JPS5814499B2 - Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou - Google Patents

Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou

Info

Publication number
JPS5814499B2
JPS5814499B2 JP50053181A JP5318175A JPS5814499B2 JP S5814499 B2 JPS5814499 B2 JP S5814499B2 JP 50053181 A JP50053181 A JP 50053181A JP 5318175 A JP5318175 A JP 5318175A JP S5814499 B2 JPS5814499 B2 JP S5814499B2
Authority
JP
Japan
Prior art keywords
less
alloy
coercive force
hysteresis
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50053181A
Other languages
Japanese (ja)
Other versions
JPS51129812A (en
Inventor
増本量
村上雄悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP50053181A priority Critical patent/JPS5814499B2/en
Publication of JPS51129812A publication Critical patent/JPS51129812A/en
Publication of JPS5814499B2 publication Critical patent/JPS5814499B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 本発明はFe,NbおよびC0からなるかあるいはこれ
を主成分とし、副成分としてV,Ta,Cr,M0,W
,Ni,Cu,Ti,Zr,Si,Al,Ge,Sn,
Sb,Be,Mn,CeおよびCの1種あるいは2種以
上の元素からなり、少量の不純物を含む角形ヒステリシ
ス磁性合金およびその製造方法に関するもので、その目
的とするところは残留磁束密度が大きく、良好な角形ヒ
ステリシス特性を有しかつ鍛造、加工が容易な角形ヒス
テリシス磁性合金を得るにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention consists of Fe, Nb and CO, or has Fe, Nb and CO as the main component, and V, Ta, Cr, M0, W as subcomponents.
, Ni, Cu, Ti, Zr, Si, Al, Ge, Sn,
This relates to a rectangular hysteresis magnetic alloy consisting of one or more elements of Sb, Be, Mn, Ce, and C and containing a small amount of impurities, and a method for producing the same. The object of the present invention is to obtain a square hysteresis magnetic alloy that has good square hysteresis characteristics and is easy to forge and process.

現在、電磁機器における記憶素子、フェリードおよびラ
ツチングリレー用の磁性材料として、残留磁束密度が大
きく、角形性のヒステリシスを示し、用途に応じて数エ
ルステッドから数10エルステッドの保磁力を有する角
形性磁性合金が使用されている。
Currently, prismatic magnetic materials with high residual magnetic flux density, angular hysteresis, and coercive force of several Oersteds to several tens of Oersteds are currently used as magnetic materials for memory elements, ferrets, and latching relays in electromagnetic equipment. alloy is used.

これら成品においては高度な加工を必要とするもの、あ
るいはガラス封着などの作業を必要とするものなどがあ
り、したがって加工性に富み、かつ磁気特性が高温加熱
(約800℃)によっても安定であることが望まれてい
る。
Some of these products require advanced processing or work such as glass sealing, so they are highly processable and have stable magnetic properties even when heated at high temperatures (approximately 800°C). Something is desired.

従来、このような特性を有する磁性材料としてはFe−
C,Fe−Mn,Fe−C0およびFe−Ni系合金等
がある。
Conventionally, Fe-
Examples include C, Fe-Mn, Fe-C0, and Fe-Ni alloys.

しかしFe−CおよびFe−Mn系合金は安価でυ目T
性にすぐれているが、高温加熱によって磁気特性が著る
しく劣化する欠点を有し、またFe−C0およびFe−
Ni系合金は高度な加工技術を必要とするため工業的に
充分満足し得るものとは云い難い。
However, Fe-C and Fe-Mn alloys are inexpensive and
However, it has the disadvantage that its magnetic properties deteriorate significantly when heated at high temperatures, and Fe-C0 and Fe-
Since Ni-based alloys require advanced processing techniques, they cannot be said to be fully industrially satisfactory.

先に本発明者らはFe−Nb2元系合金が角形ヒステリ
シス磁性合金として優れた特性を具備していることから
、これを特許出願(特願昭49−9684号)したが、
その後の研究結果から、Fe−NbZ元系合金C0を添
卯すると角形ヒステリシスが良好で、残留磁束密度およ
び保磁力が増大し、且つ高温加熱における磁気特性の安
定性が向上することを見出した。
Previously, the present inventors filed a patent application (Japanese Patent Application No. 49-9684) for Fe-Nb binary alloy because it has excellent properties as a square hysteresis magnetic alloy.
From subsequent research results, it was found that adding Fe--NbZ elemental alloy C0 improves square hysteresis, increases residual magnetic flux density and coercive force, and improves stability of magnetic properties during high-temperature heating.

また、ガラス封着する際ガラスの材質に適合した小さい
熱膨張%数を有することが望ましいが、C0のFe−N
b2元系合金への添加によって熱膨張%数が小さくなる
特長がある。
In addition, when sealing glass, it is desirable to have a small thermal expansion percentage that matches the material of the glass, but Fe-N of C0
The addition of B to binary alloys has the advantage of reducing the thermal expansion percentage.

