JPH0472015A - Production of soft-magnetic foil having high saturation magnetic flux density and excellent in workability - Google Patents

Production of soft-magnetic foil having high saturation magnetic flux density and excellent in workability

Info

Publication number
JPH0472015A
JPH0472015A JP18156390A JP18156390A JPH0472015A JP H0472015 A JPH0472015 A JP H0472015A JP 18156390 A JP18156390 A JP 18156390A JP 18156390 A JP18156390 A JP 18156390A JP H0472015 A JPH0472015 A JP H0472015A
Authority
JP
Japan
Prior art keywords
rolling
cooling
ribbon
flux density
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18156390A
Other languages
Japanese (ja)
Inventor
Masayoshi Ishida
昌義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18156390A priority Critical patent/JPH0472015A/en
Publication of JPH0472015A publication Critical patent/JPH0472015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a soft-magnetic foil having high saturation magnetic flux density and excellent in workability by forming a molten Fe-Co alloy having specific Co content into a foil by means of rapid solidification, exerting reheating, and then carrying out rolling while specifying the initiating temp. and finishing temp. of rolling. CONSTITUTION:A molten Fe-Co alloy containing 25-65% Co is continuously supplied onto a cooling body having a cooling surface renewably moving at high speed to undergo rapid solidification, and the resulting foil is subjected, successively or after reheating, to rolling at >=600 deg.C rolling initiating temp. and <=550 deg.C rolling finishing temp. Further, it is preferable that a couple of cooling bodies having cooling surfaces renewably moving at high speed in a state in contact with each other, respectively, is used as the above cooling body and the temps. of respective cooling surfaces just before these cooling surfaces become in contact with the molten alloy are regulated to >=100 deg.C, and it is also preferable to apply forced cooling to the foil immediately after the finishing of rolling.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高い飽和磁束密度と良好な軟磁性を有し、
しかも加工性に優れた高飽和磁束密度軟磁性薄帯の製造
方法に関する。
[Detailed description of the invention] (Industrial application field) This invention has high saturation magnetic flux density and good soft magnetism,
Moreover, the present invention relates to a method for producing a high saturation magnetic flux density soft magnetic ribbon with excellent workability.

(従来の技術) 近年、電気機器に対する高性能化および小型化への要請
が高まり、それに伴ってかかる電気機器に用いられる磁
性材料の特性、特に磁束密度の向上が求められている。
(Prior Art) In recent years, there has been an increasing demand for higher performance and smaller size of electrical equipment, and along with this, there has been a demand for improvements in the characteristics, particularly magnetic flux density, of magnetic materials used in such electrical equipment.

従来、高い飽和磁束密度を有する軟磁性材料としては、
COを30〜50−t%(以下単に%で示す)程度含有
するFe = Co系合金が知られている(例えば特開
昭53−132424号公報)が、この合金系は特に軟
磁気特性の良好な50%Coを中心とする組成で規則格
子化するために極めて脆く、そのため製品化に際して施
される圧延、せん断、打抜きおよび曲げ等の冷間加工が
極めて難しいという欠点があった。そこでV、Cr等を
添加すると共に水焼入れにより急冷するなどして規則格
子化を抑制することによって加工性の向上が図られてい
るが、それでもなお上記の脆化によって加工時に割れが
生じ易く、歩留りの著しい低下を招いていた。
Conventionally, soft magnetic materials with high saturation magnetic flux density include
Fe=Co alloys containing about 30 to 50-t% (hereinafter referred to simply as %) of CO are known (e.g., Japanese Patent Application Laid-Open No. 132424/1982), but this alloy system has particularly good soft magnetic properties. Because it has a good composition centered on 50% Co and is formed into an ordered lattice, it is extremely brittle, and therefore has the disadvantage that cold working such as rolling, shearing, punching, and bending that is performed during commercialization is extremely difficult. Therefore, efforts have been made to improve workability by adding V, Cr, etc. and rapidly cooling by water quenching to suppress the formation of regular lattices, but even so, cracks are likely to occur during processing due to the above-mentioned embrittlement. This resulted in a significant decrease in yield.

また近年、いわゆる液体急冷法によって難加工性材を直
接薄板化する方法が実施されているが、この液体急冷法
によって得られたFe−Co系合金薄帯においても加工
時における割れ等の問題を免れ得なかった。
In addition, in recent years, a method of directly thinning difficult-to-process materials by the so-called liquid quenching method has been implemented, but even the Fe-Co alloy ribbon obtained by this liquid quenching method has problems such as cracking during processing. I couldn't escape it.

(発明が解決しようとする課題) この発明は、上記の問題を有利に解決するもので、冷間
加工性の悪さに起因した加工時における歩留りの著しい
低下を招くことのない、圧延、せん断、打抜きおよび曲
げ等の加工性に優れたFeCo系高飽和磁束密度軟磁性
薄帯の有利な製造方法を提案することを目的とする。
(Problems to be Solved by the Invention) The present invention advantageously solves the above-mentioned problems, and is capable of rolling, shearing, The purpose of the present invention is to propose an advantageous manufacturing method of FeCo-based soft magnetic ribbon with high saturation magnetic flux density, which has excellent workability such as punching and bending.

