JPS5947017B2 - Magnetic alloy for magnetic recording and playback heads and its manufacturing method - Google Patents

Magnetic alloy for magnetic recording and playback heads and its manufacturing method

Info

Publication number
JPS5947017B2
JPS5947017B2 JP56008580A JP858081A JPS5947017B2 JP S5947017 B2 JPS5947017 B2 JP S5947017B2 JP 56008580 A JP56008580 A JP 56008580A JP 858081 A JP858081 A JP 858081A JP S5947017 B2 JPS5947017 B2 JP S5947017B2
Authority
JP
Japan
Prior art keywords
less
niobium
magnetic
alloy
hafnium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56008580A
Other languages
Japanese (ja)
Other versions
JPS57123947A (en
Inventor
量 増本
雄悦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP56008580A priority Critical patent/JPS5947017B2/en
Publication of JPS57123947A publication Critical patent/JPS57123947A/en
Publication of JPS5947017B2 publication Critical patent/JPS5947017B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明はニツケル70〜86%、ニオプ1%をこえ14
%以下、ハフニウム0.001〜 5qb)少量の不純
物と残部鉄からなる高透磁率磁性合金または生成分とし
てニツケル7 0〜86%、ニオブ1%をこえ14%以
下、ハフニウム0.001〜 5%、副成分としてモリ
ブデン8%以下、クロム7%以下、タングステン10%
以下、チタン7%以下、バナジウム7%以下、マンガン
10以下、ゲルマニウム7%以下、ジルコニウム5%以
下、希土類元素5%以下、タンタル10以下、ベリリウ
ム3%以下、ホウ素1%以下、アルミニウム5%以下、
ケイ素5%以下、錫5%以下、アンチモン5%以下、コ
バルト10%以下および銅10%以下の1種あるいは2
種以上の合計0.0.1〜15%、少量の不純物と残部
鉄からなる高透磁率磁性合金に関するものであつて、そ
の目的とするところは、透磁率および硬度が大きく、か
つ鍛造、加工が容易な磁気録音再生へツド用の磁性合金
る得るにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention has 70 to 86% nickel and more than 1% niopium.
% or less, hafnium 0.001 to 5 qb) High permeability magnetic alloy consisting of a small amount of impurities and the balance iron, or as a generated component Nickel 7 0 to 86%, more than 1% niobium and less than 14%, hafnium 0.001 to 5% , molybdenum 8% or less, chromium 7% or less, tungsten 10% as subcomponents.
The following: titanium 7% or less, vanadium 7% or less, manganese 10 or less, germanium 7% or less, zirconium 5% or less, rare earth elements 5% or less, tantalum 10 or less, beryllium 3% or less, boron 1% or less, aluminum 5% or less ,
One or two of silicon 5% or less, tin 5% or less, antimony 5% or less, cobalt 10% or less, and copper 10% or less
This relates to a high permeability magnetic alloy consisting of a total of 0.0.1 to 15% of iron, a small amount of impurities, and the balance iron. There is a magnetic alloy for easy magnetic recording and playback.

現在、オーデイオ用磁気録音再生ヘツドの磁性材料とし
ては、高透磁率を有し、成形加工が良好なパーマロイ(
Ni−Fe系合金)が一般に広く使用されているが、そ
の硬度がビツカース表示Qlv)で約110の如く低い
値のため、磁気テープの摺動による摩耗が激しく、これ
を改善することが重要な課題となつている。先に本発明
者らは特公昭47−29690号においてNi−Fe−
Nb合金が硬度が高く、耐摩耗性に優れた高透磁率合金
であることを開示した。
Currently, the magnetic material used for audio magnetic recording and playback heads is permalloy, which has high magnetic permeability and is easily molded.
Although Ni-Fe alloys (Ni-Fe alloys) are generally widely used, their hardness is as low as about 110 on the Vickers scale (Qlv), which causes severe wear due to the sliding of magnetic tapes, and it is important to improve this. This has become an issue. Previously, the present inventors published Ni-Fe-
It was disclosed that Nb alloy is a high magnetic permeability alloy with high hardness and excellent wear resistance.

