JP2006336038A - High magnetic flux-density material and its manufacturing method - Google Patents

High magnetic flux-density material and its manufacturing method Download PDF

Info

Publication number
JP2006336038A
JP2006336038A JP2005158985A JP2005158985A JP2006336038A JP 2006336038 A JP2006336038 A JP 2006336038A JP 2005158985 A JP2005158985 A JP 2005158985A JP 2005158985 A JP2005158985 A JP 2005158985A JP 2006336038 A JP2006336038 A JP 2006336038A
Authority
JP
Japan
Prior art keywords
magnetic flux
high magnetic
flux density
density material
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005158985A
Other languages
Japanese (ja)
Other versions
JP4712443B2 (en
Inventor
Akihiko Yanagiya
彰彦 柳谷
Shunichiro Nishikawa
俊一郎 西川
Yoshikazu Aikawa
芳和 相川
Hiroshi Matsumura
博 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Sanyo Special Steel Co Ltd
Original Assignee
Jeol Ltd
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Sanyo Special Steel Co Ltd filed Critical Jeol Ltd
Priority to JP2005158985A priority Critical patent/JP4712443B2/en
Publication of JP2006336038A publication Critical patent/JP2006336038A/en
Application granted granted Critical
Publication of JP4712443B2 publication Critical patent/JP4712443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Fe-Co-V soft high magnetic flux-density material which is used, e.g., for a ball piece and a yoke of an electron lens for an electron microscope, an electron beam lithography system, etc., and a ball piece and a yoke of an electromagnet for a magnetic resonance apparatus, a mass spectroscope, etc., and also to provide its manufacturing method. <P>SOLUTION: The high magnetic flux-density material has a composition consisting of, by mass, 48 to 52% Co, 0.8 to 1.6% V and the balance Fe with inevitable impurities and also has ≤100μm grain size, and the ratio of the peak intensity (α') of a brittle phase to the main peak of (α) by X-ray diffraction is ≤0.05. The material can be manufactured by sealing alloy powder having the above composition prepared by atomization in a forgeable capsule and then forming it by hot isostatic pressing or hot extrusion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子顕微鏡、電子ビーム描画装置等の電子レンズのポールピース、ヨーク、および磁気共鳴装置、質量分析装置等の電磁石のポールピース、ヨーク等に使用するFe−Co−V軟質性の高磁束密度材料およびその製造方法に関するものである。   The present invention has a high Fe-Co-V softness used for pole pieces and yokes of electron lenses such as electron microscopes and electron beam drawing apparatuses, and pole pieces and yokes of electromagnets such as magnetic resonance apparatuses and mass spectrometers. The present invention relates to a magnetic flux density material and a manufacturing method thereof.

従来、Fe−Co系磁性材料は、磁性材料中高い飽和磁束密度を有するため、ポールピース、ヨーク用磁性材料として適している。特に、Vを添加したFe−Co−V系磁性材料は、体積固有抵抗値が大きく、質量分析装置のように磁場強度を走査する場合の応答性が良好で優れた材料であることが知られている。このFe−Co−V系(パーメンジュール)材は一般的に鋳造法により製造され、一部焼結による検討もなされている。しかしながら、鋳造法または焼結により製造されたこの材料の機械加工性は、電子レンズのように非常に精密な機械加工を必要とする用途では不十分であり改善を要する。また、従来材の磁気特性の均質度は電子顕微鏡、磁気共鳴装置、質量分析装置などに使用する場合に決して満足のゆくものではない。   Conventionally, an Fe—Co based magnetic material has a high saturation magnetic flux density in the magnetic material, and is therefore suitable as a magnetic material for a pole piece and a yoke. In particular, Fe-Co-V magnetic materials added with V have a large volume resistivity, and are known to be excellent and excellent in responsiveness when scanning magnetic field strength as in a mass spectrometer. ing. This Fe-Co-V (permendur) material is generally manufactured by a casting method, and studies by partial sintering have also been made. However, the machinability of this material produced by casting or sintering is insufficient and needs improvement in applications that require very precise machining, such as electron lenses. Moreover, the homogeneity of the magnetic properties of conventional materials is never satisfactory when used in electron microscopes, magnetic resonance apparatuses, mass spectrometers, and the like.