(課題を解決するための手段) まずこの発明の解明経緯について説明する。(Means for solving problems) First, the background to the elucidation of this invention will be explained.

さてFe−Co系合金は、Fe −50%Coを中心と
する組成領域において、約730”Cを最大とし、組成
が50%Coを外れるにつれて下降する温度で規則/不
規則転移を生じ、この温度以下ではB2型規則相が安定
となる。しかるにこの規則相は極めて脆く、鋼塊圧延法
による場合はもとより、液体象、冷性を適用して直接製
板した場合においても冷間加工は極めて難しい。この規
則相の生成を回避するためには、規則/不規則転移点以
上の温度から急冷することが有効と考えられるが、規則
相生成速度は極めて速いために完全には脆化を抑制でき
ず、加工時に板割れ等が多発する。
Now, Fe-Co alloys have a maximum temperature of about 730"C in the composition region centered on Fe - 50% Co, and as the composition deviates from 50% Co, an order/disorder transition occurs at a temperature that decreases. Below the temperature, the B2 type ordered phase becomes stable. However, this ordered phase is extremely brittle and is extremely difficult to cold work, not only when using the steel ingot rolling method, but also when directly making plates by applying liquid phase and cold processing. Difficult.In order to avoid the formation of this ordered phase, rapid cooling from a temperature above the order/disorder transition point is considered effective, but since the rate of formation of the ordered phase is extremely fast, embrittlement cannot be completely suppressed. This results in frequent plate cracking during machining.

そこで発明者らは、かかる合金系薄帯の加工性を改善す
べく鋭意研究を重ねた結果、以下に述べる知見を得た。
Therefore, the inventors conducted extensive research to improve the workability of such alloy ribbons, and as a result, they obtained the knowledge described below.

(1)規則/不規則転移温度以下、600℃前後までは
規則化の程度は比較的小さく、この温度範囲では圧延等
の加工が可能なだけでなく、この加工自身による塑性変
形によって規則格子化が抑制され、さらに低温での加工
が可能となる。
(1) The degree of ordering is relatively small below the ordered/irregular transition temperature and up to around 600°C. In this temperature range, processing such as rolling is not only possible, but also an ordered lattice is formed due to plastic deformation caused by this processing itself. is suppressed, making it possible to process at even lower temperatures.

(2)液体急冷法で薄帯を製造する場合、上記の圧延処
理は液体急冷直後または再加熱後のいずれに行ってもよ
く、また液体急冷の際、冷却体自身によって凝固しつつ
ある薄帯に圧延を加えても同等の結果が得られる。
(2) When manufacturing a ribbon using the liquid quenching method, the above rolling process may be performed either immediately after liquid quenching or after reheating, and during liquid quenching, the ribbon is solidified by the cooling body itself. Equivalent results can be obtained by adding rolling.

(3)上述したいずれの場合においても、冷却体の冷却
面温度を上昇させることによって圧延の加工性に及ぼす
効果を向上させ得る。
(3) In any of the above cases, the effect on rolling workability can be improved by increasing the temperature of the cooling surface of the cooling body.

(4)圧延直後に薄帯を強制冷却することによって一層
良好な加工性を得ることができる。
(4) Better workability can be obtained by forcibly cooling the ribbon immediately after rolling.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、 co・=25〜65% を含有するFe −Co系合金溶湯を、冷却面が高速で
更新移動する冷却体上に連続して供給し、急冷凝固させ
て得た薄帯に、引き続きまたは再加熱後、圧延開始温度
:600℃以上、圧延終了温度=550℃以下の圧延処
理を施すことからなる加工性に優れた高飽和磁束密度軟
磁性薄帯の製造方法である。
That is, in this invention, a molten Fe-Co alloy containing 25 to 65% of co is continuously supplied onto a cooling body whose cooling surface is updated and moved at high speed, and is rapidly solidified into a thin ribbon. This is a method for producing a high saturation magnetic flux density soft magnetic ribbon with excellent workability, which comprises performing a rolling treatment at a rolling start temperature of 600° C. or higher and a rolling end temperature of 550° C. or lower, subsequently or after reheating.

この発明では、冷却体として、冷却面が互いに接しつつ
高速で更新移動する一対の冷却体を用い、合金溶湯をか
かる冷却体の接合部に連続して供給し急冷凝固させると
同時に、この冷却体対によって凝固しつつある薄帯を、
圧延終了温度=550℃以下とする圧延を施してもよい
In this invention, a pair of cooling bodies whose cooling surfaces are in contact with each other and move to update at high speed is used as the cooling body, and molten alloy is continuously supplied to the joint of the cooling bodies and rapidly solidified, and at the same time, the cooling body The thin strip that is being solidified by the pair,
Rolling may be performed at a rolling end temperature of 550° C. or lower.

またこの発明において、合金溶湯に接する直前の冷却面
温度を100℃以上とすることが好ましい。
Further, in the present invention, it is preferable that the temperature of the cooling surface immediately before contacting the molten alloy is 100° C. or higher.

