JP6627555B2 - RTB based sintered magnet - Google Patents

RTB based sintered magnet Download PDF

Info

Publication number
JP6627555B2
JP6627555B2 JP2016025792A JP2016025792A JP6627555B2 JP 6627555 B2 JP6627555 B2 JP 6627555B2 JP 2016025792 A JP2016025792 A JP 2016025792A JP 2016025792 A JP2016025792 A JP 2016025792A JP 6627555 B2 JP6627555 B2 JP 6627555B2
Authority
JP
Japan
Prior art keywords
amount
mass
sintered magnet
based sintered
hcj
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016025792A
Other languages
Japanese (ja)
Other versions
JP2016192542A (en
Inventor
宣介 野澤
宣介 野澤
大介 古澤
大介 古澤
西内 武司
武司 西内
智機 深川
智機 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to CN201610117968.1A priority Critical patent/CN106024235B/en
Publication of JP2016192542A publication Critical patent/JP2016192542A/en
Application granted granted Critical
Publication of JP6627555B2 publication Critical patent/JP6627555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、R−T−B系焼結磁石に関する。   The present invention relates to an RTB based sintered magnet.

14B型化合物を主相とするR−T−B系焼結磁石(Rは希土類元素の少なくとも一種でありNdを必ず含み、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業用モータなどの各種モータ等に使用されている。
R−T−B系焼結磁石は、高温で保磁力HcJ(以下、単に「HcJ」と記載する場合がある)が低下し、不可逆熱減磁が起こる。そのため、特に電気自動車用や電気自動車用モータに使用される場合、高温下でも高いHcJを維持することが要求されている。そして高温下での不可逆熱減磁を抑制するため、すなわち高温下でも高いHcJを維持するために、室温においてより高いHcJを得ることが求められている。
R-T-B sintered magnet having R 2 T 14 B-type compound as main phase (R is at least one kind of rare earth element and always contains Nd, T is at least one kind of transition metal element and always contains Fe ) Are known as the highest performance magnets among permanent magnets, and various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.) and industrial motors Etc. are used.
The RTB -based sintered magnet has a low coercive force HcJ (hereinafter sometimes simply referred to as " HcJ ") at high temperatures, and irreversible thermal demagnetization occurs. Therefore, especially when used for electric vehicles or electric vehicle motors, it is required to maintain high HcJ even at high temperatures. In order to suppress irreversible thermal demagnetization at high temperatures, that is, to maintain high HcJ even at high temperatures, it is required to obtain higher HcJ at room temperature.

従来、HcJ向上のために、R−T−B系焼結磁石に重希土類元素RH(主としてDy)が多量に添加されていたが、残留磁束密度B(以下、単に「B」と記載する場合がある)が低下するという問題があった。そのため、近年、R−T−B系焼結磁石の表面から内部に重希土類元素を拡散させて主相結晶粒の外殻部に重希土類元素を濃化してBの低下を抑制しつつ、高いHcJを得る方法が採られている。 Conventionally, in order to improve HcJ , a large amount of heavy rare earth element RH (mainly Dy) has been added to the RTB-based sintered magnet, but the residual magnetic flux density B r (hereinafter simply referred to as “B r ”) In some cases). Therefore, in recent years, while suppressing a decrease in B r was concentrated heavy rare earth element in the outer shell of the main phase crystal grains by diffusing a heavy rare earth elements from the surface of the R-T-B based sintered magnet therein, A method for obtaining high HcJ has been adopted.

しかし、Dyは、産出地が限定されている等の理由から、供給が不安定である、又は価格が変動するなどの問題を有している。そのため、Dyなどの重希土類元素をできるだけ使用せずに(使用量をできるだけ少なくして)R−T−B系焼結磁石のHcJを向上させる技術が求められている。 However, Dy has problems such as unstable supply or fluctuating prices because of limited production areas. Therefore, there is a need for a technique for improving the HcJ of the RTB based sintered magnet without using a heavy rare earth element such as Dy as much as possible (using as little as possible).

特許文献1には、通常のR−T−B系合金よりもB量を少なくするとともに、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有させることによりR17相を生成させ、該R17相を原料として生成させた遷移金属リッチ相(R13M)の体積率を充分に確保することにより、Dyの含有量を抑制しつつ、保磁力の高いR−T−B系希土類焼結磁石が得られることが記載されている。
特許文献2には、通常のR−T−B系合金よりもB量を少なくするとともに、B、Al、Cu、Co、Ga、C、Oの量を所定の範囲にし、さらにBに対するNd及びPr、並びにGa及びCの原子比がそれぞれ特定の関係を満たすことによって高い残留磁束密度及び保磁力が得られることが記載されている。
Patent Literature 1 discloses that R 2 T 17 is prepared by reducing the amount of B as compared with a normal RTB-based alloy and including one or more metal elements M selected from Al, Ga, and Cu. A phase is generated, and the volume ratio of the transition metal rich phase (R 6 T 13 M) generated by using the R 2 T 17 phase as a raw material is sufficiently ensured, so that the Dy content is suppressed and the coercive force is reduced. It is described that an RTB-based rare earth sintered magnet having a high value can be obtained.
Patent Document 2 discloses that the amount of B is made smaller than that of a normal RTB-based alloy, the amounts of B, Al, Cu, Co, Ga, C, and O are set in a predetermined range, and further, Nd and It is described that a high residual magnetic flux density and a high coercive force can be obtained when Pr, and the atomic ratio of Ga and C satisfy a specific relationship, respectively.

国際公開第2013/008756号International Publication No. WO 2013/008756 国際公開第2013/191276号WO 2013/191276

しかし、特許文献1、2に記載されているような、一般的なR−T−B系焼結磁石よりもB量を少なく(R14B型化合物の化学量論比のB量よりも少なく)し、Ga等を添加した組成の焼結磁石は、B量が少し変化しただけで大きくHcJが変化してしまうという問題があることを本発明者らは見いだした。
例えば、B量が0.01質量%変化しただけでHcJが約100kA/m変化することがある。これに対し、一般的なR−T−B系焼結磁石(R14B型化合物の化学量論比のB量よりも多くのBを含む)は、B量が0.1質量%変わってもHcJは、ほとんど変化しない。
However, the B amount is smaller than that of a general RTB-based sintered magnet as described in Patent Documents 1 and 2 (the B amount is smaller than the stoichiometric ratio of the R 2 T 14 B type compound). The present inventors have found that a sintered magnet having a composition to which Ga or the like is added has a problem that HcJ is largely changed even if the amount of B is slightly changed.
For example, HcJ may change by about 100 kA / m only by changing the amount of B by 0.01% by mass. On the other hand, a general RTB-based sintered magnet (containing more B than the stoichiometric ratio of B of the R 2 T 14 B type compound) has a B content of 0.1% by mass. Even if it changes, HcJ hardly changes.

このため、一般的なR−T−B系焼結磁石よりもB量を少なくし、Ga等を添加した組成の焼結磁石は、HcJの変化を抑制するためにB量を例えば0.01質量%の高い精度で管理する必要がある。しかし、量産設備において、原料合金を溶解、鋳造する際にB量を例えば0.01質量%の精度で管理するのは非常に困難である。
本発明は、このような、問題を解決するためになされたものであり、B量の変化に対するHcJの変化が小さく、かつ高いBと高いHcJを有するR−T−B系焼結磁石を提供することを目的とする。
For this reason, the amount of B is made smaller than that of a general RTB-based sintered magnet, and the sintered magnet having a composition to which Ga or the like is added has a B amount of, for example, 0.1 in order to suppress a change in HcJ . It is necessary to control with high accuracy of 01% by mass. However, in mass production equipment, it is very difficult to control the B amount with an accuracy of, for example, 0.01% by mass when melting and casting the raw material alloy.
The present invention is such, has been made to solve the problem, R-T-B based sintered with H changes in cJ is small and a high B r and high H cJ for B amount of change It is intended to provide a magnet.

本発明の態様1は、下記式(1)で示される組成が、下記式(2)〜(10)を満足し、

uRwBaCxGazAlvCoqTigFejM (1)
(Rは希土類元素の少なくとも一種でありNdを必ず含み、MはR、C、B、Ga、Al、Co、Ti及びFe以外の元素であり、u、w、a、x、z、v、q、g、jは質量%を示す)

29.0≦u≦34.0 (2)
(ただし、重希土類元素RHはR−T−B系焼結磁石の10質量%以下)
0.80≦w≦0.92 (3)
0.10≦a≦0.20 (4)
0.3≦x≦0.8 (5)
0.05≦z≦0.5 (6)
0≦v≦3.0 (7)
0.15≦q≦0.29 (8)
58.29≦g≦69.60 (9)
0≦j≦2.0 (10)

gをFeの原子量で割った値をg’、vをCoの原子量で割った値をv’、zをAlの原子量で割った値をz’、wをBの原子量で割った値をw’、aをCの原子量で割った値をa’、qをTiの原子量で割った値をq’としたときに下記式(A)及び(B)を満足することを特徴とする、R−T−B系焼結磁石である。

−0.02≦(g’+ v’+z’)−(14×(w’+ a’−2×q’)) (A)
0.02≧(g’+ v’+z’)−(14×(w’+ a’−q’)) (B)
In the aspect 1 of the present invention, the composition represented by the following formula (1) satisfies the following formulas (2) to (10);

uRwBaCxGazAlvCoqTigFejM (1)
(R is at least one kind of rare earth element and always contains Nd, M is an element other than R, C, B, Ga, Al, Co, Ti and Fe, and u, w, a, x, z, v, q, g, and j indicate mass%)

29.0 ≦ u ≦ 34.0 (2)
(However, the heavy rare earth element RH is 10% by mass or less of the RTB based sintered magnet.)
0.80 ≦ w ≦ 0.92 (3)
0.10 ≦ a ≦ 0.20 (4)
0.3 ≦ x ≦ 0.8 (5)
0.05 ≦ z ≦ 0.5 (6)
0 ≦ v ≦ 3.0 (7)
0.15 ≦ q ≦ 0.29 (8)
58.29 ≦ g ≦ 69.60 (9)
0 ≦ j ≦ 2.0 (10)

The value obtained by dividing g by the atomic weight of Fe is g ', the value obtained by dividing v by the atomic weight of Co is v', the value obtained by dividing z by the atomic weight of Al is z ', and the value obtained by dividing w by the atomic weight of B is w R is characterized by satisfying the following formulas (A) and (B), where a 'is a value obtained by dividing a by the atomic weight of C, and q' is a value obtained by dividing q by the atomic weight of Ti. -A TB sintered magnet.

