JP2007009288A - Soft magnetic alloy powder - Google Patents

Soft magnetic alloy powder Download PDF

Info

Publication number
JP2007009288A
JP2007009288A JP2005193212A JP2005193212A JP2007009288A JP 2007009288 A JP2007009288 A JP 2007009288A JP 2005193212 A JP2005193212 A JP 2005193212A JP 2005193212 A JP2005193212 A JP 2005193212A JP 2007009288 A JP2007009288 A JP 2007009288A
Authority
JP
Japan
Prior art keywords
powder
average particle
soft magnetic
particle size
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005193212A
Other languages
Japanese (ja)
Inventor
Takao Okochi
敬雄 大河内
Tetsuya Kondo
鉄也 近藤
Satoshi Takemoto
聡 武本
Mitsuaki Asano
光章 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005193212A priority Critical patent/JP2007009288A/en
Publication of JP2007009288A publication Critical patent/JP2007009288A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide soft magnetic alloy powder having excellent magnetic properties. <P>SOLUTION: The soft magnetic alloy powder has a composition comprising, by mass, >0 to 7% Si, 2 to 5% B, 0.5 to 6% Nb, and the balance substantially Fe, wherein the average particle diameter of the powder obtained by performing water cooling after water atomization or gas atomization is 20 to 100 μm. Further, fine powder having an amorphous material forming ratio of >90 to 100 vol.% and the average particle diameter of 5 to 20 μm, and coarse powder having an amorphous material forming ratio of ≤90 vol.% and the average particle diameter of >20 to 100 μm are mixed at a weight ratio of 7:3 to 3:7, so as to compose soft magnetic alloy powder, and the average particle diameter of the powdery mixture is controlled to 20 to 60 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は軟磁性合金粉末に関し、詳しくは磁気特性をより高めた軟磁性合金粉末に関する。   The present invention relates to a soft magnetic alloy powder, and more particularly to a soft magnetic alloy powder with improved magnetic properties.

磁石材料には永久磁石材料と軟磁性材料(高透磁率材料)とがあり、この内軟磁性材料は透磁率が大きく、また保磁力の小さい材料であって代表的にはケイ素鋼,パーマロイ,センダスト等の種類があり、電磁石,鉄芯,継鉄,磁気ヘッドチップ,磁気シールド,電磁波シールド等幅広い用途に使用されている。
従来、このような軟磁性材料を合金粉末を焼結して製造することが行われており、この場合軟磁性合金粉末としてはコアロス(鉄損)が低いなど磁気特性に優れたものが望まれる。
There are two types of magnet materials: permanent magnet materials and soft magnetic materials (high magnetic permeability materials). Of these, soft magnetic materials are materials with high magnetic permeability and low coercive force, typically silicon steel, permalloy, There are various types such as sendust, and it is used in a wide range of applications such as electromagnets, iron cores, yokes, magnetic head chips, magnetic shields, and electromagnetic wave shields.
Conventionally, such a soft magnetic material has been manufactured by sintering an alloy powder. In this case, a soft magnetic alloy powder having excellent magnetic properties such as a low core loss is desired. .

そこで、本出願人はかかる軟磁性合金粉末として合金粉末中に質量%でSi:0超〜7%,B:2〜5%を含有させ、且つ粉末製造に際してこれを急冷して組織をアモルファス化させて成る軟磁性合金粉末を提案している(下記特許文献1)。
しかしながらこの特許文献1に開示の軟磁性合金粉末はアモルファス化率の点で、また磁気特性の点で未だ十分ではなく、更なる改善が求められていた。
Therefore, the present applicant contains Si: more than 0 to 7% and B: 2 to 5% by mass in the alloy powder as such soft magnetic alloy powder, and rapidly cools it during powder production to make the structure amorphous. A soft magnetic alloy powder is proposed (Patent Document 1 below).
However, the soft magnetic alloy powder disclosed in Patent Document 1 is still not sufficient in terms of the amorphization rate and in terms of magnetic characteristics, and further improvement has been demanded.

特開平11−214210号公報JP 11-214210 A

本発明は以上のような事情を背景とし、従来よりも更に磁気特性の優れた軟磁性合金粉末を提供することを目的としてなされたものである。   The present invention has been made for the purpose of providing a soft magnetic alloy powder having further excellent magnetic properties as compared with the conventional background.

