JPH10324961A - Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture - Google Patents

Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture

Info

Publication number
JPH10324961A
JPH10324961A JP9134951A JP13495197A JPH10324961A JP H10324961 A JPH10324961 A JP H10324961A JP 9134951 A JP9134951 A JP 9134951A JP 13495197 A JP13495197 A JP 13495197A JP H10324961 A JPH10324961 A JP H10324961A
Authority
JP
Japan
Prior art keywords
temperature
amorphous alloy
iron
soft magnetic
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9134951A
Other languages
Japanese (ja)
Inventor
Fumio Kogiku
史男 小菊
Kanenori Matsuki
謙典 松木
Kazuki Nakazato
和樹 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9134951A priority Critical patent/JPH10324961A/en
Publication of JPH10324961A publication Critical patent/JPH10324961A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Continuous Casting (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the iron-based amorphous alloy thin strip excellent in the soft magnetic property by proceeding the structural mitigation of the amorphous alloy sheet strip containing Fe, B, Si, Mn, Co, Ni, and Cr by the prescribed quantity at the temperature lower than the crystallization temperature by the prescribed value. SOLUTION: The alloy has the chemical formula indicated by Fex By Siz Ma , where M is one or more kinds of metal to be selected among Mn, Co, Ni and Cr, and x; 77-82 (at%), y; 9-17 (at%), z; 5-14 (at%), a; 0.2-1.0 (at%). The molten alloy is rapidly solidified to form an amorphous alloy thin strip. The amorphous sheet strip is heat treated at the temperature lower than the crystallization temperature by 300-400 deg.C for >=6 hours. Then, the high-temperature annealing is achieved in the magnetic field according to the established method. The low-temperature heat treatment promotes the structural mitigation of the amorphous alloy sheet strip, and improves the soft magnetic property. In the relationship between the heat treatment temperature and the iron loss13/50 , the reduction effect of the iron loss is remarkably demonstrated at the temperature lower than the crystallization temperature Tx by 300-400 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、軟磁気特性に優
れた鉄基非晶質合金薄帯およびその製造方法に関するも
のである。
The present invention relates to an iron-based amorphous alloy ribbon having excellent soft magnetic properties and a method for producing the same.

【0002】[0002]

【従来の技術】鉄基非晶質合金の製造方法としては、例
えば特公平2-11662号公報に、Fe−Si−B溶湯を液体急
冷法により非晶質リボンとしたのち、磁場中にて 340〜
440 ℃の温度で焼鈍する方法が提案されている。
2. Description of the Related Art As a method of producing an iron-based amorphous alloy, for example, Japanese Patent Publication No. Hei 2-11662 discloses a method in which a molten ribbon of Fe-Si-B is made into an amorphous ribbon by a liquid quenching method, and then is heated in a magnetic field. 340-
A method of annealing at a temperature of 440 ° C. has been proposed.

【0003】また、特開平5-78796号公報には、Snを0.
01〜1.0 wt%添加し、非晶質合金薄帯の表面層にSnを濃
化させて表面層の結晶化耐性を高めたもの、およびかよ
うなSn偏析層を形成させるために 100〜300 ℃の温度に
0.5〜1000時間保持する方法が提案されている。
[0003] Also, in Japanese Patent Application Laid-Open No. 5-78796, Sn
In order to form a Sn segregation layer by adding Sn to the surface layer of an amorphous alloy ribbon to increase the crystallization resistance of the surface layer and to form such a Sn segregation layer. ℃ temperature
A method of holding for 0.5 to 1000 hours has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
たような従来の非晶質合金薄帯は、それなりに鉄損は改
善されるものの、まだ十分とはいえないところに問題を
残していた。また、Snの添加については、主成分となる
鉄との融点の差が1000℃以上と大きいため、溶湯での添
加が難しいという問題もあった。この発明は、上記の問
題を有利に解決するもので、従来よりも軟磁気特性を一
層改善した鉄基非晶質金属薄帯を、その有利な製造方法
と共に提案することを目的とする。
However, the conventional amorphous alloy ribbon as described above has a problem that although the iron loss is improved to some extent, it is still insufficient. In addition, the addition of Sn has a problem that it is difficult to add Sn in a molten metal because the difference in melting point with iron as the main component is as large as 1000 ° C. or more. An object of the present invention is to solve the above-mentioned problem advantageously, and an object of the present invention is to propose an iron-based amorphous metal ribbon with further improved soft magnetic properties as well as an advantageous production method thereof.