−0.02 ≦ (g ′ + v ′ + z ′) − (14 × (w ′ + a′−2 × q ′)) (A)
0.02 ≧ (g ′ + v ′ + z ′) − (14 × (w ′ + a′−q ′)) (B)

本発明の態様1において、好ましくは、0.18≦q≦0.28である。   In embodiment 1 of the present invention, preferably, 0.18 ≦ q ≦ 0.28.

B量の変化に対するHcJの変化が小さく、かつ高いBと高いHcJを有するR−T−B系焼結磁石を提供できる。 Small changes in H cJ to B the amount of change, and can provide a R-T-B based sintered magnet having a high B r and high H cJ.

本発明の態様は、R−T−B系焼結磁石においてTi量、B量、C量を適切な範囲とすることにより、製造工程の中でTiの硼化物を生成させて、B量の変化に対するHcJの変化が小さく、かつ高いBと高いHcJを有するR−T−B系焼結磁石を提供できることを見出したものである。 An aspect of the present invention is to form a boride of Ti in the manufacturing process by setting the Ti content, the B content, and the C content in the R-T-B based sintered magnet in an appropriate range, thereby reducing the B content. change in H cJ to changes is small and it has been found to be able to provide a R-T-B based sintered magnet having a high B r and high H cJ.

1.Ti及びCの添加について
本発明者らは、本発明に係るR−T−B系焼結磁石において、Tiの硼化物(TiB及び/又はTiB)が形成されることを確認している。そして、本発明の態様は、後述するBCeff量が一般的なR−T−B系焼結磁石のB量よりも少なくなるよう、Tiの硼化物を生成させている。これらを踏まえて本発明者らが考える、所定の含有量のTiを含むことにより、B量が変動してもHcJの変化が抑制されるメカニズムは以下の通りである。ただし、以下に示すメカニズムは本発明の技術的範囲を制限することを意図するものではないことに留意されたい。
1. Regarding the Addition of Ti and C The present inventors have confirmed that boride of Ti (TiB and / or TiB 2 ) is formed in the RTB-based sintered magnet according to the present invention. And the aspect of this invention produces | generates the boride of Ti so that the amount of BC eff mentioned later may become smaller than the amount of B of a general RTB -type sintered magnet. Based on these considerations, the mechanism considered by the present inventors to suppress the change in HcJ even when the B amount fluctuates by including a predetermined content of Ti is as follows. However, it should be noted that the following mechanism is not intended to limit the technical scope of the present invention.

上述したように、一般的なR−T−B系焼結磁石よりもB量を少なく(R14B型化合物の化学量論比のB量よりも少なく)し、さらに、Ga等を添加した組成を採用した焼結磁石は、高いHcJを得ることができる。
これは、B量がR14B型化合物の化学量論比を下回ると、R及びTが余剰となってR17相が生成され、通常は、B量の低下とともに急激に磁気特性が低下するが、磁石組成にGaが含有されていると、R17相の代わりにR−T−Ga相が生成され、これにより高いHcJが得られるものと考えられる。
また、一般的R−T−B系焼結磁石ではCを多く含有すると高いHcJを得ることができないことから、このようなB量がR14B型化合物の化学量論比よりも低いR−T−B系焼結磁石においてもCを多く含有すると高いHcJを得ることができないと考えられていた。しかし、本発明者らは、B量がR14B型化合物の化学量論比を下回る場合は、Cを不可避不純物量レベル(約0.03〜0.09質量%)を超える量まで増加させたとしてもTi量、B量、C量が本発明の式(1)〜(10)、(A)および(B)の関係を満たすことで高いHcJを得ることができることを見出した。Cは、成形時に添加する離型剤等により不可避不純物量レベルを超える含有量となることがあり、それにより高いHcJが得られない場合がある。このような場合においても、本発明の態様は、高いHcJを得ることができる。
As described above, the amount of B is smaller than that of a general RTB-based sintered magnet (less than the B amount of the stoichiometric ratio of the R 2 T 14 B-type compound). A sintered magnet employing the added composition can obtain a high HcJ .
This is because when the amount of B falls below the stoichiometric ratio of the R 2 T 14 B-type compound, R and T become excessive, and an R 2 T 17 phase is generated. Although characteristics are deteriorated, the Ga in the magnet composition is contained, it is generated R 2 T 17 phase R-T-Ga phase instead of, thereby a high H cJ is thought to be obtained.
In addition, in a general RTB -based sintered magnet, a high HcJ cannot be obtained when a large amount of C is contained. Therefore, such a B amount is smaller than the stoichiometric ratio of the R 2 T 14 B type compound. It has been considered that high HcJ cannot be obtained when a large amount of C is contained even in a low RTB -based sintered magnet. However, when the amount of B is lower than the stoichiometric ratio of the R 2 T 14 B-type compound, the present inventors consider that C exceeds an unavoidable impurity amount level (about 0.03 to 0.09 mass%). Even if it is increased, it has been found that a high HcJ can be obtained by satisfying the relationships of the formulas (1) to (10), (A) and (B) of the present invention with the amounts of Ti, B and C. . C may have a content exceeding the unavoidable impurity level due to a release agent or the like added at the time of molding, whereby a high HcJ may not be obtained. Even in such a case, the embodiment of the present invention can obtain high HcJ .

Cを不可避不純物量レベルを超える量まで増加させたとしても高いHcJを得ることができるのは、B量がR14B型化合物の化学量論比よりも多い場合には主に希土類炭化物などの粒界相となっていたCが、B量がR14B型化合物の化学量論比よりも少ない場合にはBの代わりにR14B型化合物のBサイトの一部に置換するからだと考えられる。なお、上述したようにB量がR14B型化合物の化学量論比よりも少ない場合は、BサイトがBの代わりにCにより置換され易いため、特にCを不可避不純物量レベル(約0.03〜0.09質量%)以上に増加させた場合はB量とC量の合計(B量+C量)がR14B型化合物の化学量論比よりも少ないかどうか管理する。さらに本発明者は検討の結果、特定の範囲内の含有量となるようにTiを添加して製造工程の中でTiの硼化物を生成させることにより、R−T−B系焼結磁石全体のB量+C量から製造工程の中でTiと結合することにより消費されたB量を差し引いたB量+C量(以下、Tiと結合しなかった残りのB量+C量を「有効B量+C量」として「BCeff量」と記載することがある)を一般的なR−T−B系焼結磁石全体のB量+C量より少なく(R14B型化合物の化学量論比のB量+C量よりも少なく)するとともに、Ga等を添加した組成の焼結磁石は、B量の変化に対するHcJの変化が抑制されること見いだした。 Even if C is increased to a level exceeding the unavoidable impurity level, a high HcJ can be obtained mainly when the B content is larger than the stoichiometric ratio of the R 2 T 14 B-type compound. C which was a grain boundary phase, such as carbide, B the amount of B sites R 2 T 14 B type compound in place of B in the case less than the stoichiometric ratio of R 2 T 14 B type compound one This is probably because the part is replaced. When the amount of B is smaller than the stoichiometric ratio of the R 2 T 14 B-type compound as described above, the B site is easily replaced by C instead of B. When the amount is increased to 0.03 to 0.09% by mass or more, it is controlled whether the total of the B amount and the C amount (B amount + C amount) is smaller than the stoichiometric ratio of the R 2 T 14 B type compound. . Further, as a result of the study, the present inventor has found that Ti is added so as to have a content within a specific range to form a boride of Ti in a manufacturing process, so that the entire RTB-based sintered magnet is manufactured. B amount + C amount obtained by subtracting the B amount consumed by combining with Ti in the manufacturing process from the B amount + C amount (hereinafter, the remaining B amount + C amount not combined with Ti is referred to as “effective B amount + C amount”). as the amount "" may be referred to as a BC eff amount ") of a typical stoichiometry of R-T-B based sintered magnet total B amount + less than the amount of C (R 2 T 14 B type compound It has been found that the change in HcJ with respect to the change in the amount of B is suppressed in the sintered magnet having the composition in which the amount of B is smaller than the amount of B and the amount of C.

上述したように、一般的なR−T−B系焼結磁石よりもB量を少なくし、さらに、Ga等を添加した組成の焼結磁石は、B量が変化するとHcJが大きく変化する。これは、B量+C量がR14B型化合物の化学量論比よりもどのくらい少なくなるか(R、Tがどのくらい余剰となるか)によりR−T−Ga相の生成量が大きく変化するため、HcJのB量依存性が大きくなっているものと考えられるが、焼結磁石中にTiを添加して硼化物(TiB及び/又はTiB)を形成することによって前記BCeff量をR14B型化合物の化学量論比のB量よりも少なくした場合には、HcJの磁石全体のB量に対する依存性を小さくできることが分かった。
これは、本発明の態様のように、Tiの硼化物を形成することによってBCeff量を一般的なR−T−B系焼結磁石のB量よりも少なくした場合、Gaの添加によりR17相などの生成が抑制されてR−T−Gaが生成され、結果、HcJが向上するが、このとき、磁石全体組成のB量がR14B型化合物の化学量論比のB量に対して変わると、TiBとTiBの生成比が変わる、すなわち、磁石全体組成のB量とR14B型化合物の化学量論比から求まるB量との差が小さい(すなわち、含有しているB量がより少ない)場合は、TiBよりもTiBが多く生成され、逆に、磁石全体組成のB量とR14B型化合物の化学量論比から求まるB量との差が大きい場合(すなわち、含有しているB量がより多い場合)は、TiBよりもTiBが多く生成されると考えられる。このようにBが多いほどBリッチなTi硼化物(TiB)が生成され、Bが少ないほどBプアなTi硼化物(TiB)が生成されることで、磁石全体のB量が変動しても、磁石中でTiと化合物を生成していないB量+C量(BCeff量)の変化を小さくすることができ、この結果、B量の変化に対するR−T−Ga相の生成量の変化を小さくすることができ、HcJの変化を抑制することができたと考えられる。
そして、本発明者らは、このようなTiの添加を行ったとき、R14B型化合物の化学量論比よりもB量+C量を少なくし、Gaを添加した焼結磁石(特許文献1、2に記載されているような焼結磁石)で見られる効果と同様に、高いBと高いHcJが得られることも確認した。
ここで、本明細書における「R−T−Ga相」とは、R20原子%以上35原子%以下、T55原子%以上75原子%以下、Ga3原子%以上15原子%以下を含むものであって、典型的にはR13Ga化合物が挙げられる。なお、R−T−Ga相は、不可避不純物としてAl、Si等が混入する場合があるため、例えば、R13(Ga1−i−yAlSi)化合物になっている場合がある。
As described above, the amount of B is smaller than that of a general RTB-based sintered magnet, and the sintered magnet having a composition to which Ga or the like is added has a large change in HcJ when the amount of B changes. . This depends on how much the amount of B + C is smaller than the stoichiometric ratio of the R 2 T 14 B-type compound (how much R and T are excessive), and the amount of generation of the R—T—Ga phase greatly changes. Therefore , it is considered that the dependency of HcJ on the B content is increased. However, by adding Ti to the sintered magnet to form a boride (TiB and / or TiB 2 ), the BC eff content is increased. Is smaller than the B amount of the stoichiometric ratio of the R 2 T 14 B type compound, it was found that the dependence of HcJ on the B amount of the entire magnet can be reduced.
This is because, when the amount of BC eff is made smaller than that of a general RTB -based sintered magnet by forming a boride of Ti as in the embodiment of the present invention, the addition of Ga causes generation of such 2 T 17 phase is in R-T-Ga is generated is suppressed, result, H cJ is improved, this time, the stoichiometry of B quantity of the total composition magnet R 2 T 14 B type compound If the ratio changes with respect to the B amount, the generation ratio of TiB and TiB 2 changes, that is, the difference between the B amount of the entire magnet composition and the B amount obtained from the stoichiometric ratio of the R 2 T 14 B type compound is small. In the case where the content of B is smaller, more TiB is produced than TiB 2 , and conversely, it is determined from the B content of the whole magnet composition and the stoichiometric ratio of the R 2 T 14 B type compound. When the difference from the B amount is large (that is, the contained B amount It is considered that TiB 2 is generated more than TiB. As described above, B-rich Ti boride (TiB 2 ) is generated as B is increased, and B-poor Ti boride (TiB) is generated as B is decreased, so that the B amount of the entire magnet fluctuates. Also, it is possible to reduce the change in the B amount + C amount (BC eff amount) in which no compound is formed with Ti in the magnet, and as a result, the change in the amount of generated RT-Ga phase with respect to the change in the B amount. Can be reduced, and the change in HcJ can be suppressed.
Then, the present inventors, when performing such addition of Ti, the B amount + C amount is made smaller than the stoichiometric ratio of the R 2 T 14 B type compound, and the sintered magnet to which Ga is added (Patent similar to the effects seen in the sintered magnet) as described in documents 1 and 2, it was confirmed that high B r and high H cJ are obtained.
Here, the “RT-Ga phase” in the present specification includes R20 to 35 atomic%, T55 to 75 atomic%, Ga3 to 15 atomic%. And typically an R 6 T 13 Ga 1 compound. Incidentally, R-T-Ga phase, Al as an unavoidable impurity, since there are cases where Si or the like is mixed, for example, may have been the R 6 T 13 (Ga 1- i-y Al i Si y) Compound is there.