一方、電子顕微鏡等の電子レンズは、上下ポールピース間隙の狭い空間内により強い磁場を発生させ、さらに、その磁場が均質(特に軸対称性)であることが要求される。従って、ポールピース材料には、(1)高飽和磁束密度であること、(2)高透磁率であること、(3)磁気特性の分布が均一であること、の3条件が求められる。これらの条件を満たす材料は、鉄とコバルトをほぼ一対一に含有する合金であり、この合金を磁気特性が均質になるよう製造することが課題となる。
この合金は、硬く脆い性質のため機械加工を行うことが困難である。このため約2%程度のバナジウムを添加し、切削性、研磨性を改善している。ただ、バナジウムは磁気特性の劣化を招くため、できれば低減することが望ましいものである。
On the other hand, an electron lens such as an electron microscope is required to generate a stronger magnetic field in a narrow space between the upper and lower pole piece gaps and to be homogeneous (particularly axially symmetric). Therefore, three conditions are required for the pole piece material: (1) high saturation magnetic flux density, (2) high magnetic permeability, and (3) uniform distribution of magnetic characteristics. A material satisfying these conditions is an alloy containing iron and cobalt in a substantially one-to-one relationship, and it is a problem to manufacture the alloy so that the magnetic properties are uniform.
This alloy is difficult to machine due to its hard and brittle nature. For this reason, about 2% vanadium is added to improve machinability and polishability. However, since vanadium causes deterioration of magnetic properties, it is desirable to reduce it if possible.

電子レンズは、中心に電子が通過する貫通穴を設けた円錐形状のポールピースを上下に対向させた構造が一般的であるが、電子顕微鏡等の分解能をさらに向上させるためには、中心の穴径を、ますます小さくすることが要求され、中心穴および各円錐曲面の真円度、また相互の同軸度には、ますます高い精度が要求されるようになっている。このような高精度の機械加工を行なうためには、材料の切削性、研磨性が良好であることがますます重要な要求事項となっている。この点から、鉄−コバルト−バナジウム合金の切削性、研磨性を改善することがポールピース材料としての重要な課題となっている。   An electron lens generally has a structure in which a conical pole piece with a through hole through which electrons pass is opposed to each other vertically, but in order to further improve the resolution of an electron microscope or the like, The diameter is required to become smaller and smaller, and higher accuracy is required for the roundness of the center hole and each conical curved surface, and the coaxiality of each other. In order to perform such high-precision machining, it is an increasingly important requirement that the material has good machinability and abrasiveness. From this point, improving the machinability and polishability of the iron-cobalt-vanadium alloy is an important issue as a pole piece material.

このFe−Co−V系材として、例えば特開平5−17804号公報に開示されているように、コバルトが40〜60重量%、バナジウムが1.0〜2.5重量%、残部が鉄および不可避的不純物からなる原料粉末を成形し、焼結して鉄・コバルト系焼結磁性材料を製造する方法であって、焼結後、950〜1200℃の温度で第1の熱処理を行い、その後750〜850℃の温度で第2の熱処理をする鉄・コバルト系焼結磁性材料の製造方法が提案されている。   As this Fe—Co—V-based material, for example, as disclosed in JP-A-5-17804, cobalt is 40 to 60% by weight, vanadium is 1.0 to 2.5% by weight, and the balance is iron and A method for producing an iron / cobalt-based sintered magnetic material by forming a raw material powder composed of inevitable impurities, sintering, and performing a first heat treatment at a temperature of 950 to 1200 ° C. after sintering. A method of manufacturing an iron / cobalt-based sintered magnetic material in which a second heat treatment is performed at a temperature of 750 to 850 ° C. has been proposed.

特開平5−17804号公報JP-A-5-17804

特許文献1の場合、Vを添加することで加工性を改善することが出来、その添加量は通常2%程度とされているが、しかしながら、上述したように磁気特性は劣化するため、電子顕微鏡の電子レンズのポールピースに用いる場合には高分解能化に限界があった。   In the case of Patent Document 1, the workability can be improved by adding V, and the amount added is usually about 2%. However, as described above, the magnetic characteristics deteriorate, so an electron microscope is used. However, there is a limit to high resolution when used for the pole piece of the electron lens.