さらにこの発明において、圧延終了直後に薄帯に強制冷
却を施すことが好ましい。
Further, in the present invention, it is preferable that the ribbon is forcedly cooled immediately after rolling is completed.

またさらにこの発明において、Fe−Co系合金素材と
しては、 Co : 25〜65% を含み、かつ V、 Cr、 Nb、 Mo、 Ta、  WおよびN
i17)うちから選んだ少なくとも1種: 0.05〜
5.0%を含むものがとりわけ有利に適合する。
Furthermore, in this invention, the Fe-Co alloy material contains Co: 25 to 65%, and also contains V, Cr, Nb, Mo, Ta, W and N.
i17) At least one selected from among: 0.05~
Particularly advantageously suitable are those containing 5.0%.

(作 用) まず、合金素材の成分組成を限定した理由について説明
する。
(Function) First, the reason for limiting the composition of the alloy material will be explained.

Pe −Co系合金は、35〜40%Co付近の組成で
最も飽和磁束密度が大きくなり、また50%Co付近の
組成で透磁率が最大、保磁力が最小となるなど、軟磁気
特性が最も良好となる。従ってCo含有量は目的に応じ
てこの周囲の組成を選ぶことができるが、25%未満ま
たは65%を超える組成ではいずれも、高飽和磁束密度
でかつ良好な軟磁性という要求を両立できなくなるので
、Co含有量は25〜65%の範囲に限定した。
Pe-Co alloys have the highest soft magnetic properties, with the highest saturation magnetic flux density at a composition around 35-40% Co, and the highest magnetic permeability and lowest coercive force at a composition around 50% Co. Becomes good. Therefore, the composition around this can be selected for the Co content depending on the purpose, but if the Co content is less than 25% or more than 65%, it will not be possible to satisfy both the requirements of high saturation magnetic flux density and good soft magnetism. , Co content was limited to a range of 25 to 65%.

また、V、 Cr、 Nb、 Mo、 Ta、 Wおよ
びNiはいずれも、Fe −Co系合金の規則格子化を
抑制し、加工性を向上させる有用元素であるが、単独あ
るいは5複合添加いずれの場合においても添加量が0.
05%未満ではその添加効果に乏しく、一方5.0%を
超えると飽和磁束密度および軟磁性の著しい低下を招く
のみならず、加工性をかえって劣化させる場合もあるの
で、0.05〜5.0%の範囲に限定した。
In addition, V, Cr, Nb, Mo, Ta, W, and Ni are all useful elements that suppress the formation of an ordered lattice in Fe-Co alloys and improve workability, but when added alone or in combination of the five, Even in cases where the amount added is 0.
If it is less than 0.05%, the effect of the addition will be poor, while if it exceeds 5.0%, it will not only result in a significant decrease in saturation magnetic flux density and soft magnetism, but may even deteriorate workability. It was limited to a range of 0%.

さらにFe−Co系合金には、次のような元素を含有さ
せてもよい。
Furthermore, the Fe--Co alloy may contain the following elements.

すなわち、T5 Zr+ AI+ St+ Ga、Ge
およびSnはα相生成元素であり、磁気特性を向上させ
る効果がある他、電気抵抗を増加させ、交流磁気特性を
向上させる上でも有効である。また”n+ Cuおよび
Znは同様に電気抵抗を向上させる効果がある。しかし
ながら、これらの元素はいずれも5%を超えて添加され
た場合には飽和磁束密度の著しい低下を招き、また機械
的性質をも損なうので、単独あるいは複合添加を問わず
、添加量は5%以下とする必要がある。
That is, T5 Zr+ AI+ St+ Ga, Ge
and Sn is an α-phase forming element and is effective in improving magnetic properties as well as increasing electrical resistance and improving alternating current magnetic properties. In addition, "n+" Cu and Zn have the effect of improving electrical resistance as well.However, if either of these elements is added in an amount exceeding 5%, it causes a significant decrease in saturation magnetic flux density and also impairs mechanical properties. Therefore, whether added alone or in combination, the amount added must be 5% or less.

次に、この発明に従う製造工程について具体的に説明す
る。
Next, the manufacturing process according to the present invention will be specifically explained.

Fe −Co系合金は、前述したように約730℃以下
で規則格子化するために冷間加工性が劣悪となるが、規
則/不規則転移温度以下であっても規則格子化の程度が
小さい600℃以上の温度から圧延を開始した場合には
比較的容易に圧延が可能であり、しかも圧延終了温度を
550℃以下にすることによって、この圧延による規則
格子化に対する抑制効果を固定することができるので、
圧延開始温度は600″C以上、また圧延終了温度は5
50℃以下に限定した。
As mentioned above, Fe-Co alloys form an ordered lattice at temperatures below about 730°C, resulting in poor cold workability, but even below the ordered/disorder transition temperature, the degree of formation of an ordered lattice is small. When rolling is started at a temperature of 600°C or higher, rolling is relatively easy, and by setting the rolling end temperature to 550°C or lower, the effect of suppressing the formation of regular lattices due to rolling can be fixed. Because you can
The rolling start temperature is 600″C or higher, and the rolling end temperature is 5
The temperature was limited to 50°C or lower.