これらを踏まえて、さらに、検討した結果、Ti量、B量、C量が式(A)と式(B)を満足することにより、R−T−Ga相の生成量を適切な範囲にすることができるため、B量の変化に対するHcJの変化を抑制しつつ高いBと高いHcJを得ることができることを見いだした。

−0.02≦(g’+ v’+z’)−(14×(w’+ a’−2×q’)) (A)
0.02≧(g’+ v’+z’)−(14×(w’+ a’−q’)) (B)
ここで、g’は、gをFeの原子量(55.845)で割った値であり、v’は、vをCoの原子量(58.933)で割った値であり、z’は、zをAlの原子量(26.982)で割った値であり、w’は、wをB(10.811)の原子量で割った値であり、a’は、aをCの原子量(12.0107)で割った値であり、q’は、qをTiの原子量(47.867)で割った値である。
Based on these, as a result of further study, the Ti, B, and C contents satisfy the formulas (A) and (B), so that the amount of the R-T-Ga phase is adjusted to an appropriate range. it is possible, been found that it is possible to obtain the B content of high B r and high H cJ while suppressing a change in H cJ to changes.

−0.02 ≦ (g ′ + v ′ + z ′) − (14 × (w ′ + a′−2 × q ′)) (A)
0.02 ≧ (g ′ + v ′ + z ′) − (14 × (w ′ + a′−q ′)) (B)
Here, g ′ is a value obtained by dividing g by the atomic weight of Fe (55.845), v ′ is a value obtained by dividing v by the atomic weight of Co (58.933), and z ′ is z Is divided by the atomic weight of Al (26.982), w ′ is the value of w divided by the atomic weight of B (10.811), and a ′ is a divided by the atomic weight of C (12.0107). ), And q ′ is a value obtained by dividing q by the atomic weight of Ti (47.867).

式(A)及び式(B)について説明する。
前記BCeff量がR14B型化合物の化学量論比を下回ると、Feと、主相のFeサイトを容易に置換することができるCo、Alが余剰となる(FeとCoとAlの合計がR14B型化合物の化学量論比のT量よりも余剰となる)。よって、全てのTiがTiBになった場合(つまりTiが最も多くのBと結合した場合)、前記BCeff量をR14B型化合物の化学量論比のB量よりも少なくするためには、[(g’+ v’+z’)−(14×(w’+ a’−2×q’))](主相を形成しないFe、Co、Alの合計)が0よりも大きい(FeとCoとAlが余剰になる)必要がある。ただし、Cは必ずしもすべてがR14B型化合物に使われるとは限らないため、[(g’+ v’+z’)−(14×(w’+ a’−2×q’))](主相を形成しないFe、Co、Alの合計)が0を若干下回っても、FeとCoとAlが余剰になる場合を考慮して、−0.02以上であれば本発明の効果が得られる。そのため、この主相を形成していないFe、Co、Alの合計が、−0.02以上であることを規定しているのが式(A)である。−0.02以上とすることにより、R−T−Ga相を適切に生成させることができる。また、式(A)は、Fe(g)、Co(v)、Al(z)、B(w)、C(a)、Ti(q)の分析値にそれぞれ、Fe、Co、Al、B、C、Tiの原子量で割った値(g’、v’、z’、w’、 a’、q’)を用いて計算することにより求めることができる。後述する式(B)も同様である。
Formulas (A) and (B) will be described.
When the amount of BC eff is lower than the stoichiometric ratio of the R 2 T 14 B-type compound, Fe and Co and Al which can easily substitute the Fe site of the main phase become excessive (Fe, Co and Al Is excess than the T amount of the stoichiometric ratio of the R 2 T 14 B type compound). Therefore, when all of the Ti becomes TiB 2 (that is, when Ti is bonded to the most B), the BC eff quantity is made smaller than the B quantity of the stoichiometric ratio of the R 2 T 14 B type compound. For this purpose, [(g ′ + v ′ + z ′) − (14 × (w ′ + a′−2 × q ′))] (the sum of Fe, Co, and Al that does not form a main phase) is larger than 0. It must be large (Fe, Co, and Al become excessive). However, C is not always used in the R 2 T 14 B type compound, and therefore, [(g ′ + v ′ + z ′) − (14 × (w ′ + a′−2 × q ′)) ] (Effect of Fe, Co, and Al) that is slightly less than 0 even if (the sum of Fe, Co, and Al that does not form a main phase) is slightly less than 0, if the effects of the present invention are -0.02 or more in consideration of the case where Fe, Co, and Al become excessive. Is obtained. Therefore, the expression (A) specifies that the total of Fe, Co, and Al not forming the main phase is equal to or more than -0.02. By setting it to −0.02 or more, an RT—Ga phase can be appropriately generated. The expression (A) expresses Fe, Co, Al, and B in the analysis values of Fe (g), Co (v), Al (z), B (w), C (a), and Ti (q), respectively. , C, and Ti (g ′, v ′, z ′, w ′, a ′, q ′) divided by the atomic weight. The same applies to expression (B) described later.

さらに、本発明は、全てのTiがTiBになった場合(つまりTiが最も少ないBと結合した場合)、[(g’+ v’+z’)−(14×(w’+ a’−q’))](主相を形成しないFe、Co、Alの合計)が0.02以下であることを式(B)で規定する。主相を形成していないFe、Co、Alの合計が0.02を超えると、R−T−Ga相の比率が高くなり過ぎて主相比率が低下して高いBを得ることができない恐れがあるからである。 Furthermore, the present invention is based on the assumption that when all Ti becomes TiB (that is, when Ti is combined with the least B), [(g ′ + v ′ + z ′) − (14 × (w ′ + a′−q) '))] (The sum of Fe, Co, and Al that does not form a main phase) is defined to be 0.02 or less by the formula (B). If the total of Fe, Co, and Al that do not form a main phase exceeds 0.02, the ratio of the RT-Ga phase becomes too high, and the main phase ratio is reduced, so that high Br cannot be obtained. Because there is fear.

2.組成
次に本発明に係るR−T−B系焼結磁石の組成の詳細を説明する。
上述したように、本発明はTiを添加して、Tiの硼化物を生成させることで、前記BCeff量を一般的なR−T−B系焼結磁石のB量よりも少なくするとともに、Ga等を含有させている。これにより、粒界にR−T−Ga相が生成し、喩え、Dyなどの重希土類元素の含有量を抑制しても、高いHcJを得ることができる。
2. Composition Next, the composition of the RTB-based sintered magnet according to the present invention will be described in detail.
As described above, according to the present invention, by adding Ti to form a boride of Ti, the amount of BC eff is made smaller than the amount of B of a general RTB -based sintered magnet, Ga and the like are contained. As a result, an RT-Ga phase is generated at the grain boundary, and a high HcJ can be obtained even if the content of heavy rare earth elements such as Dy is suppressed.

本発明に係るR−T−B系焼結磁石の組成は式(1)により示すことができる。

uRwBaCxGazAlvCoqTigFejM (1)
(Rは希土類元素の少なくとも一種でありNdを必ず含み、MはR、B、C、Ga、Al、Co、Ti及びFe以外の元素であり、u、w、a、x、z、v、q、g、jは質量%を示す)

29.0≦u≦34.0 (2)
(ただし、重希土類元素RHはR−T−B系焼結磁石の10質量%以下)
0.80≦w≦0.92 (3)
0.10≦a≦0.20 (4)
0.3≦x≦0.8 (5)
0.05≦z≦0.5 (6)
0≦v≦3.0 (7)
0.15≦q≦0.29 (8)
58.29≦g≦69.60 (9)
0≦j≦2.0 (10)

以下に個々の元素の組成範囲、すなわちu、w、a、x、z、v、q、g、jの数値範囲について説明する。
The composition of the RTB-based sintered magnet according to the present invention can be represented by Formula (1).

uRwBaCxGazAlvCoqTigFejM (1)
(R is at least one kind of rare earth element and always contains Nd, M is an element other than R, B, C, Ga, Al, Co, Ti and Fe, and u, w, a, x, z, v, q, g, and j indicate mass%)

29.0 ≦ u ≦ 34.0 (2)
(However, the heavy rare earth element RH is 10% by mass or less of the RTB based sintered magnet.)
0.80 ≦ w ≦ 0.92 (3)
0.10 ≦ a ≦ 0.20 (4)
0.3 ≦ x ≦ 0.8 (5)
0.05 ≦ z ≦ 0.5 (6)
0 ≦ v ≦ 3.0 (7)
0.15 ≦ q ≦ 0.29 (8)
58.29 ≦ g ≦ 69.60 (9)
0 ≦ j ≦ 2.0 (10)

Hereinafter, the composition ranges of the individual elements, that is, the numerical ranges of u, w, a, x, z, v, q, g, and j will be described.