而して請求項1のものは、質量%でSi:0超〜7%,B:2〜5%,Nb:0.5〜6%,残部実質的にFeの組成を有し、水噴霧若しくはガス噴霧後に水冷却して得た、平均粒径が20〜100μmであることを特徴とする。   Thus, the present invention has a composition of Si: more than Si: 0 to 7%, B: 2 to 5%, Nb: 0.5 to 6%, the balance being substantially Fe, and water spray. Or the average particle diameter obtained by water-cooling after gas spraying is 20-100 micrometers, It is characterized by the above-mentioned.

請求項2のものは、質量%でSi:0超〜7%,B:2〜5%,残部実質的にFeの組成を有する粉末であってアモルファス化率が体積%で90超〜100%で平均粒径が5〜20μmの微粉と、アモルファス化率が90%以下で平均粒径が20超〜100μmの粗粉を、重量比で7:3〜3:7の比率で混合して成り且つ混合粉の平均粒径が20〜60μmであることを特徴とする。   The powder according to claim 2 is a powder having a composition of Si: more than 0 to 7%, B: 2 to 5% and the balance being substantially Fe in mass%, and the amorphization rate is more than 90 to 100% in volume%. And a fine powder having an average particle diameter of 5 to 20 μm and a coarse powder having an amorphization ratio of 90% or less and an average particle diameter of more than 20 to 100 μm are mixed at a weight ratio of 7: 3 to 3: 7. And the average particle diameter of mixed powder is 20-60 micrometers, It is characterized by the above-mentioned.

請求項3のものは、請求項1の組成を有する粉末であってアモルファス化率が体積%で90超〜100%で平均粒径が5〜20μmの微粉と、アモルファス化率が90%以下で平均粒径が20超〜100μmの粗粉を、重量比で8:2〜2:8の比率で混合して成り且つ混合粉の平均粒径が20〜60μmであることを特徴とする。   The powder according to claim 3 is a powder having the composition according to claim 1, wherein the amorphization rate is more than 90 to 100% by volume%, and the average particle size is 5 to 20 μm, and the amorphization rate is 90% or less. A coarse powder having an average particle diameter of more than 20 to 100 μm is mixed at a weight ratio of 8: 2 to 2: 8, and the mixed powder has an average particle diameter of 20 to 60 μm.

請求項4のものは、請求項1〜3の何れかの粉末で、更にCr,Mo,W,V,Ta,Co,Ni,Cから選択される1種または2種以上の元素を合計で0超〜10%含有することを特徴とする。   A fourth aspect of the present invention is the powder of any one of the first to third aspects, further comprising one or more elements selected from Cr, Mo, W, V, Ta, Co, Ni, and C in total. It is characterized by containing more than 0 to 10%.

発明の作用・効果Effects and effects of the invention

以上のように請求項1のものは、Siを0超〜7%,Bを2〜5%含有し、残部実質的にFeの組成を有する軟磁性合金粉末において、合金成分として更にNbを0.5〜6%含有させたものである。
本発明は、合金成分としてNbを含有させることによりアモルファス化率を効果的に高めることができるとの知見の下になされたものである。
かかる本発明によれば、従来よりも更に磁気特性の優れた軟磁性合金粉末を得ることができる。
As described above, according to the first aspect of the present invention, in the soft magnetic alloy powder containing more than 0 to 7% of Si and 2 to 5% of B, with the balance being substantially Fe, Nb is further reduced to 0 as an alloy component. .5 to 6%.
The present invention has been made under the knowledge that the amorphization rate can be effectively increased by containing Nb as an alloy component.
According to the present invention, it is possible to obtain a soft magnetic alloy powder that is more excellent in magnetic properties than conventional ones.

本発明は、合金溶湯流に対し水流ジェットを噴霧して得られる粉末若しくはガス噴霧した後粉末を水で急冷して得られる粉末を対象とするものであり、何れも粉末化に際して急冷によりアモルファス化率が促進され、その結果として磁気特性が効果的に高められている。   The present invention is directed to a powder obtained by spraying a water jet against a molten alloy flow or a powder obtained by quenching a powder after water spraying with water, and both are made amorphous by rapid cooling during pulverization. Rate is promoted, and as a result, the magnetic properties are effectively enhanced.

