JPWO2019065481A1 - Method for producing RTB-based sintered magnet - Google Patents

Method for producing RTB-based sintered magnet Download PDF

Info

Publication number
JPWO2019065481A1
JPWO2019065481A1 JP2019500604A JP2019500604A JPWO2019065481A1 JP WO2019065481 A1 JPWO2019065481 A1 JP WO2019065481A1 JP 2019500604 A JP2019500604 A JP 2019500604A JP 2019500604 A JP2019500604 A JP 2019500604A JP WO2019065481 A1 JPWO2019065481 A1 JP WO2019065481A1
Authority
JP
Japan
Prior art keywords
mass
content
less
alloy
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019500604A
Other languages
Japanese (ja)
Other versions
JP6508447B1 (en
Inventor
宣介 野澤
恭孝 重本
武司 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Application granted granted Critical
Publication of JP6508447B1 publication Critical patent/JP6508447B1/en
Publication of JPWO2019065481A1 publication Critical patent/JPWO2019065481A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本開示のR−T−B系焼結磁石の製造方法は、R1−T1−B系焼結体を準備する工程と、R2−Ga−Cu−Co系合金を準備する工程と、前記焼結体の表面の少なくとも一部に前記合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程と、第一の熱処理が実施されたR1−T1−B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程とを含む。R1、R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む。Bに対するT1のmol比([T1]/[B])が14.0超15.0以下である。The manufacturing method of the RTB-based sintered magnet of the present disclosure includes a step of preparing an R1-T1-B-based sintered body, a step of preparing an R2-Ga-Cu-Co-based alloy, and the sintering. A step of bringing at least a part of the alloy into contact with at least a part of the surface of the body and performing a first heat treatment at a temperature of 700 ° C. or higher and 1100 ° C. or lower in a vacuum or an inert gas atmosphere; Performing a second heat treatment on the implemented R1-T1-B-based sintered body at a temperature of 450 ° C. or higher and 600 ° C. or lower in a vacuum or an inert gas atmosphere. R1 and R2 are at least one of rare earth elements, and always include at least one of Nd and Pr. The molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and not more than 15.0.

Description

本発明は、R−T−B系焼結磁石の製造方法に関する。   The present invention relates to a method for producing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは希土類元素のうちの少なくとも一種である。Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。   An R-T-B sintered magnet (R is at least one of rare earth elements. T is at least one of transition metal elements and must contain Fe. B is boron) is a permanent magnet. Known as the most powerful magnet, it is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances. Yes.

R−T−B系焼結磁石は主としてR214B化合物からなる主相とこの主相の粒界部分に位置する粒界相(以下、単に「粒界」という場合がある)とから構成されている。R214B化合物は高い磁化を持つ強磁性相でありR−T−B系焼結磁石の特性の根幹をなしている。An R-T-B sintered magnet is mainly composed of a main phase composed of an R 2 T 14 B compound and a grain boundary phase (hereinafter sometimes simply referred to as “grain boundary”) located at the grain boundary portion of the main phase. It is configured. The R 2 T 14 B compound is a ferromagnetic phase with high magnetization, and forms the basis of the characteristics of the R-T-B system sintered magnet.

R−T−B系焼結磁石は、高温で保磁力HcJ(以下、単に「保磁力」又は「HcJ」という場合がある)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR−T−B系焼結磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。The RTB -based sintered magnet has a problem that irreversible thermal demagnetization occurs because the coercive force H cJ (hereinafter sometimes simply referred to as “coercive force” or “H cJ ”) decreases at a high temperature. Therefore, an RTB -based sintered magnet used particularly for an electric vehicle motor is required to have a high H cJ even at a high temperature, that is, a higher H cJ at room temperature.

R−T−B系焼結磁石において、R214B化合物中のRに含まれる軽希土類元素(主としてNd及び/又はPr)の一部を重希土類元素(主としてDy及び/又はTb)で置換すると、HcJが向上することが知られている。重希土類元素の置換量の増加に伴いHcJは向上する。In the RTB-based sintered magnet, a part of the light rare earth element (mainly Nd and / or Pr) contained in R in the R 2 T 14 B compound is a heavy rare earth element (mainly Dy and / or Tb). Substitution is known to improve H cJ . As the substitution amount of heavy rare earth elements increases, H cJ improves.

しかし、R214B化合物中の軽希土類元素を重希土類元素で置換するとR−T−B系焼結磁石のHcJが向上する一方、残留磁束密度Br(以下、単に「Br」という場合がある)が低下する。また、重希土類元素、特にDyなどは資源存在量が少ないうえ産出地が限定されているなどの理由から供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、ユーザーから重希土類元素をできるだけ使用することなくHcJを向上させることが求められている。However, when the light rare earth element in the R 2 T 14 B compound is replaced with a heavy rare earth element, the H cJ of the RTB -based sintered magnet is improved, while the residual magnetic flux density B r (hereinafter simply referred to as “B r ”). May be reduced). In addition, heavy rare earth elements, particularly Dy, have a problem that their supply is not stable and the price fluctuates greatly because of their low resource abundance and limited production area. Therefore, in recent years, it has been demanded by users to improve H cJ without using heavy rare earth elements as much as possible.

特許文献1には、Dyの含有量を低減しつつ保磁力を高めたR−T−B系希土類焼結磁石が開示されている。この焼結磁石の組成は、一般に用いられてきたR−T−B系合金に比べてB量が相対的に少ない特定の範囲に限定され、かつ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有している。その結果、粒界にR217相が生成され、このR217相から粒界に形成される遷移金属リッチ相(R613M)の体積比率が増加することにより、HcJが向上する。Patent Document 1 discloses an RTB-based rare earth sintered magnet having an increased coercive force while reducing the Dy content. The composition of the sintered magnet is limited to a specific range in which the amount of B is relatively smaller than that of a generally used RTB-based alloy, and is selected from Al, Ga, and Cu. It contains more than seed metal element M. As a result, R 2 T 17 phase is produced in the grain boundary, by the volume ratio of the R 2 T 17 transition metal-rich phase formed in the grain boundary from phase (R 6 T 13 M) increases, H cJ Will improve.

国際公開第2013/008756号International Publication No. 2013/008756

特許文献1に記載されている方法は、重希土類元素の含有量を抑制しつつR−T−B系焼結磁石を高保磁力化できる点で注目に値する。しかし、Brが大幅に低下するという問題があった。また、近年、電気自動車用モータ等の用途において更に高いHcJを有するR−T−B系焼結磁石が求められている。The method described in Patent Document 1 is notable in that it can increase the coercive force of the RTB-based sintered magnet while suppressing the content of heavy rare earth elements. However, there is a problem that Br is significantly reduced. In recent years, there has been a demand for RTB -based sintered magnets having higher H cJ for applications such as motors for electric vehicles.

本開示の実施形態は、重希土類元素の含有量を低減しつつ、高いBr及び高いHcJを有するR−T−B系焼結磁石の製造方法を提供する。Embodiments of the present disclosure, while reducing the content of heavy rare earth elements, to provide a method of manufacturing a R-T-B based sintered magnet having a high B r and a high H cJ.

本開示のR−T−B系焼結磁石の製造方法は、限定的ではない例示的な実施形態において、R1−T1−B系焼結体を準備する工程と、R2−Ga−Cu−Co系合金を準備する工程と、前記R1−T1−B系焼結体の表面の少なくとも一部に、前記R2−Ga−Cu−Co系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程と、前記第一の熱処理が実施されたR1−T1−B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程とを含む。前記R1−T1−B系焼結体において、R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1−T1−B系焼結体全体の27mass%以上35mass%以下であり、T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有し、T1全体に対するFeの含有量が80mass%以上であり、Bに対するT1のmol比([T1]/[B])が14.0超15.0以下である。前記R2−Ga−Cu−Co系合金において、R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R2の含有量は、R2−Ga−Cu−Co系合金全体の35mass%以上85mass%未満であり、Gaの含有量は、R2−Ga−Cu−Co系合金全体の2.5mass%以上30mass%以下であり、Cuの含有量は、R2−Ga−Cu−Co系合金全体の2.5mass%以上20mass%以下であり、Coの含有量は、R2−Ga−Cu−Co系合金全体の10mass%超45mass%以下であり、R2の含有量>Coの含有量>Gaの含有量>Cuの含有量の不等式が成立する。   In an exemplary embodiment that is not limited, the method for manufacturing an R-T-B-based sintered magnet of the present disclosure includes a step of preparing an R1-T1-B-based sintered body, and an R2-Ga-Cu-Co A step of preparing an alloy, and at least a part of the R2-Ga-Cu-Co alloy is brought into contact with at least a part of the surface of the R1-T1-B sintered body, and a vacuum or an inert gas atmosphere In a vacuum or in an inert gas atmosphere, the first heat treatment is performed at a temperature of 700 ° C. or higher and 1100 ° C. or lower, and the R1-T1-B sintered body on which the first heat treatment is performed. And performing a second heat treatment at a temperature of 450 ° C. or higher and 600 ° C. or lower. In the R1-T1-B based sintered body, R1 is at least one of rare earth elements, and always includes at least one of Nd and Pr, and the content of R1 is the entire R1-T1-B based sintered body. 27 mass% or more and 35 mass% or less, T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T1 always contains Fe, and the content of Fe relative to the entire T1 is 80 mass% or more, and the molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and not more than 15.0. In the R2-Ga-Cu-Co-based alloy, R2 is at least one of rare earth elements, and always includes at least one of Nd and Pr, and the content of R2 is the total amount of the R2-Ga-Cu-Co-based alloy. 35 mass% or more and less than 85 mass%, the Ga content is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Cu-Co-based alloy, and the Cu content is R2-Ga-Cu-Co. The total alloy is 2.5 mass% or more and 20 mass% or less, and the Co content is more than 10 mass% and 45 mass% or less of the entire R2-Ga-Cu-Co alloy, and the content of R2> the content of Co > Ga content> Cu content inequality holds.