その後引続き本発明者らはNi−Fe合金にニオブと同
時にハフニウムを添加したNi− Fe− Nb−Hf
合金について種々研究した結果、この合金はニォプとハ
フニウムの相乗的効果により硬度が高く耐摩耗性にすぐ
れ、磁気ヘツド用磁性合金として好適であることを見い
出した。さらに進んでNi−Fe−Nb−Hf合金にM
O.Cr.W.Ti.V.Mn,Ge.Zr)希土類元
素、Ta.Be,B.Al.Si.Sn,Sb,COお
よびCuのうちの1種あるいは2種以上の合計0.01
〜15%以下を添加して研究を行い、遂に高い透磁率を
有し、硬度が大きく、かつ鍛造加工の容易な合金を見い
出すことができた。即ち、本発明は重量比にてニツケル
70〜86%、ニオプ1%をこえ14%以下、ハフニウ
ム0.001〜 5%、少量の不純物と残部鉄から成る
か、または重量比にて主成分としてニツケル70〜86
%、ニオブ1%をこえ14%以下、ハフニウム0.00
1〜 5%、副成分としてモリブデン8%以丁、クロム
7%以下、タングステン10q17以下、チタン7%以
下、バナジウム7%以下、マンガン10%以下、ゲルマ
ニウム7%以下、ジルコニウム5%以下、希土類元素5
%以下、タンタル10%以下、ベリリウム3%以下、ホ
ウ素1%以下、アルミニウム5%以下、ケイ素5%以下
、錫5%以下、アンチモン5%以下、コバルト10%以
下および銅10%以下の1種あるいは2種以上.の合計
0.01〜15%、少量の不純物と残部鉄からな力、初
透磁率3000以上、最大透磁率5000以上でビツカ
ース硬度が130以上の高透磁率、高硬度で、かつ鍛造
、成形加工が容易で熱処理が簡単な磁気録音および再生
へツド等に使用し得る高透磁率磁性合金に係る。
Subsequently, the present inventors added hafnium to the Ni-Fe alloy at the same time as niobium.
As a result of various studies on the alloy, it was discovered that this alloy has high hardness and excellent wear resistance due to the synergistic effect of niobium and hafnium, and is suitable as a magnetic alloy for magnetic heads. Further, M
O. Cr. W. Ti. V. Mn, Ge. Zr) Rare earth element, Ta. Be, B. Al. Si. One or more of Sn, Sb, CO and Cu total 0.01
After conducting research with the addition of ~15% or less, we were finally able to find an alloy that has high magnetic permeability, high hardness, and is easy to forge. That is, the present invention consists of 70 to 86% nickel by weight, more than 1% to 14% niopium, 0.001 to 5% hafnium, a small amount of impurities and the balance iron, or as a main component by weight. Nickel 70-86
%, more than 1% niobium and less than 14%, hafnium 0.00
1 to 5%, as subcomponents molybdenum 8% or less, chromium 7% or less, tungsten 10q17 or less, titanium 7% or less, vanadium 7% or less, manganese 10% or less, germanium 7% or less, zirconium 5% or less, rare earth elements 5
% or less, tantalum 10% or less, beryllium 3% or less, boron 1% or less, aluminum 5% or less, silicon 5% or less, tin 5% or less, antimony 5% or less, cobalt 10% or less, and copper 10% or less. Or two or more types. A total of 0.01 to 15%, a small amount of impurities and the balance iron, the initial magnetic permeability is 3000 or more, the maximum permeability is 5000 or more, and the Vickers hardness is 130 or more. The present invention relates to a high permeability magnetic alloy that can be used for magnetic recording and playback heads, etc., which can be easily heat treated.

尚、本発明合金の更に好ましい組成範囲は次のようであ
る。
Further, a more preferable composition range of the alloy of the present invention is as follows.

即ち主成分としてニツケル73〜84.8%、ニオブ1
%をこえ10%以下、ハフニウム0.001〜 3%、
副成分としてモリブデン6%以下、クロム5%以下、タ
ングステン7%以下、チタン5%以下、バナジウム4C
$以下、マンガン7%以下、ゲルマニウム5%以下、ジ
ルコニウム3%以下、希土類元素3%以下、タンタル7
Q6以下、ベリリウム2%以下、ホウ素0.7%以下
、アルミニウム3%以下、ケイ素3%以下、錫3%以下
、アンチモン3%以下、コバルト7%以下および銅7%
以下の1種あるいは2種以上の合計0.01〜10%以
下、少量の不純物と残部鉄からなる合金は一層好適であ
る。上記組成の合金を再結晶温度以上、即ち600℃以
上、特に800℃以上融点以下の高温で非酸化性雰囲気
中あるいは真空中において少くとも1分間以上約100
時間以下の組成に対応した適当時間加熱し、高温で充分
に加工歪を除去し、かつ溶体化し、組織を均質化した後
、約600℃の規則−不規則格子変態点に近い温度まで
冷却し、ここで短時間保持し、組織各部が均一な温度に
なるのをまつて、上記変態点以上の温度よV)100℃
/秒〜1℃/時の組成に対応した適当な速度で常温まで
冷却するか、あるいはこれを更に規則一不規則格子変態
点(約600℃)以下の温度で1分間以上約100時間
以下の組成に対応した適当時間加熱し、冷却することに
よ虱高透磁率、高硬度の磁性合金を得ることができる。
That is, the main components are 73 to 84.8% nickel and 1 niobium.
% but less than 10%, hafnium 0.001 to 3%,
Minor components include molybdenum 6% or less, chromium 5% or less, tungsten 7% or less, titanium 5% or less, and vanadium 4C.
$ or less, manganese 7% or less, germanium 5% or less, zirconium 3% or less, rare earth elements 3% or less, tantalum 7
Q6 or less, beryllium 2% or less, boron 0.7% or less, aluminum 3% or less, silicon 3% or less, tin 3% or less, antimony 3% or less, cobalt 7% or less, and copper 7%
More preferred is an alloy consisting of one or more of the following, totaling 0.01 to 10% or less, with a small amount of impurities and the balance iron. The alloy having the above composition is heated at a high temperature above the recrystallization temperature, that is, above 600°C, especially above 800°C and below the melting point, in a non-oxidizing atmosphere or in vacuum for at least 1 minute or more.
After heating for an appropriate time corresponding to the composition at a high temperature to sufficiently remove processing strain and solutionizing to homogenize the structure, it is cooled to a temperature close to the regular-disorder lattice transformation point of approximately 600°C. , hold here for a short time until each part of the structure reaches a uniform temperature, and then increase the temperature to above the above transformation point (V) 100°C
/second to 1℃/hour to room temperature at an appropriate rate corresponding to the composition, or further cooled at a temperature below the ordered-disorder lattice transformation point (about 600℃) for 1 minute to about 100 hours. A magnetic alloy with high magnetic permeability and high hardness can be obtained by heating for an appropriate time depending on the composition and cooling.

上記の溶体化温度から規則一不規則格子変態点(約60
0℃)以上の温度までの冷却は、急冷しても徐冷しても
得られる磁性には大した変bはないが、この変態点以下
の冷却速度は磁性に大きな影響を及ぼす。
From the above solution temperature to the ordered-disorder lattice transformation point (approximately 60
Cooling to a temperature of 0° C.) or higher does not significantly change the magnetism obtained whether the cooling is rapid or slow, but the cooling rate below this transformation point has a large effect on the magnetism.