かかる圧延は、液体急冷凝固に引き続き、板温が600
℃以上の状態から行っても、また−旦600℃未満の任
意の温度まで板を冷却した後、再加熱して板温600℃
以上とした後に行ってもよく、その効果は均等である。
Such rolling is carried out at a plate temperature of 600℃ following liquid quenching and solidification.
Even if you start from a temperature of 600°C or above, you can also cool the board to any temperature below 600°C and then reheat it to a temperature of 600°C.
It may be performed after the above steps, and the effect will be the same.

前者の場合、液体2、冷性としては、単ロール法、双ロ
ール法または双ベルト法等、公知の方法のいずれもが適
合し、これらの方法によって合金溶湯を急冷凝固した薄
帯に対し、冷却体の下流に設けた圧延機により上記の条
件で圧延を施せばよい。また、ロール上注湯位置は、ロ
ール回転軸直上か否かを問わず、さらにメルトオーバー
フロー法によることもできる。さらに液体急冷ロールは
圧延体を兼ねることが可能で、たとえば単ロール法にお
いて、主冷却ロールに接するように遊星ロールを設けて
急冷凝固直後の薄帯に圧延を施すことができる。次に液
体ゑ、冷凝固して得た薄帯を再加熱後圧延する場合には
、再加熱および再加熱後の圧延は、液体急冷装置に連続
したライン上で行っても、また別ラインで処理してもよ
い。
In the former case, any known method such as the single roll method, twin roll method or double belt method is suitable for liquid 2 and coldness, and for the ribbon obtained by rapidly solidifying the molten alloy by these methods, Rolling may be performed under the above conditions using a rolling mill provided downstream of the cooling body. Further, the melt pouring position on the roll may be directly above the roll rotation axis or not, and the melt overflow method may be used. Further, the liquid quenching roll can also serve as a rolling body; for example, in a single roll method, a planetary roll can be provided in contact with the main cooling roll to roll the ribbon immediately after quenching and solidifying. Next, when the ribbon obtained by cooling and solidifying the liquid is reheated and then rolled, the reheating and rolling after reheating may be performed on a line continuous with the liquid quenching device or on a separate line. May be processed.

上記の圧延は、合金溶湯を急冷凝固させると同時に冷却
体対によって行ってもよい。この場合、圧延開始温度は
特に限定しないが、薄帯が圧延終了部位に達するまでに
は凝固が完了していることが必要である。圧延終了温度
は前記と同じ理由によって550℃以下でなければなら
ない。この場合の液体急冷法としては、双ロール法、双
ベルト法等が適合する。
The above rolling may be performed by a pair of cooling bodies at the same time as the molten alloy is rapidly solidified. In this case, the rolling start temperature is not particularly limited, but solidification must be completed by the time the ribbon reaches the end of rolling. The rolling end temperature must be 550° C. or lower for the same reason as above. As the liquid quenching method in this case, a twin roll method, a twin belt method, etc. are suitable.

上述の液体象、合法において、冷却体上に供給される合
金溶湯と冷却法との接触を良好にするために、冷却体を
加熱して冷却面温度を上昇させることは、ロールクラウ
ン制御がより複雑になる等の不利はあるものの、急冷凝
固帯の表面性状を改善して圧延をより効果あるものにし
、ひいては薄帯の加工性を向上させ、機械的性質および
磁気特性の均一性を確保する上で望ましい。この場合、
冷却面が合金溶湯に接する直前の温度が100″Cに満
たない場合には圧延処理後の薄帯の加工性に対する冷却
体加熱による改善効果が小さいので、前記温度は100
℃以上とすることが好ましい。上限については上述の各
方法により、また冷却体素材等により適合範囲が異なる
ために特に限定しないけれども、合金溶湯の急冷凝固が
有効に行われ、前述の圧延条件が満たされる温度範囲と
すべきことは言うまでもない。
In the above-mentioned liquid phenomenon, in order to improve the contact between the molten alloy supplied onto the cooling body and the cooling method, the cooling body is heated to increase the cooling surface temperature, and roll crown control is better. Although there are disadvantages such as complexity, it improves the surface properties of the rapidly solidified zone to make rolling more effective, which in turn improves the processability of the ribbon and ensures uniformity of mechanical and magnetic properties. preferred above. in this case,
If the temperature immediately before the cooling surface contacts the molten alloy is less than 100"C, the improvement effect of cooling body heating on the workability of the ribbon after rolling is small;
It is preferable to set it as above degreeC. The upper limit is not particularly limited as the applicable range varies depending on the methods described above and the material of the cooling body, etc., but it should be within the temperature range in which the molten alloy is effectively rapidly solidified and the rolling conditions described above are satisfied. Needless to say.