ある実施形態において、前記Bに対するTのmol比([T1]/[B])が14.5以上15.0以下である。   In one embodiment, the molar ratio of T to B ([T1] / [B]) is 14.5 or more and 15.0 or less.

ある実施形態において、前記R2−Ga−Cu−Co系合金中のR2の50mass%以上がPrである。   In one embodiment, 50 mass% or more of R2 in the R2-Ga-Cu-Co-based alloy is Pr.

ある実施形態において、前記R2−Ga−Cu−Co系合金中のR2の70mass%以上がPrである。   In one embodiment, 70 mass% or more of R2 in the R2-Ga-Cu-Co-based alloy is Pr.

ある実施形態では、R2−Ga−Cu−Co系合金におけるR2−Ga−Cu−Coの合計の含有量が80mass%以上である。   In one embodiment, the total content of R2-Ga-Cu-Co in the R2-Ga-Cu-Co-based alloy is 80 mass% or more.

ある実施形態では、前記第一の熱処理における温度が800℃以上1000℃以下である。   In one embodiment, the temperature in the first heat treatment is 800 ° C. or higher and 1000 ° C. or lower.

ある実施形態では、前記第二の熱処理における温度が480℃以上560℃以下である。   In one embodiment, the temperature in the second heat treatment is 480 ° C. or higher and 560 ° C. or lower.

前記R1−T1−B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことを含む。The step of preparing the R1-T1-B sintered body includes pulverizing the raw material alloy so that the particle diameter D 50 is 3 μm or more and 10 μm or less, and then orienting it in a magnetic field to perform sintering.

本開示のR−T−B系焼結磁石の製造方法は、限定的ではない例示的な他の実施形態において、R1−T1−Cu−B系焼結体を準備する工程と、R2−Ga−Co系合金を準備する工程と、前記R1−T1−Cu−B系焼結体の表面の少なくとも一部に、前記R2−Ga−Co系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程と、前記第一の熱処理が実施されたR1−T1−Cu−B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程と、を含み、前記R1−T1−Cu−B系焼結体において、R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1−T1−Cu−B系焼結体全体の27mass%以上35mass%以下であり、T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有し、T1全体に対するFeの含有量が80mass%以上であり、Bに対するT1のmol比([T1]/[B])が14.0超15.0以下であり、Cuの含有量は、R1−T1−Cu−B系焼結体全体の0.1mass%以上1.5mass%以下であり、前記R2−Ga−Co系合金において、R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R2の含有量は、R2−Ga−Co系合金全体の35mass%以上87mass%未満であり、Gaの含有量は、R2−Ga−Co系合金全体の2.5mass%以上30mass%以下であり、Coの含有量は、R2−Ga−Co系合金全体の10mass%超45mass%以下であり、R2の含有量>Coの含有量>Gaの含有量の不等式が成立する。   The manufacturing method of the RTB-based sintered magnet of the present disclosure includes, in another exemplary non-limiting embodiment, a step of preparing an R1-T1-Cu-B-based sintered body, and R2-Ga A step of preparing a Co alloy, and at least a part of the R2-Ga-Co alloy is brought into contact with at least a part of the surface of the R1-T1-Cu-B sintered body, and vacuum or inert In the gas atmosphere, the first heat treatment is performed at a temperature of 700 ° C. or higher and 1100 ° C. or lower, and the R1-T1-Cu—B based sintered body on which the first heat treatment is performed is vacuum or non-conductive. Performing a second heat treatment at a temperature of 450 ° C. or higher and 600 ° C. or lower in an active gas atmosphere. In the R1-T1-Cu—B based sintered body, R1 is at least one of rare earth elements. Yes, and must contain at least one of Nd and Pr, The content of 1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-Cu-B-based sintered body, and T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si. T1 always contains Fe, the Fe content with respect to the whole T1 is 80 mass% or more, and the molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and not more than 15.0. And the Cu content is 0.1 mass% or more and 1.5 mass% or less of the entire R1-T1-Cu-B-based sintered body. In the R2-Ga-Co-based alloy, R2 is a rare earth element. At least one of Nd and Pr is necessarily included, the content of R2 is 35 mass% or more and less than 87 mass% of the entire R2-Ga-Co-based alloy, and the Ga content is R2-Ga It is 2.5 mass% or more and 30 mass% or less of the entire Co-based alloy, and the Co content is more than 10 mass% and 45 mass% or less of the entire R2-Ga-Co-based alloy, and the content of R2> the content of Co> An inequality of Ga content holds.

ある実施形態において、前記Bに対するT1のmol比([T1]/[B])が14.3以上15.0以下である。   In one embodiment, the molar ratio of T1 to B ([T1] / [B]) is 14.3 or more and 15.0 or less.

ある実施形態において、前記R2−Ga−Co系合金中のR2の50mass%以上がPrである。   In one embodiment, 50 mass% or more of R2 in the R2-Ga-Co-based alloy is Pr.

ある実施形態において、前記R2−Ga−Co系合金中のR2の70mass%以上がPrである。   In one embodiment, Pr is 70 mass% or more of R2 in the R2-Ga-Co-based alloy.

ある実施形態において、R2−Ga−Co系合金におけるR2、Ga、Coの合計の含有量が80mass%以上である。   In one embodiment, the total content of R2, Ga, and Co in the R2-Ga-Co-based alloy is 80 mass% or more.

ある実施形態において、前記第一の熱処理における温度が800℃以上1000℃以下である。   In a certain embodiment, the temperature in said 1st heat processing is 800 degreeC or more and 1000 degrees C or less.

ある実施形態において、前記第二の熱処理における温度が480℃以上560℃以下である。   In a certain embodiment, the temperature in said 2nd heat processing is 480 degreeC or more and 560 degrees C or less.

ある実施形態において、前記R1−T1−Cu−B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことを含む。In one embodiment, in the step of preparing the R1-T1-Cu-B-based sintered body, the raw material alloy is pulverized to have a particle size D 50 of 3 μm or more and 10 μm or less, and then oriented in a magnetic field for sintering. Including that.

本開示の実施形態によると、重希土類元素の含有量を低減しつつ、高いBr及び高いHcJを有するR−T−B系焼結磁石の製造方法を提供することができる。According to embodiments of the present disclosure, while reducing the content of heavy rare earth elements, it is possible to provide a manufacturing method of the R-T-B based sintered magnet having a high B r and a high H cJ.

本開示によるR−T−B系焼結磁石の製造方法(第1の実施形態)における工程の例を示すフローチャートである。It is a flowchart which shows the example of the process in the manufacturing method (1st Embodiment) of the RTB type | system | group sintered magnet by this indication. R−T−B系焼結磁石の主相と粒界相を示す模式図である。It is a schematic diagram which shows the main phase and grain boundary phase of a RTB system sintered magnet. 図2Aの破線矩形領域内を更に拡大した模式図である。It is the schematic diagram which expanded further the inside of the broken-line rectangular area of FIG. 2A. 熱処理工程におけるR1−T1−B系合金焼結体(またはR1−T1−Cu−B系焼結体)とR2−Ga−Cu−Co系合金(またはR2−Ga−Co系合金)との配置形態を模式的に示す説明図である。Arrangement of R1-T1-B-based alloy sintered body (or R1-T1-Cu-B-based sintered body) and R2-Ga-Cu-Co-based alloy (or R2-Ga-Co-based alloy) in the heat treatment step It is explanatory drawing which shows a form typically. 本開示によるR−T−B系焼結磁石の製造方法(第2の実施形態)における工程の例を示すフローチャートである。It is a flowchart which shows the example of the process in the manufacturing method (2nd Embodiment) of the RTB type sintered magnet by this indication.