【0005】[0005]

【課題を解決するための手段】さて、発明者らは、上記
の目的を達成すべく、鋭意研究を重ねた結果、Fe−B−
Si系非晶質合金において、Mn,Co,Ni,Crといった原子
番号が鉄に近い遷移金属を少量含有させた上で、結晶化
温度より 300〜400 ℃低い比較的低温での構造緩和を導
入することによって、非晶質状態をより軟磁気特性に有
利な状態とすることができ、かくして軟磁気特性の有利
な改善が実現されることの知見を得た。この発明は、上
記の知見に立脚するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above object, and as a result, have found that Fe-B-
Si-based amorphous alloys contain a small amount of transition metals, such as Mn, Co, Ni, and Cr, which are close to iron, and introduce structural relaxation at a relatively low temperature, 300-400 ° C lower than the crystallization temperature. By doing so, it has been found that the amorphous state can be made more advantageous for the soft magnetic properties, and thus the advantageous improvement of the soft magnetic properties is realized. The present invention is based on the above findings.

【0006】すなわち、この発明は、 化学式:Fex y Siz a ここで M:Mn, Co, NiおよびCrのうちから選んだ1種
または2種以上 x:77〜82(at%) y:9〜17(at%) z:5〜14(at%) a:0.2 〜1.0 (at%) で示される組成になる非晶質合金薄帯であって、該非晶
質合金薄帯の結晶化温度より 300〜400 ℃低い温度での
構造緩和を進めたことを特徴とする軟磁気特性に優れた
鉄基非晶質合金薄帯である。
Namely, the present invention has the formula: Fe x B y Si z M a wherein M: Mn, Co, 1 or more kinds selected from among Ni and Cr x: 77~82 (at%) y: 9 to 17 (at%) z: 5 to 14 (at%) a: An amorphous alloy ribbon having a composition represented by 0.2 to 1.0 (at%), This is an iron-based amorphous alloy ribbon excellent in soft magnetic characteristics, characterized by promoting structural relaxation at a temperature lower by 300 to 400 ° C than the crystallization temperature.

【0007】また、この発明は、 化学式:Fex y Siz a ここで M:Mn, Co, NiおよびCrのうちから選んだ1種
または2種以上 x:77〜82(at%) y:9〜17(at%) z:5〜14(at%) a:0.2 〜1.0 (at%) で示される組成になる合金溶湯を、急冷凝固して非晶質
合金薄帯とし、ついで該非晶質合金薄帯に、その結晶化
温度より 300〜400 ℃低い温度で6時間以上の低温熱処
理を施したのち、常法に従い磁場中高温焼鈍を施すこと
を特徴とする軟磁気特性に優れた鉄基非晶質合金薄帯の
製造方法である。
Further, the present invention has the formula: Fe x B y Si z M a wherein M: Mn, Co, 1 or more kinds selected from among Ni and Cr x: 77~82 (at%) y: 9 to 17 (at%) z: 5 to 14 (at%) a: An alloy melt having a composition of 0.2 to 1.0 (at%) is rapidly solidified to form an amorphous alloy ribbon. The amorphous alloy ribbon is subjected to a low-temperature heat treatment at a temperature lower than its crystallization temperature by 300 to 400 ° C. for 6 hours or more, and then subjected to a high-temperature annealing in a magnetic field according to a conventional method, and thus has excellent soft magnetic properties. This is a method for producing an iron-based amorphous alloy ribbon.

