetic recording/reproducing heads for VTRs and computers, as well as ordinary electrical equipment. Next, in the present invention, the composition of the alloy is changed from Nickel 70 to
86%, niobium 0.5-10%, nitrogen 0.0003-0.3%, and the balance iron, and the elements added to this are molybdenum, tungsten, tantalum, manganese,
7% or less each of copper and cobalt, 5% or less each of chromium, vanadium, titanium, germanium, gallium, indium, and thallium, 3% or less each of aluminum, silicon, zirconium, hafnium, rare earth elements, and platinum group elements, beryllium, 2% or less each of tin and antimony, and 2% or less of boron, total of 0.01 or more
The reason for limiting it to 7% is that, as is clear from Figures 1 and 2 of Table 3 of Examples, the saturation magnetic flux density in that composition range is 5000G or more, the effective magnetic permeability and hardness are high, and the wear resistance is excellent. , and has good workability, but if the composition is outside this range, the saturation magnetic flux density will be less than 5000G, the effective magnetic permeability and hardness will be low, wear will be large, and machining will be difficult.
This is because it is unsuitable as a material for magnetic recording/reproducing heads. That is, when niobium is less than 0.5% and nitrogen is less than 0.0003%, the effect of addition is small, when niobium exceeds 10%, the saturation magnetic flux density becomes 5000G or less, and when nitrogen exceeds 0.3%, forging becomes difficult. In addition to this, the subcomponents are 7% molybdenum, 7% tungsten, 7% manganese, and 7% copper.
%, chromium 5%, vanadium 5%, titanium 5%,
Germanium 5%, gallium 5%, indium 5
%, thallium 5%, aluminum 3%, silicon 3
%, hafnium 3%, rare earth elements 3%, and platinum group elements 3%.
This is because adding more than 2% Co, 2% tin, 2% antimony, and 1% boron makes forging or processing difficult, and adding more than 7% Co reduces the effective magnetic permeability. Furthermore, as is clear from Table 3, Ni―Fe―
Adding any of the subcomponents to the Nb-N alloy increases the effective magnetic permeability, increases the hardness, and improves the wear resistance, so the addition of these subcomponents has the same effect. It can be considered as an ingredient. Rare earth elements consist of scandium, yttrium, and lanthanum-based elements, but their effects are exactly the same; platinum group elements consist of platinum, iridium, ruthenium, rhodium, palladium, and osmium, and their effects are exactly the same. It is. Note that carbon and oxygen increase hardness and improve wear resistance, so it is effective to add up to 0.1% of each without impairing workability and magnetic properties.
It may be contained in the alloy of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は80.3Ni―Fe―Nb―合金の窒
玠量ず実効透磁率飜和磁束密床硬床および摩
耗量ずの関係を瀺す特性図、第図は80.3Ni―
Fe―Nb合金および80.3Ni―Fe―Nb―0.010
合金のニオブ量ず硬床および摩耗量ずの関係を
瀺す特性図、第図はNo.13No.36No.60およびNo.
128の各合金を1150℃においお加熱した埌400℃
時の速床で冷华したずきの加熱時間ず実効透磁率
ずの関係を瀺す特性図、第図はNo.13No.36No.
60およびNo.128の各合金を1150℃においお適圓時
間加熱した埌芏則―䞍芏則栌子倉態点以䞊の枩床
から冷华したずきの冷华速床ず実効透磁率ずの関
係を瀺す特性図、第図はNo.13No.36No.60およ
びNo.128の各合金を1150℃においお適圓時間加熱
した埌芏則―䞍芏則栌子倉態点以䞊の枩床から
400℃時の速床で冷华し、さらに芏則―䞍芏則
栌子倉態点以䞋の適圓な枩床で再加熱したずきの
再加熱時間ず実効透磁率ずの関係を瀺した特性図
である。
Figure 1 is a characteristic diagram showing the relationship between nitrogen content, effective magnetic permeability, saturation magnetic flux density, hardness, and wear amount of 80.3%Ni-Fe-5%Nb-N alloy, and Figure 2 is a characteristic diagram showing the relationship between nitrogen content and effective magnetic permeability, saturation magnetic flux density, hardness, and wear amount of 80.3%Ni-Fe-5%Nb-N alloy.
Fe-Nb alloy and 80.3%Ni-Fe-Nb-0.010%
A characteristic diagram showing the relationship between the amount of niobium, hardness, and wear amount of N alloys. Figure 3 shows No. 13, No. 36, No. 60, and No. 3.
After heating each alloy of 128 at 1150℃, 400℃/
Figure 4 is a characteristic diagram showing the relationship between heating time and effective magnetic permeability when cooling at the same speed as No. 13, No. 36, and No. 36.
Figure 5 is a characteristic diagram showing the relationship between cooling rate and effective permeability when alloys No. 60 and No. 128 are heated at 1150°C for an appropriate time and then cooled from a temperature above the regular-irregular lattice transformation point. After heating No. 13, No. 36, No. 60 and No. 128 alloys at 1150℃ for an appropriate time,
FIG. 2 is a characteristic diagram showing the relationship between reheating time and effective magnetic permeability when cooled at a rate of 400° C./hour and then reheated at an appropriate temperature below the regular-irregular lattice transformation point.