本開示において、希土類元素を総称して「R」と表記する場合がある。希土類元素Rのうちの特定の元素又は元素群を指すとき、例えば「R1」又は「R2」の符号を用いて他の希土類元素から区別する。また、本開示において、Feを含む遷移金属元素の全体を「T」と表記する。遷移金属元素Tのうちの特定の元素または元素群及び主相のFeサイトと容易に置換される遷移金属元素以外の特定の元素又は元素群の両方を含むとき、「T1」の符号を用いて他の遷移金属元素から区別する。   In the present disclosure, rare earth elements are sometimes collectively referred to as “R”. When a specific element or a group of elements among the rare earth elements R is pointed out, for example, a symbol “R1” or “R2” is used to distinguish them from other rare earth elements. In the present disclosure, the entire transition metal element including Fe is denoted as “T”. When including both a specific element or group of elements of the transition metal element T and a specific element or group of elements other than the transition metal element easily replaced with the Fe site of the main phase, the symbol “T1” is used. Distinguish from other transition metal elements.

<第1の実施形態>
本開示による第1の実施形態におけるR−T−B系焼結磁石の製造方法は、図1に示すように、R1−T1−B系焼結体を準備する工程S10と、R2−Ga−Cu−Co系合金を準備する工程S20とを含む。R1−T1−B系焼結体を準備する工程S10と、R2−Ga−Cu−Co系合金を準備する工程S20との順序は任意であり、それぞれ、異なる場所で製造されたR1−T1−B系焼結体及びR2−Ga−Cu−Co系合金を用いてもよい。
<First Embodiment>
As shown in FIG. 1, the manufacturing method of the RTB-based sintered magnet in the first embodiment according to the present disclosure includes the step S10 of preparing an R1-T1-B-based sintered body, and the R2-Ga- And a step S20 of preparing a Cu—Co alloy. The order of the step S10 for preparing the R1-T1-B-based sintered body and the step S20 for preparing the R2-Ga-Cu-Co-based alloy is arbitrary, and R1-T1- manufactured at different locations, respectively. B-based sintered bodies and R2-Ga-Cu-Co-based alloys may be used.

本開示において、第二の熱処理前及び第二の熱処理中のR−T−B系焼結磁石をR1−T1−B系焼結体と称し、第二の熱処理後のR1−T1−B系焼結体を単にR−T−B系焼結磁石と称する。   In the present disclosure, the RTB-based sintered magnet before the second heat treatment and during the second heat treatment is referred to as an R1-T1-B-based sintered body, and the R1-T1-B system after the second heat treatment. The sintered body is simply referred to as an R-T-B system sintered magnet.

R1−T1−B系焼結体においては、下記(A1)〜(A3)が成立している。
(A1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1−T1−B系焼結体全体の27mass%以上35mass%以下である。
(A2)T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有し、T1全体に対するFeの含有量が80mass%以上である。
(A3)Bに対するT1のmol比([T1]/[B])が14.0超15.0以下である。
In the R1-T1-B based sintered body, the following (A1) to (A3) are established.
(A1) R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B sintered body.
(A2) T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si. T1 always contains Fe, and the Fe content with respect to the entire T1 is 80 mass% or more.
(A3) The molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and not more than 15.0.

本開示におけるBに対するT1のmol比([T1]/[B])とは、T1を構成する各元素(Fe又はCo、Al、Mn、Siの少なくとも1つとFe)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。   In the present disclosure, the molar ratio of T1 to B ([T1] / [B]) is an analysis value (mass%) of each element (Fe or at least one of Fe, Co, Al, Mn, and Si) constituting T1. Obtained by dividing by the atomic weight of each element, and the ratio (a /) of the total of those values (a) and the analytical value of B (mass%) divided by the atomic weight of B (b) b).

Bに対するT1のmol比([T1]/[B])が14.0を超えるということは、Bの含有比率がR214B化合物の化学量論組成比よりも低いことを意味している。言い換えると、R1−T1−B系焼結体において、主相(R214B化合物)の形成に使われるT1の量に対して相対的にB量が少ない。The molar ratio of T1 to B ([T1] / [B]) exceeding 14.0 means that the B content ratio is lower than the stoichiometric composition ratio of the R 2 T 14 B compound. Yes. In other words, in the R1-T1-B-based sintered body, the B amount is relatively small with respect to the amount of T1 used for forming the main phase (R 2 T 14 B compound).

R2−Ga−Cu−Co系合金においては、以下の(A4)〜(A8)が成立している。
(A4)R2は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R2の含有量は、R2−Ga−Cu−Co系合金全体の35mass%以上85mass%未満である。
(A5)Gaの含有量は、R2−Ga−Cu−Co系合金全体の2.5mass%以上30mass%以下である。
(A6)Cuの含有量は、R2−Ga−Cu−Co系合金全体の2.5mass%以上20mass%以下である。
(A7)Coの含有量は、R2−Ga−Cu−Co系合金全体の10mass%超45mass%以下である。
(A8)R2の含有量>Coの含有量>Gaの含有量>Cuの含有量の不等式が成立する。
In the R2-Ga-Cu-Co-based alloy, the following (A4) to (A8) are established.
(A4) R2 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R2 is not less than 35 mass% and less than 85 mass% of the entire R2-Ga-Cu-Co-based alloy.
(A5) Ga content is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Cu-Co-based alloy.
(A6) The Cu content is 2.5 mass% or more and 20 mass% or less of the entire R2-Ga-Cu-Co-based alloy.
(A7) The Co content is more than 10 mass% and 45 mass% or less of the entire R2-Ga-Cu-Co-based alloy.
(A8) The inequality of R2 content> Co content> Ga content> Cu content holds.

本開示によるR−T−B系焼結磁石の製造方法では、主相(R214B化合物)形成に使われるTの量に対して化学量論比で相対的にB量が少ないR1−T1−B系焼結体の表面の少なくとも一部にR2−Ga−Cu−Co系合金を接触させ、図1に示すように、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程S30と、この第一の熱処理が実施されたR1−T1−B系焼結体に対して真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程S40を行う。これにより、高いBr及び高いHcJを有するR−T−B系焼結磁石を得ることができる。In the manufacturing method of the RTB-based sintered magnet according to the present disclosure, the amount of B is relatively small in stoichiometric ratio with respect to the amount of T used for forming the main phase (R 2 T 14 B compound). The R2-Ga-Cu-Co alloy is brought into contact with at least a part of the surface of the -T1-B sintered body, and as shown in FIG. 1, in a vacuum or an inert gas atmosphere, the temperature is 700 ° C. or higher and 1100 ° C. or lower. A temperature of 450 ° C. or more and 600 ° C. or less in a vacuum or an inert gas atmosphere with respect to the step S30 for performing the first heat treatment at a temperature and the R1-T1-B sintered body subjected to the first heat treatment. In step S40, the second heat treatment is performed. Thus, it is possible to obtain the R-T-B based sintered magnet having a high B r and a high H cJ.

第一の熱処理を実施する工程S30と、第二の熱処理を実施する工程S40との間に他の工程、例えば冷却工程などが実行され得る。   Another process, such as a cooling process, may be performed between the process S30 for performing the first heat treatment and the process S40 for performing the second heat treatment.

まず、R−T−B系焼結磁石の基本構造を説明する。   First, the basic structure of the RTB-based sintered magnet will be described.

R−T−B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR214B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。The RTB-based sintered magnet has a structure in which powder particles of raw material alloys are bonded by sintering, and a main phase mainly composed of an R 2 T 14 B compound and a grain boundary portion of the main phase. It consists of the grain boundary phase located.

図2Aは、R−T−B系焼結磁石の主相と粒界相を示す模式図であり、図2Bは図2Aの破線矩形領域内を更に拡大した模式図である。図2Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図2A及び図2Bに示されるように、R−T−B系焼結磁石は、主としてR214B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図2Bに示されるように、2つのR214B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つ以上のR214B化合物粒子が隣接する粒界三重点14bとを含む。FIG. 2A is a schematic diagram showing the main phase and the grain boundary phase of the RTB-based sintered magnet, and FIG. 2B is a schematic diagram further enlarging the broken-line rectangular region of FIG. 2A. In FIG. 2A, for example, an arrow having a length of 5 μm is described as a reference length indicating the size for reference. As shown in FIGS. 2A and 2B, the RTB-based sintered magnet includes a main phase 12 mainly composed of an R 2 T 14 B compound, and a grain boundary phase 14 located in a grain boundary portion of the main phase 12. It consists of and. As shown in FIG. 2B, the grain boundary phase 14 includes two grain boundary phases 14a in which two R 2 T 14 B compound particles (grains) are adjacent, and three or more R 2 T 14 B compound particles. Includes adjacent grain boundary triple points 14b.