上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、結晶粒と脆性相の析出を抑制することにより、従来よりも低いV量でも十分な加工性が得られることを見出し本発明に至ったものである。その発明の要旨とするところは、
(1)質量%で、Co:48〜52%、V:0.8〜1.6%、残部がFeおよび不可避的不純物からなり、結晶粒径が100μm以下からなることを特徴とする高磁束密度材料。
In order to solve the problems described above, the inventors have intensively developed, and as a result, by suppressing the precipitation of crystal grains and a brittle phase, sufficient workability can be obtained even with a lower V amount than in the past. Has been found and has led to the present invention. The gist of the invention is that
(1) High magnetic flux characterized by comprising, in mass%, Co: 48 to 52%, V: 0.8 to 1.6%, the balance being Fe and inevitable impurities, and the crystal grain size being 100 μm or less. Density material.

(2)前記(1)に記載の成分組成からなり、X線回折によるαのメインピークに対する脆性相のピーク強度α´の比が0.05以下であることを特徴とする高磁束密度材料。
(3)前記(1)に記載の結晶粒径が20〜70μmであることを特徴とする高磁束密度材料。
(2) A high magnetic flux density material comprising the component composition described in (1) above, wherein the ratio of the peak intensity α ′ of the brittle phase to the α main peak by X-ray diffraction is 0.05 or less.
(3) A high magnetic flux density material, wherein the crystal grain size according to (1) is 20 to 70 μm.

(4)原料粉末をArガスもしくは水を用いてアトマイズにより製造した合金粉末を、可鍛性カプセルに封入し、このカプセルごと上記粉末を熱間等方圧プレスにて成形することを特徴とする前記(1)〜(3)に記載の高磁束密度材料の製造方法。
(5)原料粉末をArガスもしくは水を用いてアトマイズにより製造した合金粉末を、熱間押出加工にて棒状に成形することを特徴とする前記(1)〜(3)に記載の高磁束密度材料の製造方法にある。
(4) The alloy powder produced by atomizing the raw material powder using Ar gas or water is enclosed in a malleable capsule, and the above-mentioned powder together with the capsule is formed by hot isostatic pressing. The manufacturing method of the high magnetic flux density material as described in said (1)-(3).
(5) The high magnetic flux density according to the above (1) to (3), wherein the alloy powder produced by atomizing the raw material powder with Ar gas or water is formed into a rod shape by hot extrusion. It is in the manufacturing method of material.

以上述べたように、本発明により、従来よりも磁気特性が十分高く、磁気特性がより均質であり、良好な加工性を有するFe−Co系合金の作製が可能となったことは極めて産業上有利である。   As described above, according to the present invention, it is extremely industrially possible to produce an Fe—Co alloy having sufficiently higher magnetic characteristics than the conventional one, more uniform magnetic characteristics, and good workability. It is advantageous.

以下、本発明についての成分組成の限定理由について説明する。
Co:48〜52%
Coは、磁性体を得るための基本の元素である。しかし、48%未満では得られる磁性体の透磁率が低くなり、一方、52%を超えると飽和磁束密度が小さくなるため、その範囲を48〜52%とした。
Hereinafter, the reasons for limiting the component composition according to the present invention will be described.
Co: 48-52%
Co is a basic element for obtaining a magnetic substance. However, if the content is less than 48%, the magnetic permeability of the obtained magnetic material is low. On the other hand, if the content exceeds 52%, the saturation magnetic flux density decreases, so the range is set to 48 to 52%.

V:0.8〜1.6%
Vは、磁気特性を向上させ、かつ加工性を改善させる元素である。しかし、0.8%未満では加工性を確保することができない。また、1.6%を超えると磁気特性が十分でないことから、その範囲を0.8〜1.6%とした。さらに、好ましくは1.1〜1.4%とする。
V: 0.8 to 1.6%
V is an element that improves magnetic properties and improves workability. However, if it is less than 0.8%, workability cannot be ensured. Moreover, since magnetic characteristics are not enough when it exceeds 1.6%, the range was made into 0.8 to 1.6%. Furthermore, it is preferably 1.1 to 1.4%.