Claims (1)

【特蚱請求の範囲】  重量比におニツケル70〜86、ニオブ0.5〜
10、窒玠0.0003〜0.3、少量の䞍玔物ず残郚
鉄からなり、飜和磁束密床5000G以䞊を有するこ
ずを特城ずする磁気蚘録再生ヘツド甚耐摩耗性高
透磁率合金。  重量比におニツケル70〜86、ニオブ0.5〜
10、窒玠0.0003〜0.3、少量の䞍玔物ず残郚
鉄ずを䞻成分ずし、副成分ずしおモリブデンタ
ングステンタンタルマンガン銅コバルト
のそれぞれ以䞋、クロムバナゞりムチタ
ンゲルマニりムガリりムむンゞりムタリ
りムのそれぞれ以䞋、アルミニりムケむ
玠ゞルコニりムハフニりム垌土類元玠癜
金族元玠のそれぞれ以䞋、ベリリりム錫
アンチモンのそれぞれ以䞋、ホり玠の以
䞋の皮たたは皮以䞊の合蚈0.01〜を含有
した合金より成り飜和磁束密床5000G以䞊を有す
るこずを特城ずする磁気蚘録再生ヘツド甚耐摩耗
性高透磁率合金。  重量比におニツケル70〜86、ニオブ0.5〜
10、窒玠0.0003〜0.3、少量の䞍玔物ず残郚
鉄からなる合金を600℃以䞊融点以䞋の枩床で非
酞化性雰囲気あるいは真空䞭においお、少なくず
も分間以䞊組成に察応した適圓時間加熱した
埌、芏則―䞍芏則栌子倉態点以䞊の枩床から100
℃秒〜℃時の組成に察応した適圓な速床で
垞枩たで冷华するこずを特城ずする磁気蚘録再生
ヘツド甚耐摩耗性高透磁率合金の補造法。  重量比におニツケル70〜86、ニオブ0.5〜
10、窒玠0.0003〜0.3、少量の䞍玔物ず残郚
鉄からなる合金を600℃以䞊融点以䞋の枩床で非
酞化性雰囲気あるいは真空䞭においお、少なくず
も分間以䞊100時間以䞋の組成に察応した適圓
時間加熱した埌、芏則―䞍芏則栌子倉態点以䞊の
枩床から100℃秒〜℃時の組成に察応した
適圓な速床で垞枩たで冷华し、これをさらに芏則
―䞍芏則栌子倉態点以䞋の枩床で非酞化性雰囲気
あるいは真空䞭においお、分間以䞊組成に察応
した適圓時間再加熱し、冷华するこずを特城ずす
る磁気蚘録再生ヘツド甚耐摩耗性高透磁率合金の
補造法。  重量比におニツケル70〜86、ニオブ0.5〜
10、窒玠0.0003〜0.3、少量の䞍玔物ず残郚
鉄ずを䞻成分ずし、副成分ずしおモリブデンタ
ングステンタンタルマンガン銅コバルト
のそれぞれ以䞋、クロムバナゞりムチタ
ンゲルマニりムガリりムむンゞりムタリ
りムのそれぞれ以䞋、アルミニりムケむ
玠ゞルコニりムハフニりム垌土類元玠癜
金族元玠のそれぞれ以䞋、ベリリりム錫
アンチモンホり玠のそれぞれ以䞋の皮た
たは皮以䞊の合蚈0.01〜を含有した合金を
600℃以䞊融点以䞋の枩床で非酞化性雰囲気ある
いは真空䞭においお、少なくずも分間以䞊組成
に察応した適圓時間加熱した埌、芏則―䞍芏則栌
子倉態点以䞊の枩床から100℃秒〜℃時の
組成に察応した適圓な速床で垞枩たで冷华するこ
ずを特城ずする磁気蚘録再生ヘツド甚耐摩耗性高
透磁率合金の補造法。  重量比におニツケル70〜86、ニオブ0.5〜
10、窒玠0.0003〜0.3、少量の䞍玔物ず残郚
鉄ずを䞻成分ずし、副成分ずしおモリブデンタ
ングステンタンタルマンガン銅コバルト
のそれぞれ以䞋、クロムバナゞりムチタ
ンゲルマニりムガリりムむンゞりムタリ
りムのそれぞれ以䞋、アルミニりムケむ
玠ゞルコニりムハフニりム垌土類元玠癜
金属元玠のそれぞれ以䞋、ベリリりム錫
アンチモンのそれぞれ以䞋、ホり玠の以
䞋の皮たたは皮以䞊の合蚈0.01〜を含有
した合金を600℃以䞊融点以䞋の枩床で非酞化性
雰囲気あるいは真空䞭においお、少なくずも分
間以䞊100時間以䞋の組成に察応した適圓時間加
熱した埌、芏則―䞍芏則栌子倉態点以䞊の枩床か
ら100℃秒〜℃時の組成に察応した適圓な
速床で垞枩たで冷华し、これをさらに芏則―䞍芏
則栌子倉態点以䞋の枩床で非酞化性雰囲気あるい
は真空䞭においお、分間以䞊組成に察応した適
圓時間再加熱し、冷华するこずを特城ずする磁気
蚘録再生ヘツド甚耐摩耗性高透磁率合金の補造
法。  重量比におニツケル70〜86、ニオブ0.5〜
10、窒玠0.0003〜0.3、少量の䞍玔物ず残郚
鉄からなり、飜和磁束密床5000G以䞊を有する合
金より成るこずを特城ずする磁気蚘録再生ヘツ
ド。  重量比におニツケル70〜86、ニオブ0.5〜
10、窒玠0.0003〜0.3、少量の䞍玔物ず残郚
鉄ずを䞻成分ずし、副成分ずしおモリブデンタ
ングステンタンタルマンガン銅コバルト
のそれぞれ以䞋、クロムバナゞりムチタ
ンゲルマニりムガリりムむンゞりムタリ
りムのそれぞれ以䞋、アルミニりムケむ
玠ゞルコニりムハフニりム垌土類元玠癜
金族元玠のそれぞれ以䞋、ベリリりム錫
アンチモンのそれぞれ以䞋、ホり玠の以
䞋の皮たたは皮以䞊の合蚈0.01〜を含有
した合金より成るこずを特城ずする磁気蚘録再生
ヘツド。
[Claims] 1. Nickel 70-86%, niobium 0.5-0.5% by weight
10% nitrogen, 0.0003 to 0.3% nitrogen, a small amount of impurities, and the balance iron, and is characterized by having a saturation magnetic flux density of 5000G or more. 2 Nickel 70~86%, niobium 0.5~
10%, nitrogen 0.0003 to 0.3%, a small amount of impurities and the balance iron as the main components, and minor components of molybdenum, tungsten, tantalum, manganese, copper, cobalt each of up to 7%, chromium, vanadium, titanium, germanium, gallium. , 5% or less each of indium, thallium, 3% or less each of aluminum, silicon, zirconium, hafnium, rare earth elements, platinum group elements, beryllium, tin,