即ちこの変態点以上の温度より100℃/秒〜1℃/時
の組成に対応した適当な速度で常温迄冷却すると、一般
に規則度は約0.1〜0.6とな虱磁性は優秀である。
そして上記の冷却速度の内100℃/秒に近い速度で急
冷すると、規則度が0.1位にな力、これ以上早く冷却
すると規則化が進まず、規則度はさらに小さくなb磁性
は劣化する。しかしその規則度の小さい合金をその変態
点以下の200の〜600℃に再加熱し冷却すると、規
則化が進んで、規則度が0.1〜0.6とな力磁性は向
上する。他方、上記の変態点以上の温度から、例えば1
℃/時位の速度で徐冷すると、規則化は進みすぎ、規則
度が0.6位またはそれ以上となるために磁性は低下す
る。これを要するに、本発明の組成合金では600℃以
上、特に800℃以上融点以下の高温で充分溶体化し、
適当な速度で冷却し、規則度を0.1〜0.6の範囲の
適当な値とすると優秀な磁性が得られ、冷却が速すぎて
規則度が小さ過ぎるときは、さらに200〜600℃の
間の変態点以下の温度で再加熱すると規則度が調整され
磁性が著しく向上するのである。
That is, when cooled from a temperature above this transformation point to room temperature at an appropriate rate corresponding to the composition of 100°C/sec to 1°C/hour, the regularity is generally about 0.1 to 0.6, and the magnetism is excellent. be.
When rapidly cooled at a rate close to 100°C/sec among the above cooling rates, the degree of order decreases to around 0.1; if it is cooled any faster, order does not progress, and the degree of order decreases. b. Magnetism deteriorates. do. However, when an alloy with a low degree of order is reheated to a temperature of 200 to 600 degrees Celsius below its transformation point and cooled, ordering progresses and the degree of order becomes 0.1 to 0.6, which improves the magnetism. On the other hand, from the temperature above the above transformation point, for example 1
If it is slowly cooled at a rate of about 0.degree. C./hour, ordering will proceed too much and the degree of ordering will be about 0.6 or more, resulting in a decrease in magnetism. In short, the composition alloy of the present invention is sufficiently solutionized at a high temperature of 600°C or higher, particularly 800°C or higher and below the melting point,
Excellent magnetism can be obtained by cooling at an appropriate rate and setting the degree of order to an appropriate value in the range of 0.1 to 0.6. If the degree of order is too small due to cooling being too fast, cooling at an additional temperature of 200 to 600°C When reheated at a temperature below the transformation point between the two, the degree of order is adjusted and the magnetism is significantly improved.

また一般的には熱処理温度が高ければ熱処理時間は短く
、熱処理温度が低ければ熱処理時間を長くしなければな
らない。
Generally, the higher the heat treatment temperature, the shorter the heat treatment time, and the lower the heat treatment temperature, the longer the heat treatment time.

なお合金の質量が大きい場合は熱処理時間を長くし、質
量が小さい場合には熱処理時間を短くしてよいことは当
然である。本発明の各合金について最高の透磁率を得る
ための約600℃から常温までの冷却速度はその組成に
よつてかなり異なつているが、一般にその速度は小さく
炉中冷却程度の速度即ち徐冷が,応用上好都合である。
例えば磁気録音再生用ヘツピを製作する場合には、成形
加工後その加工歪を除去するための熱処理は、できるだ
け成品の形状を維持し、表面の酸化物の生成をさけるた
めに、非酸化性雰囲気中あるいは真空中で行うことが望
ましいので、徐冷して優秀な特性を現わす本発明合金は
これによく適している。次に本発明合金の製造法を工程
順に詳細に説明する。
It goes without saying that if the mass of the alloy is large, the heat treatment time may be lengthened, and if the mass is small, the heat treatment time may be shortened. The cooling rate from about 600°C to room temperature to obtain the highest magnetic permeability for each alloy of the present invention varies considerably depending on its composition, but in general, the cooling rate is small and comparable to cooling in a furnace, that is, slow cooling. , which is convenient for application.
For example, when manufacturing a magnetic recording/playback device, heat treatment to remove processing distortion after molding is carried out in a non-oxidizing atmosphere to maintain the shape of the product as much as possible and to avoid the formation of oxides on the surface. Since it is desirable to carry out the process in a medium or vacuum environment, the alloy of the present invention, which exhibits excellent properties when slowly cooled, is well suited for this purpose. Next, the method for manufacturing the alloy of the present invention will be explained in detail in the order of steps.

本発明の合金を造るには、まず主成分のニツケル70〜
86q1)、ニオブ1(fl)をこえ1401)以下、
・・フニウム0.001〜5(f)および残部鉄の適当
量を空気中好ましくは非酸化性雰囲気中あるいは真空中
において適当な溶解炉を用いて溶解した後、マンガン、
ケイ素、アルミニウム、チタン、ボロン、カルシウム合
金、マグネシウム合金その他の脱酸剤、脱硫剤を少量添
加してできるだけ不純物を取り除き、そのままか、更に
これにモリブデン8%以下、クロム7(f)以下、タン
グステン10%以下、チタン7(:f)以下、バナジウ
ム7%以下、マンガン10%以下、ゲルマニウム7(F
f)以下、ジルコン5(11)以下、希土類元素5(f
l)以下、タンタル10(f)以下、ベリリウム301
)以下、ホウ素1%以下、アルミニウム5%以下、ケイ
素5%以下、錫5%以下、アンチモン5%以下、コバル
ト10%以下および銅10%以下の1種あるいぱ2種以
上の合計0.01〜15(f)の定量を添加して充分に
攪拌し、組成的に均一な溶融合金を造る。
To make the alloy of the present invention, first the main component is Nickel 70~
86q1), beyond niobium 1 (fl) 1401) and below,
After melting an appropriate amount of 0.001 to 5 (f) of funium and the balance iron in an appropriate melting furnace in air, preferably in a non-oxidizing atmosphere or in vacuum, manganese,
Add a small amount of silicon, aluminum, titanium, boron, calcium alloy, magnesium alloy, and other deoxidizing agents and desulfurizing agents to remove as much impurity as possible, or add molybdenum 8% or less, chromium 7(f) or less, and tungsten to this. 10% or less, titanium 7 (:f) or less, vanadium 7% or less, manganese 10% or less, germanium 7 (F)
f) or less, zircon 5 (11) or less, rare earth elements 5 (f
l) Below, tantalum 10 (f) below, beryllium 301
) below, a total of 0. A fixed amount of 01 to 15(f) is added and thoroughly stirred to produce a compositionally uniform molten alloy.