結晶粒径が100μm以下
結晶粒径を100μm以下に微細化することにより、Vを低減しても加工性が十分確保できることを見出した。この点に本発明における大きな特徴がある。すなわち、Vの低減により磁気特性を向上させることが可能である。しかし、Vの含有量との関係から、結晶粒径が10μm以下では磁気特性の劣化を招く。一方、100μmを超えると加工性が確保できない。従って、100μm以下、好ましくは20〜70μmとする。
It has been found that by reducing the crystal grain size to 100 μm or less, the workability can be sufficiently secured even if V is reduced. This is a major feature of the present invention. That is, the magnetic characteristics can be improved by reducing V. However, due to the relationship with the V content, if the crystal grain size is 10 μm or less, the magnetic properties are deteriorated. On the other hand, if it exceeds 100 μm, workability cannot be ensured. Accordingly, the thickness is 100 μm or less, preferably 20 to 70 μm.

さらに、X線回折によるαのメインピークに対する脆性相のピーク強度α´の比を0.05以下に抑えることによりV量を低減しても加工性が十分確保できることを見出した。 上記、X線回折によるαのメインピークに対する脆性相のピーク強度α´の比が0.05を超えると、本発明の目的とするV量を低減した場合には加工性が十分得られない。従って、その上限を0.05とした。この結晶粒の微細化、脆性相の抑制には特にアトマイズ法が望ましい。アトマイズ法としてはガスアトマイズおよび水アトマイズのいずれでも構わない。急冷凝固により微細結晶粒および脆性相の低減を達成することができる。   Furthermore, it has been found that workability can be sufficiently ensured even if the amount of V is reduced by suppressing the ratio of the peak intensity α ′ of the brittle phase to the main peak of α by X-ray diffraction to 0.05 or less. When the ratio of the peak intensity α ′ of the brittle phase to the α main peak by X-ray diffraction exceeds 0.05, the workability cannot be sufficiently obtained when the V amount targeted by the present invention is reduced. Therefore, the upper limit was set to 0.05. The atomization method is particularly desirable for the refinement of the crystal grains and the suppression of the brittle phase. As the atomization method, either gas atomization or water atomization may be used. Reduction of fine grains and brittle phase can be achieved by rapid solidification.

また、アトマイズ法は急冷凝固により粉末を作製するため、本発明のような微細組織を必要とする場合に有効である。また、この粉末を熱間押出し法、もしくは熱間等方圧プレスにて成形することにより高密度、かつ工業的に生産することが可能である。   In addition, the atomization method is effective when a fine structure as in the present invention is required because a powder is prepared by rapid solidification. Moreover, it is possible to produce this powder at high density and industrially by molding the powder by a hot extrusion method or a hot isostatic press.

以下、本発明について実施例によって具体的に説明する。
原料粉末をアトマイズ条件として、圧力1〜5MPa、ノズル径φ2.0〜3.0mm、Arガスもしくは水を用いて、圧力とノズル径の変更により結晶粒、脆性相の量を変化させた結果を表1に示す。また、表1に示すアトマイズにより製造した各種合金粉末を、1473K−5hr−150MPaにて保持してなるHIP(熱間高圧力処理)、もしくは1473Kにてφ190からφ90に熱間押出加工を行い、φ90×1000mmに成形した後、切断、切削加工および研磨加工し、φ80×100mmに仕上げ、リング試験片を得る。この試験片の磁気特性、加工特性を調査した。その結果を表1に示す。
Hereinafter, the present invention will be specifically described with reference to examples.
The result of changing the amount of crystal grains and brittle phase by changing the pressure and nozzle diameter, using raw material powder as atomizing conditions, pressure 1-5 MPa, nozzle diameter φ2.0-3.0 mm, Ar gas or water Table 1 shows. In addition, HIP (hot high pressure treatment) in which various alloy powders manufactured by atomization shown in Table 1 are held at 1473 K-5 hr-150 MPa, or hot extrusion from φ190 to φ90 at 1473 K, After forming to φ90 × 1000 mm, cutting, cutting and polishing are performed to finish to φ80 × 100 mm to obtain a ring test piece. The magnetic characteristics and processing characteristics of this test piece were investigated. The results are shown in Table 1.