主相12であるR214B化合物は高い飽和磁化と異方性磁界を持つ強磁性相である。したがって、R−T−B系焼結磁石では、主相12であるR214B化合物の存在比率を高めることによってBrを向上させることができる。R214B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R214B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。R214B化合物を形成するためのB量又はR量が化学量論比を下回ると、一般的には、粒界相14にFe相又はR217相等の強磁性体が生成し、HcJが急激に低下する。しかし、特許文献1に記載されている方法のように、B量をR214B化合物の化学量論比よりも少なくし、且つ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有させると、R217相から粒界に遷移金属リッチ相(例えばR−T−Ga相)が生成されて高いHcJを得ることができる。しかし、特許文献1に記載されている方法では、Brが大幅に低下してしまう。The R 2 T 14 B compound as the main phase 12 is a ferromagnetic phase having a high saturation magnetization and an anisotropic magnetic field. Therefore, in the R-T-B based sintered magnet, it is possible to improve the B r by increasing the existence ratio of R 2 T 14 B compound is the main phase 12. In order to increase the abundance ratio of the R 2 T 14 B compound, the R amount, T amount, and B amount in the raw material alloy are set to the stoichiometric ratio of the R 2 T 14 B compound (R amount: T amount: B amount = It may be close to 2: 14: 1). When the B amount or R amount for forming the R 2 T 14 B compound is lower than the stoichiometric ratio, generally, a ferromagnetic material such as an Fe phase or an R 2 T 17 phase is generated in the grain boundary phase 14. , H cJ decreases rapidly. However, as in the method described in Patent Document 1, the amount of B is less than the stoichiometric ratio of the R 2 T 14 B compound, and at least one selected from Al, Ga, and Cu is used. When the metal element M is contained, a transition metal rich phase (for example, R—T—Ga phase) is generated at the grain boundary from the R 2 T 17 phase, and high H cJ can be obtained. However, in the method described in Patent Document 1, Br is significantly reduced.

本発明者らは検討の結果、低B組成である特定の組成を有するR1−T1−B系焼結体の表面の少なくとも一部に、Coの含有量が比較的多いR2−Ga−Cu−Co系合金を接触させて特定の熱処理を実施すると、意外にも、最終的に得られる焼結磁石は、高いBrと高いHcJを実現できることがわかった。As a result of studies, the present inventors have found that at least a part of the surface of the R1-T1-B-based sintered body having a specific composition having a low B composition has a relatively high Co content of R2-Ga-Cu-. When contacting the Co-based alloy that perform particular heat treatment, surprisingly, finally sintered magnet obtained has been found to be achieved a high B r and high H cJ.

本開示によるR−T−B系焼結磁石の製造方法は、本開示の特定組成のR2−Ga−Cu−Co系合金によりR2、Ga、Cu及びCoを磁石表面から内部に導入することで、高いBrと高いHcJを実現することができる。The manufacturing method of the RTB-based sintered magnet according to the present disclosure introduces R2, Ga, Cu, and Co into the inside from the magnet surface by the R2-Ga-Cu-Co-based alloy having a specific composition according to the present disclosure. High B r and high H cJ can be realized.

(R1−T1−B系焼結体を準備する工程)
まず、R1−T1−B系焼結体(以下、単に「焼結体」という場合がある)を準備する工程における焼結体の組成を説明する。
(Step of preparing R1-T1-B based sintered body)
First, the composition of the sintered body in the step of preparing an R1-T1-B-based sintered body (hereinafter sometimes simply referred to as “sintered body”) will be described.

R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む。R1−T1−B系焼結体のHcJを向上させるために、一般的に用いられるDy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。ただし、本開示による製造方法によれば、重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量は、R1−T1−B系焼結体の1mass%以下であることが好ましく、0.5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことが更に好ましい。R1 is at least one kind of rare earth elements and always contains at least one of Nd and Pr. In order to improve H cJ of the R1-T1-B based sintered body, a small amount of generally used heavy rare earth elements such as Dy, Tb, Gd, and Ho may be contained. However, according to the production method according to the present disclosure, sufficiently high H cJ can be obtained without using a large amount of heavy rare earth elements. Therefore, the content of the heavy rare earth element is preferably 1 mass% or less, more preferably 0.5 mass% or less, and not contained (substantially 0 mass%) of the R1-T1-B based sintered body. Is more preferable.

R1の含有量は、R1−T1−B系焼結体全体の27mass%以上35mass%以下である。R1の含有量が27mass%未満では焼結過程で液相が十分に生成せず、R1−T1−B系焼結体を十分に緻密化することが困難になる。一方、R1の含有量が35mass%を超えても本開示の効果を得ることはできるが、R1−T1−B系焼結体の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、35mass%以下が好ましい。R1の含有量は、27.5mass%以上33mass%以下であることがより好ましく、28mass%以上32mass%以下であることが更に好ましい。   Content of R1 is 27 mass% or more and 35 mass% or less of the whole R1-T1-B type sintered compact. When the content of R1 is less than 27 mass%, a liquid phase is not sufficiently generated in the sintering process, and it becomes difficult to sufficiently densify the R1-T1-B based sintered body. On the other hand, even if the content of R1 exceeds 35 mass%, the effect of the present disclosure can be obtained, but the alloy powder in the manufacturing process of the R1-T1-B based sintered body becomes very active. As a result, the alloy powder may be significantly oxidized or ignited, so 35 mass% or less is preferable. The content of R1 is more preferably 27.5 mass% or more and 33 mass% or less, and further preferably 28 mass% or more and 32 mass% or less.

T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有する。すなわち、T1はFeのみであってもよいし、Co、Al、Mn、Siの少なくとも1つとFeからなってもよい。ただし、T1全体に対するFeの含有量は80mass%以上である。Feの含有量が80mass%未満であると、Br及びHcJが低下する可能性がある。ここで、「T1全体に対するFeの含有量は80mass%以上」とは、例えばR1−T1−B系焼結体中におけるT1の含有量が70mass%である場合、R1−T1−B系焼結体の56mass%以上がFeであることを言う。好ましくはT1全体に対するFeの含有量は90mass%以上である。より高いBrと高いHcJを得ることができるからである。Co、Al、Mn、Siを含有する場合の好ましい含有量は、R1−T1−Cu−B系焼結体全体のCoは5.0mass%以下、Alは1.5mass%以下、Mn及びSiはそれぞれ0.2mass%以下である。T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and T1 always contains Fe. That is, T1 may be Fe alone, or may be Fe and at least one of Co, Al, Mn, and Si. However, the content of Fe with respect to the entire T1 is 80 mass% or more. When the content of Fe is less than 80 mass%, B r and H cJ may be reduced. Here, “the content of Fe with respect to the entire T1 is 80 mass% or more” means, for example, when the content of T1 in the R1-T1-B sintered body is 70 mass%, the R1-T1-B based sintering. It means that 56 mass% or more of the body is Fe. Preferably, the Fe content relative to the entire T1 is 90 mass% or more. This is because it is possible to obtain a higher B r and a high H cJ. When Co, Al, Mn, and Si are contained, the preferable content is as follows: Co of the entire R1-T1-Cu-B-based sintered body is 5.0 mass% or less, Al is 1.5 mass% or less, and Mn and Si are Each is 0.2 mass% or less.

Bに対するT1のmol比([T1]/[B])は14.0超15.0以下である。   The molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and not more than 15.0.

本開示におけるBに対するT1のmol比([T1]/[B])とは、T1を構成する各元素(Fe又はCo、Al、Mn、Siの少なくとも1つとFe)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。   In the present disclosure, the molar ratio of T1 to B ([T1] / [B]) is an analysis value (mass%) of each element (Fe or at least one of Fe, Co, Al, Mn, and Si) constituting T1. Obtained by dividing by the atomic weight of each element, and the ratio (a /) of the total of those values (a) and the analytical value of B (mass%) divided by the atomic weight of B (b) b).

Bに対するT1のmol比([T1]/[B])が14.0を超えるという条件は、主相(R214B化合物)形成に使われるT1量に対して相対的にB量が少ないことを示している。Bに対するT1のmol比([T1]/[B])が14.0以下であると高いHcJを得ることができない。一方、Bに対するT1のmol比([T1]/[B])が15.0を超えるとBrが低下する可能性がある。Bに対するT1のmol比([T1]/[B])は14.5以上15.0以下であることが好ましい。更に高いBrと高いHcJを得ることができる。また、Bの含有量はR1−T1−B系焼結体全体の0.9mass%以上1.0mass%未満が好ましい。The condition that the molar ratio of T1 to B ([T1] / [B]) exceeds 14.0 is that the amount of B is relative to the amount of T1 used to form the main phase (R 2 T 14 B compound). It shows that there are few. When the molar ratio of T1 to B ([T1] / [B]) is 14.0 or less, high H cJ cannot be obtained. On the other hand, if the molar ratio of T1 to B ([T1] / [B]) exceeds 15.0, Br may decrease. The molar ratio of T1 to B ([T1] / [B]) is preferably 14.5 or more and 15.0 or less. It is possible to obtain a higher B r and a high H cJ. The B content is preferably 0.9 mass% or more and less than 1.0 mass% of the entire R1-T1-B sintered body.