【0008】[0008]

【発明の実施の形態】以下、この発明を具体的に説明す
る。まず、この発明において、合金の成分組成を上記の
範囲に限定した理由について説明する。 Fe:77〜82at% Fe量が77at%に満たないと磁束密度の低下を招いて実用
的でなく、一方82at%を超えると鉄損が増加するだけで
なく、熱的安定性が劣化するので、Fe含有量は77〜82at
%の範囲に限定した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the reason why the composition of the alloy is limited to the above range in the present invention will be described. Fe: 77 to 82 at% If the Fe content is less than 77 at%, the magnetic flux density is reduced, which is not practical. On the other hand, if it exceeds 82 at%, not only iron loss increases but also thermal stability deteriorates. , Fe content is 77-82at
%.

【0009】B:9〜17at% B量が9at%未満ではアモルファス化しにくくなり、一
方17at%を超えるとキュリー温度が低くなりすぎるの
で、B含有量は9〜17at%の範囲に限定した。
B: 9 to 17 at% If the B content is less than 9 at%, it becomes difficult to form an amorphous phase, while if it exceeds 17 at%, the Curie temperature becomes too low. Therefore, the B content is limited to the range of 9 to 17 at%.

【0010】Si:5〜14at% Si量が5at%未満ではキュリー温度が低くなりすぎ、一
方14at%を超えると鉄損が増大するだけでなく、磁束密
度が低下するので、Si含有量は5〜14at%の範囲に限定
した。
Si: 5 to 14 at% When the Si content is less than 5 at%, the Curie temperature becomes too low. On the other hand, when the Si content exceeds 14 at%, not only the iron loss increases, but also the magnetic flux density decreases. Limited to the range of ~ 14at%.

【0011】M:0.2 〜1.0 at% ここで、Mとは、Mn, Co, NiおよびCrのうちから選んだ
1種または2種以上のことである。これらMn,Co,Ni,
Cr量の下限を 0.2at%としたのは、これ以上添加しない
と低温での構造緩和による軟磁気特性の改善というこの
発明の効果が現れないからであり、また上限を 1.0at%
としたのは、それ以上でもやはりこの発明の効果が現れ
ないためである。より好ましくは 0.3〜0.6 at%であ
る。
M: 0.2 to 1.0 at% Here, M is one or more selected from Mn, Co, Ni and Cr. These Mn, Co, Ni,
The reason why the lower limit of the Cr content is set to 0.2 at% is that the effect of the present invention of improving the soft magnetic properties due to structural relaxation at a low temperature will not be exhibited without further addition, and the upper limit is set to 1.0 at%.
The reason is that the effect of the present invention does not appear even more than that. More preferably, it is 0.3 to 0.6 at%.

【0012】次に、この発明の製造工程について説明す
る。さて、この発明では、急冷凝固後、常法に従う磁場
中高温焼鈍に先立って、結晶化温度よりも 300〜400 ℃
低い温度で熱処理を施すが、この低温熱処理がこの発明
の最大の特徴であり、かかる低温熱処理を施すことによ
って、非晶質合金薄帯の構造緩和を促進し、もって軟磁
気特性の改善を図るのである。ここに、急冷凝固後の熱
処理温度を、結晶化温度より 300〜400 ℃低い温度範囲
に限定したのは、その範囲未満の温度でも、その範囲を
超える温度でも、上記したこの発明の効果が十分には発
現しないからである。
Next, the manufacturing process of the present invention will be described. In the present invention, after rapid solidification, prior to high-temperature annealing in a magnetic field according to a conventional method, the crystallization temperature is set to 300 to 400 ° C.
The heat treatment is performed at a low temperature, and this low-temperature heat treatment is the greatest feature of the present invention. By performing such a low-temperature heat treatment, the structural relaxation of the amorphous alloy ribbon is promoted, and thus the soft magnetic properties are improved. It is. Here, the reason why the heat treatment temperature after the rapid solidification was limited to a temperature range lower by 300 to 400 ° C. than the crystallization temperature is that the effect of the present invention described above is sufficient even at a temperature lower than the range or higher than the range. Is not expressed.