すなわち、Nb9.5〜10.0%、C00.01〜5
5.O%および残部Feからなるかあるいはこれを主成
分としさらに副成分としてV10.0%以下、Ta25
.O%以下、Crl5.0%以下、M020.0%以下
、W20.0%以下、Ni15.0%以下、Cu10.
O%以下、Ti5.0%以下、Zr5.0%以下、Si
5.0%以下、Al5.0%以下、Ge5.0%以下、
Sn5.O%以下、sbs.0%以下、Be3.0%以
下、Mn10.Ofb以下、ce2.0%以下、および
C1.5%以下の1種または2種以上の合計0.01〜
30.0%と、少量の不純物とからなる合金は残留磁束
密度が大きく、すぐれた角形ヒステリシスを示し、保磁
力が2エルステッド以上を有し、かつ加工が容易で高温
加熱によっても磁気特性が安定な磁性合金であることを
見いだした。
That is, Nb9.5-10.0%, C00.01-5
5. 0% and the balance Fe, or with this as the main component and as a subcomponent V10.0% or less, Ta25
.. 0% or less, Crl 5.0% or less, M0 20.0% or less, W 20.0% or less, Ni 15.0% or less, Cu 10.
O% or less, Ti5.0% or less, Zr5.0% or less, Si
5.0% or less, Al 5.0% or less, Ge 5.0% or less,
Sn5. 0% or less, sbs. 0% or less, Be 3.0% or less, Mn 10. Ofb or less, ce2.0% or less, and one or more of two or more of C1.5% or less, total 0.01~
30.0% and a small amount of impurities has a large residual magnetic flux density, excellent square hysteresis, a coercive force of 2 Oe or more, is easy to process, and has stable magnetic properties even when heated at high temperatures. We discovered that it is a magnetic alloy with excellent properties.

従って、本発明は残留磁束密度が大きく角形ヒステリシ
スを示し、保磁力が2エルステッド以上を有し、かつ鍛
造、成形卯工が容易な角形ヒステリシス磁性合金および
その製造方法を提供するものであり、本発明合金は角形
ヒステリシス特性を必要とする上記の電磁機器の磁性材
料として好適である。
Therefore, the present invention provides a prismatic hysteresis magnetic alloy that has a large residual magnetic flux density, exhibits prismatic hysteresis, has a coercive force of 2 Oe or more, and is easy to forge and form, and a method for manufacturing the same. The invention alloy is suitable as a magnetic material for the above-mentioned electromagnetic equipment that requires square hysteresis characteristics.

本発明の合金を造るには、まず主成分のNb0.5〜1
0.0%、C09.5〜55.0%および残部Feと、
副成分のv10.0%以下、Ta2s.0%以下、Cr
15.0%以下、MO20.0%以下、W20.0%以
下、Nix5.0%以下、Cul0.0%以下、Ti5
.0%以下、Zr5.0%以下、Si5.0%以下、A
l5.0%以下、Ge5.O’%以下、Sn5.0%以
下、Sbs.0%以下、Be3.0%以下、Mnt0.
0%以下、ce2.0%以下、およびCI.5%以下の
1種または2種以上の合計0.01〜30.0%の適当
量を空気中、好ましくは非酸化性雰囲気中あるいは真空
中において適当な溶解炉を用いて溶解した後、マンガン
、珪素、アルミニウム、チタン、カルシウム合金、マグ
ネシウム合金、その他の脱酸剤、脱硫剤を少量(1%以
下)添加してできるだけ不純物を取り除き、充分に攪拌
し、組成的に均一な溶融合金を得る。
To make the alloy of the present invention, first the main component Nb0.5 to 1
0.0%, C09.5-55.0% and the balance Fe,
v10.0% or less of subcomponents, Ta2s. 0% or less, Cr
15.0% or less, MO20.0% or less, W20.0% or less, Nix5.0% or less, Cul0.0% or less, Ti5
.. 0% or less, Zr5.0% or less, Si5.0% or less, A
l5.0% or less, Ge5. O'% or less, Sn5.0% or less, Sbs. 0% or less, Be3.0% or less, Mnt0.
0% or less, ce2.0% or less, and CI. After melting an appropriate amount of 0.01 to 30.0% of one or more types of manganese (total of 0.01 to 30.0%) of 5% or less in air, preferably in a non-oxidizing atmosphere or in vacuum using an appropriate melting furnace, manganese Add a small amount (1% or less) of silicon, aluminum, titanium, calcium alloy, magnesium alloy, or other deoxidizing agent or desulfurizing agent to remove as many impurities as possible, and stir thoroughly to obtain a compositionally uniform molten alloy. .