R1−T1−B系焼結体は、上記元素の他にGa、Cu、Ag、Zn、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。含有量は、Ga、Cu、Ag、Zn、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下が好ましい。これらの元素の合計の含有量は、R1−T1−B系焼結体全体の5mass%以下が好ましい。これらの元素の合計の含有量がR1−T1−B系焼結体全体の5mass%を超えると高いBrと高いHcJを得ることができない可能性がある。In addition to the above elements, the R1-T1-B based sintered body includes Ga, Cu, Ag, Zn, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Cr, H, F, P, S, Cl, O, N, C and the like may be contained. The contents of Ga, Cu, Ag, Zn, In, Sn, Zr, Nb, and Ti are each 0.5 mass% or less, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, and Cr are each preferably 0.2 mass% or less, H, F, P, S, and Cl are 500 ppm or less, O is 6000 ppm or less, N is 1000 ppm or less, and C is 1500 ppm or less. The total content of these elements is preferably 5 mass% or less of the entire R1-T1-B sintered body. The total content of these elements may not be able to obtain the high B r and high H cJ exceeds 5 mass% of the total R1-T1-B based sintered body.

次にR1−T1−B系焼結体を準備する工程について説明する。R1−T1−B系焼結体を準備する工程は、R−T−B系焼結磁石に代表される一般的な製造方法を用いて準備することができる。R1−T1−B系焼結体は、原料合金を粒径D50(気流分散式レーザー回折法による測定で得られる体積中心値=D50)が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことが好ましい。一例を挙げると、ストリップキャスト法などで作製された原料合金を、ジェットミル装置などを用いて粒径D50が3μm以上10μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより準備することができる。原料合金の粒径D50が3μm未満では粉砕粉を作製するのが非常に困難であり、生産効率が大幅に低下するため好ましくない。一方、粒径D50が10μmを超えると最終的に得られるR1−T1−B系焼結体の結晶粒径が大きくなり過ぎ、高いHcJを得ることが困難となるため好ましくない。粒径D50は好ましくは、3μm以上5μm以下である。Next, the process for preparing the R1-T1-B based sintered body will be described. The step of preparing the R1-T1-B based sintered body can be prepared using a general manufacturing method represented by an RTB-based sintered magnet. In the R1-T1-B based sintered body, the raw material alloy is pulverized to a particle size D 50 (volume center value obtained by measurement by an air flow dispersion type laser diffraction method = D 50 ) of 3 μm or more and 10 μm or less. It is preferable to perform orientation and sintering. For example, a raw material alloy produced by a strip casting method or the like is pulverized to a particle size D 50 of 3 μm or more and 10 μm or less using a jet mill apparatus or the like, and then molded in a magnetic field, and 900 ° C. or more and 1100 ° C. or less. It can prepare by sintering at the temperature of. If the particle diameter D 50 of the raw material alloy is less than 3 μm, it is very difficult to produce a pulverized powder, which is not preferable because the production efficiency is greatly reduced. On the other hand, when the particle size D 50 exceeds 10 μm, the crystal particle size of the finally obtained R1-T1-B sintered body becomes too large, and it is difficult to obtain high H cJ, which is not preferable. The particle size D 50 is preferably 3 μm or more and 5 μm or less.

R1−T1−B系焼結体は、前記の各条件を満たしていれば、一種類の原料合金(単一原料合金)から作製してもよいし、二種類以上の原料合金を用いてそれらを混合する方法(ブレンド法)によって作製してもよい。また、得られたR1−T1−B系焼結体は、必要に応じて切断や切削など公知の機械加工を行った後、後述する第一の熱処理及び第二の熱処理を実施してもよい。   The R1-T1-B-based sintered body may be made from one type of raw material alloy (single raw material alloy) as long as each of the above conditions is satisfied, or two or more types of raw material alloys may be used. You may produce by the method (blending method) of mixing. In addition, the obtained R1-T1-B sintered body may be subjected to a first heat treatment and a second heat treatment, which will be described later, after performing known machining such as cutting and cutting as necessary. .

(R2−Ga−Cu−Co系合金を準備する工程)
まず、R2−Ga−Cu−Co系合金を準備する工程におけるR2−Ga−Cu−Co系合金の組成を説明する。以下に説明する特定の範囲でR、Ga、Cu、Coを全て含有することにより、後述する第一の熱処理を実施する工程においてR2−Ga−Cu−Co系合金中のR2、Ga、Cu及びCoをR1−T1−B系焼結体内部に導入することができる。
(Step of preparing an R2-Ga-Cu-Co-based alloy)
First, the composition of the R2-Ga-Cu-Co alloy in the step of preparing the R2-Ga-Cu-Co alloy will be described. By containing all of R, Ga, Cu, and Co in a specific range described below, R2, Ga, Cu, and R in the R2-Ga-Cu-Co-based alloy in the step of performing the first heat treatment described below. Co can be introduced into the R1-T1-B sintered body.

R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む。R2の50mass%以上がPrであることが好ましい。より高いHcJを得ることができるからである。ここで「R2の50mass%以上がPrである」とは、例えばR2−Ga−Cu−Co系合金中におけるR2の含有量が50mass%である場合、R2−Ga−Cu−Co系合金の25mass%以上がPrであることを言う。更に好ましくは、R2の70mass%以上がPrであり、最も好ましくはR2がPrのみ(不可避的不純物は含む)である。これにより、更に高いHcJを得ることができる。また、R2として、Dy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。ただし、本開示の製造方法によれば、重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量はR2−Ga−Cu−Co系合金全体の10mass%以下(R2−Ga−Cu−Co系合金中の重希土類元素が10mass%以下)であることが好ましく、5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことが更に好ましい。R2−Ga−Cu−Co系合金のR2が重希土類元素を含有する場合も、R2の50%以上がPrであることが好ましく、重希土類元素を除いたR2がPrのみ(不可避的不純物は含む)であることがより好ましい。R2 is at least one kind of rare earth elements and always contains at least one of Nd and Pr. It is preferable that 50 mass% or more of R2 is Pr. This is because a higher H cJ can be obtained. Here, "50 mass% or more of R2 is Pr" means that, for example, when the content of R2 in the R2-Ga-Cu-Co-based alloy is 50 mass%, 25 mass of the R2-Ga-Cu-Co-based alloy. % Or more means Pr. More preferably, 70 mass% or more of R2 is Pr, and most preferably R2 is Pr alone (including inevitable impurities). Thereby, higher H cJ can be obtained. Further, as R2, a small amount of heavy rare earth elements such as Dy, Tb, Gd, and Ho may be contained. However, according to the production method of the present disclosure, sufficiently high H cJ can be obtained without using a large amount of heavy rare earth elements. Therefore, the content of the heavy rare earth element is preferably 10 mass% or less of the entire R2-Ga-Cu-Co alloy (the heavy rare earth element in the R2-Ga-Cu-Co alloy is 10 mass% or less), It is more preferable that it is 5 mass% or less, and it is still more preferable not to contain (substantially 0 mass%). Even when R2 of the R2-Ga-Cu-Co-based alloy contains a heavy rare earth element, 50% or more of R2 is preferably Pr, and R2 excluding the heavy rare earth element is only Pr (inevitable impurities included) ) Is more preferable.

R2の含有量はR2−Ga−Cu−Co系合金全体の35mass%以上85mass%未満である。R2の含有量が35mass%未満では後述する第一の熱処理で拡散が十分に進行しない可能性がある。一方、R2の含有量が85mass%以上でも本開示の効果を得ることはできるが、R2−Ga−Cu−Co系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、R2の含有量はR2−Ga−Cu−Co系合金全体の85mass%未満が好ましい。R2の含有量は50mass%以上85mass%未満であることがより好ましく、60mass%以上85mass%未満であることが更に好ましい。より高いHcJを得ることができるからである。The content of R2 is 35 mass% or more and less than 85 mass% of the entire R2-Ga-Cu-Co-based alloy. If the content of R2 is less than 35 mass%, the diffusion may not sufficiently proceed in the first heat treatment described later. On the other hand, even if the content of R2 is 85 mass% or more, the effect of the present disclosure can be obtained, but the alloy powder in the manufacturing process of the R2-Ga-Cu-Co alloy becomes very active. As a result, since significant oxidation or ignition of the alloy powder may occur, the content of R2 is preferably less than 85 mass% of the entire R2-Ga-Cu-Co-based alloy. The content of R2 is more preferably 50 mass% or more and less than 85 mass%, and further preferably 60 mass% or more and less than 85 mass%. This is because a higher H cJ can be obtained.