【0013】図1に、Fe7912Si8.5Mn0.5の組成になる
非晶質合金薄帯(結晶化温度TX :535 ℃)を、急冷凝
固後、種々の温度で熱処理したのち、常法に従う磁場中
高温焼鈍を施した場合における、熱処理温度と鉄損W
13/50 との関係について調べた結果を示す。同図から明
らかなように、鉄損の低減効果は、熱処理温度を結晶化
温度TX よりも 300〜400 ℃低くした場合に顕著に発現
している。
[0013] Figure 1, Fe 79 B 12 Si 8.5 Mn obtain a composition of 0.5 amorphous alloy ribbon (crystallization temperature T X: 535 ℃) and after rapid solidification, after heat treatment at various temperatures, atmospheric Temperature and Iron Loss W in High Temperature Annealing in a Magnetic Field
The result of examining the relationship with 13/50 is shown. As is clear from the figure, the effect of reducing iron loss is remarkably exhibited when the heat treatment temperature is lower by 300 to 400 ° C. than the crystallization temperature T X.

【0014】また、熱処理時間を6時間以上としたの
は、このような低温での構造緩和には、処理時間が6時
間未満では十分とはいえず、この発明で所期したほど良
好な効果が得られないからである。図2に、同じくFe79
12Si8.5Mn0.5の組成になる非晶質合金薄帯を、熱処理
温度は 150℃(結晶化温度よりも 385℃低い温度)の一
定とし、種々の時間保持した場合における処理時間と鉄
損W13/50 との関係について調べた結果を示す。同図に
示したとおり、処理時間を6時間以上とすることによっ
て、鉄損特性の著しい改善が達成されている。なお、24
0 時間まで調べた限りでは、鉄損の変化はほとんど観察
されなかった。
The reason why the heat treatment time is set to 6 hours or more is that the treatment time of less than 6 hours is not sufficient for the structural relaxation at such a low temperature, and the effect of the present invention is as good as expected. Is not obtained. FIG. 2 shows that Fe 79
The heat treatment temperature of the amorphous alloy ribbon with a composition of B 12 Si 8.5 Mn 0.5 is fixed at 150 ° C (385 ° C lower than the crystallization temperature), and the treatment time and iron loss when various times are maintained. The result of examining the relationship with W13 / 50 is shown. As shown in the figure, by setting the treatment time to 6 hours or more, a remarkable improvement in iron loss characteristics is achieved. Note that 24
Almost no change in iron loss was observed up to 0 hours.

【0015】上記の低温熱処理後、常法に従い、高温で
磁場中焼鈍を施すが、かかる焼鈍における印加磁場の強
さは 10 Oe以上とするのが好ましい。また、焼鈍温度
は、 350〜450 ℃程度とするのが好ましい。というの
は、焼鈍温度が 350℃に満たないと薄帯中に存在する歪
を十分に除去できないため、満足いくほどの磁気特性が
得られず、一方 450℃を超えると結晶化温度に近づき、
磁気特性が悪化するからである。
After the above-mentioned low-temperature heat treatment, annealing in a magnetic field is performed at a high temperature according to a conventional method, and the strength of the applied magnetic field in such annealing is preferably 10 Oe or more. The annealing temperature is preferably set to about 350 to 450 ° C. The reason is that if the annealing temperature is lower than 350 ° C, the strain existing in the ribbon cannot be sufficiently removed, so that satisfactory magnetic properties cannot be obtained, while if it exceeds 450 ° C, the temperature approaches the crystallization temperature,
This is because the magnetic properties deteriorate.