さらに圧延終了後、時効により規則格子化が進行し、脆
化するのを防止する上からは、圧延終了直後に薄帯を強
制冷却することが望ましい。と(に液体急冷法により薄
帯を作製した後、直ちに圧延処理を施さない場合には、
この時効による脆化を避けるために400℃以下、望ま
しくは200’C以下まで冷却するのがよい。この方法
の実施に際し、冷却方法としては、空冷、水冷およびベ
ルト冷却など任意の方法でよい。
Further, after the rolling is completed, it is desirable to forcibly cool the ribbon immediately after the rolling is completed in order to prevent the formation of regular lattices and embrittlement due to aging. (If the rolling process is not performed immediately after the ribbon is produced by the liquid quenching method,
In order to avoid embrittlement due to aging, it is preferable to cool to 400° C. or lower, preferably 200° C. or lower. When carrying out this method, any cooling method may be used, such as air cooling, water cooling, and belt cooling.

(実施例) 2施±1 表1に示す成分組成になる合金溶湯それぞれ50聴から
、双ロール法によって板厚: 0.20〜0.48mm
の薄帯を作製した。ついで各鋼種につき、板厚二0.4
0mm以上の薄帯を切断し、Ar雰囲気中で590″C
および620℃110分間の均熱処理を施し、炉から保
温しつつ取り出した直後に圧延を開始し、圧延終了後直
ちに冷水ミストを薄帯に吹き付けて室温まで冷却した。
(Example) 2 tests ± 1 Each molten alloy having the composition shown in Table 1 was made from 50 mm to a plate thickness of 0.20 to 0.48 mm by the twin roll method.
A thin ribbon was made. Then, for each steel type, the plate thickness is 20.4
Cut a thin strip of 0 mm or more and heat it at 590″C in an Ar atmosphere.
Immediately after taking out the ribbon from the furnace while keeping it warm, rolling was started, and immediately after the rolling was completed, cold water mist was sprayed onto the ribbon to cool it to room temperature.

圧延後の板厚は0.20〜0.25mm (平均圧下率
:50%)であった。薄帯表面温度を接触温度計により
測定したところ、炉取り出しから熱延開始までの温度降
下はほとんど認められなかった。圧延終了温度は表1中
に記載したとおりである。この処理の後、薄帯を酸洗し
、幅: 30mm、長さ: 280mmのエプスタイン
試験片を長手方向が圧延方向に一致するようせん断採取
し、圧延を施さない板厚: 0.20〜0.24mmの
試料とともに繰返し曲げ試験および磁気測定に供した。
The plate thickness after rolling was 0.20 to 0.25 mm (average rolling reduction: 50%). When the ribbon surface temperature was measured using a contact thermometer, almost no temperature drop was observed from the time the ribbon was taken out of the furnace until the start of hot rolling. The rolling completion temperature is as listed in Table 1. After this treatment, the ribbon was pickled, and an Epstein specimen with a width of 30 mm and a length of 280 mm was sheared and sampled so that the longitudinal direction coincided with the rolling direction, and the thickness without rolling was 0.20 to 0. It was subjected to repeated bending tests and magnetic measurements together with a .24 mm sample.

繰返し曲げ試験は、セん断した薄帯をそのまま試験片と
して用い、JIS C2550に準拠して行った。
The repeated bending test was conducted in accordance with JIS C2550 using the sheared ribbon as a test piece.

また磁気測定は、せん断した薄帯にAr雰囲気中で87
5℃、5時間の仕上げ焼鈍を施した後、直流磁化測定装
置を用いて行った。
In addition, magnetic measurements were conducted on a sheared thin strip at 87° C. in an Ar atmosphere.
After finishing annealing at 5° C. for 5 hours, the measurement was performed using a DC magnetization measuring device.

これらの結果を表1中に示す。These results are shown in Table 1.

同表より明らかなように、Fe −Co系合金薄帯に適
正な温度で圧延を施すことによって、曲げ加工性が顕著
に向上し、また焼鈍後に優れた磁気特性が得られること
が判る。
As is clear from the same table, it can be seen that by rolling the Fe--Co alloy ribbon at an appropriate temperature, the bending workability is significantly improved and excellent magnetic properties are obtained after annealing.

ス」1例」ユ 実施例1において作製した鋼No、 6の薄帯試料につ
いて、圧延開始温度および終了温度を種々変化させて圧
延を行った。その際、圧延ロール出側から薄帯圧下部に
向けて冷却水ミストを吹き付けて圧延し、引き続いて室
温まで冷却した。この処理の後、酸洗を施した薄帯から
前記エプスタイン試験片をせん断採取して繰返し曲げ試
験を供するとともに、試料の一部を別に採取して室温で
0.1omまでの圧延を施した。
EXAMPLE 1 The ribbon samples of steel No. 6 prepared in Example 1 were rolled by varying the rolling start temperature and end temperature. At that time, a cooling water mist was sprayed from the exit side of the rolling roll toward the lower part of the ribbon to perform rolling, followed by cooling to room temperature. After this treatment, the Epstein test piece was sheared and sampled from the pickled ribbon and subjected to repeated bending tests, and a portion of the sample was separately sampled and rolled to a thickness of 0.1 om at room temperature.