(1)飽和磁束密度(Bs)、保磁力(Hc):BHトレーサー装置を用いて、試験片形状は、外径15mm、内径10mm、高さ5mmのもの
(2)印加磁場:240kA/m
(3)結晶粒径:光学顕微鏡にて100個の結晶粒径の平均値を算出した。
(4)脆性相の量:X線回折によるαのメインピークに対する脆性相のピーク強度α´の比を算出した。
(5)加工性:製品仕上がり後に割れ、欠けが無いか目視にて確認した。
(1) Saturation magnetic flux density (Bs), coercive force (Hc): Using a BH tracer device, the test piece has an outer diameter of 15 mm, an inner diameter of 10 mm, and a height of 5 mm. (2) Applied magnetic field: 240 kA / m
(3) Crystal grain size: The average value of 100 crystal grain sizes was calculated with an optical microscope.
(4) Amount of brittle phase: The ratio of the peak intensity α ′ of the brittle phase to the main peak of α by X-ray diffraction was calculated.
(5) Workability: After finishing the product, it was visually checked for cracks and chips.

Figure 2006336038
Figure 2006336038

表1に示すように、No.1〜12は本発明例であり、No.13〜17は比較例である。比較例No.13およびNo.14はV含有量が低く、かつピーク強度比が高いために、加工後の割れが発生した。比較例No.15およびNo.16はV含有量が高いために、磁気特性である飽和磁束密度(Bs)および保磁力が劣る。比較例No.17は結晶粒径が大きく、かつピーク強度比が低いために、加工後の割れが発生した。これに対し、本発明例であるNo.1〜12はいずれの場合も磁気特性、加工特性に優れていることが分かる。   As shown in Table 1, no. Nos. 1 to 12 are examples of the present invention. 13 to 17 are comparative examples. Comparative Example No. 13 and no. No. 14 had a low V content and a high peak intensity ratio, so cracks after processing occurred. Comparative Example No. 15 and no. Since No. 16 has a high V content, the saturation magnetic flux density (Bs) and coercive force, which are magnetic properties, are inferior. Comparative Example No. Since No. 17 had a large crystal grain size and a low peak intensity ratio, cracks after processing occurred. On the other hand, No. which is an example of the present invention. It can be seen that 1 to 12 are excellent in magnetic characteristics and processing characteristics in any case.

本発明により製造された高磁束密度材料(V含有量1.34mass%)を用いて、加速電圧200kVの透過電子顕微鏡の対物レンズポールピース6式を製作し、電子顕微鏡に実装して飽和磁束密度および磁気特性の均質度(軸対称性)を評価した。
電子レンズに使用した場合の飽和磁束密度は、リングサンプルを用いて測定したサンプル容積内において平均化された特性値とは異なる。電子レンズにおいては高い飽和磁束密度は、より低い励磁電流により、所定の焦点距離が得られることによって示される。本材料を用いたポールピースは本電子顕微鏡において要求される励磁電流11.3Aを6式すべてがクリアし、その平均値は11.24Aであった。電子レンズに用いた場合に十分に高い磁束密度が得られていることが確認された。
Using a high magnetic flux density material (V content: 1.34 mass%) manufactured according to the present invention, a set of 6 objective lens pole pieces of a transmission electron microscope with an accelerating voltage of 200 kV is manufactured and mounted on an electron microscope to obtain a saturation magnetic flux density. In addition, the homogeneity (axial symmetry) of the magnetic properties was evaluated.
The saturation magnetic flux density when used in an electron lens is different from the characteristic value averaged in the sample volume measured using a ring sample. In an electron lens, a high saturation magnetic flux density is indicated by the fact that a predetermined focal length is obtained with a lower excitation current. The pole piece using this material cleared the exciting current 11.3A required in the present electron microscope for all six types, and the average value was 11.24A. It was confirmed that a sufficiently high magnetic flux density was obtained when used for an electron lens.