次にこれを適当な形および大きさの鋳型に注入して健全
な鋳塊を得、さらにこれに常温あるいは高温において鍛
造あるいは熱間および冷間圧延などの成形加工を施して
目的の形状のもの、例えば厚さ0.3mmの薄板を造る
。次にその薄板から目的の形状、寸法のものを打抜き、
これを水素中、その他適当な非酸化性雰囲気中あるいは
真空中で再結晶温度以上すなわち約600℃以上、特に
800℃以上融点以下の温度に1分間以上約100時間
以下加熱し、ついで組成に対応した適当な速度例えば1
00℃/秒〜1℃/時、特に10℃/秒〜10℃/時で
冷却する。合金の組成によつてはこれをさらに約600
℃以下の温度(規則格子一不規則格子変態点以下の温度
)、特に200〜600℃に1分間以上約100時間以
下加熱し、冷却する。次に本発明の実施例について述べ
る。実施例 1 合金番号25(組成Ni=79.5%、Fe=13.1
%、Nb= 7.0%、Hf= 0.4%)の合金原料
としては99.8%純度の電解ニツケル、99.9%純
度の電解鉄、99.8%純度のニオブおよび99.8%
純度のハフニウムを用いた。
Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then subjected to forming processes such as forging or hot and cold rolling at room temperature or high temperature to form the desired shape. For example, a thin plate with a thickness of 0.3 mm is made. Next, punch out the desired shape and size from the thin plate,
This is heated in hydrogen, other suitable non-oxidizing atmosphere, or vacuum to a temperature above the recrystallization temperature, that is, above about 600°C, particularly above 800°C and below the melting point, for 1 minute to about 100 hours, and then heated according to the composition. For example, 1
Cooling is performed between 00°C/sec and 1°C/hour, in particular between 10°C/sec and 10°C/hour. Depending on the composition of the alloy, this can be further increased to about 600
C. or lower (temperature below the regular lattice-irregular lattice transformation point), particularly 200 to 600.degree. C., for 1 minute or more and about 100 hours or less, and then cooled. Next, examples of the present invention will be described. Example 1 Alloy number 25 (composition Ni=79.5%, Fe=13.1
%, Nb = 7.0%, Hf = 0.4%) alloy raw materials include 99.8% pure electrolytic nickel, 99.9% pure electrolytic iron, 99.8% pure niobium, and 99.8% pure electrolytic iron. %
High purity hafnium was used.

試料を造るには全重量800′をアルミナ坩堝に入れ、
真空中で高周波誘導電気炉によつて溶かした後、よく撹
拌して均質な溶融合金とした。次にこれを直径25前l
)高さ1701の孔をもつ鋳型に注入し、得られた鋳塊
を約1000℃で鍛造して厚さ約7m露の板とした。さ
らに約600〜900℃の間で厚さ1前lまで熱間圧延
し、ついで常温で冷間圧延を施して0.1nの薄板とし
、それから外径44mm)内径36m露の環状板および
磁気ヘツドのコアを打ち抜いた。つぎにこれらに第1表
に示す種々な熱処理を施し、環状板で磁気特性および硬
度を、またコアを用いて磁気ヘツドを製造し、タリサー
フ表面粗さ計で磁気テープによる300時間走行後の摩
耗量を測定して第1表のような結果を得た。実施例 2 合金番号50(組成Ni=79,5%、Fe=11.4
%、Nb=6.0%、Hf=0.6%、MO=2.5C
f))の合金原料は実施例1と同じ純度のニツケル、鉄
、ニオブ、一・フニウムおよび99.501)純度のモ
リブデンを用いた。
To make a sample, put the total weight of 800' into an alumina crucible,
After melting in vacuum in a high-frequency induction electric furnace, the mixture was thoroughly stirred to obtain a homogeneous molten alloy. Next, add this to a diameter of 25 l.
) The ingot was poured into a mold having holes with a height of 1701 cm, and the resulting ingot was forged at about 1000°C to form a plate with a thickness of about 7 m. Further, it was hot rolled at about 600 to 900°C to a thickness of 1 inch, then cold rolled at room temperature to form a thin plate of 0.1 nm, and then an annular plate with an outer diameter of 44 mm and an inner diameter of 36 mm, and a magnetic head. punched out the core. Next, these were subjected to various heat treatments shown in Table 1, and the annular plate was used to improve magnetic properties and hardness, and the core was used to manufacture a magnetic head, and a Talysurf surface roughness meter was used to measure wear after 300 hours of running with magnetic tape. The amount was measured and the results shown in Table 1 were obtained. Example 2 Alloy number 50 (composition Ni=79.5%, Fe=11.4
%, Nb=6.0%, Hf=0.6%, MO=2.5C
As the alloy raw materials for f)), nickel, iron, niobium, mono-fnium with the same purity as in Example 1 and molybdenum with a purity of 99.501) were used.