本発明はまた、粉末の平均粒径を20〜100μmとするものであり、このこともまた軟磁性合金粉末の磁気特性を高める上で次のような意味を有している。
粉末の平均粒径がこれよりも大きいと、粉末の表面積が小さくなって粉末製造の際の冷却速度が遅くなり、アモルファス化率が低くなってしまう。
一方平均粒径が20μm未満であると、アモルファス化率は高くなるものの粉末を圧粉成形する際の成形性が悪くなり、良好な焼結体即ち軟磁性材料を製造することが難しくなる。
In the present invention, the average particle size of the powder is 20 to 100 μm, and this also has the following meaning in enhancing the magnetic properties of the soft magnetic alloy powder.
When the average particle diameter of the powder is larger than this, the surface area of the powder becomes small, the cooling rate during powder production becomes slow, and the amorphization rate becomes low.
On the other hand, when the average particle size is less than 20 μm, the amorphization ratio is increased, but the moldability when the powder is compacted is deteriorated, and it becomes difficult to produce a good sintered body, that is, a soft magnetic material.

次に請求項2のものは、アモルファス化率が体積%で90超〜100%で平均粒径が5〜20μmの微粉と、アモルファス化率が90%以下で平均粒径が20超〜100μmの粗粉を重量比で7:3〜3:7の比率で混合し且つその混合粉の平均粒径を20〜60μmとなしたものである。   Next, according to the second aspect of the present invention, the amorphization rate is 90% to 100% in volume% and the average particle size is 5 to 20 μm, and the amorphization rate is 90% or less and the average particle size is more than 20 to 100 μm. The coarse powder is mixed at a weight ratio of 7: 3 to 3: 7, and the average particle size of the mixed powder is 20 to 60 μm.

上記のように軟磁性合金粉末は、粒径が小さくなれば全体の表面積は大となって粉末製造の際の冷却速度が速くなり、粉末のアモルファス化率は高くなる。   As described above, if the particle size of the soft magnetic alloy powder is reduced, the entire surface area is increased, the cooling rate during powder production is increased, and the amorphization rate of the powder is increased.

一方で粉末の粒径が一定以下に小さくなってしまうと、粒径の小さな粉末はアモルファス化率が高いため、またアモルファス合金は高硬度であるため、例えばチョークコイルのダストコア等を製造するに際して、粉末をプレス成形金型に充填して圧粉成形する際の圧粉性が悪化してしまい、ひいては得られる焼結体の磁気特性も悪化してしまう。
他方粉末の粒径が一定以上に大きくなると、表面積が小さくなって粉末製造の際の冷却速度が遅くなることに伴い、粉末のアモルファス化率が低くなってしまい、焼結体即ち軟磁性材料としての磁気特性が低下してしまう。
On the other hand, when the particle size of the powder becomes smaller than a certain level, the powder with a small particle size has a high amorphization rate, and the amorphous alloy has a high hardness. For example, when manufacturing a dust core of a choke coil, etc. When the powder is filled into a press mold and compacted, the compactability is deteriorated, and the magnetic properties of the obtained sintered body are also deteriorated.
On the other hand, when the particle size of the powder becomes larger than a certain level, the surface area becomes smaller and the cooling rate during powder production becomes slower, resulting in a lower amorphization rate of the powder, and as a sintered body, that is, a soft magnetic material. The magnetic properties of this will deteriorate.

そこでこの請求項2では、アモルファス化率の高い(体積%で90超〜100%)、平均粒径が5〜20μmの微粉と、アモルファス化率が90%以下の、平均粒径が20超〜100μmの粗粉とを所定比率で混合し且つその混合粉の平均粒径を20〜60μmとして、これを軟磁性材料用の合金粉末となしたもので、本発明によれば、高いアモルファス化率と高い圧粉成形性がともに得られ、磁気特性の良好な軟磁性材料を焼結により製造することが可能となる。   Therefore, in claim 2, the amorphization rate is high (over 90 to 100% in volume%), the fine powder having an average particle size of 5 to 20 μm, and the amorphization rate is 90% or less and the average particle size is over 20 to 100 μm coarse powder is mixed at a predetermined ratio, and the average particle diameter of the mixed powder is set to 20 to 60 μm, which is used as an alloy powder for soft magnetic material. Thus, it is possible to obtain a high compactability and to produce a soft magnetic material having good magnetic properties by sintering.