磁気特性の均質度(軸対称性)は対物レンズの非点隔差−直行する2方向での焦点距離の差−により評価する。像観察時には非点隔差は非点補正コイルにより補正されるが、補正を行なわないポールピース自体の非点隔差は、補正コイルの補正量より逆算して求めることができる。ポールピース自体の非点隔差は、機械精度と材料の磁気特性不均質の両要因に影響されるが、機械精度は今日では3次元測定器などにより確認できる。機械精度を十分確認したポールピースにおいては、非点隔差は材料の磁気特性の均質度を表す指標と考えることができる。本材料により製作したポールピースの非点隔差は、本電子顕微鏡において要求される2.0μmを6式すべてがクリアし、平均値は1.124μmであった。このことから、本発明により製造された材料が、磁気特性の均質度において優れており、対物レンズの非点隔差を低減させることが確認できた。   The homogeneity (axial symmetry) of the magnetic characteristics is evaluated by the astigmatic difference of the objective lens-the difference in focal length in two orthogonal directions. During image observation, the astigmatism is corrected by the astigmatism correction coil, but the astigmatism of the pole piece itself that is not corrected can be obtained by back calculation from the correction amount of the correction coil. The astigmatic difference of the pole piece itself is affected by both the mechanical accuracy and the magnetic property inhomogeneity of the material, but the mechanical accuracy can be confirmed by a three-dimensional measuring instrument today. In a pole piece whose mechanical accuracy has been sufficiently confirmed, the astigmatic difference can be considered as an index representing the homogeneity of the magnetic properties of the material. The astigmatic difference of the pole piece made of this material was 2.0 μm required for the present electron microscope, all 6 types cleared, and the average value was 1.124 μm. From this, it was confirmed that the material produced according to the present invention is excellent in the homogeneity of magnetic characteristics and reduces the astigmatic difference of the objective lens.

電子顕微鏡の分解能は対物レンズの性能でほぼ決まり、対物レンズの性能はポールピース材料の磁気特性に大きく影響される。ポールピース材料の飽和磁束密度の向上、および磁気特性の均質度の向上によるポールピース自体の非点隔差の低減は、いずれも電子顕微鏡の分解能を向上させる。その他、3次元測定器などにより測定されたポールピースの各部の機械的精度は良好な数値を示しており、本材料が従来材に比較して機械加工性(切削性、研磨性)において優れていることも確認されている。
上述したように、本発明により製造された高磁束密度材料は電子顕微鏡、電子ビーム描画装置等の電子レンズ、磁気共鳴装置、質量分析装置のポールピース、ヨーク材料として、従来に比較して優れた特性を有しており、工業的に極めて有利な方法を提供するものである。


特許出願人 山陽特殊製鋼株式会社 他1名
代理人 弁理士 椎 名 彊
The resolution of the electron microscope is almost determined by the performance of the objective lens, and the performance of the objective lens is greatly influenced by the magnetic properties of the pole piece material. Improvement of the saturation magnetic flux density of the pole piece material and reduction of the astigmatism of the pole piece itself by improving the homogeneity of the magnetic properties both improve the resolution of the electron microscope. In addition, the mechanical accuracy of each part of the pole piece measured by a three-dimensional measuring instrument shows a good numerical value, and this material is superior in machinability (cutting ability, abrasiveness) compared to conventional materials. It has also been confirmed.
As described above, the high magnetic flux density material manufactured according to the present invention is superior to conventional materials as an electron microscope, an electron lens such as an electron beam drawing device, a magnetic resonance device, a pole piece of a mass spectrometer, and a yoke material. It has characteristics and provides an industrially very advantageous method.


Patent applicant Sanyo Special Steel Co., Ltd. and 1 other
Attorney: Attorney Shiina

Claims (5)