A wear-resistant material for a magnetic recording/reproducing head characterized by being made of an alloy containing 0.01 to 7% of one or more types, each containing 2% or less of antimony and 1% or less of boron, and having a saturation magnetic flux density of 5000G or more. High magnetic permeability alloy. 3 Nickel 70~86%, niobium 0.5~ by weight
After heating an alloy consisting of 10% nitrogen, 0.0003 to 0.3% nitrogen, a small amount of impurities, and the balance iron in a non-oxidizing atmosphere or in a vacuum at a temperature of 600°C or higher and lower than the melting point for at least 1 minute or more depending on the composition, Rule - 100 from temperature above irregular lattice transformation point
A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, which comprises cooling to room temperature at an appropriate rate corresponding to the composition of the alloy. 4 Nickel 70~86%, niobium 0.5~ by weight
An alloy consisting of 10% nitrogen, 0.0003 to 0.3% nitrogen, a small amount of impurities, and the balance iron is heated in a non-oxidizing atmosphere or in vacuum at a temperature above 600°C and below the melting point for an appropriate time corresponding to the composition for at least 1 minute and up to 100 hours. After heating, it is cooled from a temperature above the ordered-disordered lattice transformation point to room temperature at an appropriate rate corresponding to the composition of 100°C/sec to 1°C/hour, and then cooled to room temperature at a temperature below the ordered-disordered lattice transformation point. 1. A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, which comprises reheating at a temperature in a non-oxidizing atmosphere or in a vacuum for at least one minute for an appropriate time corresponding to the composition, and cooling. 5 Nickel 70-86%, Niobium 0.5-0.5% by weight
10%, nitrogen 0.0003 to 0.3%, a small amount of impurities and the balance iron as the main components, and minor components of molybdenum, tungsten, tantalum, manganese, copper, cobalt each of up to 7%, chromium, vanadium, titanium, germanium, gallium. , 5% or less each of indium, thallium, 3% or less each of aluminum, silicon, zirconium, hafnium, rare earth elements, platinum group elements, beryllium, tin,
An alloy containing 0.01 to 7% of one or more of antimony and boron, each of which is 2% or less.
After heating in a non-oxidizing atmosphere or vacuum at a temperature of 600℃ or higher and lower than the melting point for at least 1 minute or more for an appropriate time depending on the composition, it is heated at a temperature of 100℃/second to 1℃/second from the regular-irregular lattice transformation point or higher. A method for producing a wear-resistant high permeability alloy for magnetic recording/reproducing heads, which is characterized by cooling to room temperature at an appropriate rate corresponding to the composition at the time. 6 Nickel 70~86%, niobium 0.5~ by weight