得られた結果を第1図に示す。The results obtained are shown in FIG.

同図より明らかなように、この発明に従い、圧延終了温
度二600℃以上、圧延終了温度:550℃以下で圧延
を実施した場合に、とりわけ良好な繰り返し曲げ特性お
よび冷間圧延性が得られている。
As is clear from the figure, particularly good repeated bending properties and cold rollability are obtained when rolling is carried out according to the present invention at a rolling end temperature of 2,600°C or higher and a rolling end temperature of 550°C or lower. There is.

なお比較のため、綱No、6と同一成分組成からなり、
急冷凝固後の板厚が0.23mmである薄帯に酸洗を施
した試料について、同様の繰返し曲げ試験および圧延試
験を行ったところ、繰返しまげ回数は0回であり、また
0、1画までの圧延は板割れのために不可能であった。
For comparison, it has the same component composition as Steel No. 6,
Similar repeated bending and rolling tests were conducted on a pickled sample of a thin strip with a plate thickness of 0.23 mm after rapid solidification, and the number of repeated bending was 0, and the number of repeated bending was 0 and 1 stroke. Rolling up to that point was impossible due to plate cracking.

この例から、曲げ特性および冷間圧延性の向上は単に板
厚の減少によるものではなく、この発明に従う熱間圧延
効果による;とが明らかである。
It is clear from this example that the improvement in bending properties and cold rollability is not simply due to the reduction in plate thickness, but is due to the hot rolling effect according to the invention.

なお他の鋼種についても上記と同様の結果が得られるこ
とが確かめられた。
It was confirmed that the same results as above were obtained for other steel types as well.

実施斑主 実施例1の鋼Nα6と同一の成分組成からなる30題の
合金溶湯から、冷却体がFe製のロール対を使用した双
ロール法によって薄帯を作製した。その際、冷却ロール
に近接して設けた加熱体を制御して溶湯に接する直前の
冷却面温度が70〜250℃となるようにすると共に、
ロール接合部に対して、1.5 ton/cmの圧下刃
を及ぼして圧延し、通常の急冷凝固条件における0、1
5ton/cmの圧下刃を及ぼした場合と比較した。な
お注湯位置は冷却ロール接合部直上とした。また急冷凝
固した薄帯は、双ロール離脱後冷却水を吹き付けて室温
まで冷却した。
Example 1 Thin strips were produced from 30 molten alloys having the same composition as the steel Nα6 of Main Example 1 by a twin roll method using a pair of rolls whose cooling bodies were made of Fe. At this time, the heating element provided close to the cooling roll is controlled so that the temperature of the cooling surface immediately before contacting the molten metal is 70 to 250°C, and
Rolling was carried out by applying a reduction blade of 1.5 ton/cm to the roll joint.
A comparison was made with a case where a rolling blade of 5 ton/cm was applied. The pouring position was directly above the joint of the cooling roll. The rapidly solidified ribbon was cooled to room temperature by being sprayed with cooling water after being separated from the twin rolls.

このようにして作製した薄帯試料のうち、冷却ロール離
脱温度、即ち圧延終了温度が480〜530℃である作
製条件によるものを切断し、酸洗を施した後、前記エプ
スタイン試験片をせん断採取し、繰返し曲げ試験および
磁気測定に供した。なお繰返し曲げ試験は実施例1と同
様の方法により、また磁気測定は、試験片にAr雰囲気
中にて875℃15時間の焼鈍を施したのち行った。
Among the ribbon samples prepared in this way, those prepared under conditions in which the cooling roll release temperature, that is, the rolling end temperature, was 480 to 530°C were cut, and after pickling, the Epstein test pieces were collected by shearing. It was subjected to repeated bending tests and magnetic measurements. The repeated bending test was performed in the same manner as in Example 1, and the magnetic measurement was performed after the test piece was annealed at 875° C. for 15 hours in an Ar atmosphere.

この結果を表2に示す。The results are shown in Table 2.

同表より明らかなように、冷却ロールを加熱することよ
って曲げ耐性および焼鈍後の磁気特性が向上し、また冷
却ロールにより凝固しつつある薄帯に圧延を加えること
によっても同様に曲げ特性および焼鈍後の磁気特性が向
上することができた。
As is clear from the table, heating the cooling roll improves the bending resistance and magnetic properties after annealing, and rolling the thin strip that is solidifying with the cooling roll also improves the bending resistance and the magnetic properties after annealing. Later magnetic properties could be improved.