試料の製造法は実施例1と同じである。試料に種々の熱
処理を施して第2表に示すような特性が得られた。つぎ
に第3表には1250℃の水素中で2時間熱した後、6
00℃から種々な速度で常温まで冷却するか、あるいは
これをさらに600℃以下の温度で再加熱して、常温で
測定された代表的な合金の諸特性が示してある。
The method of manufacturing the sample was the same as in Example 1. The samples were subjected to various heat treatments and the properties shown in Table 2 were obtained. Next, Table 3 shows that after heating in hydrogen at 1250°C for 2 hours,
The properties of representative alloys measured at room temperature are shown by cooling from 00°C to room temperature at various rates, or by further heating at temperatures below 600°C.

つぎに本発明合金のハフニウムと透磁率、硬度および摩
耗量との関係を図面によつて詳細に述べる。
Next, the relationship between hafnium, magnetic permeability, hardness and wear amount of the alloy of the present invention will be described in detail with reference to the drawings.

第1図には79.5(f)Ni−Fe−7#Nb−Hf
合金について、一・フニウム量と硬度および摩耗量との
関係が示してある。一般に一・フニウム量の増加ととも
に硬度は著しく増大し、同時に摩耗量は著しく減少する
が特にハフニウムの微量添加において、極めてその効果
が大きいことがわかる。第2図は第1図と同じ合金のハ
フニウム量と初透磁率、最大透磁率および実効透磁率と
の関係を示したもので、一般に・・フニウムの添加は初
透磁率、最大透磁率および実効透磁率を高める効果があ
り、特に磁気ヘツドの特件にとつて重要とされる交流界
における実効透磁率においてその効果が大きい。しかし
ハフニウム5%以上では鍛造、加工が困難となシ、且つ
磁気特性も磁気ヘツド用磁性合金として不適当になる。
また第3図は79.5%Ni−Fe−Nb合金とハフニ
ウムを0.4%含んだ79.5%Ni−Fe−0.4%
Hf−Nb合金についてニオブ量と硬度との関係を示し
たもので、ニオブ量の増加とともに・・フニウム添加の
効果が著しく増大することがわかる。本発明合金のこの
ような高い硬度は、ニオブの効果によりN1−Fe合金
の地が固溶体硬化し、さらにハフニウムの添加により地
に硬度の極めて ト高いNb−Hf系金属間化合物が微
細に析出して、硬度を著しく大きくする効果が達成され
るものと考えられる。
Figure 1 shows 79.5(f)Ni-Fe-7#Nb-Hf
For alloys, the relationship between the amount of mono-funium, hardness, and amount of wear is shown. In general, as the amount of hafnium increases, the hardness increases significantly, and at the same time, the amount of wear decreases significantly, and it can be seen that the effect is particularly large when a small amount of hafnium is added. Figure 2 shows the relationship between the amount of hafnium and the initial magnetic permeability, maximum magnetic permeability, and effective magnetic permeability of the same alloy as in Figure 1. It has the effect of increasing magnetic permeability, and its effect is particularly large in terms of effective magnetic permeability in an alternating current field, which is important for special characteristics of magnetic heads. However, if the hafnium content exceeds 5%, forging and processing become difficult, and the magnetic properties become unsuitable as a magnetic alloy for magnetic heads.
Figure 3 shows 79.5% Ni-Fe-Nb alloy and 79.5% Ni-Fe-0.4% containing 0.4% hafnium.
This figure shows the relationship between the amount of niobium and the hardness of the Hf-Nb alloy, and it can be seen that as the amount of niobium increases, the effect of adding hunium increases significantly. The high hardness of the alloy of the present invention is due to the solid solution hardening of the N1-Fe alloy base due to the effect of niobium, and the fine precipitation of Nb-Hf intermetallic compounds with extremely high hardness in the base due to the addition of hafnium. It is considered that the effect of significantly increasing the hardness is achieved.

なお上記の実験においては、すべて高純度の金属の原料
を用いたが、これらの代勺にそれぞれ一 (般市販のフ
エロ合金あるいは各種母合金を用いてもよい。
In the above experiments, all high-purity metal raw materials were used, but commercially available ferro alloys or various master alloys may also be used for each of these materials.

この場合には合金が多少脆性を帯びるので、溶解の際特
にマンガン、ケイ素、アルミニウム、チタン、ボロン、
カルシウム合金、マグネシウム合金、その他の脱酸、脱
硫剤を適当に用いて ご充分に脱酸、脱硫を行い合金に
鍛造性、熱間加工性および冷間加工性、展延性および快
削性を与えることが必要である。磁気ヘツド用磁性合金
は磁気録音再生の感度の点から1KHzにおける実効透
磁率3000以上、4飽和磁束密度3000G以上を必
要とされるが、本発明合金は1KHzにおける実効透磁
率3000以上、飽和磁束密度3000G以上であるの
で、磁気ヘツド用磁性合金として好適である。
In this case, the alloy becomes somewhat brittle, so when melting, especially manganese, silicon, aluminum, titanium, boron, etc.
Appropriately use calcium alloys, magnesium alloys, and other deoxidizing and desulfurizing agents to fully deoxidize and desulfurize, giving the alloy good forgeability, hot workability, cold workability, malleability, and free machinability. It is necessary. Magnetic alloys for magnetic heads are required to have an effective magnetic permeability of 3000 or more and a saturation magnetic flux density of 3000G or more at 1 KHz from the viewpoint of magnetic recording and playback sensitivity, but the alloy of the present invention has an effective magnetic permeability of 3000 or more and a saturation magnetic flux density of 3000 G or more at 1 KHz. Since it is 3000G or more, it is suitable as a magnetic alloy for magnetic heads.