次にこれを適当な形および大きさの鋳型に注入して健全
な鋳塊を得、さらにこれに高温において鍛造あるいは熱
間卯工を施して適当な形状のもの、例えば棒あるいは板
となし、必要ならば約400℃以上の温度で焼鈍する。
Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then forged or hot-worked at a high temperature to form an appropriate shape, such as a bar or plate. If necessary, annealing is performed at a temperature of about 400° C. or higher.

ついでこれをスエージング、線引あるいは圧延などの方
法によって加工率50%以上の冷間加工を施し、目的の
形状のもの例えば細線あるいは薄板にする。
This is then subjected to cold working at a processing rate of 50% or more by methods such as swaging, wire drawing, or rolling to form a desired shape, such as a thin wire or a thin plate.

さらにこれら冷間加工状態の成品を空気中、好ましくは
非酸化性雰囲気中あるいは真空中で400゜C以上の温
度でυ目熱することにより、保磁力2エルステッド以上
を有するすぐれた角形ヒステリシス磁性合金が得られる
Furthermore, by heating these cold-worked products at a temperature of 400°C or more in air, preferably in a non-oxidizing atmosphere or in vacuum, an excellent rectangular hysteresis magnetic alloy having a coercive force of 2 Oe or more can be produced. is obtained.

上記の冷間加工は合金の結晶の優越方向をそろえる効果
が、特にn日T率50%以上の加工を施した場合に著る
しい。
The above-mentioned cold working has a remarkable effect of aligning the dominant direction of the crystals of the alloy, especially when the working is carried out at an n-day T ratio of 50% or more.

また上記の冷間加工に次いで行われる加熱は、加工歪の
除去、再結晶、変態、析出などを経て角形特性を向上さ
せるが、特に400℃以上の加熱においてその効果が大
きい。
Further, the heating performed subsequent to the above-mentioned cold working improves the squareness characteristics through removal of working strain, recrystallization, transformation, precipitation, etc., and this effect is particularly large when heated at 400° C. or higher.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

実施例1 合金番号32(組成pe=7t0%、Nb=3.5%、
C0=25.5%)の合金の製造 原料としては99.9%純度の電解鉄、99.8%純度
のニオブおよびコバルトを用いた。
Example 1 Alloy number 32 (composition pe=7t0%, Nb=3.5%,
Electrolytic iron with a purity of 99.9%, niobium and cobalt with a purity of 99.8% were used as raw materials for producing the alloy with C0 = 25.5%).

試料を造るには原料を全重量700gでアルミナ坩堝に
入れ、空気中で高周波誘導電気炉によって溶かした後、
よく攪拌して均質な溶融合金とした。
To make the sample, raw materials with a total weight of 700 g were placed in an alumina crucible, melted in air in a high-frequency induction electric furnace, and then
The mixture was thoroughly stirred to obtain a homogeneous molten alloy.

次にこれを直径25mm,高さ170mmの孔をもつ鋳
型に注入し、得られた鋳塊を約1000℃で鍛造して直
径4關の九棒とし、1000℃で1時間焼鈍した後水冷
し、ついで冷間線引によって直径0. 5 mrnの線
とした。
Next, this was poured into a mold with a hole of 25 mm in diameter and 170 mm in height, and the resulting ingot was forged at about 1000°C to form 9 bars with 4 rods in diameter, annealed at 1000°C for 1 hour, and then cooled in water. , and then cold drawn to a diameter of 0. The line was set at 5 mrn.

この場合の加工率(減面率)は98係である。The processing rate (area reduction rate) in this case is 98%.

さらにこの線より長さ26cmを切りとり、種々な熱処
理を施した後残留磁束密度、Brと、磁場が100エル
ステッドのときの磁束密度B100との比を百分率で表
わした角形率(Br/B1oo)×100および保磁力
Hcの値を測定し、第1表に示すような特性が得られた
Furthermore, after cutting a length of 26 cm from this line and subjecting it to various heat treatments, the squareness ratio (Br/B1oo), which is the ratio of the residual magnetic flux density, Br, to the magnetic flux density B100 when the magnetic field is 100 Oe, is expressed as a percentage. The values of 100 and coercive force Hc were measured, and the characteristics shown in Table 1 were obtained.

合金番号323(組成Fe=53.5%、Nb = 4
.5係、co=27.0%、Mo = 5. 5 %、
W=5.0%、Cu=3.0%、Mn = 1. 5
4 )の合金の製造原料は実施例1と同じ純度の鉄、ニ
オブおよびコバルトと99.9%純度のモリブデン、タ
ングステンおよび99.8%純度の銅、マンガンを用い
た。
Alloy number 323 (composition Fe = 53.5%, Nb = 4
.. Coordination 5, co=27.0%, Mo=5. 5%,
W=5.0%, Cu=3.0%, Mn=1. 5
4) The raw materials for producing the alloy used were iron, niobium and cobalt of the same purity as in Example 1, molybdenum and tungsten of 99.9% purity, and copper and manganese of 99.8% purity.