次に請求項3は、合金粉末の成分としてNbを含有させ、更に所定の微粉と粗粉とを所定の重量比で混合し、その混合粉をもって軟磁性材料用の合金粉末となしたもので、この請求項3によれば、より効果的に軟磁性合金粉末の圧粉成形性,アモルファス化率を高めて、更に優れた磁気特性の焼結体即ち軟磁性材料を製造することが可能となる。
尚、上記請求項1〜3においてCr,Mo,W,V,Ta,Co,Ni,Cの何れか1種若しくは2種以上を、それぞれ質量%で合計で0超〜10%の範囲内で更に含有させておくことができる(請求項4)。
Next, claim 3 contains Nb as a component of the alloy powder, further mixes a predetermined fine powder and a coarse powder at a predetermined weight ratio, and uses the mixed powder as an alloy powder for a soft magnetic material. According to the third aspect of the present invention, it is possible to more effectively increase the compactibility and amorphization rate of the soft magnetic alloy powder, and to produce a sintered body having a further excellent magnetic property, that is, a soft magnetic material. Become.
In addition, in Claims 1 to 3, any one or two or more of Cr, Mo, W, V, Ta, Co, Ni, and C are each in a range of more than 0 to 10% in total by mass%. Further, it can be contained (claim 4).

次に本発明における合金成分の限定理由を以下に詳述する。
Si:0超〜7%
SiはFe基軟磁性材料の保磁力を低下させるのに有用な元素であるが、多すぎると逆に保磁力が増大し、且つ飽和磁化は含有量を多くするに従って低下するので7%以下の量で含有させる。
Next, the reasons for limiting the alloy components in the present invention will be described in detail below.
Si: More than 0-7%
Si is an element useful for reducing the coercive force of Fe-based soft magnetic materials, but if it is too much, the coercive force increases, and the saturation magnetization decreases as the content increases. It is contained in an amount.

B :2〜5%
Bはアモルファス化率を高める上で有用な元素である。但し5%を超えるとアモルファス化率が減少し始めるので2〜5%の範囲内で含有させる。
B: 2 to 5%
B is an element useful for increasing the amorphization rate. However, if it exceeds 5%, the amorphization rate starts to decrease, so it is contained within the range of 2 to 5%.

Nb:0.5〜6%
Nbはアモルファス化率を高める上で有用な元素である。但し、6%を超えると飽和磁化を減少させるので、0.5〜6%の範囲内で含有させる。
Nb: 0.5-6%
Nb is an element useful for increasing the amorphization rate. However, if it exceeds 6%, the saturation magnetization is reduced, so it is contained in the range of 0.5 to 6%.

Cr,Mo,W,V,Ta,Co,Ni,Cの何れか1種若しくは2種以上:合計で0超〜10%
これらの元素はFe基軟磁性材料のアモルファス化率を向上させるのに有用な元素であるので必要に応じて含有させるが、多すぎると逆にアモルファス化率を低下させるので含有させるとしてもそれぞれ10%以下とする。
Any one or more of Cr, Mo, W, V, Ta, Co, Ni, C: more than 0 to 10% in total
Since these elements are elements useful for improving the amorphization rate of the Fe-based soft magnetic material, they are contained as necessary. However, if the amount is too large, the amorphization rate is decreased. % Or less.

次に本発明の実施形態を以下に説明する。
<実施形態1>
表1に示す組成の合金溶湯をノズルから流出させて、これに水流ジェットを噴霧し、又はガス噴霧した後水冷却して合金粉末を製造した。
そしてその合金粉末を用いて圧粉成形及び焼結を行って磁気特性(コアロス)を測定し評価を行った。
結果が表1に併せて示してある。
尚、表1においてガス噴霧−水冷却とあるのは、合金の溶湯流に対しガス噴霧を行って粉末化した後、これを水中に落下させて水冷却を行い粉末製造したことを意味している。
また平均粒径は、粒度分布における累積重量50%の粒径をもって平均粒径とした。
Next, embodiments of the present invention will be described below.
<Embodiment 1>
The molten alloy having the composition shown in Table 1 was allowed to flow out of the nozzle, and a water jet was sprayed on the nozzle or gas sprayed thereto, followed by water cooling to produce an alloy powder.
The alloy powder was compacted and sintered, and the magnetic properties (core loss) were measured and evaluated.
The results are also shown in Table 1.
In Table 1, gas spraying-water cooling means that powder was produced by performing gas spraying on the molten alloy flow to form powder, then dropping it into water and cooling with water. Yes.
The average particle size was defined as the particle size having a cumulative weight of 50% in the particle size distribution.