要するに本発明合金はN! FeNbおよびHfからな
る合金かあるいはこれにNOCrWTi999V,Mn
,Ge,Zrl希土類元素、Ta,Be,B, AlS! SnSbCOおよびCuの1種あるい9
● 99は2種以上の合計0.01〜1
5%を添加した合金で初透磁率、最大透磁率および実効
透磁率は非常に大きく、硬度も高く、加工性が良好なの
で、特に磁気録音再生ヘツビの磁性合金として非常に好
適であるとともに、普通の電気磁器に用いる磁性材料と
しても非常に好適である。
In short, the alloy of the present invention is N! An alloy consisting of FeNb and Hf or NOCrWTi999V, Mn
, Ge, Zrl rare earth elements, Ta, Be, B, AlS! One or nine of SnSbCO and Cu
● 99 is a total of two or more types of 0.01 to 1
The alloy with 5% added has very high initial magnetic permeability, maximum magnetic permeability, and effective magnetic permeability, high hardness, and good workability, so it is very suitable as a magnetic alloy especially for magnetic recording and playback snakes. It is also very suitable as a magnetic material for use in electric porcelain.

次に本発明において合金の組成をニツケル70〜86(
fl)、ニオブ1#)をこえ14%以下、・・フニウム
0.001〜5(fl)および残部鉄と限定し、又これ
に添加する元素をモリブデン8#)以下、クロム%以下
、タングステン10%以下、チタン7%以下、バナジウ
ム7%以下、マンガン10#)以下、ゲルマニウム7(
f)以下、ジルコニウム5(f)以下、希土類元素5q
1)以下、タンタル10(f)以下、ベリリウム3(:
i)以下、ホウ素1%以下、アルミニウ5%以下、ケイ
素5(:f)以下、錫5%以下、アンチモン501)以
下、コバルト10%以下および銅10%以下の1種また
は2種以上の合計0.01〜15%と限定した理由は、
実施例第3表および図面で明らかなようにその組成範囲
の透磁率および硬度はかな力高く、且つ加工性も良好で
あるが、組成がこの範囲をはずれると透磁率および硬度
の値が低くな力、かつ加工が困難となD磁気録音再生ヘ
ツビの材料として不適当となるからである。
Next, in the present invention, the composition of the alloy is changed to Nickel 70-86 (
fl), niobium (1#) and 14% or less,...fnium 0.001 to 5 (fl) and the balance iron, and the elements added to this are molybdenum (8#) or less, chromium% or less, tungsten 10 % or less, titanium 7% or less, vanadium 7% or less, manganese 10#) or less, germanium 7 (
f) or less, zirconium 5 (f) or less, rare earth element 5q
1) or less, tantalum 10 (f) or less, beryllium 3 (:
i) The total of one or more of the following: boron 1% or less, aluminum 5% or less, silicon 5(:f) or less, tin 5% or less, antimony 501) or less, cobalt 10% or less, and copper 10% or less The reason for limiting it to 0.01-15% is
As is clear from Table 3 and the drawings, the magnetic permeability and hardness within this composition range are extremely high, and the workability is also good, but when the composition is outside this range, the magnetic permeability and hardness values become low. This is because it is unsuitable as a material for D-magnetic recording and playback devices, which require a lot of force and are difficult to process.

即ち、ニオブが1(i)以下およびハフニウムが0.0
01#)未満では硬度が130以下と低く、ニオブが1
4%を越え、ハフニウムが5(f)を越えると硬度が高
すぎ鍛造、加工が困難とな力透磁率も低下するからであ
る。そしてこれに副成分としてモリブデン8%、クロム
7%、タングステン10%、チタン7%、バナジウム1
0(f)、マンガン10(fl)、ゲルマニウム7%、
希土類元素5(:f)、コバルト10(I)および銅1
0%のそれぞれを越えて添加すると初透磁率が3000
以下あるいは最大透磁率が5000以下となるからであ
シ、ジルコニウム5%、タンタル10(f)、ベリリウ
ム3(f)、ホウ素1qf)、アルミニウム5%、ケイ
素5(f)、錫5%およびアンチモン5%のそれぞれを
越えて添加すると、鍛造あるいは加工が困難となるから
である。なお、第4表より明らかなように、Ni−Fe
一Nb−Hf系合金に副成分の何れかを入れると最大透
磁率、実効透磁率は大きくな力、保磁力が小さくな力、
硬度が大きくな力耐摩耗性が改善されるのでこれ等の副
成分の添加は磁気特性の改善と硬度および耐摩耗性の改
善をする点でその効果は同一であり、同効成分と見做し
得る。
That is, niobium is 1(i) or less and hafnium is 0.0
If the hardness is less than 01#), the hardness will be as low as 130 or less, and the niobium will be less than 1
This is because if the hafnium content exceeds 4% and the hafnium content exceeds 5(f), the hardness is too high, making forging and processing difficult, and the force permeability decreases. In addition to this, the subcomponents are 8% molybdenum, 7% chromium, 10% tungsten, 7% titanium, and 1 vanadium.
0 (f), manganese 10 (fl), germanium 7%,
Rare earth elements 5 (:f), cobalt 10 (I) and copper 1
When added in excess of 0%, the initial permeability increases to 3000.
5% zirconium, 10(f) tantalum, 3(f) beryllium, 1qf boron), 5% aluminum, 5% silicon, 5% tin, and antimony. This is because if each addition exceeds 5%, forging or processing becomes difficult. Furthermore, as is clear from Table 4, Ni-Fe
- When any of the subcomponents is added to a Nb-Hf alloy, the maximum magnetic permeability, the effective magnetic permeability is a large force, the coercive force is a small force,
Since the hardness is large and the wear resistance is improved, the addition of these subcomponents has the same effect in terms of improving magnetic properties and improving hardness and wear resistance, so they are considered to be components with the same effect. It is possible.