試料の製造法は実施例1と同じである。The sample manufacturing method was the same as in Example 1.

試料に種種の熱処理を施して第2表に示すような特性を
得た。
The samples were subjected to various heat treatments to obtain the properties shown in Table 2.

なお、本発明の代表的な合金の特性は第3表に示す通り
である。
The characteristics of typical alloys of the present invention are shown in Table 3.

上記各実施例および第3表からわかるように、Fe,N
bおよびCoからなるかあるいはこれらを主成分とし、
副成分としてV , T a y C r + Mo
,WtNi,Cu,Ti ,Zr,Si ,ACGe,
Sn,Sb,BeMn,Ce,およびCの1種または2
種以上を添加した本発明合金は加工率50係以上の冷間
加工を施した後400℃以上で加熱することにより、保
磁力が2エルステッド以上で、残留磁束密度の大きな優
れた角形ヒステリシス特性を有する磁性合金である。
As can be seen from the above examples and Table 3, Fe, N
consisting of b and Co or having these as the main components,
V, Ta y Cr + Mo as subcomponents
, WtNi, Cu, Ti, Zr, Si, ACGe,
One or two of Sn, Sb, BeMn, Ce, and C
The alloy of the present invention, which has a coercive force of 2 Oe or more and a large residual magnetic flux density, can be obtained by cold working at a processing rate of 50 or higher and then heating it at 400°C or higher. It is a magnetic alloy with

また本発明合金は加工率50係以上の冷間加工を施し、
400℃以上の加熱により角形特性を付与した後これを
さらに加熱するかあるいはこれに冷間加エを施してもそ
の角形性が容易に劣化しない特長がある。
In addition, the alloy of the present invention is subjected to cold working at a working rate of 50 or more,
It has the advantage that the squareness does not deteriorate easily even if the squareness is imparted by heating to 400° C. or higher and then further heated or cold worked.

したがって本発明合金はガラス封着を必要とし、あるい
は最終熱処理後さらに加工を必要とする成品を製造する
場合に有利である。
The alloys of the present invention are therefore advantageous in producing products that require glass sealing or further processing after final heat treatment.

以上本発明合金の特性は加エ率50係以上の冷間加工を
行った後400℃以上の温度で加熱することにより得ら
れることを述べたが、この冷間加工と加熱を繰り返し行
っても、良好な角形特性が得られることは当然である。
It has been described above that the properties of the alloy of the present invention can be obtained by cold working at a working ratio of 50 or higher and then heating at a temperature of 400°C or higher, but even if this cold working and heating are repeated, , it is a matter of course that good squareness characteristics can be obtained.

なお各実施例および第3表に掲げた合金には比較的純度
の高い金属Nb , Cr , Mo ,W , Mn
, VTi,Al,Si,CeおよびC等を用いたが
、これらの代りに経済的に有利な一般市販のフエ口合金
およびミツシュメタルを用いても溶解の際脱酸、脱硫を
充分に行えば、これらの金属を用いる場合とほぼ同様な
磁気特性と加工性が得られる。
The alloys listed in each example and Table 3 contain relatively pure metals Nb, Cr, Mo, W, and Mn.
, VTi, Al, Si, Ce, and C, etc., but economically advantageous commercially available Hueguchi alloys and Mitshu metals can be used instead of these if sufficient deoxidation and desulfurization are performed during melting. Almost the same magnetic properties and workability as using these metals can be obtained.

上記のように本発明合金は角形特性がすぐれ保磁力も大
きいので角形特性を必要とする上記の電磁機器をはじめ
、ヒステリシスモーターのコア用磁性材料としても好適
である。
As mentioned above, the alloy of the present invention has excellent square properties and a large coercive force, so it is suitable as a magnetic material for the core of hysteresis motors, as well as the above-mentioned electromagnetic equipment that requires square properties.