実施■土 表3に示す成分組成になる合金溶湯それぞれ2000k
gから、双ロール法により厚さ: 0.30〜0.33
鵬の薄帯を作製した。冷却体としてはFe製のロール対
を使用し、冷却ロールに近接して設けた加熱体により、
溶湯に接する直前の冷却面温度を平均200℃に制御し
た。急冷凝固した薄帯は、同一ライン内に設けた圧延機
により、直ちに0.22〜0.25Mn(平均圧下率2
5%)に圧延した。その際、双ロールを離脱した薄帯に
冷却水ミストを吹き付けることによって圧延開始温度を
620〜670℃とし、また圧延ロール出側から薄帯圧
下部に向けて冷却水を吹き付けて圧延終了温度を530
℃以下とすると共に、そのまま冷却を継続して150℃
以下で巻き取った。
Implementation ■ 2000k each of molten alloys with the composition shown in Soil Table 3
Thickness: 0.30-0.33 from g by twin roll method
A thin strip of Peng was made. A pair of rolls made of Fe is used as the cooling body, and the heating body placed close to the cooling roll allows
The temperature of the cooling surface immediately before contact with the molten metal was controlled to an average of 200°C. The rapidly solidified ribbon is immediately rolled to 0.22 to 0.25 Mn (average reduction rate 2) by a rolling mill installed in the same line.
5%). At that time, the rolling start temperature is set at 620 to 670°C by spraying a cooling water mist onto the ribbon that has left the twin rolls, and the rolling end temperature is set by spraying cooling water from the exit side of the rolling rolls toward the lower part of the ribbon. 530
℃ or below, and continue cooling to 150℃.
Reeled below.

ついで上記のようにして得られた薄帯、および急冷凝固
後の厚さが0.21〜0.25mmであり、圧延を施さ
ずそのまま150℃以下で巻き取った薄帯を酸洗し、外
径45mm、内径33mmのリング状試験片を各コイル
につき連続的に410枚打ち抜き、1〜10枚目および
401〜410枚目の試験片に脱脂を施した後、水素雰
囲気中で900℃110時間の焼鈍を施した。
Next, the ribbons obtained as described above and the ribbons having a thickness of 0.21 to 0.25 mm after rapid solidification and wound up at 150°C or less without being rolled were pickled and then rolled out. 410 ring-shaped test pieces with a diameter of 45 mm and an inner diameter of 33 mm were continuously punched out for each coil, and after degreasing the 1st to 10th test pieces and the 401st to 410th test pieces, they were heated at 900°C for 110 hours in a hydrogen atmosphere. Annealing was performed.

かくして得られた試験片を10枚積み重ねて測定した最
大透磁率を表3中に併記する。
The maximum magnetic permeability measured by stacking 10 test pieces thus obtained is also listed in Table 3.

同表より、圧延を施した試料が、圧延を施さない試料よ
りも良好な磁気特性を示すことが明らかである。
From the same table, it is clear that the rolled samples exhibit better magnetic properties than the unrolled samples.

また圧延を施した試料では打抜きを繰り返してもほとん
ど劣化が見られなかったのに対し、圧延を施さない試料
では打ち抜き性が顕著に劣化している。
Further, in the rolled sample, almost no deterioration was observed even after repeated punching, whereas in the unrolled sample, the punching performance deteriorated significantly.

上記の結果より、薄帯に圧延を施すことによって打抜き
加工性が顕著に向上し、仕上げ焼鈍を施した後には優れ
た軟磁気特性を示すことが明らかである。
From the above results, it is clear that rolling the ribbon significantly improves its punching workability, and that it exhibits excellent soft magnetic properties after final annealing.

(発明の効果) かくしてこの発明の方法によれば、磁気特性がとくに優
れた組成範囲のFe−Co系合金薄帯につき、その冷間
加工性を格段に改善して加工時における歩留りの低下を
防くことができ、その産業上の利益極めて大である。
(Effects of the Invention) Thus, according to the method of the present invention, it is possible to significantly improve the cold workability of Fe-Co alloy ribbons having particularly excellent magnetic properties and in the composition range, thereby preventing a decrease in yield during processing. can be prevented, and its industrial benefits are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、繰返し曲げ回数および冷間圧延性に及ぼす圧
延開始温度と圧延終了温度との関係を示したグラフであ
る。
FIG. 1 is a graph showing the relationship between rolling start temperature and rolling end temperature on the number of repeated bending times and cold rollability.

Claims (5)