なお、用途に応じて本発明合金の耐食性或いは切削加工
性を向上させたい場合には、本発明合金の磁気特性、耐
摩耗性を損わない程度に貴金属元素あるいは鉛、燐、テ
ルル、硫黄、カルシウムの少量を添加しても差支えない
If it is desired to improve the corrosion resistance or machinability of the alloy of the present invention depending on the intended use, noble metal elements, lead, phosphorus, tellurium, sulfur, A small amount of calcium may be added.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は79.5%Ni−Fe−7%Nb−Hf合金の
・・フニウム量と硬度および摩耗量との関係を示す特性
図で、第2図は同合金のハフニウム量と初透磁率、最大
透磁率および1KHzにおける実効透磁率との関係を示
した特性図で、第3図は79.5%Ni−Fe−Nb合
金および79.5%Ni−Fe一0.4%Hf−Nb合
金のニオプ量と硬度との関係を示す特性図である。
Figure 1 is a characteristic diagram showing the relationship between the hafnium content and hardness and wear amount of a 79.5%Ni-Fe-7%Nb-Hf alloy, and Figure 2 is a characteristic diagram showing the relationship between the hafnium content and the initial magnetic permeability of the same alloy. , is a characteristic diagram showing the relationship between maximum magnetic permeability and effective magnetic permeability at 1 KHz. Figure 3 shows the relationship between maximum magnetic permeability and effective magnetic permeability at 1 KHz. FIG. 2 is a characteristic diagram showing the relationship between the amount of niobium and hardness of an alloy.

Claims (1)

【特許請求の範囲】 1 重量比にてニッケル70〜86%、ニオブ1%をこ
え14%以下、ハフニウム0.001〜5%、少量の不
純物と残部鉄からなる磁気録音および再生ヘッド用磁性
合金。 2 重量比にてニッケル70〜86%、ニオブ1%をこ
え14%以下、ハフニウム0.001〜5%、少量の不
純物と残部鉄からなり、初透磁率3000以上、最大透
磁率5000以上およびビッカース硬度130以上を有
することを特徴とする特許請求の範囲第1項記載の磁気
録音および再生ヘッド用磁性合金。 3 重量比にてニッケル70〜86%、ニオブ1%をこ
え14%以下、ハフニウム0.001〜5%、少量の不
純物と残部鉄からなる組成物を、600℃以上融点以下
の温度で非酸化性雰囲気あるいは真空中において、少く
とも1分間以上100時間以下の組成に対応した適当時
間加熱した後、規則−不規則格子変態点以上の温度から
100℃/秒〜1℃/時の組成に対応した適当な速度で
常温まで冷却することを特徴とする磁気録音および再生
ヘッド用磁性合金の製造法。 4 重量比にてニッケル70−86%、ニオブ1%をこ
え14%以下、ハフニウム0.001〜5%、少量の不
純物と残部鉄からなる組成物を600℃以上融点以下の
温度で非酸化性雰囲気あるいは真空中において少くとも
1分間以上100時間以下の組成に対応した適当時間加
熱した後、規則−不規則格子変態点以上の温度から10
0℃/秒〜1℃/時の組成に対応した適当な速度で常温
まで冷却し、これをさらに規則−不規則格子変態点以下
の温度で非酸化性雰囲気中あるいは真空中において1分
間以上100時間以下の組成に対応した適当時間加熱し
冷却することを特徴とする磁気録音および再生ヘッド用
磁性合金の製造法。 5 重量比にて主成分としてニッケル70〜86%、ニ
オブ1%をこえ14%以下、ハフニウム0.001〜5
%、副成分としてモリブデン8%以下、クロム7%以下
、タングステン10%以下、チタン7%以下、バナジウ
ム7%以下、マンガン10%以下、ゲルマニウム7%以
下、ジルコニウム5%以下、希土類元素5%以下、タン
タル10%以下、ベリリウム3%以下、ホウ素1%以下
、アルミニウム5%以下、ケイ素5%以下、錫5%以下
、アンチモン5%以下、コバルト10%以下および銅1
0%以下の1種または2種以上の合計0.01〜15%
、少量の不純物と残部鉄からなる磁気録音および再生ヘ
ッド用磁性合金。 6 重量比にて主成分としてニッケル70〜86%、ニ
オブ1%をこえ14%以下、ハフニウム0.001〜5
%、副成分としてモリブデン8%以下、クロム7%以下
、タングステン10%以下、チタン7%以下、バナジウ
ム7%以下、マンガン10%以下、ゲルマニウム7%以
下、ジルコニウム5%以下、希土類元素5%以下、タン
タル10%以下、ベリリウム3%以下、ホウ素1%以下
、アルミニウム5%以下、ケイ素5%以下、錫5%以下
、アンチモン5%以下、コバルト10%以下および銅1
0%以下の1種または2種以上の合計0.01〜15%
、少量の不純物と残部鉄からなり、初透磁率3000以
上、最大透磁率5000以上およびビッカース硬度13
0以上を有することを特許とする特許請求の範囲第5項
記載の磁気録音および再生ヘッド用磁性合金。
[Claims] 1. A magnetic alloy for magnetic recording and reproducing heads consisting of 70 to 86% nickel, more than 1% niobium and less than 14% niobium, 0.001 to 5% hafnium, a small amount of impurities, and the balance iron. . 2 Consisting of 70-86% nickel, more than 1% niobium and less than 14% niobium, 0.001-5% hafnium, a small amount of impurities and the balance iron in terms of weight ratio, initial magnetic permeability 3000 or more, maximum permeability 5000 or more, and Vickers. The magnetic alloy for magnetic recording and reproducing heads according to claim 1, characterized in that it has a hardness of 130 or more. 3 A composition consisting of 70-86% nickel, more than 1% niobium but less than 14% niobium, 0.001-5% hafnium, a small amount of impurities and the balance iron in a weight ratio is non-oxidized at a temperature of 600°C or more and less than the melting point. After heating in a neutral atmosphere or vacuum for an appropriate time corresponding to the composition for at least 1 minute to 100 hours, it corresponds to the composition from 100℃/sec to 1℃/hour from the temperature above the regular-disorder lattice transformation point. A method for producing a magnetic alloy for magnetic recording and reproducing heads, which comprises cooling to room temperature at an appropriate rate. 4. Non-oxidizing composition consisting of 70-86% nickel, more than 1% niobium but less than 14% niobium, 0.001-5% hafnium, a small amount of impurities and the balance iron at a temperature above 600℃ and below the melting point. After heating in an atmosphere or vacuum for an appropriate time corresponding to the composition for at least 1 minute and up to 100 hours, the temperature is increased from the regular-irregular lattice transformation point to 10
Cool to room temperature at an appropriate rate corresponding to the composition of 0°C/second to 1°C/hour, and then cool for 1 minute or more in a non-oxidizing atmosphere or in vacuum at a temperature below the regular-disorder lattice transformation point. A method for producing a magnetic alloy for magnetic recording and reproducing heads, characterized by heating and cooling for an appropriate time corresponding to the composition within hours. 5 The main components by weight are 70-86% nickel, more than 1% niobium and less than 14%, and 0.001-5% hafnium.
%, as subcomponents molybdenum 8% or less, chromium 7% or less, tungsten 10% or less, titanium 7% or less, vanadium 7% or less, manganese 10% or less, germanium 7% or less, zirconium 5% or less, rare earth elements 5% or less , tantalum 10% or less, beryllium 3% or less, boron 1% or less, aluminum 5% or less, silicon 5% or less, tin 5% or less, antimony 5% or less, cobalt 10% or less, and copper 1
0% or less of one type or two or more types total 0.01-15%
, a magnetic alloy for magnetic recording and playback heads consisting of a small amount of impurities and the balance iron. 6 The main components by weight are 70-86% nickel, more than 1% niobium and less than 14%, and 0.001-5% hafnium.
%, as subcomponents molybdenum 8% or less, chromium 7% or less, tungsten 10% or less, titanium 7% or less, vanadium 7% or less, manganese 10% or less, germanium 7% or less, zirconium 5% or less, rare earth elements 5% or less , tantalum 10% or less, beryllium 3% or less, boron 1% or less, aluminum 5% or less, silicon 5% or less, tin 5% or less, antimony 5% or less, cobalt 10% or less, and copper 1
0% or less of one type or two or more types total 0.01-15%
, consisting of a small amount of impurities and the remainder iron, with an initial magnetic permeability of 3000 or more, a maximum magnetic permeability of 5000 or more, and a Vickers hardness of 13.
6. The magnetic alloy for magnetic recording and reproducing heads according to claim 5, which is patented to have a magnetic recording and reproducing head of 0 or more.
JP56008580A 1981-01-24 1981-01-24 Magnetic alloy for magnetic recording and playback heads and its manufacturing method Expired JPS5947017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56008580A JPS5947017B2 (en) 1981-01-24 1981-01-24 Magnetic alloy for magnetic recording and playback heads and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56008580A JPS5947017B2 (en) 1981-01-24 1981-01-24 Magnetic alloy for magnetic recording and playback heads and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS57123947A JPS57123947A (en) 1982-08-02
JPS5947017B2 true JPS5947017B2 (en) 1984-11-16