次に本発明において合金の組成を、NbO.5〜1o.
o%、Co 9.5〜5 5.0 %および残部Feと
限定し、あるいはこれを主成分とし副成分として添加す
る元素をV10.0%以下、Ta 2 5.0%以下、
Cr15.O%以下、MO20.0%以下、W20.0
係以下、Ni15.o%以下、CulO.O%以下、T
i5.o%以下Zr5.0%以下、Si5.0%以下、
Al5.O%以下、Ge5.0%以下、Sn5.0%以
下、Sb5.O%以下、Be3.O%以下、Mn 10
.0係以下、Ce2.0%以下およびCI.5%以下と
限定した理由は各実施例および第1図乃至第6図から明
らかなようにその組成範囲の保磁力は2エルステッド以
上ですぐれた角形ヒステリシス特性を示し、かつ加エ性
も良好であるが、組成がこの範囲をはずれると磁気特性
は劣化し、かつ加エが困難となり角形ヒステリシス磁性
合金として不適当となるからである。
Next, in the present invention, the composition of the alloy is NbO. 5-1 o.
o%, Co 9.5-55.0% and the balance Fe, or with this as the main component and the elements added as subcomponents V10.0% or less, Ta2 5.0% or less,
Cr15. O% or less, MO20.0% or less, W20.0
Section below, Ni15. o% or less, CulO. 0% or less, T
i5. o% or less Zr5.0% or less, Si5.0% or less,
Al5. O% or less, Ge5.0% or less, Sn5.0% or less, Sb5. 0% or less, Be3. 0% or less, Mn 10
.. 0 coefficient or less, Ce2.0% or less, and CI. The reason why it is limited to 5% or less is that, as is clear from each example and FIGS. 1 to 6, the coercive force in the composition range is 2 Oe or more, exhibits excellent square hysteresis characteristics, and has good workability. However, if the composition is outside this range, the magnetic properties will deteriorate and processing will become difficult, making it unsuitable as a square hysteresis magnetic alloy.

第1図はFe −Nb − 2 0 % Co合金のN
b量を変えた本発明合金を加工率95%の冷間加エを施
した後650℃で3時間カ目熱した場合の磁気特性を示
す特性曲線図であって、図から明らかなように、Nbo
.s%以下では角形性および保磁力に対する効果が小さ
く、またNb10%以上では残留磁束密度が小さくなり
、加工が困難となるので好ましくない。
Figure 1 shows the N content of Fe-Nb-20% Co alloy.
It is a characteristic curve diagram showing the magnetic properties when the alloys of the present invention with different amounts of b are subjected to cold working at a processing rate of 95% and then heated at 650°C for 3 hours, as is clear from the figure. , Nbo
.. If it is less than s%, the effect on squareness and coercive force is small, and if it is more than 10% Nb, the residual magnetic flux density becomes small, making processing difficult, which is not preferable.

第2図は同じ< Fe−2. 5 %Nb−co合金の
Co量を変えた本発明合金を上述と同様の冷間加工と熱
処理を施したものの磁気特性を示す特性曲線図であって
、図から明らかなように、Coの添加量の増加と共に保
磁力および残留磁束密度および角形率何れもよくなる。
Figure 2 shows the same <Fe-2. 5% Nb-co alloy with different amounts of Co, subjected to the same cold working and heat treatment as described above. As is clear from the figure, the addition of Co As the amount increases, the coercive force, residual magnetic flux density, and squareness all improve.

然し、Co55%以上では加丁が困難となるので好まし
くない。
However, if Co exceeds 55%, cutting becomes difficult, which is not preferable.

第3図はFe − 2. 5 %Nb − 2 0 %
CoにTayMo,WあるいはNiを添加した同様の
冷間加工と熱処理を施した本発明合金の磁気特性を示す
特性図を示し、図から明らかなように、Fe−2、5%
Nb−20%Co合金にTa,Mo,WあるいはNiを
添加すると保磁力、角形率の何れも大きくなるが、Ta
25%以上、Mo 2 0%以上、W20係以上、Ni
1 5%以上、Cr.15%以上では残留磁束密度が小
さくなるので好ましくない。
Figure 3 shows Fe-2. 5%Nb-20%
A characteristic diagram showing the magnetic properties of an alloy of the present invention obtained by adding TayMo, W or Ni to Co and subjected to similar cold working and heat treatment is shown.
When Ta, Mo, W or Ni is added to Nb-20%Co alloy, both coercive force and squareness increase, but Ta
25% or more, Mo20% or more, W20 or more, Ni
15% or more, Cr. If it exceeds 15%, the residual magnetic flux density becomes small, which is not preferable.

第4図は同じ< Fe−2.5 %Nb − 2 0
%Co合金にV ,Cr ,CuあるいはMnを添加し
、同様に冷間加王と熱処理を施した本発明合金の磁気特
性を示す特性図を示し、図から明らかなように、Fe
− 2. 5 %Nb T− 2 0 % Co合金に
V,Cr,Cu又はMnを添加すると保磁力、角形率の
何れも大きくなるが、V10%以上、CulO%以上、
Mn10係以上となると残留磁束密度が下ると共に加工
が困難となるので好ましくない。
Figure 4 shows the same <Fe-2.5%Nb-20
%Co alloy with V 2 , Cr 2 , Cu or Mn, and similarly subjected to cold working and heat treatment.
-2. When V, Cr, Cu, or Mn is added to a 5%Nb T-20%Co alloy, both the coercive force and the squareness increase, but V10% or more, CulO% or more,
If the Mn ratio exceeds 10, the residual magnetic flux density decreases and processing becomes difficult, which is not preferable.