Figure 2007009288
Figure 2007009288

表1の結果から、Nbを添加することによって、更には粉末の平均粒径を20〜100μmとすることによって良好な圧粉成形性,アモルファス化率及び磁気特性(コアロス)が得られることが分る。   From the results of Table 1, it can be seen that good compactability, amorphization rate and magnetic properties (core loss) can be obtained by adding Nb and further by setting the average particle size of the powder to 20 to 100 μm. The

<実施形態2>
下記の組成,平均粒径,アモルファス化率を有する粉末A〜Eを混合して軟磁性合金粉末となし、これを圧粉成形及び焼結して磁気特性(コアロス)を測定し評価を行った。
<元粉末>
粉末A:Fe-6Si-3.5B、水噴霧粉、平均粒径=12μm、アモルファス化率=95%
粉末B:Fe-6Si-3.5B、水噴霧粉、平均粒径=58μm、アモルファス化率=40%
粉末C:Fe-6Si-3.5B-1Nb、水噴霧粉、平均粒径=60μm、アモルファス化率=90%
粉末D:Fe-6Si-3.5B-1Nb、水噴霧粉、平均粒径=12μm、アモルファス化率=98%
粉末E:Fe-6Si-3.5B-1Nb、水噴霧粉、平均粒径=120μm、アモルファス化率=30%
<Embodiment 2>
Powders A to E having the following composition, average particle size, and amorphization ratio were mixed to form a soft magnetic alloy powder, which was compacted and sintered to measure magnetic characteristics (core loss) and evaluated. .
<Original powder>
Powder A: Fe-6Si-3.5B, water spray powder, average particle size = 12 μm, amorphization rate = 95%
Powder B: Fe-6Si-3.5B, water spray powder, average particle size = 58 μm, amorphization rate = 40%
Powder C: Fe-6Si-3.5B-1Nb, water spray powder, average particle size = 60 μm, amorphization rate = 90%
Powder D: Fe-6Si-3.5B-1Nb, water spray powder, average particle size = 12 μm, amorphization rate = 98%
Powder E: Fe-6Si-3.5B-1Nb, water spray powder, average particle size = 120 μm, amorphization rate = 30%

その結果が、混合粉の平均粒径,圧粉成形性,アモルファス化率とともに表2及び表3に示してある。   The results are shown in Tables 2 and 3 together with the average particle size, powder moldability and amorphization rate of the mixed powder.

Figure 2007009288
Figure 2007009288

Figure 2007009288
Figure 2007009288

表2において、比較例2-1,比較例2-2,実施例2-1,実施例2-2,実施例2-3,比較例2-3は何れも合金成分としてNbを添加していない場合の例であり、実施例2-4は合金成分としてNbを添加した場合の例である。
この表2から分るように、合金成分としてのNbを含有させない場合においても、アモルファス化率の高い微粉とアモルファス化率の低い粗粉とを7:3〜3:7の範囲内で混合することにより良好な圧粉成形性が得られ、更にまた良好なアモルファス化率及びこれに基づく良好な磁気特性としてのコアロスが得られることが分る。
In Table 2, Comparative Example 2-1, Comparative Example 2-2, Example 2-1, Example 2-2, Example 2-3, and Comparative Example 2-3 all have Nb added as an alloy component. Example 2-4 is an example in which Nb is added as an alloy component.
As can be seen from Table 2, even when Nb is not contained as an alloy component, fine powder having a high amorphous ratio and coarse powder having a low amorphous ratio are mixed within a range of 7: 3 to 3: 7. Thus, it can be seen that a good compactability can be obtained, and further, a good amorphous ratio and a core loss as a good magnetic property based thereon can be obtained.

また合金成分としてのNbを本発明の範囲内で含有させ、且つ微粉と粗粉とを所定比率で混合した実施例2-4の場合、単なる微粉と粗粉との混合(Nbを含有させないで)した場合に比べて磁気特性が更に向上することが分る。   Further, in the case of Example 2-4 in which Nb as an alloy component is contained within the scope of the present invention and fine powder and coarse powder are mixed at a predetermined ratio, a simple mixture of fine powder and coarse powder (without containing Nb) It can be seen that the magnetic properties are further improved as compared with the case of the above.