【0016】[0016]

【実施例】表1に示す種々の成分組成になる合金溶湯
を、高速で回転するCu合金製ロールの表面に射出し、急
冷凝固して、厚み:25μm 、幅:20mmの非晶質合金薄帯
を製造した。ついで、得られた薄帯を 150〜200 ℃の温
度で12時間、不活性雰囲気中で熱処理したのち、 350〜
410 ℃で長手方向に 20 Oeの磁場を印加しつつ、不活性
雰囲気中で磁場中焼鈍した。かくして得られた薄帯の鉄
損および磁束密度の測定結果を表1に併記する。また比
較のため、 150〜200 ℃における熱処理を省略して得ら
れた薄帯の磁気特性について調査した結果も併せて示
す。
EXAMPLE An alloy melt having various component compositions shown in Table 1 was injected onto the surface of a high-speed rotating Cu alloy roll and rapidly solidified to form an amorphous alloy thinner having a thickness of 25 μm and a width of 20 mm. Obi was manufactured. Then, the obtained ribbon was heat-treated at a temperature of 150 to 200 ° C. for 12 hours in an inert atmosphere,
Annealing in a magnetic field was performed in an inert atmosphere while applying a magnetic field of 20 Oe in the longitudinal direction at 410 ° C. Table 1 also shows the measurement results of the iron loss and the magnetic flux density of the ribbon thus obtained. For comparison, the results of investigations on the magnetic properties of the ribbons obtained by omitting the heat treatment at 150 to 200 ° C. are also shown.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示したように、急冷凝固後、常法に
従う磁場中高温焼鈍に先立ち、 150〜200 ℃の低温で熱
処理を施すことによって、薄帯の磁気特性とくに鉄損特
性が著しく改善されている。
As shown in Table 1, after rapid solidification, prior to high-temperature annealing in a magnetic field according to a conventional method, heat treatment is performed at a low temperature of 150 to 200 ° C., thereby significantly improving the magnetic properties of the ribbon, particularly the iron loss properties. Have been.

【0019】図3に、低温での熱処理(150℃, 6時間)
により、非晶質薄帯に生じた熱的状態の変化をDSC
(示差走査型熱量計)による比熱測定の結果で示す。ま
た、同図には、比較のため、鋳造ままの薄帯、 375℃で
2時間、不活性ガス中で磁場中焼鈍した薄帯についての
測定結果も併せて示す。なお、横軸は測定温度、縦軸は
比熱を表しており、室温から 600℃まで40℃/min の昇
温スピードで加熱しながら比熱を測定したものである。
同図に示したとおり、 150℃処理材の比熱カーブは、鋳
造ままの材料のそれと殆ど一致しているが、測定温度が
150℃からおよそ 250℃の範囲で 150℃処理材の方の比
熱が大きくなっている。これは、鋳造ままの状態より 1
50℃で処理した状態の方が同じアモルファス状態の中で
も、構造緩和が進んだ状態になっていることを示してい
る。
FIG. 3 shows a heat treatment at a low temperature (150 ° C., 6 hours).
Changes in the thermal state generated in the amorphous ribbon by DSC
The results are shown by specific heat measurement by a (differential scanning calorimeter). The figure also shows, for comparison, the results of measurements on an as-cast ribbon and a ribbon annealed in an inert gas at 375 ° C. for 2 hours in a magnetic field. The horizontal axis represents the measured temperature and the vertical axis represents the specific heat. The specific heat was measured from room temperature to 600 ° C. while heating at a heating rate of 40 ° C./min.
As shown in the figure, the specific heat curve of the 150 ° C treated material almost matches that of the as-cast material, but the measured temperature
The specific heat of the 150 ° C treated material increased from 150 ° C to about 250 ° C. This is 1
The state treated at 50 ° C. indicates that the structural relaxation is advanced even in the same amorphous state.