質量%で、
Co:48〜52%、
V:0.8〜1.6%、
残部がFeおよび不可避的不純物からなり、結晶粒径が100μm以下からなることを特徴とする高磁束密度材料。
% By mass
Co: 48-52%
V: 0.8-1.6%,
A high magnetic flux density material characterized in that the balance is Fe and inevitable impurities, and the crystal grain size is 100 μm or less.
請求項1に記載の成分組成からなり、X線回折によるαのメインピークに対する脆性相のピーク強度α´の比が0.05以下であることを特徴とする高磁束密度材料。 A high magnetic flux density material comprising the component composition according to claim 1, wherein the ratio of the peak intensity α ′ of the brittle phase to the main peak of α by X-ray diffraction is 0.05 or less. 請求項1に記載の結晶粒径が20〜70μmであることを特徴とする高磁束密度材料。 2. The high magnetic flux density material according to claim 1, wherein the crystal grain size is 20 to 70 [mu] m. 原料粉末をArガスもしくは水を用いてアトマイズにより製造した合金粉末を、可鍛性カプセルに封入し、このカプセルごと上記粉末を熱間等方圧プレスにて成形することを特徴とする請求項1〜3に記載の高磁束密度材料の製造方法。 2. An alloy powder produced by atomizing raw material powder using Ar gas or water is enclosed in a malleable capsule, and the powder is molded together with the capsule by hot isostatic pressing. The manufacturing method of the high magnetic flux density material of -3. 原料粉末をArガスもしくは水を用いてアトマイズにより製造した合金粉末を、熱間押出加工にて棒状に成形することを特徴とする請求項1〜3に記載の高磁束密度材料の製造方法。 4. The method for producing a high magnetic flux density material according to claim 1, wherein the alloy powder produced by atomizing the raw material powder with Ar gas or water is formed into a rod shape by hot extrusion.
JP2005158985A 2005-05-31 2005-05-31 Manufacturing method of high magnetic flux density material with excellent machinability Active JP4712443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005158985A JP4712443B2 (en) 2005-05-31 2005-05-31 Manufacturing method of high magnetic flux density material with excellent machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005158985A JP4712443B2 (en) 2005-05-31 2005-05-31 Manufacturing method of high magnetic flux density material with excellent machinability

Publications (2)

Publication Number Publication Date
JP2006336038A true JP2006336038A (en) 2006-12-14
JP4712443B2 JP4712443B2 (en) 2011-06-29

Family

ID=37556852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158985A Active JP4712443B2 (en) 2005-05-31 2005-05-31 Manufacturing method of high magnetic flux density material with excellent machinability

Country Status (1)

Country Link
JP (1) JP4712443B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3546094A1 (en) 2018-03-29 2019-10-02 Seiko Epson Corporation Soft magnetic powder and method for producing sintered body
WO2021182518A1 (en) * 2020-03-10 2021-09-16 日立金属株式会社 METHOD FOR MANUFACTURING Fe-Co-BASED ALLOY ROD, AND Fe-Co-BASED ALLOY ROD
US11450459B2 (en) 2018-03-29 2022-09-20 Seiko Epson Corporation Soft magnetic powder and method for producing sintered body
WO2023042278A1 (en) * 2021-09-14 2023-03-23 株式会社プロテリアル Fe-co alloy bar stock
WO2023042279A1 (en) * 2021-09-14 2023-03-23 株式会社プロテリアル Fe-co-based alloy rod material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130322A (en) * 1989-04-18 1991-06-04 Nippon Steel Corp Production of fe-co-type soft-magnetic material
JPH03158417A (en) * 1989-11-16 1991-07-08 Kawasaki Steel Corp Production of fe-co soft-magnetic material
JPH0472015A (en) * 1990-07-11 1992-03-06 Kawasaki Steel Corp Production of soft-magnetic foil having high saturation magnetic flux density and excellent in workability
JPH04275407A (en) * 1991-03-04 1992-10-01 Kawasaki Steel Corp Soft magnetic film high in saturation magnetic flux density and its manufacture
JPH1088301A (en) * 1996-09-19 1998-04-07 Tohoku Tokushuko Kk Production of iron-cobalt alloy sheet
JP2000087194A (en) * 1998-09-16 2000-03-28 Hitachi Powdered Metals Co Ltd Alloy for electromagnet and its manufacture
JP2002194475A (en) * 2000-12-27 2002-07-10 Daido Steel Co Ltd THIN SHEET OF Fe-Co BASED ALLOY AND ITS PRODUCTION METHOD
JP2004277842A (en) * 2003-03-18 2004-10-07 Sanyo Special Steel Co Ltd Fe-Co-V BASED ALLOY MATERIAL