10%, nitrogen 0.0003 to 0.3%, a small amount of impurities and the balance iron as the main components, and minor components of molybdenum, tungsten, tantalum, manganese, copper, cobalt each of up to 7%, chromium, vanadium, titanium, germanium, gallium. , 5% or less each of indium, thallium, 3% or less each of aluminum, silicon, zirconium, hafnium, rare earth elements, white metal elements, beryllium, tin,
An alloy containing a total of 0.01 to 7% of one or more types, each containing 2% or less of antimony and 1% or less of boron, is heated for at least 1 minute in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or higher and lower than the melting point. After heating for an appropriate time corresponding to the composition (100 hours or less), cooling from a temperature above the ordered-disorder lattice transformation point to room temperature at an appropriate rate corresponding to the composition between 100℃/sec and 1℃/hour. Wear resistance for magnetic recording and reproducing heads is further characterized by reheating the head at a temperature below the ordered-disorder lattice transformation point in a non-oxidizing atmosphere or in vacuum for at least 1 minute for an appropriate time corresponding to the composition, and cooling. Manufacturing method for high permeability alloys. 7 Nickel 70~86%, niobium 0.5~
1. A magnetic recording/reproducing head comprising an alloy comprising 10% nitrogen, 0.0003 to 0.3% nitrogen, a small amount of impurities, and the balance iron, and has a saturation magnetic flux density of 5000G or more. 8 Nickel 70~86%, niobium 0.5~ by weight
10%, nitrogen 0.0003 to 0.3%, a small amount of impurities and the balance iron as the main components, and minor components of molybdenum, tungsten, tantalum, manganese, copper, cobalt each of up to 7%, chromium, vanadium, titanium, germanium, gallium. , 5% or less each of indium, thallium, 3% or less each of aluminum, silicon, zirconium, hafnium, rare earth elements, platinum group elements, beryllium, tin,
1. A magnetic recording/reproducing head comprising an alloy containing 0.01 to 7% of one or more types, each containing 2% or less of antimony and 1% or less of boron.
JP56139766A 1981-09-07 1981-09-07 Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head Granted JPS5842741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56139766A JPS5842741A (en) 1981-09-07 1981-09-07 Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56139766A JPS5842741A (en) 1981-09-07 1981-09-07 Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Publications (2)