1)希土類元素(R)
本発明のR−T−B系焼結磁石におけるRは、希土類元素のうち少なくとも一種でありNdを必ず含む。本発明に係るR−T−B系焼結磁石は重希土類元素RHを使用しなくても高いBと高いHcJを得ることができるため、より高いHcJを求められる場合でも重希土類元素RHの添加量を削減でき、典型的には重希土類元素RHは10質量%以下、好ましくは5質量%以下とすることができる。
Rの含有量は、式(2)に示すように29.0質量%〜34.0質量%であり、好ましくは、29.0質量%〜32.0質量%である。

29.0≦u≦34.0 (2)

Rが、29.0質量%未満では、十分な量のR−T−Ga相を生成するのに必要なRが確保できず高いHcJを得ることができない恐れがあり、34.0質量%を超えると主相比率が低下して高いBを得ることができない。
1) Rare earth element (R)
R in the RTB based sintered magnet of the present invention is at least one of rare earth elements and always includes Nd. Since R-T-B based sintered magnet according to the present invention which can obtain a high B r and high H cJ without using the heavy rare-earth element RH, even if required a higher H cJ earth element The amount of RH added can be reduced, and typically, the heavy rare earth element RH can be 10% by mass or less, preferably 5% by mass or less.
The content of R is 29.0% by mass to 34.0% by mass as shown in the formula (2), and preferably 29.0% by mass to 32.0% by mass.

29.0 ≦ u ≦ 34.0 (2)

If R is less than 29.0% by mass, R required to generate a sufficient amount of RT-Ga phase cannot be secured, and a high HcJ may not be obtained, and 34.0% by mass may be obtained. by weight, the main phase ratio can not be obtained a high B r drops.

2)ボロン(B)、カーボン(C)
Bの含有量は、式(3)に示すように0.80質量%〜0.92質量%である。
Cの含有量は、式(4)に示すように0.10質量%〜0.20質量%である。

0.80≦w≦0.92 (3)
0.10≦a≦0.20 (4)

Bが、0.80質量%未満ではCを多量に添加しないと前記BCeff量が少なくなりすぎる。一方、C量が0.20質量%を超えると粒界相に配分されるカーボンの割合が増加するため、B量が0.80質量%未満でCを多量に添加してもBCeff量が少なくなりR17相が析出して高いHcJが得られない又は主相比率が低下して高いBを得ることができない。B量が0.92質量%を超えるとR−T−Ga相が十分に生成されずに高いHcJが得られない恐れがある。
2) Boron (B), carbon (C)
The content of B is 0.80% by mass to 0.92% by mass as shown in the formula (3).
The content of C is 0.10% by mass to 0.20% by mass as shown in the formula (4).

0.80 ≦ w ≦ 0.92 (3)
0.10 ≦ a ≦ 0.20 (4)

If B is less than 0.80% by mass, the amount of BC eff becomes too small unless a large amount of C is added. On the other hand, when the amount of C exceeds 0.20% by mass, the proportion of carbon distributed to the grain boundary phase increases. Therefore, even when the amount of B is less than 0.80% by mass and a large amount of C is added, the amount of BC eff is low. less and less high R 2 T 17 phase precipitates H cJ is is not or main phase ratio obtained is not possible to obtain a high B r drops. If the amount of B exceeds 0.92% by mass, the RT-Ga phase may not be sufficiently generated, and a high HcJ may not be obtained.

3)ガリウム(Ga)
Gaの含有量は、式(5)に示すように0.3質量%〜0.8質量%である。

0.3≦x≦0.8 (5)

Gaが、0.3質量%未満であると、R−T−Ga相の生成量が少なすぎて、R17相を消失させることができず、高いHcJを得ることができない恐れがあり、0.8質量%を超えると、不要なGaが存在することになり、主相比率が低下してBが低下する恐れがある。
3) Gallium (Ga)
The content of Ga is 0.3% by mass to 0.8% by mass as shown in the formula (5).

0.3 ≦ x ≦ 0.8 (5)

If the Ga content is less than 0.3% by mass, the amount of the generated RT-Ga phase may be too small, the R 2 T 17 phase may not be eliminated, and a high HcJ may not be obtained. There, when it exceeds 0.8 wt%, will be unnecessary Ga is present, there is a possibility that B r decreases to decrease the main phase proportion.

4)アルミニウム(Al)
Alの含有量は、式(6)に示すように0.05質量%〜0.5質量%である。

0.05≦z≦0.5 (6)

Alを含有することにより、HcJを向上させることができる。Alは不可避的不純物として含有されてもよいし、積極的に添加して含有させてもよい。Alが0.5質量%を超えるとBが低下する恐れがある。不可避的不純物で含有される量と積極的に添加した量の合計で0.05質量%以上0.5質量%以下含有させる。
4) Aluminum (Al)
The content of Al is 0.05% by mass to 0.5% by mass as shown in the formula (6).

0.05 ≦ z ≦ 0.5 (6)

By containing Al, HcJ can be improved. Al may be contained as an unavoidable impurity, or may be positively added and contained. If Al exceeds 0.5% by mass, Br may be reduced. The total content of the inevitable impurities and the positively added amount is 0.05% by mass to 0.5% by mass.

5)コバルト(Co)
Coの含有量は、式(7)に示すように、3.0質量%以下である。

0≦v≦3.0 (7)

Coは、3.0質量%以下まで含有してもよい。Coは温度特性の向上、耐食性の向上に有効であるが、Coの含有量が3.0質量%を超えると高いBを得ることができない恐れがある。
5) Cobalt (Co)
The content of Co is 3.0% by mass or less as shown in Expression (7).

0 ≦ v ≦ 3.0 (7)

Co may be contained up to 3.0% by mass or less. Co is effective in improving temperature characteristics and corrosion resistance, but if the Co content exceeds 3.0% by mass, high Br may not be obtained.

6)チタン(Ti)
Tiの含有量は、式(8)に示すように0.15質量%〜0.29質量%である。

0.15≦q≦0.29 (8)

Tiは、0.15質量%未満では、B量の変化によるHcJの変化を抑制できない恐れがあり、0.29質量%を超えると、主相比率が低下して高いBを得ることができない恐れがある。好ましくは、下記の式(11)に示すように0.18質量%以上0.28質量%以下である。よりB量の変化によるHcJの変化を抑制することができる。

0.18≦q≦0.28 (11)
6) Titanium (Ti)
The content of Ti is 0.15% by mass to 0.29% by mass as shown in the formula (8).

0.15 ≦ q ≦ 0.29 (8)

Ti, in less than 0.15 wt%, there may not be suppressed a change in H cJ by B the amount of change exceeds 0.29 mass%, that the main phase ratio to obtain a high B r drops It may not be possible. Preferably, the content is 0.18% by mass or more and 0.28% by mass or less as shown in the following formula (11). The change in HcJ due to the change in the amount of B can be further suppressed.

0.18 ≦ q ≦ 0.28 (11)

7)鉄(Fe)
Feの含有量は、式(9)に示すように58.29質量%〜69.60質量%であり、好ましくは、60.29質量%〜69.60質量%である。

58.29≦g≦69.60 (9)

Feは、58.29質量%未満では、主相比率が低下して高いBが得ることが出来ない恐れがあり、69.60質量%を超えると、R−T−Ga相などが必要以上に生成することにより主相比率が低下して高いBが得られない恐れがある。
7) Iron (Fe)
The content of Fe is 58.29% by mass to 69.60% by mass as shown in the formula (9), and is preferably 60.29% by mass to 69.60% by mass.

58.29 ≦ g ≦ 69.60 (9)

Fe, in less than 58.29 mass%, there is a possibility that the main phase ratio can not be obtained a high B r decreases, exceeds 69.60 mass%, more than necessary and R-T-Ga phase there is a possibility that the main phase ratio by generating not obtain a high B r dropped to.

8)元素M
Mは、R、B、C、Ga、Al、Co、Ti及びFe以外の元素である。
式(10)に示すように、R、B、C、Ga、Al、Co、Ti及びFe以外の元素Mを合計で2.0質量%以下含んでもよい。

0≦j≦2.0 (10)

すなわち、式(10)は、得られるR−T−B系焼結磁石の特性の改善等を目的に、任意の元素(複数の種類の元素であってもよい)と不可避的不純物(Alが不可避的不純物の場合はAlを除く)とを合計で2.0質量%まで含んでよいことを示している。
R−T−B系焼結磁石の特性を改善する元素として、例えば、Cu、Ni、Ag、Au、Mo等を0質量%〜2.0質量%含んでよい。
特にCuを含有することが好ましい。Cuを含有することにより高いHcJを得ることができる。Cuのより好ましい含有量は、0.05質量%以上1.0質量%以下である。
8) Element M
M is an element other than R, B, C, Ga, Al, Co, Ti and Fe.
As shown in the formula (10), the total of the elements M other than R, B, C, Ga, Al, Co, Ti and Fe may be 2.0% by mass or less.

0 ≦ j ≦ 2.0 (10)

That is, the expression (10) indicates that an arbitrary element (which may be a plurality of types of elements) and an unavoidable impurity (Al Unavoidable impurities except Al) may be contained up to 2.0 mass% in total.
As an element for improving the characteristics of the RTB-based sintered magnet, for example, Cu, Ni, Ag, Au, Mo, or the like may be included in an amount of 0% by mass to 2.0% by mass.
It is particularly preferable to contain Cu. High HcJ can be obtained by containing Cu. The more preferable content of Cu is 0.05% by mass or more and 1.0% by mass or less.

なお、Mの好ましい実施形態の1つは、Mは不可避的不純物から成る(但し、上述したようにCuは含有することが好ましい)。本発明のR−T−B系焼結磁石が含む不可避的不純物として、ジジム合金(Nd−Pr合金)、電解鉄、フェロボロンなど工業的に用いられる原料に通常含有される不可避的不純物を例示できる。このような不可避的不純物としてCr、Mn、Siなどを例示できる。さらに、製造工程中の不可避的不純物として、O(酸素)、N(窒素)などを例示できる。   In one preferred embodiment of M, M is made of an unavoidable impurity (however, Cu is preferably contained as described above). Examples of the inevitable impurities contained in the RTB-based sintered magnet of the present invention include inevitable impurities usually contained in industrially used raw materials such as a didymium alloy (Nd-Pr alloy), electrolytic iron, and ferroboron. . Examples of such inevitable impurities include Cr, Mn, and Si. Further, O (oxygen), N (nitrogen) and the like can be exemplified as inevitable impurities during the manufacturing process.