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130322A (en) * 1989-04-18 1991-06-04 Nippon Steel Corp Production of fe-co-type soft-magnetic material
JPH03158417A (en) * 1989-11-16 1991-07-08 Kawasaki Steel Corp Production of fe-co soft-magnetic material
JPH0472015A (en) * 1990-07-11 1992-03-06 Kawasaki Steel Corp Production of soft-magnetic foil having high saturation magnetic flux density and excellent in workability
JPH04275407A (en) * 1991-03-04 1992-10-01 Kawasaki Steel Corp Soft magnetic film high in saturation magnetic flux density and its manufacture
JPH1088301A (en) * 1996-09-19 1998-04-07 Tohoku Tokushuko Kk Production of iron-cobalt alloy sheet
JP2000087194A (en) * 1998-09-16 2000-03-28 Hitachi Powdered Metals Co Ltd Alloy for electromagnet and its manufacture
JP2002194475A (en) * 2000-12-27 2002-07-10 Daido Steel Co Ltd THIN SHEET OF Fe-Co BASED ALLOY AND ITS PRODUCTION METHOD
JP2004277842A (en) * 2003-03-18 2004-10-07 Sanyo Special Steel Co Ltd Fe-Co-V BASED ALLOY MATERIAL

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3546094A1 (en) 2018-03-29 2019-10-02 Seiko Epson Corporation Soft magnetic powder and method for producing sintered body
JP2019173126A (en) * 2018-03-29 2019-10-10 セイコーエプソン株式会社 Soft magnetic powder and manufacturing method of sintered body
JP7099006B2 (en) 2018-03-29 2022-07-12 セイコーエプソン株式会社 Manufacturing method of soft magnetic powder and sintered body
US11450459B2 (en) 2018-03-29 2022-09-20 Seiko Epson Corporation Soft magnetic powder and method for producing sintered body
WO2021182518A1 (en) * 2020-03-10 2021-09-16 日立金属株式会社 METHOD FOR MANUFACTURING Fe-Co-BASED ALLOY ROD, AND Fe-Co-BASED ALLOY ROD
WO2023042278A1 (en) * 2021-09-14 2023-03-23 株式会社プロテリアル Fe-co alloy bar stock
WO2023042279A1 (en) * 2021-09-14 2023-03-23 株式会社プロテリアル Fe-co-based alloy rod material

Also Published As

Publication number Publication date
JP4712443B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP6488976B2 (en) R-T-B sintered magnet
JP6493138B2 (en) R-T-B sintered magnet
JP6037415B2 (en) Magnetic material sputtering target and manufacturing method thereof
JP5447743B1 (en) Fe-Co alloy sputtering target material and method for producing the same
US8172956B2 (en) Sintered soft magnetic powder molded body
JP4712443B2 (en) Manufacturing method of high magnetic flux density material with excellent machinability
JP2015135935A (en) Rare earth based magnet
JP4751227B2 (en) Method for producing soft magnetic material
JP2009206337A (en) Fe-BASED SOFT MAGNETIC POWDER, AND MANUFACTURING METHOD THEREOF, AND DUST CORE
JP4870116B2 (en) Method for producing Fe-Co-V alloy material
JP2007009288A (en) Soft magnetic alloy powder
Wieland et al. Additive manufacturing of functional metallic materials
JP5196668B2 (en) Ferritic stainless steel soft magnetic material and manufacturing method thereof
JP5748639B2 (en) Magnetron sputtering target and method for manufacturing the same
TWI803774B (en) target
WO2022172995A1 (en) Iron-chromium-cobalt alloy magnet and method for producing same
WO2016157922A1 (en) Soft magnetic film and sputtering target for forming soft magnetic film
JP7506477B2 (en) Method for manufacturing sputtering target material
WO2021141042A1 (en) Method for producing sputtering target material
JP2018206835A (en) Soft magnetic alloy particle and electronic component
JP6217638B2 (en) Target material and manufacturing method thereof
JP2004277842A (en) Fe-Co-V BASED ALLOY MATERIAL
WO2018212097A1 (en) L10-FeNi MAGNETIC POWDER AND BOND MAGNET
JP4907597B2 (en) Method for producing Fe-Co-V alloy material
JP2022150143A (en) Sputtering target material and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

R150 Certificate of patent or registration of utility model

Ref document number: 4712443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250