【0020】また、 375℃処理と 150℃処理材の結果を
比較すると、 200℃程度から 510℃までの範囲で 375℃
処理材の方が比熱が大きくなっているが、 510℃以上の
温度では再び同じ比熱になっており、材料自体からの結
晶化による発熱のために比熱が急激に下がっている。鋳
造ままからの微視的構造の変化が 375℃処理ではより大
きくなっていることが判る。しかし、 150℃から 200℃
にかけては、 150℃処理材の方が 375℃処理材よりも比
熱が大きくなっており、この変化は 150℃処理の後に 3
75℃処理を行っても消失せず残ることが判っている。す
なわち、低温熱処理で生じている変化は高温熱処理で生
じている変化に比較するとわずかではあるが、高温熱処
理後もその履歴が残り、結果として磁気特性が改善され
る。これは、鉄原子と遷移金属原子間の短距離秩序が低
温処理により変化し、その変化はその後の高温処理でも
保持される結果、磁気特性が改善されるものと推察され
る。
Also, comparing the results of the 375 ° C treated material with the 150 ° C treated material,
Although the treated material has a higher specific heat, it has the same specific heat again at a temperature of 510 ° C. or higher, and the specific heat drops sharply due to heat generated by crystallization from the material itself. It can be seen that the change in the microscopic structure from the as-cast condition was larger at the 375 ° C treatment. However, from 150 ℃ to 200 ℃
During the heat treatment, the specific heat of the 150 ° C treated material was higher than that of the 375 ° C treated material.
It is known that it does not disappear even after the treatment at 75 ° C. That is, although the change caused by the low-temperature heat treatment is small compared to the change caused by the high-temperature heat treatment, the history remains even after the high-temperature heat treatment, and as a result, the magnetic properties are improved. This is presumed to be due to the fact that the short-range order between the iron atom and the transition metal atom is changed by the low-temperature treatment, and the change is maintained even in the subsequent high-temperature treatment, so that the magnetic properties are improved.

【0021】[0021]

【発明の効果】かくして、この発明によれば、Fe−B−
Si系鉄基非晶合金薄帯について、その軟磁気特性を従来
に比べて格段に向上させることができる。
Thus, according to the present invention, Fe-B-
The soft magnetic properties of the Si-based iron-based amorphous alloy ribbon can be remarkably improved as compared with the conventional one.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Fe7912Si8.5Mn0.5の組成になる非晶質合金薄
帯の熱処理温度と鉄損W13/50との関係を示したグラフ
である。
FIG. 1 is a graph showing the relationship between the heat treatment temperature of an amorphous alloy ribbon having a composition of Fe 79 B 12 Si 8.5 Mn 0.5 and the iron loss W 13/50 .

【図2】Fe7912Si8.5Mn0.5の組成になる非晶質合金薄
帯の熱処理時間と鉄損W13/50との関係を示したグラフ
である。
FIG. 2 is a graph showing the relationship between the heat treatment time of an amorphous alloy ribbon having a composition of Fe 79 B 12 Si 8.5 Mn 0.5 and the iron loss W 13/50 .

【図3】Fe7912Si8.5Mn0.5の組成になる非晶質合金薄
帯の熱処理による比熱の変化を示したグラフである。
FIG. 3 is a graph showing a change in specific heat due to heat treatment of an amorphous alloy ribbon having a composition of Fe 79 B 12 Si 8.5 Mn 0.5 .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 691 C22F 1/00 691C H01F 1/153 C22C 33/02 Z // C22C 33/02 H01F 1/14 C ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C22F 1/00 691 C22F 1/00 691C H01F 1/153 C22C 33/02 Z // C22C 33/02 H01F 1/14 C