なお、式(1)に示されるR、B、C、Ga、Al、Co、Ti、Fe及びMのそれぞれの含有量(質量%)であるu、w、a、x、z、v、q、g及びjの評価には、例えば高周波誘導結合プラズマ発光分光分析法(ICP発光分光分析法、ICP−OES)を採用することができる。また酸素量の評価には例えば、ガス融解−赤外線吸収法、窒素量の評価には例えば、ガス融解−熱伝導法、C量の評価には例えば、燃焼−赤外線吸収法によるガス分析装置を採用することが出来る。   Note that u, w, a, x, z, v, and q, which are the contents (% by mass) of R, B, C, Ga, Al, Co, Ti, Fe, and M shown in Formula (1). , G and j can be evaluated by, for example, high frequency inductively coupled plasma emission spectroscopy (ICP emission spectroscopy, ICP-OES). In addition, for example, a gas melting-infrared absorption method is used for evaluating the oxygen amount, a gas melting-heat conduction method is used for evaluating the nitrogen amount, and a gas analyzer using the combustion-infrared absorption method is used for evaluating the C amount. You can do it.

3.R−T−B系焼結磁石の製造方法
本発明のR−T−B系焼結磁石の製造方法の一例を説明する。R−T−B系焼結磁石の製造方法は、合金粉末を得る工程、成形工程、焼結工程及び熱処理工程を含む。以下、各工程について説明する。
3. Method for Manufacturing RTB-Based Sintered Magnet An example of the method for manufacturing the RTB-based sintered magnet of the present invention will be described. The method of manufacturing the RTB based sintered magnet includes a step of obtaining an alloy powder, a forming step, a sintering step, and a heat treatment step. Hereinafter, each step will be described.

(1)合金粉末を得る工程
所定の組成となるようにそれぞれの元素の金属又は合金を準備し、溶解、鋳造を行って所定の組成の合金を得る。典型的には、ストリップキャスティング法等を用いて、フレーク状の合金を製造する。得られたフレーク状の原料合金を水素粉砕(粗粉砕)し、粗粉砕粉のサイズを例えば1.0mm以下とする。次に、粗粉砕粉をジェットミル等により微粉砕することで、例えば粒径D50(気流分散法によるレーザー回折法で得られた体積基準メジアン径)が3〜7μmの微粉砕粉(合金粉末)を得る。合金粉末は、1種類の合金粉末(単合金粉末)を用いてもよいし、2種類以上の合金粉末を混合することにより合金粉末(混合合金粉末)を得る、いわゆる2合金法を用いてもよく、公知の方法などを用いて本発明の組成となるように合金粉末を作製すればよい。ジェットミル粉砕前の粗粉砕粉、ジェットミル粉砕中及びジェットミル粉砕後の合金粉末に助剤として既知の潤滑剤を使用してもよい。
(1) Step of Obtaining Alloy Powder A metal or alloy of each element is prepared so as to have a predetermined composition, and is melted and cast to obtain an alloy having a predetermined composition. Typically, a flake-like alloy is manufactured by using a strip casting method or the like. The obtained flake-shaped raw material alloy is pulverized with hydrogen (coarse pulverization), and the size of the coarse pulverized powder is set to, for example, 1.0 mm or less. Next, the coarsely pulverized powder is finely pulverized by a jet mill or the like, so that, for example, a finely pulverized powder (alloy powder) having a particle diameter D50 (volume-based median diameter obtained by a laser diffraction method using an air flow dispersion method) of 3 to 7 μm. Get. As the alloy powder, one kind of alloy powder (single alloy powder) may be used, or a so-called two-alloy method of obtaining an alloy powder (mixed alloy powder) by mixing two or more kinds of alloy powder may be used. An alloy powder may be produced using a known method or the like so as to obtain the composition of the present invention. A known lubricant may be used as an auxiliary agent in the coarsely pulverized powder before the jet mill pulverization and in the alloy powder during and after the jet mill pulverization.

なお、Tiの添加については、ストリップキャスティング法等を用いた原料合金の作製において、鋳造を行うための溶融金属を得る際にTiメタル、Ti合金又はTi含有化合物等の形態で添加し、Tiを含む溶融金属を得た後、これを凝固させることで得てもよい。また、これに代えて、原料合金作製後から成形前までの間に、Tiメタル、Ti合金又はTi含有化合物等の形態で添加してもよく、例えば、水素粉砕前後やジェットミル粉砕後の合金粉末にTiの水素化物(TiH等)を添加する方法が挙げられる。 In addition, regarding the addition of Ti, in the production of a raw material alloy using a strip casting method or the like, when obtaining a molten metal for performing casting, it is added in the form of Ti metal, a Ti alloy or a Ti-containing compound, and Ti is added. After obtaining the containing molten metal, it may be obtained by solidifying this. Alternatively, it may be added in the form of a Ti metal, a Ti alloy, a Ti-containing compound, or the like between the time after the preparation of the raw material alloy and the time before the forming thereof. A method of adding a hydride of Ti (TiH 2 or the like) to the powder may be used.

(2)成形工程
得られた合金粉末を用いて磁界中成形を行い、成形体を得る。磁界中成形は、金型のキャビティー内に乾燥した合金粉末を挿入し、磁界を印加しながら成形する乾式成形法、金型のキャビティー内に、合金粉末を分散させたスラリーを注入し、スラリーの分散媒を排出しながら磁界中で成形する湿式成形法を含む既知の任意の磁界中成形方法を用いてよい。
(2) Forming Step The obtained alloy powder is subjected to forming in a magnetic field to obtain a formed body. In the magnetic field molding, dry alloy powder is inserted into the cavity of the mold, and a dry molding method of molding while applying a magnetic field, a slurry in which the alloy powder is dispersed is injected into the cavity of the mold, Any known molding method in a magnetic field may be used, including a wet molding method in which the dispersion medium of the slurry is molded in a magnetic field while discharging the dispersion medium.

(3)焼結工程
成形体を焼結することにより焼結磁石を得る。成形体の焼結は公知の方法を用いることができる。なお、焼結時の雰囲気による酸化を防止するために、焼結は真空雰囲気中又は不活性ガス中で行うことが好ましい。不活性ガスは、ヘリウム、アルゴンなどの不活性ガスを用いることが好ましい。
(3) Sintering step A sintered magnet is obtained by sintering the compact. A known method can be used for sintering the molded body. The sintering is preferably performed in a vacuum atmosphere or an inert gas in order to prevent oxidation due to the atmosphere during sintering. As the inert gas, it is preferable to use an inert gas such as helium or argon.

(4)熱処理工程
得られた焼結磁石に対し、磁気特性を向上させることを目的とした熱処理を行うことが好ましい。熱処理温度、熱処理時間などは公知の条件を採用することができる。最終的な製品形状にするなどの目的で、得られた焼結磁石に研削などの機械加工を施してもよい。その場合、熱処理は機械加工前でも機械加工後でもよい。さらに、得られた焼結磁石に、表面処理を施してもよい。表面処理は、公知の表面処理であってよく、例えばAl蒸着や電気Niめっきや樹脂塗装などの表面処理を行うことができる。
(4) Heat treatment step It is preferable to perform a heat treatment on the obtained sintered magnet for the purpose of improving magnetic properties. Known conditions such as a heat treatment temperature and a heat treatment time can be adopted. The obtained sintered magnet may be subjected to machining such as grinding for the purpose of, for example, obtaining a final product shape. In that case, the heat treatment may be performed before or after machining. Further, the obtained sintered magnet may be subjected to a surface treatment. The surface treatment may be a known surface treatment, for example, a surface treatment such as Al deposition, electric Ni plating, and resin coating.

<実験例1>
Ndメタル、Prメタル、フェロボロン合金、フェロカーボン合金、Gaメタル、Cuメタル、Alメタル、電解Co、Tiメタル及び電解鉄を用いて(メタルはいずれも純度99%以上)、表1に示す組成となるように配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を、水素加圧雰囲気で水素粉砕し、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。
次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量部に対して0.04質量部添加、混合した後、ジェットミル装置を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、本実験例では、粉砕時の窒素ガス中の酸素濃度を50ppm以下とすることにより、最終的に得られる焼結磁石の酸素量が0.1質量%前後となるようにした。また、粒径D50は、気流分散法によるレーザー回折法で得られた値(体積基準メジアン径)である。
<Experimental example 1>
Using Nd metal, Pr metal, ferroboron alloy, ferrocarbon alloy, Ga metal, Cu metal, Al metal, electrolytic Co, Ti metal and electrolytic iron (all metals have a purity of 99% or more), the composition shown in Table 1 was obtained. The raw materials were melted, and the raw materials were melted and cast by a strip casting method to obtain a flake-shaped raw material alloy having a thickness of 0.2 to 0.4 mm. The obtained flake-shaped raw material alloy was subjected to dehydrogenation treatment in which hydrogen was pulverized in a hydrogen pressurized atmosphere and heated and cooled to 550 ° C. in vacuum to obtain a coarsely pulverized powder.
Next, after adding and mixing 0.04 parts by mass of zinc stearate as a lubricant with respect to 100 parts by mass of the coarsely pulverized powder to the obtained coarsely pulverized powder, using a jet mill device, dry-type in a nitrogen stream. milled, the particle size D 50 was obtained finely pulverized powder of 4μm (the alloy powder). In this experimental example, the oxygen content of the finally obtained sintered magnet was about 0.1% by mass by setting the oxygen concentration in the nitrogen gas at the time of pulverization to 50 ppm or less. The particle size D 50 is a value obtained by laser diffraction method using air flow dispersion method (volume-based median diameter).