Publication Number Publication Date
JPS5842741A JPS5842741A (en) 1983-03-12
JPS625972B2 true JPS625972B2 (en) 1987-02-07

Family

ID=15252891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56139766A Granted JPS5842741A (en) 1981-09-07 1981-09-07 Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Country Status (1)

Country Link
JP (1) JPS5842741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297583U (en) * 1989-01-19 1990-08-03

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194051A (en) * 1984-03-15 1985-10-02 Daido Steel Co Ltd Heat treatment of magnetic alloy
JPS61174349A (en) * 1985-01-30 1986-08-06 Res Inst Electric Magnetic Alloys Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head
JPS61260420A (en) * 1985-05-15 1986-11-18 Hitachi Ltd Magnetic recording body
JPS63149361A (en) * 1986-12-11 1988-06-22 Nippon Yakin Kogyo Co Ltd Manufacture of iron-nickel alloy
JP2540374Y2 (en) * 1992-02-06 1997-07-02 株匏䌚瀟ニむクラ Free album
JP2777319B2 (en) * 1993-07-30 1998-07-16 財団法人電気磁気材料研究所 Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JP3294029B2 (en) * 1994-11-16 2002-06-17 財団法人電気磁気材料研究所 Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JP6509290B2 (en) * 2017-09-08 2019-05-08 䞉菱日立パワヌシステムズ株匏䌚瀟 Cobalt-based alloy laminate shaped body, cobalt-based alloy product, and method for producing them
EP3725903B1 (en) 2019-03-07 2023-02-22 Mitsubishi Heavy Industries, Ltd. Cobalt-based alloy product
WO2020179083A1 (en) 2019-03-07 2020-09-10 䞉菱日立パワヌシステムズ株匏䌚瀟 Cobalt-based alloy product and method for producing same
WO2020179082A1 (en) 2019-03-07 2020-09-10 䞉菱日立パワヌシステムズ株匏䌚瀟 Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body
CN111918975B (en) 2019-03-07 2022-05-17 䞉菱重工䞚株匏䌚瀟 Heat exchanger
KR102422684B1 (en) 2019-03-07 2022-07-20 믞잠비시 파워 가부시킀가읎샀 Cobalt-Based Alloy Articles, Methods of Making the Products, and Cobalt-Based Alloy Articles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297583U (en) * 1989-01-19 1990-08-03

Also Published As

Publication number Publication date
JPS5842741A (en) 1983-03-12

Similar Documents

Publication Publication Date Title
US4830685A (en) Wear-resistant alloy of high permeability and method of producing the same
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JPH06322472A (en) Production of fe base soft magnetic alloy
JPS625972B2 (en)
JPS6133900B2 (en)
JPH0158261B2 (en)
US5725687A (en) Wear-resistant high permability alloy and method of manufacturing the same and magnetic recording and reproducing head
JPS6212296B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPS6218619B2 (en)
JPH0368107B2 (en)
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0310699B2 (en)
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPH032216B2 (en)
JPH0310700B2 (en)
JPH0377644B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0645839B2 (en) Abrasion resistance high magnetic permeability magnetic recording / reproducing head
JPS58177434A (en) Wear resistant magnetic alloy of high magnetic permeability