Family

ID=11696948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56008580A Expired JPS5947017B2 (en) 1981-01-24 1981-01-24 Magnetic alloy for magnetic recording and playback heads and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5947017B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427350B2 (en) * 1985-01-14 1992-05-11 Nat House Ind
JPH0427351B2 (en) * 1985-01-14 1992-05-11 Nat House Ind
JPH0421927Y2 (en) * 1985-01-14 1992-05-19

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112414A (en) * 1982-12-20 1984-06-28 Alps Electric Co Ltd Magnetic head
JPS61174349A (en) * 1985-01-30 1986-08-06 Res Inst Electric Magnetic Alloys Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head
US5460662A (en) * 1987-04-30 1995-10-24 Seiko Epson Corporation Permanent magnet and method of production
ATE109921T1 (en) * 1987-04-30 1994-08-15 Seiko Epson Corp PERMANENT MAGNET AND ITS MANUFACTURING PROCESS.
US5186761A (en) * 1987-04-30 1993-02-16 Seiko Epson Corporation Magnetic alloy and method of production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427350B2 (en) * 1985-01-14 1992-05-11 Nat House Ind
JPH0427351B2 (en) * 1985-01-14 1992-05-11 Nat House Ind
JPH0421927Y2 (en) * 1985-01-14 1992-05-19

Also Published As

Publication number Publication date
JPS57123947A (en) 1982-08-02

Similar Documents

Publication Publication Date Title
US4830685A (en) Wear-resistant alloy of high permeability and method of producing the same
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JPH0158261B2 (en)
US3794530A (en) High-permeability ni-fe-ta alloy for magnetic recording-reproducing heads
JPS625972B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
KR100405929B1 (en) Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS6212296B2 (en)
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JPS6312936B2 (en)
JPS581183B2 (en) High magnetic permeability amorphous alloy with high magnetic flux density and large squareness ratio
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JPS6218619B2 (en)
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPH0368107B2 (en)
JPH10259439A (en) Wear resistant high permeability alloy and magnetic recording and reproducing head
JPS5814499B2 (en) Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou
JPH0310699B2 (en)
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH032216B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.