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】化学式:Fex y Siz a ここで M:Mn, Co, NiおよびCrのうちから選んだ1種
または2種以上 x:77〜82(at%) y:9〜17(at%) z:5〜14(at%) a:0.2 〜1.0 (at%) で示される組成になる非晶質合金薄帯であって、該非晶
質合金薄帯の結晶化温度より 300〜400 ℃低い温度での
構造緩和を進めたことを特徴とする軟磁気特性に優れた
鉄基非晶質合金薄帯。
1. A chemical formula: Fe x B y Si z M a wherein M: Mn, Co, 1 or selected from among Ni and Cr or two or more x: 77~82 (at%) y : 9~ 17 (at%) z: 5 to 14 (at%) a: An amorphous alloy ribbon having a composition represented by 0.2 to 1.0 (at%), which is obtained from the crystallization temperature of the amorphous alloy ribbon. An iron-based amorphous alloy ribbon with excellent soft magnetic properties characterized by advanced structural relaxation at a temperature lower by 300 to 400 ° C.
【請求項2】化学式:Fex y Siz a ここで M:Mn, Co, NiおよびCrのうちから選んだ1種
または2種以上 x:77〜82(at%) y:9〜17(at%) z:5〜14(at%) a:0.2 〜1.0 (at%) で示される組成になる合金溶湯を、急冷凝固して非晶質
合金薄帯とし、ついで該非晶質合金薄帯に、その結晶化
温度より 300〜400 ℃低い温度で6時間以上の低温熱処
理を施したのち、常法に従い磁場中高温焼鈍を施すこと
を特徴とする軟磁気特性に優れた鉄基非晶質合金薄帯の
製造方法。
2. A chemical formula: Fe x B y Si z M a wherein M: Mn, Co, 1 or selected from among Ni and Cr or two or more x: 77~82 (at%) y : 9~ 17 (at%) z: 5 to 14 (at%) a: An alloy melt having a composition represented by 0.2 to 1.0 (at%) is rapidly solidified to form an amorphous alloy ribbon, and then the amorphous alloy is formed. An iron-based alloy having excellent soft magnetic properties, characterized in that a ribbon is subjected to a low-temperature heat treatment at a temperature of 300 to 400 ° C. lower than its crystallization temperature for at least 6 hours and then subjected to a high-temperature annealing in a magnetic field according to a conventional method. Method for manufacturing amorphous alloy ribbon.
JP9134951A 1997-05-26 1997-05-26 Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture Withdrawn JPH10324961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9134951A JPH10324961A (en) 1997-05-26 1997-05-26 Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9134951A JPH10324961A (en) 1997-05-26 1997-05-26 Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture

Publications (1)

Publication Number Publication Date
JPH10324961A true JPH10324961A (en) 1998-12-08

Family

ID=15140388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9134951A Withdrawn JPH10324961A (en) 1997-05-26 1997-05-26 Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture

Country Status (1)

Country Link
JP (1) JPH10324961A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066925A3 (en) * 2002-02-08 2004-04-29 Honeywell Int Inc Fe-based amorphous metal alloy having a linear bh loop
CN101982557A (en) * 2010-09-29 2011-03-02 北京航空航天大学 Method for increasing room-temperature magnetic entropy change of amorphous soft magnetic alloy
CN103589828A (en) * 2013-11-14 2014-02-19 青岛云路新能源科技有限公司 Heat treatment device and method for amorphous alloy iron cores
US9217187B2 (en) 2012-07-20 2015-12-22 Ut-Battelle, Llc Magnetic field annealing for improved creep resistance
CN106424616A (en) * 2016-09-30 2017-02-22 江苏非晶电气有限公司 Preparation method of non-crystalline solid alloy thin strip for reducing alloy melt pouring temperature
CN110976793A (en) * 2019-12-24 2020-04-10 江苏集萃安泰创明先进能源材料研究院有限公司 Process method for regulating and controlling casting temperature of amorphous alloy melt
CN115216590A (en) * 2022-07-22 2022-10-21 南京工程学院 Manufacturing process of iron-nickel-cobalt amorphous thin strip for acoustic magnetic label