第5図は同じ<Fe−2.5%Nb−20%Co合金に
Ti ,Zr ,Si ,AAあるいはGeを添加し、
同様に冷間加エと熱処理を施した本発明合金の磁気特性
を示す特性図を示し、図から明らかなように、Fe −
2. 5 %Nb−2 0%Co合金にTi,ZrS
i ,Al,Geの何れかを添加すると保磁力、角形率
は大きくなるが、Ti5%以上、Zr 5 %以上、s
i 5%以上、Al5fO以上、Ge5%以上となると
残留磁束密度が下ると共に加工が困難となるので好まし
くない。
Figure 5 shows the same <Fe-2.5%Nb-20%Co alloy with Ti, Zr, Si, AA or Ge added.
Similarly, a characteristic diagram showing the magnetic properties of the alloy of the present invention subjected to cold working and heat treatment is shown, and as is clear from the figure, Fe −
2. 5%Nb-20%Co alloy with Ti and ZrS
If any of i, Al, or Ge is added, the coercive force and squareness will increase, but if Ti is added at least 5%, Zr at least 5%, or
If i is more than 5%, Al5fO or more, or Ge is more than 5%, the residual magnetic flux density decreases and processing becomes difficult, which is not preferable.

第6図は同じ<Fe−2.5%Nb−20%Co合金に
Sn ,Sb ,Be ,CeあるいはCを添加し、同
様に冷間加工と熱処理を施した本発明合金の磁気特性を
示す特性図であって、図から明らかなように、Fe−2
. 5 %Nb−2 0 % Co合金にSn,Sb
,Be,Ce又はCを添加すると保磁力、角形率の何れ
も大きくなるが、Sn5%以上、Sb5係以上、Be3
%以上、Ce2係以上およびC1.5係以上添加すると
残留磁束密度が下ると共に770王が困難となるので好
ましくない。
Figure 6 shows the magnetic properties of the alloy of the present invention obtained by adding Sn, Sb, Be, Ce or C to the same <Fe-2.5%Nb-20%Co alloy and subjecting it to cold working and heat treatment in the same manner. This is a characteristic diagram, and as is clear from the diagram, Fe-2
.. 5%Nb-20%Co alloy with Sn and Sb
, Be, Ce, or C increases both the coercive force and the squareness, but when Sn5% or more, Sb5% or more, Be3
% or more, Ce2 coefficient or more, and C1.5 coefficient or more are not preferable because the residual magnetic flux density decreases and it becomes difficult to achieve 770K.

すなわちNb 0. 5 〜1 0. 0 %、Co
9.5〜5 5.0係および残部Feからなる組成範囲
の合釜は保磁力2エルステッド以上で角形特性のすぐれ
た磁気特性を有し、さらに高温t’JD熱によっても磁
気特性の劣化が少く、その上加工性が良好であるが、一
般にこれにさらにTa ,Cr ,Mo,W,Ni ,
Cu,T r t Z r + A l+ S n +
S b t B e + M n p C eおよび
Cの添加は角形特性を改善し、保磁力を高める効果があ
り、またTi ,Al,Si ,Ge ,Vの添加は高
温加熱による磁気特性の劣化を減少させる効果があり、
Mn ,Ti ,Cr ,Niの添加は鍛造加工を良好
にする効果がある。
That is, Nb 0. 5 to 1 0. 0%, Co
The composition range of 9.5 to 5 5.0 and the balance Fe has a coercive force of 2 Oe or more and excellent magnetic properties such as squareness, and furthermore, the magnetic properties do not deteriorate even with high temperature t'JD heat. In addition to this, Ta, Cr, Mo, W, Ni,
Cu, T r t Z r + A l+ S n +
S b t B e + M n p C Addition of e and C has the effect of improving squareness characteristics and increasing coercive force, and addition of Ti, Al, Si, Ge, and V reduces deterioration of magnetic properties due to high temperature heating. It has the effect of reducing
Addition of Mn, Ti, Cr, and Ni has the effect of improving forging process.