Gaは、R2−Ga−Cu−Co系合金全体の2.5mass%以上30mass%以下である。Gaが2.5mass%未満では、後述する第一の熱処理を実施する工程においてR2−Ga−Cu−Co系合金中のCoがR1−T1−B系焼結体の内部に導入され難くなり高いBrを得ることができない。更に、R−T−Ga相の生成量が少なすぎて、高いHcJを得ることができない。一方、Gaが30mass%を超えると、Brが大幅に低下する可能性がある。Gaは4mass%以上20mass%以下であることがより好ましく、4mass%以上10mass%以下であることが更に好ましい。より高いBrと高いHcJを得ることができるからである。Ga is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Cu-Co-based alloy. If Ga is less than 2.5 mass%, it is difficult to introduce Co in the R2-Ga-Cu-Co-based alloy into the R1-T1-B-based sintered body in the step of performing the first heat treatment described later. Br cannot be obtained. Furthermore, since the amount of R—T—Ga phase produced is too small, high H cJ cannot be obtained. On the other hand, if Ga is more than 30 mass%, B r may be lowered significantly. Ga is more preferably 4 mass% or more and 20 mass% or less, and further preferably 4 mass% or more and 10 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.

Cuは、R2−Ga−Cu−Co系合金全体の2.5mass%以上20mass%以下である。Cuが2.5mass%未満では、後述する第一の熱処理を実施する工程においてR2−Ga−Cu−Co系合金中のGa、Cu及びCoがR1−T1−B系焼結体の内部に導入され難くなり、高いBrを得ることができない。一方、Cuが20mass%を超えると、粒界におけるGaの存在比率が低下するため、R−T−Ga相の生成量が少なすぎて、高いHcJを得ることができない可能性がある。Cuは4mass%以上15mass%以下であることがより好ましく、4mass%以上10mass%以下であることが更に好ましい。より高いBrと高いHcJを得ることができるからである。Cu is 2.5 mass% or more and 20 mass% or less of the entire R2-Ga-Cu-Co-based alloy. If Cu is less than 2.5 mass%, Ga, Cu and Co in the R2-Ga-Cu-Co-based alloy are introduced into the R1-T1-B-based sintered body in the step of performing the first heat treatment described later. hardly be, it is impossible to obtain a high B r. On the other hand, if Cu exceeds 20 mass%, the abundance ratio of Ga at the grain boundary is lowered, and thus the amount of R—T—Ga phase produced is so small that high H cJ may not be obtained. Cu is more preferably 4 mass% or more and 15 mass% or less, and further preferably 4 mass% or more and 10 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.

Coは、R2−Ga−Cu−Co系合金全体の10mass%超45mass%以下である。Coが10mass%以下では、最終的に得られるR−T−B系焼結磁石のBrを充分に高めることができない。一方、Coが45mass%を超えると、後述する第一の熱処理で拡散が十分に進行せず、高いBrと高いHcJを得ることができない可能性がある。Coは15mass%以上30mass%以下であることがより好ましい。より高いBrと高いHcJを得ることができるからである。Co is more than 10 mass% and 45 mass% or less of the entire R2-Ga-Cu-Co-based alloy. Co is in the following 10 mass%, it is impossible to sufficiently enhance the finally obtained R-T-B based sintered magnet of B r. On the other hand, when Co exceeds 45Mass%, it may not be able to spread with a first heat treatment to be described later does not proceed sufficiently to obtain a high B r and high H cJ. Co is more preferably 15 mass% or more and 30 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.

また、本開示におけるR2−Ga−Cu−Co系合金では、R2の含有量>Coの含有量>Gaの含有量>Cuの含有量の不等式が成立している。このため、高いBr及び高いHcJを得ることができる。これは本開示の不等式を満足することにより、適切な量のR、Co、Ga及びCuを含む相が二粒子粒界に生成されるからだと考えられる。In the R2-Ga-Cu-Co-based alloy according to the present disclosure, the inequality of R2 content> Co content> Ga content> Cu content is established. Therefore, it is possible to obtain a high B r and a high H cJ. This is considered to be because a phase containing an appropriate amount of R, Co, Ga, and Cu is generated at the grain boundary by satisfying the inequality of the present disclosure.

R2−Ga−Cu−Co系合金は、上記元素の他にAl、Ag、Zn、Si、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。   R2-Ga-Cu-Co-based alloys include Al, Ag, Zn, Si, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, in addition to the above elements. La, Ce, Sm, Ca, Mg, Mn, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.

含有量は、Alは1.0mass%以下、Ag、Zn、Si、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Si、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下が好ましい。ただし、これらの元素の合計の含有量が20mass%を超えると、R2−Ga−Cu−Co系合金におけるR2−Ga−Cu−Coの含有量が少なくなり、高いBrと高いHcJを得ることができない可能性がある。そのため、R2−Ga−Cu−Co系合金におけるR2−Ga−Cu−Coの合計の含有量は80mass%以上が好ましく、90mass%以上が更に好ましい。Content is 1.0 mass% or less for Al, Ag, Zn, Si, In, Sn, Zr, Nb, and Ti are each 0.5 mass% or less, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, Cr are each 0.2 mass% or less, H, F, P, S, and Cl are 500 ppm or less, O is 6000 ppm or less, N is 1000 ppm or less, and C is 1500 ppm or less is preferable. However, the total content of these elements is more than 20mass%, R2-Ga-Cu -Co -based then the amount of R2-Ga-Cu-Co in the alloy, to obtain a high B r and high H cJ It may not be possible. Therefore, the total content of R2-Ga-Cu-Co in the R2-Ga-Cu-Co-based alloy is preferably 80 mass% or more, and more preferably 90 mass% or more.

次にR2−Ga−Cu−Co系合金を準備する工程について説明する。R2−Ga−Cu−Co系合金は、Nd−Fe−B系焼結磁石に代表される一般的な製造方法において採用されている原料合金の作製方法、例えば、金型鋳造法やストリップキャスト法や単ロール超急冷法(メルトスピニング法)やアトマイズ法などを用いて準備することができる。また、R2−Ga−Cu−Co系合金は、前記によって得られた合金をピンミルなどの公知の粉砕手段によって粉砕されたものであってもよい。また、前記によって得られた合金の粉砕性を向上させるために、水素雰囲気中で700℃以下の熱処理を行って水素を含有させてから粉砕を行っても良い。   Next, the process for preparing the R2-Ga-Cu-Co alloy will be described. The R2-Ga-Cu-Co-based alloy is a raw material alloy manufacturing method employed in a general manufacturing method represented by an Nd-Fe-B-based sintered magnet, such as a die casting method or a strip casting method. Or a single roll super rapid cooling method (melt spinning method) or an atomizing method. The R2-Ga-Cu-Co-based alloy may be one obtained by pulverizing the alloy obtained as described above by a known pulverizing means such as a pin mill. Further, in order to improve the pulverizability of the alloy obtained as described above, the pulverization may be performed after heat treatment at 700 ° C. or less in a hydrogen atmosphere to contain hydrogen.

(第一の熱処理を実施する工程)
前記によって準備したR1−T1−B系焼結体の表面の少なくとも一部に、前記R2−Ga−Cu−Co系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で熱処理をする。本開示において、この熱処理を第一の熱処理という。これにより、R2−Ga−Cu−Co系合金からCu、Ga及びCoを含む液相が生成し、その液相がR1−T1−B系焼結体の粒界を経由して焼結体表面から内部に拡散導入される。第一の熱処理温度が700℃未満であると、Cu、Ga及びCoを含む液相量が少なすぎて、高いBrと高いHcJを得ることができない可能性がある。一方、1100℃を超えると主相の異常粒成長が起こり、HcJが低下する可能性がある。第一の熱処理温度は、800℃以上1000℃以下が好ましい。より高いBrと高いHcJを得ることができるからである。なお、熱処理時間はR1−T1−B系焼結体やR2−Ga−Cu−Co系合金の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下が更に好ましい。また、R2−Ga−Cu−Co系合金は、R1−T1−B系焼結体の重量に対し2mass%以上30mass%以下準備した方が好ましい。R2−Ga−Cu−Co系合金がR1−T1−B系焼結体の重量に対し2mass%未満であるとHcJが低下する可能性がある。一方、30mass%を超えるとBrが低下する可能性がある。
(Step of performing the first heat treatment)
At least a part of the R2-Ga-Cu-Co-based alloy is brought into contact with at least a part of the surface of the R1-T1-B-based sintered body prepared as described above, and is 700 ° C or higher in a vacuum or an inert gas atmosphere. Heat treatment is performed at a temperature of 1100 ° C. or lower. In the present disclosure, this heat treatment is referred to as a first heat treatment. Thereby, a liquid phase containing Cu, Ga, and Co is generated from the R2-Ga-Cu-Co-based alloy, and the liquid phase passes through the grain boundary of the R1-T1-B-based sintered body, and the surface of the sintered body. Is introduced into the interior. When the first heat treatment temperature is lower than 700 ° C., Cu, and amount of liquid phase containing Ga and Co is too small, it may not be able to obtain a high B r and high H cJ. On the other hand, when the temperature exceeds 1100 ° C., abnormal grain growth of the main phase occurs and H cJ may decrease. The first heat treatment temperature is preferably 800 ° C. or higher and 1000 ° C. or lower. This is because it is possible to obtain a higher B r and a high H cJ. In addition, although heat processing time sets an appropriate value with the composition, dimension, heat processing temperature, etc. of a R1-T1-B type sintered compact or a R2-Ga-Cu-Co type alloy, 5 minutes or more and 20 hours or less are preferred, and 10 It is more preferably from 15 minutes to 15 hours, and further preferably from 30 minutes to 10 hours. Further, it is preferable that the R2-Ga-Cu-Co-based alloy is prepared in a range of 2 mass% to 30 mass% with respect to the weight of the R1-T1-B-based sintered body. If the R2-Ga-Cu-Co-based alloy is less than 2 mass% with respect to the weight of the R1-T1-B-based sintered body, HcJ may be lowered. On the other hand, there is a possibility that the B r decreases exceeds 30 mass%.