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量部に対して0.05質量部添加、混合した後、磁界中で成形し、成形体を得た。成形装置は、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。
得られた成形体を組成に応じて、真空中、1070℃〜1090℃で4時間保持して焼結した後、急冷し、焼結磁石を得た。
焼結磁石の密度は7.5Mg/m以上であった。得られた焼結磁石の成分の分析結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。また、O(酸素量)は、ガス融解−赤外線吸収法、N(窒素量)は、ガス融解−熱伝導法、C(炭素量)は、燃焼−赤外線吸収法、によるガス分析装置を使用して測定した。また、表1において、Nd、Prの量を合計した値がR量(u)であり、R、B、C、Ga、Al、Co、Ti、Fe以外の元素である、Cu、Cr、Mn、Si、O、Nの量を合計した値がM量(j)である。後述する表3、5および7においても同じである。また、Fe(g)、Co(v)、Al(z)、B(w)、C(a)、Ti(q)の分析値をそれぞれ、Fe、Co、Al、B、Tiの原子量で割った値(g’、v’、z’、w’、a’、q’)と、その値を用いて式(A)の(g’+ v’+z’)−(14×(w’+a’−2×q’))及び式(B)の(g’+ v’+z’)−(14×(w’+a’−q’))を計算し、本発明の範囲内である場合は「○」、本発明の範囲外の場合は「×」と、表1の「式A」及び「式B」の欄に記載した。以下に示す表3、5および7においても同様である。なお、表1に示す様に、試料No.1〜3、4および5、6および7、8および9、11〜14、17および18、20および21は、B量が異なる以外はほぼ同じ組成である。
After adding and mixing 0.05 parts by mass of zinc stearate as a lubricant with respect to 100 parts by mass of the finely pulverized powder, the mixture was molded in a magnetic field to obtain a molded body. As a forming device, a so-called right-angle magnetic field forming device (transverse magnetic field forming device) in which a magnetic field application direction and a pressing direction are orthogonal to each other was used.
The obtained compact was sintered at 1070 ° C. to 1090 ° C. for 4 hours in a vacuum, depending on the composition, and then rapidly cooled to obtain a sintered magnet.
The density of the sintered magnet was 7.5 Mg / m 3 or more. Table 1 shows the analysis results of the components of the obtained sintered magnet. In addition, each component in Table 1 was measured using high frequency inductively coupled plasma emission spectroscopy (ICP-OES). In addition, O (oxygen amount) uses a gas melting-infrared absorption method, N (nitrogen amount) uses a gas melting-heat conduction method, and C (carbon amount) uses a combustion-infrared absorption method. Measured. In Table 1, the total amount of Nd and Pr is the R amount (u), and Cu, Cr, Mn, which are elements other than R, B, C, Ga, Al, Co, Ti, and Fe. , Si, O, and N are the M amount (j). The same applies to Tables 3, 5, and 7 described below. Also, the analytical values of Fe (g), Co (v), Al (z), B (w), C (a) and Ti (q) were divided by the atomic weights of Fe, Co, Al, B and Ti, respectively. The values (g ′, v ′, z ′, w ′, a ′, q ′) and the values are used to calculate (g ′ + v ′ + z ′) − (14 × (w ′ + a) in the formula (A). (−2 × q ′)) and (g ′ + v ′ + z ′) − (14 × (w ′ + a′-q ′)) in the formula (B), and if they are within the scope of the present invention, "O" and "x" when the value is out of the range of the present invention are described in the columns of "Formula A" and "Formula B" in Table 1. The same applies to Tables 3, 5 and 7 shown below. In addition, as shown in Table 1, the sample No. 1 to 3, 4 and 5, 6 and 7, 8 and 9, 11 to 14, 17 and 18, 20 and 21 have almost the same composition except for the B content.

Figure 0006627555
Figure 0006627555

得られた焼結磁石に対し、900℃で2時間保持した後、室温まで冷却し、次いで480℃で2時間保持した後、室温まで冷却する熱処理を施した。熱処理後の焼結磁石に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、3.2MA/mのパルス磁界で着磁した後、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表2に示す。なお、B及びHcJを測定したR−T−B系焼結磁石の成分、ガス分析を行ったところ、表1のR−T−B系焼結磁石素材の成分、ガス分析結果と同等であった。
さらに、試料No.1〜3、4および5、6および7、8および9、11〜14、17および18、20および21それぞれにおける、B量の変化に対するHcJの変化を以下の様にして求めた。
まず、各試料のうち(B量以外ほぼ同じ組成のうち)2つのサンプルのB量の差を求め、さらに、同じ2つのサンプルのHcJとの差を求めて、HcJの差をB量の差で割ることにより、B量が0.01質量%変化するときHcJがいくら変化するのかを求めた。複数の試料がある場合にはB量が0.01質量%変化するときのHcJ変化が最も大きい値を選んだ。例えば、試料No.11〜14におけるHcJの変化は以下の様に求めた。
まず、試料No.11〜14においては、試料No.11のB量0.83質量%と試料No.12のB量0.86質量%の差0.03質量%で、試料No.11のHcJ1380kA/mと試料No.12のHcJ1431kA/mの差51kA/mを割ることでB量が0.01質量%変化するとHcJが17kA/m(51/(0.03×100))変化するという値が得られる。これが試料No.11〜14の4つのサンプルのうちから2つ選んだ組み合わせのなかで最も大きな値となる。
同様にして、試料No.1〜3、4および5、6および7、8および9、17および18、20および21も求めた。結果を表2の「△HcJ/0.01B」の欄に示す。以下に示す表6および表8の△HcJ/0.01Bも同様にして求めた。
The obtained sintered magnet was kept at 900 ° C. for 2 hours, cooled to room temperature, then kept at 480 ° C. for 2 hours, and then subjected to a heat treatment of cooling to room temperature. By machining the sintered magnet after the heat treatment, vertical 7 mm, transverse 7 mm, to prepare a sample having a thickness of 7 mm, it was magnetized with a pulse magnetic field of 3.2 MA / m, by B-H tracer in each sample B r And HcJ were measured. Table 2 shows the measurement results. Incidentally, B r and H components of the R-T-B based sintered magnet was measured cJ, were subjected to gas analysis, the R-T-B-based sintered magnet material components in Table 1, comparable results gas analysis Met.
Further, the sample No. The change in HcJ with respect to the change in B amount in each of 1-3, 4 and 5, 6 and 7, 8 and 9, 11 to 14, 17 and 18, 20 and 21 was determined as follows.
First, determine the difference between (approximately of the same composition than B amount) of the two samples B amounts of each sample, further seeking the difference between H cJ of the same two samples, B amounts a difference H cJ By calculating the difference, the amount of HcJ changes when the amount of B changes by 0.01% by mass. When there were a plurality of samples, the value with the largest change in HcJ when the B amount changed by 0.01% by mass was selected. For example, the sample No. The change in HcJ in 11 to 14 was determined as follows.
First, the sample No. In samples 11 to 14, sample Nos. No. 11 having a B content of 0.83% by mass and a sample No. Sample No. 12 had a difference of 0.03% by mass between the B amount of 0.86% by mass HcJ of 1380 kA / m and Sample No. 11 Dividing the difference of 51 kA / m of H cJ 1431 kA / m of 12 gives a value that H cJ changes by 17 kA / m (51 / (0.03 × 100)) when the amount of B changes by 0.01% by mass. . This is the sample No. It is the largest value among the combinations selected from two of the four samples 11 to 14.
Similarly, the sample No. 1-3, 4 and 5, 6 and 7, 8 and 9, 17 and 18, 20 and 21 were also determined. The results are shown in the column of “ ΔH cJ /0.01B” in Table 2. ΔH cJ /0.01B in Tables 6 and 8 shown below was determined in the same manner.

Figure 0006627555
Figure 0006627555

表2に示すように本発明に係る実施例サンプルである、試料No.6および7、8および9、11〜14、17および18は、△HcJ/0.01Bが29kA/m以下とB量の変化に対するHcJの変化が小さく、かつ、高いBと高いHcJを得ている。これに対し、Ti量が本発明の範囲より低い試料No.1〜3、4および5は△HcJ/0.01Bが52kA/m以上であり、B量の変化に対するHcJの変化が実施例サンプルよりも大きく、そのため、B量が増加するとHcJが低下して(例えば、試料No.3は、1328kA/m)高いHcJを得ることができず、また、Ti量が本発明の範囲より高い試料No.20および21も同様に、B量の変化に対するHcJの変化が実施例サンプルよりも大きく、さらに実施例サンプルと比べ高いBと高いHcJが得られていない。また、本発明に係る実施例サンプルである試料No.11〜14、17および18から明らかな様に、Tiが0.19質量%以上であると、△HcJ/0.01Bが17kA/m以下と、さらにB量の変化に対するHcJの変化が小さい。
さらに、表2に示すように試料No.10、15のように式(A)及び式(B)のいずれかを満たさない比較例サンプルやB量が本発明の範囲外である試料No.16、C量が本発明の範囲外である試料No.19の比較例サンプルは、本発明の実施例サンプルと比べてHcJが大きく低下している。
As shown in Table 2, sample No., which is an example sample according to the present invention. 6 and 7, 8 and 9,11~14,17 and 18, △ H cJ /0.01B small changes in H cJ to changes in 29kA / m or less and B quantity, and high B r and high H cJ has been obtained. On the other hand, in Sample No. where the Ti content was lower than the range of the present invention. 1〜3H cJ /0.01B is 52 kA / m or more, and the change of H cJ with respect to the change of B amount is larger than that of the sample of Examples, so that when the B amount increases, H cJ increases. (For example, sample No. 3 is 1328 kA / m) and a high HcJ cannot be obtained, and sample No. 3 in which the amount of Ti is higher than the range of the present invention. Similarly 20 and 21, larger than the sample of Example change in H cJ to B the amount of change, not to obtain even higher than those in Sample B r and a high H cJ. Further, Sample No., which is an example sample according to the present invention. As is clear from 11 to 14, 17 and 18, when Ti is 0.19% by mass or more, ΔH cJ /0.01B is 17 kA / m or less, and the change of H cJ with respect to the change of B amount is further reduced. small.
Further, as shown in Table 2, Sample No. Sample Nos. 10 and 15 which do not satisfy either formula (A) or formula (B) or sample No. B whose B amount is out of the range of the present invention. Sample No. 16 in which the C content is out of the range of the present invention. The sample of Comparative Example No. 19 has significantly lower HcJ as compared with the sample of Example of the present invention.