<実施形態3>
次に表3は何れも合金成分としてNbを含有させた場合の例で、このうち実施例2-6,実施例2-7,実施例2-8は更に微粉と粗粉とを本発明で規定する混合比率で混合した例である。
この表3の結果から、粉末混合をしない場合であってもNbを1%合金成分として粉末中に含有させることで、良好な圧粉成形性及び磁気特性が得られ、更にNbを含有させた上で粗粉と微粉とを混合して軟磁性合金粉末となした場合、磁気特性が更に向上することが分る。
<Embodiment 3>
Next, Table 3 shows an example in which Nb is included as an alloy component. Of these, Example 2-6, Example 2-7, and Example 2-8 are further used in the present invention for fine powder and coarse powder. This is an example of mixing at a specified mixing ratio.
From the results shown in Table 3, even when powder mixing is not performed, by adding Nb as a 1% alloy component in the powder, good compactibility and magnetic properties can be obtained, and Nb is further added. It can be seen that when the coarse powder and the fine powder are mixed to obtain a soft magnetic alloy powder, the magnetic properties are further improved.

<実施形態4>
請求項4に規定する選択元素を含有させた、表5に示す組成,平均粒径,アモルファス化率を有する粉末を混合して軟磁性合金粉末となし、これを圧粉成形及び焼結して磁気特性(コアロス)を測定し、評価を行った。その結果が混合粉の平均粒径,圧粉成形性,アモルファス化率とともに表4に示してある。
<Embodiment 4>
A powder having the composition, average particle diameter, and amorphization ratio shown in Table 5 containing the selective element defined in claim 4 is mixed to form a soft magnetic alloy powder, which is compacted and sintered. Magnetic characteristics (core loss) were measured and evaluated. The results are shown in Table 4 together with the average particle diameter of the mixed powder, the compactability, and the amorphization rate.

Figure 2007009288
Figure 2007009288

Figure 2007009288
Figure 2007009288

表4の結果に示すように、請求項4に規定する選択元素を含有させた表4の実施例の何れも良好な圧粉成形性,磁気特性を有していることが分る。   As shown in the results of Table 4, it can be seen that any of the examples of Table 4 containing the selective element defined in claim 4 has good compactability and magnetic properties.

以上本発明の実施形態を詳述したがこれらはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。   Although the embodiments of the present invention have been described in detail above, these are merely examples, and the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.

Claims (4)

質量%で
Si:0超〜7%
B :2〜5%
Nb:0.5〜6%
残部実質的にFeの組成を有し、水噴霧若しくはガス噴霧後に水冷却して得た、平均粒径が20〜100μmである軟磁性合金粉末。
In mass%
Si: More than 0-7%
B: 2 to 5%
Nb: 0.5-6%
A soft magnetic alloy powder having a balance of substantially Fe and obtained by water cooling after water spraying or gas spraying and having an average particle size of 20 to 100 μm.
質量%で
Si:0超〜7%
B :2〜5%
残部実質的にFeの組成を有する粉末であってアモルファス化率が体積%で90超〜100%で平均粒径が5〜20μmの微粉と、アモルファス化率が90%以下で平均粒径が20超〜100μmの粗粉を、重量比で7:3〜3:7の比率で混合して成り且つ混合粉の平均粒径が20〜60μmである軟磁性合金粉末。
In mass%
Si: More than 0-7%
B: 2 to 5%
The balance is a powder having substantially the composition of Fe, the amorphization rate is 90% to 100% in volume%, and the average particle size is 5 to 20 μm, and the amorphization rate is 90% or less and the average particle size is 20 A soft magnetic alloy powder comprising a coarse powder of ultra-100 μm mixed at a weight ratio of 7: 3 to 3: 7, and an average particle size of the mixed powder of 20 to 60 μm.
請求項1の組成を有する粉末であってアモルファス化率が体積%で90超〜100%で平均粒径が5〜20μmの微粉と、アモルファス化率が90%以下で平均粒径が20超〜100μmの粗粉を、重量比で8:2〜2:8の比率で混合して成り且つ混合粉の平均粒径が20〜60μmである軟磁性合金粉末。   A powder having the composition of claim 1, wherein the amorphization rate is more than 90 to 100% by volume and the average particle size is 5 to 20 μm, and the amorphization rate is 90% or less and the average particle size is more than 20 A soft magnetic alloy powder comprising 100 μm of coarse powder mixed at a weight ratio of 8: 2 to 2: 8, and an average particle size of the mixed powder of 20 to 60 μm. 請求項1〜3の何れかの粉末で、更にCr,Mo,W,V,Ta,Co,Ni,Cから選択される1種または2種以上の元素を合計で0超〜10%含有する軟磁性合金粉末。   The powder according to any one of claims 1 to 3, further comprising one or more elements selected from Cr, Mo, W, V, Ta, Co, Ni and C in total exceeding 0 to 10%. Soft magnetic alloy powder.
JP2005193212A 2005-06-30 2005-06-30 Soft magnetic alloy powder Pending JP2007009288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193212A JP2007009288A (en) 2005-06-30 2005-06-30 Soft magnetic alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193212A JP2007009288A (en) 2005-06-30 2005-06-30 Soft magnetic alloy powder