第一の熱処理は、R1−T1−B系焼結体表面に、任意形状のR2−Ga−Cu−Co系合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R1−T1−B系焼結体表面をR2−Ga−Cu−Co系合金の粉末層で覆い、第一の熱処理を行うことができる。例えば、R2−Ga−Cu−Co系合金を分散媒中に分散させたスラリーをR1−T1−B系焼結体表面に塗布した後、分散媒を蒸発させてR2−Ga−Cu−Co系合金とR1−T1−B系焼結体とを接触させてもよい。また、後述する実験例に示すように、R2−Ga−Cu−Co系合金は、少なくともR1−T1−B系焼結体の配向方向に対して垂直な表面に接触させるように配置することが好ましい。なお、分散媒として、アルコール(エタノール等)、NMP(N−メチルピロリドン)、アルデヒド及びケトンを例示できる。また、第一の熱処理が実施されたR1−T1−B系焼結体に対して切断や切削など公知の機械加工を行ってもよい。   The first heat treatment can be performed using a known heat treatment apparatus by disposing an R2-Ga-Cu-Co alloy having an arbitrary shape on the surface of the R1-T1-B sintered body. For example, the surface of the R1-T1-B-based sintered body can be covered with a powder layer of R2-Ga-Cu-Co-based alloy, and the first heat treatment can be performed. For example, after applying a slurry in which an R2-Ga-Cu-Co-based alloy is dispersed in a dispersion medium to the surface of the R1-T1-B-based sintered body, the dispersion medium is evaporated to obtain an R2-Ga-Cu-Co-based The alloy and the R1-T1-B sintered body may be brought into contact with each other. Further, as shown in an experimental example to be described later, the R2-Ga-Cu-Co-based alloy may be arranged so as to be in contact with at least a surface perpendicular to the orientation direction of the R1-T1-B-based sintered body. preferable. In addition, alcohol (ethanol etc.), NMP (N-methylpyrrolidone), an aldehyde, and a ketone can be illustrated as a dispersion medium. Moreover, you may perform well-known machining, such as a cutting | disconnection and cutting, with respect to the R1-T1-B type sintered compact in which the 1st heat processing was implemented.

(第二の熱処理を実施する工程)
第一の熱処理が実施されたR1−T1−B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で熱処理を行う。本開示においてこの熱処理を第二の熱処理という。第二の熱処理を行うことにより、高いBrと高いHcJを得ることができる。第二の熱処理の温度が450℃未満及び600℃超の場合は、R−T−Ga相(典型的にはR613Z相(ZはCu及びGaの少なくとも1つ))の生成量が少なすぎて、高いBrと高いHcJを得ることができない可能性がある。第二の熱処理温度は、480℃以上560℃以下が好ましい。より高いHcJを得ることができる。なお、熱処理時間はR1−T1−B系焼結体の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下が更に好ましい。
(Step of performing the second heat treatment)
The R1-T1-B sintered body subjected to the first heat treatment is heat-treated at a temperature of 450 ° C. or higher and 600 ° C. or lower in a vacuum or an inert gas atmosphere. In the present disclosure, this heat treatment is referred to as a second heat treatment. By performing the second heat treatment, it is possible to obtain a high B r and high H cJ. When the temperature of the second heat treatment is less than 450 ° C. and more than 600 ° C., the amount of R—T—Ga phase (typically, R 6 T 13 Z phase (Z is at least one of Cu and Ga)) is too small, it may not be able to obtain a high B r and high H cJ. The second heat treatment temperature is preferably 480 ° C. or higher and 560 ° C. or lower. Higher H cJ can be obtained. The heat treatment time is set to an appropriate value depending on the composition and dimensions of the R1-T1-B-based sintered body, the heat treatment temperature, etc., preferably 5 minutes to 20 hours, more preferably 10 minutes to 15 hours, more preferably 30 More preferably, it is 10 minutes or more.

なお、前記のR613Z相(R613Z化合物)において、Rは希土類元素のうち少なくとも一種でありPr及びNdの少なくとも一方を必ず含み、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。R613Z化合物は代表的にはNd6Fe13Ga化合物である。また、R613Z化合物はLa6Co11Ga3型結晶構造を有する。R613Z化合物はその状態によってはR613-δZ1+δ化合物になっている場合がある。なお、R−T−B系焼結磁石中に比較的多くのCu、Al及びSiが含有される場合、R613-δ(Ga1-a-b-cCuaAlbSic1+δになっている場合がある。In the above R 6 T 13 Z phase (R 6 T 13 Z compound), R is at least one of rare earth elements and always contains at least one of Pr and Nd, and T is at least one of transition metal elements. Yes Fe is always included. The R 6 T 13 Z compound is typically an Nd 6 Fe 13 Ga compound. The R 6 T 13 Z compound has a La 6 Co 11 Ga 3 type crystal structure. The R 6 T 13 Z compound may be an R 6 T 13- δZ 1 + δ compound depending on the state. Incidentally, the relatively large in R-T-B based sintered magnet Cu, if the Al and Si are contained, R 6 T 13- δ (Ga 1-abc Cu a Al b Si c) to 1+ [delta] It may be.

前記の第二の熱処理を実施する工程によって得られたR−T−B系焼結磁石は、切断や切削など公知の機械加工を行ったり、耐食性を付与するためのめっきなど、公知の表面処理を行うことができる。また、本開示の製造方法により得られたR−T−B系焼結磁石は、前記R−T−B系焼結磁石におけるFe又はCo、Al、Mn、Siの少なくとも1つとFeをT2(R1−T1−B系焼結体におけるT1に相当)としたとき、Bに対するT2のmol比([T2]/[B])が14.0超であり、R、Fe、B、Cu、Gaを含有している。更に、R、Fe、B、Cu、Ga以外にもCo、Al、Ag、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Si、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。   The RTB-based sintered magnet obtained by the step of performing the second heat treatment is a known surface treatment such as known machining such as cutting or cutting, or plating for imparting corrosion resistance. It can be performed. In addition, the RTB-based sintered magnet obtained by the manufacturing method of the present disclosure includes at least one of Fe, Co, Al, Mn, and Si in the RTB-based sintered magnet and T2 ( (Corresponding to T1 in the R1-T1-B based sintered body), the molar ratio of T2 to B ([T2] / [B]) is more than 14.0, and R, Fe, B, Cu, Ga Contains. In addition to R, Fe, B, Cu and Ga, Co, Al, Ag, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.

<第2の実施形態>
次に、本開示による第2の実施形態におけるR−T−B系焼結磁石の製造方法を説明する。
<Second Embodiment>
Next, the manufacturing method of the RTB type | system | group sintered magnet in 2nd Embodiment by this indication is demonstrated.

本開示による第2の実施形態におけるR−T−B系焼結磁石の製造方法は、図4に示すように、R1−T1−Cu−B系焼結体を準備する工程S110と、R2−Ga−Co系合金を準備する工程S120とを含む。R1−T1−Cu−B系焼結体を準備する工程S110と、R2−Ga−Co系合金を準備する工程S120との順序は任意であり、それぞれ、異なる場所で製造されたR1−T1−Cu−B系焼結体及びR2−Ga−Co系合金を用いてもよい。   As shown in FIG. 4, the manufacturing method of the RTB-based sintered magnet in the second embodiment according to the present disclosure includes a step S110 of preparing an R1-T1-Cu-B-based sintered body, and R2- Step S120 for preparing a Ga—Co alloy. The order of the step S110 for preparing the R1-T1-Cu-B-based sintered body and the step S120 for preparing the R2-Ga-Co-based alloy is arbitrary, and R1-T1- manufactured at different locations, respectively. A Cu-B based sintered body and an R2-Ga-Co based alloy may be used.