なお用途に応じて本発明合金の切削加工を必要とする場
合には、本発明合金にさらにPbO.3%以下、P0.
3%以下、Tea.3%以下、S0.3%以下Ca0.
3%以下、SeO.3%以下およびBN(窒化硼素)0
.3%以下の1種または2種以上の合計001〜0.3
係を添υ■することにより角形特性を損わずに快剛性を
付与することができる。
If the alloy of the present invention requires cutting depending on the application, the alloy of the present invention may be further coated with PbO. 3% or less, P0.
3% or less, Tea. 3% or less, S0.3% or less Ca0.
3% or less, SeO. 3% or less and BN (boron nitride) 0
.. 3% or less of one or more types in total 001-0.3
By adding υ■, comfort and rigidity can be imparted without impairing the square characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFe −Nb − 2 0 % Co合金のN
b量を変えた本発明合金を7JOT率95係の冷間加エ
を施した後650℃で3時間加熱した場合の磁気特性を
示す特性曲線図、第2図は同じ<Fe−2.5%Nb−
Co合金のCo量を変えた本発明合金を上述と同様の冷
間加工と熱処理を施したものの磁気特性を示す特性曲線
図、第3図はFe−2.5%Nb−2o4coにTa,
Mo,WあるいはNiを添加した同様の冷間加工と熱処
理を施した本発明合金の磁気特性を示す特性図、第4図
は同じ<Fe−2.5%Nb−20%Co合金にV,C
r,CuあるいはMnを添加し、同様に冷間加工と熱処
理を施した本発明合金の磁気特性を示す特性図、第5図
は同じくFe−2.5%Nb−20%Co合金にTi,
Zr+Si,AAあるいはGeを添加し、同様に冷間加
工と熱処理を施した本発明合金の磁気特性を示す特性図
、第6図は同じ< Fe−2.5%Nb−2 0%Co
合金にSn ,Sb ,Be ,CeあるいはCを添加
し同様に冷間υ日王と熱処理を施した本発明合金の磁気
特性を示す特性図である。
Figure 1 shows the N content of Fe-Nb-20% Co alloy.
Characteristic curve diagrams showing the magnetic properties when the alloys of the present invention with different amounts of b were subjected to cold working at a 7 JOT rate of 95 and then heated at 650°C for 3 hours. Figure 2 shows the same <Fe-2.5 %Nb-
Figure 3 is a characteristic curve diagram showing the magnetic properties of the alloys of the present invention with different amounts of Co, which were subjected to the same cold working and heat treatment as described above.
Figure 4 is a characteristic diagram showing the magnetic properties of the alloy of the present invention subjected to similar cold working and heat treatment with the addition of Mo, W or Ni. C
Fig. 5 is a characteristic diagram showing the magnetic properties of the alloy of the present invention to which r, Cu, or Mn is added and subjected to cold working and heat treatment in the same manner.
Figure 6 is a characteristic diagram showing the magnetic properties of the alloy of the present invention added with Zr + Si, AA or Ge and similarly subjected to cold working and heat treatment.
FIG. 2 is a characteristic diagram showing the magnetic properties of an alloy of the present invention in which Sn, Sb, Be, Ce, or C is added to the alloy and subjected to cold heat treatment in the same manner.

Claims (1)