Publications (1)

Publication Number Publication Date
JP2007009288A true JP2007009288A (en) 2007-01-18

Family

ID=37748167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193212A Pending JP2007009288A (en) 2005-06-30 2005-06-30 Soft magnetic alloy powder

Country Status (1)

Country Link
JP (1) JP2007009288A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019259A (en) * 2007-07-13 2009-01-29 Daido Steel Co Ltd Amorphous soft magnetic metal powder and compacted-powder magnetic core
KR101376453B1 (en) 2009-03-31 2014-03-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Lanthanum target for sputtering
US9347130B2 (en) 2009-03-27 2016-05-24 Jx Nippon Mining & Metals Corporation Lanthanum target for sputtering

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019259A (en) * 2007-07-13 2009-01-29 Daido Steel Co Ltd Amorphous soft magnetic metal powder and compacted-powder magnetic core
US9347130B2 (en) 2009-03-27 2016-05-24 Jx Nippon Mining & Metals Corporation Lanthanum target for sputtering
KR101376453B1 (en) 2009-03-31 2014-03-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Lanthanum target for sputtering
US9382612B2 (en) 2009-03-31 2016-07-05 Jx Nippon Mining & Metals Corporation Lanthanum target for sputtering

Similar Documents

Publication Publication Date Title
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
WO2011155494A1 (en) Iron group-based soft magnetic powder
JP4327214B2 (en) Sintered soft magnetic powder compact
JP6642838B2 (en) Method for producing RTB based sintered magnet
TW201339326A (en) Soft magnetic powder, dust core, and magnetic device
WO2017119386A1 (en) Mn-Bi-BASED MAGNETIC POWDER, METHOD FOR PRODUCING SAME, COMPOUND FOR BOND MAGNET, BOND MAGNET, Mn-Bi-BASED METAL MAGNET AND METHOD FOR PRODUCING SAME
JP6191855B2 (en) Soft magnetic metal powder and high frequency powder magnetic core
EP3170586B1 (en) Alloy powder and magnetic component
JP2007009288A (en) Soft magnetic alloy powder
JP5681839B2 (en) Magnetic material and method for manufacturing magnetic material
JP2014078629A (en) Iron-based soft magnetic metal powder
JP2010047788A (en) Iron base alloy water atomized powder and method for producing the iron base alloy water atomized powder
JPH0715121B2 (en) Fe-Co alloy fine powder for injection molding and Fe-Co sintered magnetic material
CN108695032A (en) R-T-B systems sintered magnet
JP2005243895A (en) Powder for pressed powder core and pressed powder core employing it
JP7247874B2 (en) Iron-based soft magnetic alloy powder
JP4106966B2 (en) Composite magnetic material and manufacturing method thereof
JP2017135267A (en) Metal bonded hybrid magnet
JP2002206150A (en) Soft magnetic alloy powder and production method therefor
JP2011187634A (en) Magnetic material
JP2005008945A (en) Fe AND Fe-Ni BASED FINE POWDER HAVING HIGH FREQUENCY PROPERTY, AND ELECTRONIC COMPONENT OBTAINED BY USING THE SAME
JP5748639B2 (en) Magnetron sputtering target and method for manufacturing the same
WO2023100528A1 (en) Soft magnetic alloy powder and production method therefor
JP2004270016A (en) Powder for dust core
JP6627555B2 (en) RTB based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130