<実験例2>
Ndメタル、Prメタル、フェロボロン合金、フェロカーボン合金、Gaメタル、Cuメタル、Alメタル、電解Co及び電解鉄を用いて(メタルはいずれも純度99%以上)、表3の組成となるように配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金に水素加圧雰囲気で水素粉砕し、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量部に対して0.04質量部添加、混合した後、ジェットミル装置を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、本実験例では、粉砕時の窒素ガス中の酸素濃度を100ppm以下とすることにより、最終的に得られる焼結磁石の酸素量が0.15質量%前後となるようにした。また、粒径D50は、気流分散法によるレーザー回折法で得られた値(体積基準メジアン径)である。
前記微粉砕粉に、粒径D50が10μm以下のTiH粉末を0〜0.29質量%添加し、さらに潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量部に対して0.05質量部添加、混合した後、磁界中で成形し、成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。
<Experimental example 2>
Formulated using Nd metal, Pr metal, ferroboron alloy, ferrocarbon alloy, Ga metal, Cu metal, Al metal, electrolytic Co and electrolytic iron (all metals have a purity of 99% or more) to have the composition shown in Table 3. Then, the raw materials were melted and cast by a strip casting method to obtain a flake-shaped raw material alloy having a thickness of 0.2 to 0.4 mm. The obtained flake-shaped raw material alloy was subjected to dehydrogenation treatment in which hydrogen was pulverized in a hydrogen pressurized atmosphere and heated and cooled to 550 ° C. in vacuum to obtain a coarsely pulverized powder. Next, after adding and mixing 0.04 parts by mass of zinc stearate as a lubricant with respect to 100 parts by mass of the coarsely pulverized powder to the obtained coarsely pulverized powder, using a jet mill device, dry-type in a nitrogen stream. milled, the particle size D 50 was obtained finely pulverized powder of 4μm (the alloy powder). In this experimental example, the oxygen concentration in the nitrogen gas at the time of pulverization was set to 100 ppm or less so that the oxygen amount of the finally obtained sintered magnet was about 0.15% by mass. The particle size D 50 is a value obtained by laser diffraction method using air flow dispersion method (volume-based median diameter).
Wherein the finely pulverized powder was added following TiH 2 powder particle size D 50 of 10 [mu] m 0 to .29 wt%, further 0.05 part by weight of zinc stearate with respect to finely pulverized powder 100 parts by weight as a lubricant After addition and mixing, the mixture was molded in a magnetic field to obtain a molded body. Note that a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction are orthogonal to each other was used as the forming apparatus.

得られた成形体を、真空中、1040℃で4時間保持して焼結した後急冷し、焼結磁石を得た。焼結磁石の密度は7.5Mg/m 以上であった。得られた焼結磁石の成分の分析結果を表3に示す。なお、表3における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。また、O(酸素量)は、ガス融解−赤外線吸収法、N(窒素量)は、ガス融解−熱伝導法、C(炭素量)は、燃焼−赤外線吸収法、によるガス分析装置を使用して測定した。また、分析結果から計算した式(A)及び式(B)の結果を表3に示す。表3に示すように試料No.25〜27は、Ti量が異なる以外は、ほぼ同じ組成である。 The obtained molded body was sintered in vacuum at 1040 ° C. for 4 hours and then rapidly cooled to obtain a sintered magnet. The density of the sintered magnet was 7.5 Mg / m 3 or more. Table 3 shows the analysis results of the components of the obtained sintered magnet. In addition, each component in Table 3 was measured using high frequency inductively coupled plasma emission spectroscopy (ICP-OES). In addition, O (oxygen amount) uses a gas melting-infrared absorption method, N (nitrogen amount) uses a gas melting-heat conduction method, and C (carbon amount) uses a combustion-infrared absorption method. Measured. Table 3 shows the results of Expressions (A) and (B) calculated from the analysis results. As shown in Table 3, sample no. 25 to 27 have almost the same composition except that the amount of Ti is different.

Figure 0006627555
Figure 0006627555

得られた焼結磁石に対し、900℃で2時間保持した後、室温まで冷却し、次いで480℃で2時間保持した後、室温まで冷却する熱処理を施した。熱処理後の焼結磁石に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、3.2MA/mのパルス磁界で着磁した後、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表4に示す。なお、B及びHcJを測定したR−T−B系焼結磁石の成分、ガス分析を行ったところ、表4のR−T−B系焼結磁石素材の成分、ガス分析結果と同等であった。 The obtained sintered magnet was kept at 900 ° C. for 2 hours, cooled to room temperature, then kept at 480 ° C. for 2 hours, and then subjected to a heat treatment of cooling to room temperature. By machining the sintered magnet after the heat treatment, vertical 7 mm, transverse 7 mm, to prepare a sample having a thickness of 7 mm, it was magnetized with a pulse magnetic field of 3.2 MA / m, by B-H tracer in each sample B r And HcJ were measured. Table 4 shows the measurement results. Incidentally, B r and H components of the R-T-B based sintered magnet was measured cJ, were subjected to gas analysis, the R-T-B-based sintered magnet material components in Table 4, comparable results gas analysis Met.

Figure 0006627555
Figure 0006627555

表4に示すように式(A)を満たさない比較例サンプルである試料No.25は、式(A)および式(B)の両方を満たす本発明の実施例サンプルである試料No.26および27と比べてHcJが大きく低下している。 As shown in Table 4, Sample No. which is a comparative sample not satisfying the formula (A). Sample No. 25 is an example sample of the present invention that satisfies both Expression (A) and Expression (B). HcJ is greatly reduced as compared with 26 and 27.

<実験例3>
Ndメタル、Prメタル、Dyメタル、フェロボロン合金、フェロカーボン合金、Gaメタル、Cuメタル、Alメタル、電解Co、Tiメタル及び電解鉄を用いて(メタルはいずれも純度99%以上)、表5に示す組成となるように配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金に水素粉砕し、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量部に対して0.04質量部添加、混合した後、ジェットミル装置を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、本実験例では、粉砕時の窒素ガス中の酸素濃度を50ppm以下とすることにより、最終的に得られる焼結磁石の酸素量が0.1質量%前後となるようにした。また、粒径D50は、気流分散法によるレーザー回折法で得られた値(体積基準メジアン径)である。
前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量部に対して0.05質量部添加、混合した後、磁界中で成形し、成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。
得られた成形体を、真空中、1100℃で4時間保持して焼結した後急冷し、焼結磁石を得た。
焼結磁石の密度は7.5Mg/m 以上であった。得られた焼結磁石の成分、ガス分析(O(酸素量)、N(窒素量)、C(炭素量))の結果を表5に示す。なお、表5における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。また、O(酸素量)は、ガス融解−赤外線吸収法、N(窒素量)は、ガス融解−熱伝導法、C(炭素量)は、燃焼−赤外線吸収法、によるガス分析装置を使用して測定した。また、分析結果から計算した式(A)及び式(B)の結果を表5に示す。表5に示すように、試料No.30、31は、B量が異なる以外は、ほぼ同じ組成である。
<Experimental example 3>
Table 5 using Nd metal, Pr metal, Dy metal, ferroboron alloy, ferrocarbon alloy, Ga metal, Cu metal, Al metal, electrolytic Co, Ti metal and electrolytic iron (all metals have a purity of 99% or more). The ingredients were blended so as to have the composition shown, and the raw materials were melted and cast by strip casting to obtain a flake-shaped raw alloy having a thickness of 0.2 to 0.4 mm. The obtained flake-form raw material alloy was pulverized with hydrogen and subjected to a dehydrogenation treatment of heating and cooling to 550 ° C. in a vacuum to obtain a coarsely pulverized powder. Next, after adding and mixing 0.04 parts by mass of zinc stearate as a lubricant with respect to 100 parts by mass of the coarsely pulverized powder to the obtained coarsely pulverized powder, using a jet mill device, dry-type in a nitrogen stream. milled, the particle size D 50 was obtained finely pulverized powder of 4μm (the alloy powder). In this experimental example, the oxygen content of the finally obtained sintered magnet was about 0.1% by mass by setting the oxygen concentration in the nitrogen gas at the time of pulverization to 50 ppm or less. The particle size D 50 is a value obtained by laser diffraction method using air flow dispersion method (volume-based median diameter).
After adding and mixing 0.05 parts by mass of zinc stearate as a lubricant with respect to 100 parts by mass of the finely pulverized powder, the mixture was molded in a magnetic field to obtain a molded body. Note that a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction are orthogonal to each other was used as the forming apparatus.
The obtained molded body was sintered at 1100 ° C. for 4 hours in a vacuum and then rapidly cooled to obtain a sintered magnet.
The density of the sintered magnet was 7.5 Mg / m 3 or more. Table 5 shows the components of the obtained sintered magnet and the results of gas analysis (O (oxygen content), N (nitrogen content), C (carbon content)). In addition, each component in Table 5 was measured using high frequency inductively coupled plasma emission spectroscopy (ICP-OES). In addition, O (oxygen amount) uses a gas melting-infrared absorption method, N (nitrogen amount) uses a gas melting-heat conduction method, and C (carbon amount) uses a combustion-infrared absorption method. Measured. Table 5 shows the results of Expressions (A) and (B) calculated from the analysis results. As shown in Table 5, sample no. 30 and 31 have substantially the same composition except that the B content is different.

Figure 0006627555
Figure 0006627555

得られた焼結磁石に対し、900℃で2時間保持した後、室温まで冷却し、次いで500℃で2時間保持した後、室温まで冷却する熱処理を施した。熱処理後の焼結磁石に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、3.2MA/mのパルス磁界で着磁した後、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表6に示す。なお、B及びHcJを測定したR−T−B系焼結磁石の成分、ガス分析を行ったところ、表5のR−T−B系焼結磁石素材の成分、ガス分析結果と同等であった。測定結果を表6に示す。 The obtained sintered magnet was kept at 900 ° C. for 2 hours, cooled to room temperature, then kept at 500 ° C. for 2 hours, and then subjected to a heat treatment of cooling to room temperature. By machining the sintered magnet after the heat treatment, vertical 7 mm, transverse 7 mm, to prepare a sample having a thickness of 7 mm, it was magnetized with a pulse magnetic field of 3.2 MA / m, by B-H tracer in each sample B r And HcJ were measured. Table 6 shows the measurement results. Incidentally, B r and H components of the R-T-B based sintered magnet was measured cJ, were subjected to gas analysis, the R-T-B-based sintered magnet material components in Table 5, similar to the results gas analysis Met. Table 6 shows the measurement results.

Figure 0006627555
Figure 0006627555

表6に示すように本発明の実施例に係るサンプルは△HcJ/0.01Bが21kA/mしか変化しておらず、かつ、高いBrと高いHcJを有している。 As shown in Table 6, in the sample according to the example of the present invention, ΔH cJ /0.01B changed only 21 kA / m, and the sample had high Br and high H cJ .