【特許請求の範囲】[Claims] 1.Co:25〜65wt% を含有するFe−Co系合金溶湯を、冷却面が高速で更
新移動する冷却体上に連続して供給し、急冷凝固させて
得た薄帯に、引き続きまたは再加熱後、圧延開始温度:
600℃以上、圧延終了温度:550℃以下の圧延処理
を施すことを特徴とする加工性に優れた高飽和磁束密度
軟磁性薄帯の製造方法。
1. A molten Fe-Co alloy containing 25 to 65 wt% of Co is continuously supplied onto a cooling body whose cooling surface is updated and moved at high speed, and then rapidly solidified into a thin ribbon, either continuously or after reheating. , rolling start temperature:
A method for producing a high saturation magnetic flux density soft magnetic ribbon with excellent workability, which comprises rolling at a temperature of 600°C or higher and a rolling end temperature of 550°C or lower.
2.請求項1において、冷却体が、冷却面が互いに接し
つつ高速で更新移動する一対の冷却体であって、合金溶
湯を該冷却体の接合部に連続して供給し急冷凝固させる
と同時に、該冷却体対により凝固しつつある薄帯を圧延
し、この圧延終了温度を550℃以下とする加工性に優
れた高飽和磁束密度軟磁性薄帯の製造方法。
2. In claim 1, the cooling bodies are a pair of cooling bodies whose cooling surfaces are in contact with each other and move for renewal at high speed, and the molten alloy is continuously supplied to the joint portion of the cooling bodies to rapidly solidify it, and at the same time A method for producing a high saturation magnetic flux density soft magnetic ribbon with excellent workability, in which a solidified ribbon is rolled by a pair of cooling bodies, and the rolling end temperature is 550°C or less.
3.請求項1または2において、合金溶湯に接する直前
の冷却面温度が100℃以上である加工性に優れた高飽
和磁束密度軟磁性薄帯の製造方法。
3. 3. The method for producing a high saturation magnetic flux density soft magnetic ribbon with excellent workability, wherein the temperature of the cooling surface immediately before contacting the molten alloy is 100° C. or more according to claim 1 or 2.
4.請求項1、2または3において、圧延終了直後に薄
帯を強制冷却する加工性に優れた高飽和磁束密度軟磁性
薄帯の製造方法。
4. 4. The method for producing a high saturation magnetic flux density soft magnetic ribbon with excellent workability, wherein the ribbon is forcibly cooled immediately after rolling.
5.請求項1、2、3または4において、Fe−Co系
合金が、 Co:25〜65wt% を含み、かつ V、Cr、Nb、Mo、Ta、WおよびNiのうちから
選んだ少なくとも1種:0.05〜5.0wt%を含む
ものである加工性に優れた高飽和磁束密度軟磁性薄帯の
製造方法。
5. In Claim 1, 2, 3 or 4, the Fe-Co alloy contains Co: 25 to 65 wt% and at least one selected from V, Cr, Nb, Mo, Ta, W and Ni: A method for producing a high saturation magnetic flux density soft magnetic ribbon containing 0.05 to 5.0 wt% and excellent workability.
JP18156390A 1990-07-11 1990-07-11 Production of soft-magnetic foil having high saturation magnetic flux density and excellent in workability Pending JPH0472015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18156390A JPH0472015A (en) 1990-07-11 1990-07-11 Production of soft-magnetic foil having high saturation magnetic flux density and excellent in workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18156390A JPH0472015A (en) 1990-07-11 1990-07-11 Production of soft-magnetic foil having high saturation magnetic flux density and excellent in workability

Publications (1)

Publication Number Publication Date
JPH0472015A true JPH0472015A (en) 1992-03-06

Family

ID=16102987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18156390A Pending JPH0472015A (en) 1990-07-11 1990-07-11 Production of soft-magnetic foil having high saturation magnetic flux density and excellent in workability

Country Status (1)

Country Link
JP (1) JPH0472015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308833B1 (en) * 1998-12-24 2001-12-17 신현준 Rules for manufacturing regular lattice alloy materials with excellent machinability and plates and wires with excellent machinability and magnetostrictive properties
JP2006336038A (en) * 2005-05-31 2006-12-14 Sanyo Special Steel Co Ltd High magnetic flux-density material and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308833B1 (en) * 1998-12-24 2001-12-17 신현준 Rules for manufacturing regular lattice alloy materials with excellent machinability and plates and wires with excellent machinability and magnetostrictive properties
JP2006336038A (en) * 2005-05-31 2006-12-14 Sanyo Special Steel Co Ltd High magnetic flux-density material and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4402960B2 (en) Fe-based amorphous alloy ribbon with excellent soft magnetic properties, iron core produced using the same, and master alloy for producing rapidly solidified ribbon used therefor
US7291230B2 (en) Grain-oriented electrical steel sheet extremely excellent in film adhesiveness and method for producing the same
JPH11189850A (en) Non-oriented silicon steel sheet and its production
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
US5489342A (en) Method of manufacturing silicon steel sheet having grains precisely arranged in goss orientation
US5525164A (en) Ni-Fe magnetic alloy and method for producing thereof
JPH0665724B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH0472015A (en) Production of soft-magnetic foil having high saturation magnetic flux density and excellent in workability
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPH03285019A (en) Manufacture of fe-ni series magnetic alloy having high magnetic permeability
JPH10324961A (en) Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture
JPH11229096A (en) Nonoriented silicon steel sheet and its production
JP3067894B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JPH06142851A (en) Preparation of magnetic steel strip by direct casting
JPH06306467A (en) Production of nonoriented silicon steel sheet extremely excellent in magnetic property
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
JP3019656B2 (en) Heat treatment method of high silicon steel sheet in magnetic field
JPS6311619A (en) Production of grain oriented high silicon steel sheet
JPS6179723A (en) Manufacture of high silicon steel strip having superior magnetic characteristic
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JPH05279826A (en) Production of &#39;permalloy(r)&#39; excellent in impedance relative magnetic permeability
JPH07197126A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPH03158417A (en) Production of fe-co soft-magnetic material
JPH06128642A (en) Production of high silicon nonoriented silicon steel sheet extremely excellent in magnetic property