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066925A3 (en) * 2002-02-08 2004-04-29 Honeywell Int Inc Fe-based amorphous metal alloy having a linear bh loop
CN100449030C (en) * 2002-02-08 2009-01-07 梅特格拉斯公司 Fe-based amorphous metal alloy having a linear BH loop
CN101982557A (en) * 2010-09-29 2011-03-02 北京航空航天大学 Method for increasing room-temperature magnetic entropy change of amorphous soft magnetic alloy
US9217187B2 (en) 2012-07-20 2015-12-22 Ut-Battelle, Llc Magnetic field annealing for improved creep resistance
CN103589828A (en) * 2013-11-14 2014-02-19 青岛云路新能源科技有限公司 Heat treatment device and method for amorphous alloy iron cores
CN103589828B (en) * 2013-11-14 2016-01-20 青岛云路新能源科技有限公司 The thermal treatment unit of amorphous alloy iron core and method
CN106424616A (en) * 2016-09-30 2017-02-22 江苏非晶电气有限公司 Preparation method of non-crystalline solid alloy thin strip for reducing alloy melt pouring temperature
CN110976793A (en) * 2019-12-24 2020-04-10 江苏集萃安泰创明先进能源材料研究院有限公司 Process method for regulating and controlling casting temperature of amorphous alloy melt
CN110976793B (en) * 2019-12-24 2021-03-16 江苏集萃安泰创明先进能源材料研究院有限公司 Process method for regulating and controlling casting temperature of amorphous alloy melt
CN115216590A (en) * 2022-07-22 2022-10-21 南京工程学院 Manufacturing process of iron-nickel-cobalt amorphous thin strip for acoustic magnetic label
CN115216590B (en) * 2022-07-22 2024-01-26 南京工程学院 Manufacturing process of Fe-Ni-Co amorphous ribbon for acousto-magnetic tag

Similar Documents

Publication Publication Date Title
KR100601413B1 (en) Fe-base amorphous alloy thin strip of excellent soft magnetic characteristic, iron core produced therefrom and master alloy for quench solidification thin strip production for use therein
JP6404356B2 (en) Soft high silicon steel sheet and method for producing the same
JP5333883B2 (en) Amorphous alloy ribbon and magnetic core with excellent long-term thermal stability
WO2008105135A1 (en) Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS
CN108018504A (en) A kind of Fe-based amorphous alloy and preparation method thereof
WO2018184273A1 (en) Iron-based amorphous alloy and preparation method therefor
JPH10324961A (en) Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture
JP2001279387A (en) INEXPENSIVE Fe-BASE MASTER ALLOY FOR MANUFACTURING RAPIDLY SOLIDIFIED THIN STRIP
JPS6179724A (en) Manufacture of thin plate of high-silicon iron alloy
JP3124690B2 (en) Iron-based amorphous alloy excellent in magnetic properties and embrittlement resistance and method for producing the same
JP4267214B2 (en) Master alloy for iron-based amorphous alloys
JPH08283919A (en) Iron-base amorphous alloy foil and its production
JPS5924177B2 (en) Square hysteresis magnetic alloy
JP3639689B2 (en) Method for producing Fe-based amorphous alloy ribbon
JPH06264197A (en) Low core loss ferrous amorphous alloy high in magnetic flux density and excellent in insulated film treatability
JPH06306467A (en) Production of nonoriented silicon steel sheet extremely excellent in magnetic property
JP3887029B2 (en) Quenched metal ribbon with excellent soft magnetic properties and method for producing the same
JP5967357B2 (en) Iron-based amorphous alloy ribbon
KR100358592B1 (en) Iron amorphous alloy with excellent magnetic properties and excellent fracture resistance and its manufacturing method
JPS5814499B2 (en) Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou
JPH06287721A (en) Amorphous alloy thin strip enhanced in crystallization resistance on surface
JP2002283012A (en) Iron-base amorphous alloy having good strip forming performance
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
JP4329065B2 (en) Method for producing Ti-containing copper alloy sheet or strip
JPH0472015A (en) Production of soft-magnetic foil having high saturation magnetic flux density and excellent in workability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803