【特許請求の範囲】 1 重量比にてNb O.5 〜10.0%、C09.
5〜55.04および残部Feと、少量め不純物とから
なり、保磁力が2エルステッド以上を有することを特徴
とする角形ヒステリシス磁性合金。 2 重量比にてNb O.5 〜1 0.0 %、Co
9.5〜55.0%および残部Feを主成分とし、副成
分としてV10.0%以下、Ta25.0%以下、Cr
15.0%以下、Mo 2 0.0 %以下、W20.
0%以下、Ni15.0%以下、CulO.O%以下、
Ti5.0%以下、Zr5.0%以下、Si5.0%以
下、AA5.0%以下、Ge5.0%以下、sn5.0
%以下、Sb5.0%以下、Be3.0%以下、Mn1
0.0%以下、Ce2.O%以下およびCI.51%以
下の1種または2種以上の合計0.01〜30.0%と
、少量の不純物とからなり、保磁力が2エルステッド以
上を有することを特徴とする角形ヒステリシス磁性合金
。 3 重量比にてNb O.5 〜1 0.0%、C09
。 5〜55.0%および残部Feと、少量の不純物とから
なる合金に加工率50%以上の冷間υロエを施し、さら
にこれを400℃以上で770熱することにより2エル
ステッド以上の保磁力を発揮せしめることを特徴と子る
角形ヒステリシス磁性合金の製造方法。 4 重量比にてNb O.5 〜1 0.0%、c09
.5〜55.0%および残部Feを主成分とし、副成分
としてV 10.0 %以下、T a 2 5.0 %
以下、Crl5.0%以下、Mo 2 0.0 %以下
、W20.O%以下、Ni15.0%以下、cu10.
0%以下、Ti5.0%以下、Si5.0%以下、AA
5.0%以下、Ge5.0%以下、sn5.0%以下、
sb5.0%以下、Be3.0%以下、Mn10.0%
以下、Ce2.O%以下、およびC1.5%以下の1種
または2種以上の合計0.01〜30.0%と、少量の
不純物とからなる合金に加工率50%以上の冷間7JO
工を施し、さらにこれを400゜C以上で加熱すること
により2エルステッド以上の保磁力を発揮せしめること
を特徴とする角形ヒステリシス磁性合金の製造方法。
[Claims] NbO. 5-10.0%, C09.
5 to 55.04, the balance being Fe, and a small amount of impurities, and having a coercive force of 2 Oe or more. 2 NbO. 5-10.0%, Co
The main components are 9.5 to 55.0% and the balance Fe, and the subcomponents are V10.0% or less, Ta25.0% or less, Cr
15.0% or less, Mo 2 0.0% or less, W20.
0% or less, Ni 15.0% or less, CulO. 0% or less,
Ti5.0% or less, Zr5.0% or less, Si5.0% or less, AA5.0% or less, Ge5.0% or less, sn5.0
% or less, Sb5.0% or less, Be3.0% or less, Mn1
0.0% or less, Ce2. 0% or less and CI. A prismatic hysteresis magnetic alloy comprising 51% or less of one or more types in total of 0.01 to 30.0% and a small amount of impurities, and having a coercive force of 2 Oe or more. 3 NbO. 5 ~ 1 0.0%, C09
. A coercive force of 2 Oe or more is achieved by subjecting an alloy consisting of 5 to 55.0% Fe, the balance being Fe, and a small amount of impurities to cold υ loe at a processing rate of 50% or more, and then heating this at 400°C or more for 770°C. A method for manufacturing a prismatic hysteresis magnetic alloy characterized by exhibiting the following characteristics. 4 NbO. 5 ~ 1 0.0%, c09
.. 5 to 55.0% and the balance is Fe as the main component, and the secondary components are V 10.0% or less and Ta 2 5.0%.
Below, Crl 5.0% or less, Mo 2 0.0% or less, W20. O% or less, Ni15.0% or less, cu10.
0% or less, Ti5.0% or less, Si5.0% or less, AA
5.0% or less, Ge5.0% or less, sn5.0% or less,
sb 5.0% or less, Be 3.0% or less, Mn 10.0%
Below, Ce2. Cold 7JO with a processing rate of 50% or more is applied to an alloy consisting of a total of 0.01 to 30.0% of one or more types of 0% or less and 1.5% or less of C, and a small amount of impurities.
1. A method for producing a rectangular hysteresis magnetic alloy, which is characterized in that it exhibits a coercive force of 2 Oe or more by further heating it at 400°C or more.
JP50053181A 1975-05-06 1975-05-06 Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou Expired JPS5814499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50053181A JPS5814499B2 (en) 1975-05-06 1975-05-06 Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50053181A JPS5814499B2 (en) 1975-05-06 1975-05-06 Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou

Publications (2)

Publication Number Publication Date
JPS51129812A JPS51129812A (en) 1976-11-11
JPS5814499B2 true JPS5814499B2 (en) 1983-03-19

Family

ID=12935687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50053181A Expired JPS5814499B2 (en) 1975-05-06 1975-05-06 Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou

Country Status (1)

Country Link
JP (1) JPS5814499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941090B2 (en) 2013-03-15 2018-04-10 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, and rotary vacuum seal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077965A (en) * 1983-10-06 1985-05-02 Res Inst Electric Magnetic Alloys Square hysteresis magnetic alloy and its production
CN105624558B (en) * 2015-12-30 2018-08-31 上海康晟航材科技股份有限公司 Ferrocobalt and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941090B2 (en) 2013-03-15 2018-04-10 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, and rotary vacuum seal
US9947501B2 (en) 2013-03-15 2018-04-17 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US9966217B2 (en) 2013-03-15 2018-05-08 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US10008357B2 (en) 2013-03-15 2018-06-26 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US10020157B2 (en) 2013-03-15 2018-07-10 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US10096446B2 (en) 2013-03-15 2018-10-09 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US10102997B2 (en) 2013-03-15 2018-10-16 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal

Also Published As

Publication number Publication date
JPS51129812A (en) 1976-11-11

Similar Documents

Publication Publication Date Title
JP6025864B2 (en) High silicon steel plate excellent in productivity and magnetic properties and method for producing the same
CN109930080B (en) Copper-free nanocrystalline magnetically soft alloy and preparation method thereof
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
JPH0158261B2 (en)
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JPS625972B2 (en)
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
CN111676409A (en) Preparation method of low-density low-cost Fe-Mn-Al-C intermediate entropy alloy
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JPS6312936B2 (en)
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS6212296B2 (en)
JPS5814499B2 (en) Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH055126A (en) Production of nonoriented silicon steel sheet
JPH10324961A (en) Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture
JP2674137B2 (en) High permeability magnetic material
JPH0517819A (en) Production of soft-magnetic alloy having fine crystal
JPH0742559B2 (en) Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPS6218619B2 (en)
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JPH0153332B2 (en)