<実験例4>
Ndメタル、Prメタル、Dyメタル、フェロボロン合金、フェロカーボン合金、Gaメタル、Cuメタル、Alメタル、電解Co、Tiメタル及び電解鉄を用いて(メタルはいずれも純度99%以上)、表7に示す組成となるように配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金に水素粉砕し、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量部に対して0.04質量部添加、混合した後、ジェットミル装置を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。また、粒径D50は、気流分散法によるレーザー回折法で得られた値(体積基準メジアン径)である。
前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量部に対して0.05質量部添加、混合した後、磁界中で成形し、成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。
得られた成形体を、真空中、1090℃で4時間保持して焼結した後急冷し、焼結磁石を得た。
焼結磁石の密度は7.5Mg/m 以上であった。得られた焼結磁石の成分、ガス分析(O(酸素量)、N(窒素量)、C(炭素量))の結果を表7に示す。なお、表7における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。また、O(酸素量)は、ガス融解−赤外線吸収法、N(窒素量)は、ガス融解−熱伝導法、C(炭素量)は、燃焼−赤外線吸収法、によるガス分析装置を使用して測定した。また、分析結果から計算した式(A)及び式(B)の結果を表7に示す。表7に示すように、試料No.32、33は、B量が異なる以外は、ほぼ同じ組成である。
<Experimental example 4>
Table 7 using Nd metal, Pr metal, Dy metal, ferroboron alloy, ferrocarbon alloy, Ga metal, Cu metal, Al metal, electrolytic Co, Ti metal and electrolytic iron (all metals have a purity of 99% or more). The ingredients were blended so as to have the composition shown, and the raw materials were melted and cast by strip casting to obtain a flake-shaped raw alloy having a thickness of 0.2 to 0.4 mm. The obtained flake-form raw material alloy was pulverized with hydrogen and subjected to a dehydrogenation treatment of heating and cooling to 550 ° C. in a vacuum to obtain a coarsely pulverized powder. Next, after adding and mixing 0.04 parts by mass of zinc stearate as a lubricant with respect to 100 parts by mass of the coarsely pulverized powder to the obtained coarsely pulverized powder, using a jet mill device, dry-type in a nitrogen stream. milled, the particle size D 50 was obtained finely pulverized powder of 4μm (the alloy powder). The particle size D 50 is a value obtained by laser diffraction method using air flow dispersion method (volume-based median diameter).
After adding and mixing 0.05 parts by mass of zinc stearate as a lubricant with respect to 100 parts by mass of the finely pulverized powder, the mixture was molded in a magnetic field to obtain a molded body. Note that a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction are orthogonal to each other was used as the forming apparatus.
The obtained molded body was sintered at 1090 ° C. for 4 hours in a vacuum and then rapidly cooled to obtain a sintered magnet.
The density of the sintered magnet was 7.5 Mg / m 3 or more. Table 7 shows the components of the obtained sintered magnet and the results of gas analysis (O (oxygen content), N (nitrogen content), C (carbon content)). In addition, each component in Table 7 was measured using high frequency inductively coupled plasma emission spectroscopy (ICP-OES). In addition, O (oxygen amount) uses a gas melting-infrared absorption method, N (nitrogen amount) uses a gas melting-heat conduction method, and C (carbon amount) uses a combustion-infrared absorption method. Measured. Table 7 shows the results of Expressions (A) and (B) calculated from the analysis results. As shown in Table 7, Sample No. 32 and 33 have almost the same composition except that the amount of B is different.

Figure 0006627555
Figure 0006627555

得られた焼結磁石に対し、900℃で2時間保持した後、室温まで冷却し、次いで500℃で2時間保持した後、室温まで冷却する熱処理を施した。熱処理後の焼結磁石に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、3.2MA/mのパルス磁界で着磁した後、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表8に示す。なお、B及びHcJを測定したR−T−B系焼結磁石の成分、ガス分析を行ったところ、表7のR−T−B系焼結磁石素材の成分、ガス分析結果と同等であった。測定結果を表8に示す。 The obtained sintered magnet was kept at 900 ° C. for 2 hours, cooled to room temperature, then kept at 500 ° C. for 2 hours, and then subjected to a heat treatment of cooling to room temperature. By machining the sintered magnet after the heat treatment, vertical 7 mm, transverse 7 mm, to prepare a sample having a thickness of 7 mm, it was magnetized with a pulse magnetic field of 3.2 MA / m, by B-H tracer in each sample B r And HcJ were measured. Table 8 shows the measurement results. Incidentally, B r and H components of the R-T-B based sintered magnet was measured cJ, were subjected to gas analysis, the R-T-B-based sintered magnet material components in Table 7, comparable results gas analysis Met. Table 8 shows the measurement results.

Figure 0006627555
Figure 0006627555

表8に示すように本発明の実施例に係るサンプルは△HcJ/0.01Bが25kA/mしか変化しておらず、かつ、高いBrと高いHcJを有している。 As shown in Table 8, the sample according to the example of the present invention had ΔH cJ /0.01B changed only by 25 kA / m, and had high Br and high H cJ .

Claims (3)

下記式(1)で示される組成が、下記式(2)〜(10)を満足し、

uRwBaCxGazAlvCoqTigFejM (1)
(Rは希土類元素の少なくとも一種でありNdを必ず含み、Mは不可避的不純物と、必要に応じてCu、Ni、Ag、AuおよびMoから選択される1種以上であり、u、w、a、x、z、v、q、g、jは質量%を示す)

29.0≦u≦34.0 (2)
(ただし、重希土類元素RHはR−T−B系焼結磁石の10質量%以下)
0.80≦w≦0.92 (3)
0.10≦a≦0.20 (4)
0.3≦x≦0.8 (5)
0.05≦z≦0.5 (6)
0≦v≦3.0 (7)
0.15≦q≦0.29 (8)
58.29≦g≦69.60 (9)
0≦j≦2.0 (10)

gをFeの原子量で割った値をg’、vをCoの原子量で割った値をv’、zをAlの原子量で割った値をz’、wをBの原子量で割った値をw’、aをCの原子量で割った値をa’、qをTiの原子量で割った値をq’としたときに下記式(A)及び(B)を満足することを特徴とする、R−T−B系焼結磁石。

−0.02≦(g’+ v’+z’)−(14×(w’+ a’−2×q’)) (A) 0.02≧(g’+ v’+z’)−(14×(w’+ a’−q’)) (B)
The composition represented by the following formula (1) satisfies the following formulas (2) to (10);

uRwBaCxGazAlvCoqTigFejM (1)
(R is at least one kind of rare earth element and always contains Nd, M is an unavoidable impurity and, if necessary, at least one kind selected from Cu, Ni, Ag, Au and Mo , and u, w, a , X, z, v, q, g, j indicate mass%)

29.0 ≦ u ≦ 34.0 (2)
(However, the heavy rare earth element RH is 10% by mass or less of the RTB based sintered magnet.)
0.80 ≦ w ≦ 0.92 (3)
0.10 ≦ a ≦ 0.20 (4)
0.3 ≦ x ≦ 0.8 (5)
0.05 ≦ z ≦ 0.5 (6)
0 ≦ v ≦ 3.0 (7)
0.15 ≦ q ≦ 0.29 (8)
58.29 ≦ g ≦ 69.60 (9)
0 ≦ j ≦ 2.0 (10)

The value obtained by dividing g by the atomic weight of Fe is g ', the value obtained by dividing v by the atomic weight of Co is v', the value obtained by dividing z by the atomic weight of Al is z ', and the value obtained by dividing w by the atomic weight of B is w R is characterized by satisfying the following formulas (A) and (B), where a 'is a value obtained by dividing a by the atomic weight of C, and q' is a value obtained by dividing q by the atomic weight of Ti. -TB based sintered magnet.

−0.02 ≦ (g ′ + v ′ + z ′) − (14 × (w ′ + a′−2 × q ′)) (A) 0.02 ≧ (g ′ + v ′ + z ′) − (14 × (w '+ a'-q')) (B)
0.18≦q≦0.28である、請求項1に記載のR−T−B系焼結磁石。   The RTB based sintered magnet according to claim 1, wherein 0.18≤q≤0.28. Cuを0.05質量%以上1.0質量%以下含有する請求項1または2に記載のR−T−B系焼結磁石。The RTB-based sintered magnet according to claim 1, wherein Cu is contained in an amount of 0.05% by mass or more and 1.0% by mass or less.
JP2016025792A 2015-03-30 2016-02-15 RTB based sintered magnet Active JP6627555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610117968.1A CN106024235B (en) 2015-03-30 2016-03-02 R-T-B sintered magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015068689 2015-03-30
JP2015068689 2015-03-30

Publications (2)

Publication Number Publication Date
JP2016192542A JP2016192542A (en) 2016-11-10
JP6627555B2 true JP6627555B2 (en) 2020-01-08

Family

ID=57245823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016025792A Active JP6627555B2 (en) 2015-03-30 2016-02-15 RTB based sintered magnet

Country Status (1)

Country Link
JP (1) JP6627555B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3143156B2 (en) * 1991-07-12 2001-03-07 信越化学工業株式会社 Manufacturing method of rare earth permanent magnet
JP2000331810A (en) * 1999-05-21 2000-11-30 Shin Etsu Chem Co Ltd R-Fe-B RARE EARTH PERMANENT MAGNET MATERIAL
JP3891307B2 (en) * 2004-12-27 2007-03-14 信越化学工業株式会社 Nd-Fe-B rare earth permanent sintered magnet material
EP1675133B1 (en) * 2004-12-27 2013-03-27 Shin-Etsu Chemical Co., Ltd. Nd-Fe-B rare earth permanent magnet material
CN101256859B (en) * 2007-04-16 2011-01-26 有研稀土新材料股份有限公司 Rare-earth alloy casting slice and method of producing the same
JP2011021269A (en) * 2009-03-31 2011-02-03 Showa Denko Kk Alloy material for r-t-b-based rare-earth permanent magnet, method for manufacturing r-t-b-based rare-earth permanent magnet, and motor
JP6274214B2 (en) * 2013-08-09 2018-02-07 Tdk株式会社 R-T-B system sintered magnet and rotating machine
JP6642838B2 (en) * 2015-02-17 2020-02-12 日立金属株式会社 Method for producing RTB based sintered magnet

Also Published As

Publication number Publication date
JP2016192542A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP6090550B1 (en) R-T-B system sintered magnet and manufacturing method thereof
WO2015129861A1 (en) R-t-b sintered magnet and manufacturing method therefor
JP6642838B2 (en) Method for producing RTB based sintered magnet
JP6142792B2 (en) Rare earth magnets
JP6798546B2 (en) Manufacturing method of RTB-based sintered magnet
JP6500907B2 (en) Method of manufacturing RTB based sintered magnet
JP6541038B2 (en) RTB based sintered magnet
JP6443757B2 (en) Method for producing RTB-based sintered magnet
WO2019181249A1 (en) Method for producing r-t-b system sintered magnet
CN106024235B (en) R-T-B sintered magnet
CN110431646B (en) Method for producing R-T-B sintered magnet
JP6142793B2 (en) Rare earth magnets
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP6474043B2 (en) R-T-B sintered magnet
JP7021578B2 (en) Manufacturing method of RTB-based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JPWO2019065481A1 (en) Method for producing RTB-based sintered magnet
JP6507769B2 (en) RTB based sintered magnet
JP2018060997A (en) Method for manufacturing r-t-b based sintered magnet
JP6627555B2 (en) RTB based sintered magnet
JP7021577B2 (en) Manufacturing method of RTB-based sintered magnet
JP6702215B2 (en) R-T-B system sintered magnet
JP7215044B2 (en) Method for producing RTB based sintered magnet
JP7228097B2 (en) Method for producing RTB based sintered magnet
JP2020161788A (en) R-t-b based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350