R1−T1−Cu−B系焼結体においては、下記(B1)〜(B4)が成立している。
(B1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1−T1−Cu−B系焼結体全体の27mass%以上35mass%以下である。
(B2)T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有し、T1全体に対するFeの含有量が80mass%以上である。
(B3)Bに対するT1のmol比([T1]/[B])が14.0超15.0以下である。
(B4)Cuの含有量は、R1−T1−Cu−B系焼結体全体の0.1mass%以上1.5mass%以下である。
In the R1-T1-Cu-B based sintered body, the following (B1) to (B4) are established.
(B1) R1 is at least one of rare earth elements, and necessarily contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-Cu-B sintered body. .
(B2) T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si. T1 always contains Fe, and the content of Fe with respect to the entire T1 is 80 mass% or more.
(B3) The molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and not more than 15.0.
(B4) The content of Cu is not less than 0.1 mass% and not more than 1.5 mass% of the entire R1-T1-Cu-B sintered body.

本開示におけるBに対するT1のmol比([T1]/[B])とは、T1を構成する各元素(Fe又はCo、Al、Mn、Siの少なくとも1つとFe)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。   In the present disclosure, the molar ratio of T1 to B ([T1] / [B]) is an analysis value (mass%) of each element (Fe or at least one of Fe, Co, Al, Mn, and Si) constituting T1. Obtained by dividing by the atomic weight of each element, and the ratio (a /) of the total of those values (a) and the analytical value of B (mass%) divided by the atomic weight of B (b) b).

Bに対するT1のmol比([T1]/[B])が14.0を超えるということは、Bの含有比率がR214B化合物の化学量論組成比よりも低いことを意味している。言い換えると、R1−T1−Cu−B系焼結体において、主相(R214B化合物)の形成に使われるT1の量に対して相対的にB量が少ない。The molar ratio of T1 to B ([T1] / [B]) exceeding 14.0 means that the B content ratio is lower than the stoichiometric composition ratio of the R 2 T 14 B compound. Yes. In other words, in the R1-T1-Cu-B based sintered body, the amount of B is relatively small with respect to the amount of T1 used for forming the main phase (R 2 T 14 B compound).

R2−Ga−Co系合金においては、以下の(B5)〜(B8)が成立している。
(B5)R2は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R2の含有量は、R2−Ga−Co系合金全体の35mass%以上87mass%未満である。
(B6)Gaの含有量は、R2−Ga−Co系合金全体の2.5mass%以上30mass%以下である。
(B7)Coの含有量は、R2−Ga−Co系合金全体の10mass%超45mass%以下である。
(B8)R2の含有量>Coの含有量>Gaの含有量の不等式が成立する。
The following (B5) to (B8) are established in the R2-Ga-Co alloy.
(B5) R2 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R2 is 35 mass% or more and less than 87 mass% of the entire R2-Ga-Co-based alloy.
(B6) The Ga content is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Co-based alloy.
(B7) The Co content is more than 10 mass% and 45 mass% or less of the entire R2-Ga-Co-based alloy.
(B8) The inequality of R2 content> Co content> Ga content is established.

本開示によるR−T−B系焼結磁石の製造方法(第2の実施形態)では、主相(R214B化合物)形成に使われるTの量に対して化学量論比で相対的にB量が少ないR1−T1−Cu−B系焼結体の表面の少なくとも一部にR2−Ga−Co系合金を接触させ、図4に示すように、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程S130と、この第一の熱処理が実施されたR1−T1−Cu−B系焼結体に対して真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程S140を行う。これにより、高いBr及び高いHcJを有するR−T−B系焼結磁石を得ることができる。In the manufacturing method of the RTB-based sintered magnet (second embodiment) according to the present disclosure, the stoichiometric ratio is relative to the amount of T used for forming the main phase (R 2 T 14 B compound). The R2-Ga-Co alloy is brought into contact with at least a part of the surface of the R1-T1-Cu-B sintered body having a small amount of B, and as shown in FIG. 4, in a vacuum or an inert gas atmosphere, In step S130 of performing the first heat treatment at a temperature of 700 ° C. or higher and 1100 ° C. or lower and the R1-T1-Cu—B sintered body subjected to the first heat treatment in a vacuum or an inert gas atmosphere Step S140 for performing the second heat treatment at a temperature of 450 ° C. or higher and 600 ° C. or lower is performed. Thus, it is possible to obtain the R-T-B based sintered magnet having a high B r and a high H cJ.

第一の熱処理を実施する工程S130と、第二の熱処理を実施する工程S140との間に他の工程、例えば冷却工程などが実行され得る。   Another process such as a cooling process may be performed between the process S130 for performing the first heat treatment and the process S140 for performing the second heat treatment.

本発明者らは検討の結果、低B組成である特定の組成を有するR1−T1−Cu−B系焼結体の表面の少なくとも一部に、Co含有量が比較的多いR2−Ga−Co系合金を接触させて特定の熱処理を実施した場合でも、最終的に得られる焼結磁石は、高いBrと高いHcJを実現できることがわかった。As a result of investigation, the present inventors have determined that R2-Ga-Co having a relatively high Co content is present on at least a part of the surface of the R1-T1-Cu-B-based sintered body having a specific composition that is a low B composition. even if after specific heat treatment by contacting the system alloy, finally sintered magnet obtained has been found to be achieved a high B r and high H cJ.

本開示によるR−T−B系焼結磁石の製造方法(第2の実施形態)は、本開示の特定組成のR2−Ga−Co系合金によりR2、Ga、Coを磁石表面から内部に導入することで、高いBrと高いHcJを実現することができる。The manufacturing method (2nd Embodiment) of the RTB type | system | group sintered magnet by this indication introduce | transduces R2, Ga, Co into the inside from the magnet surface with the R2-Ga-Co type alloy of the specific composition of this indication. by, it is possible to realize a high B r and high H cJ.

(R1−T1−Cu−B系焼結体を準備する工程)
まず、R1−T1−Cu−B系焼結体を準備する工程における焼結体の組成を説明する。
(Process for preparing R1-T1-Cu-B based sintered body)
First, the composition of the sintered body in the step of preparing the R1-T1-Cu-B based sintered body will be described.

R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む。R1−T1−Cu−B系焼結体のHcJを向上させるために、一般的に用いられるDy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。ただし、本開示による製造方法によれば、重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量は、R1−T1−Cu−B系焼結体の1mass%以下であることが好ましく、0.5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことが更に好ましい。R1 is at least one kind of rare earth elements and always contains at least one of Nd and Pr. In order to improve HcJ of the R1-T1-Cu-B based sintered body, a small amount of generally used heavy rare earth elements such as Dy, Tb, Gd, and Ho may be contained. However, according to the production method according to the present disclosure, sufficiently high H cJ can be obtained without using a large amount of heavy rare earth elements. Therefore, the content of the heavy rare earth element is preferably 1 mass% or less, more preferably 0.5 mass% or less of the R1-T1-Cu-B-based sintered body, and it does not contain (substantially) 0 mass%) is more preferable.

R1の含有量は、R1−T1−Cu−B系焼結体全体の27mass%以上35mass%以下である。R1の含有量が27mass%未満では焼結過程で液相が十分に生成せず、R1−T1−Cu−B系焼結体を十分に緻密化することが困難になる。一方、R1の含有量が35mass%を超えても本開示の効果を得ることはできるが、R1−T1−Cu−B系焼結体の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、35mass%以下が好ましい。R1の含有量は、27.5mass%以上33mass%以下であることがより好ましく、28mass%以上32mass%以下であることが更に好ましい。   Content of R1 is 27 mass% or more and 35 mass% or less of the whole R1-T1-Cu-B type sintered compact. If the content of R1 is less than 27 mass%, a liquid phase is not sufficiently generated in the sintering process, and it becomes difficult to sufficiently densify the R1-T1-Cu-B based sintered body. On the other hand, even if the content of R1 exceeds 35 mass%, the effect of the present disclosure can be obtained, but the alloy powder in the manufacturing process of the R1-T1-Cu-B based sintered body becomes very active. As a result, significant oxidation or ignition of the alloy powder may occur, so 35 mass% or less is preferable. The content of R1 is more preferably 27.5 mass% or more and 33 mass% or less, and further preferably 28 mass% or more and 32 mass% or less.

T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有する。すなわち、T1はFeのみであってもよいし、Co、Al、Mn、Siの少なくとも1つとFeからなってもよい。ただし、T1全体に対するFeの含有量は80mass%以上である。Feの含有量が80mass%未満であると、Br及びHcJが低下する可能性がある。ここで、「T1全体に対するFeの含有量は80mass%以上」とは、例えばR1−T1−Cu−B系焼結体中におけるT1の含有量が70mass%である場合、R1−T1−Cu−B系焼結体の56mass%以上がFeであることを言う。好ましくはT1全体に対するFeの含有量は90mass%以上である。より高いBrと高いHcJを得ることができるからである。Co、Al、Mn、Siを含有する場合の好ましい含有量は、R1−T1−Cu−B系焼結体全体のCoは5.0mass%以下、Alは1.5mass%以下、Mn及びSiはそれぞれ0.2mass%以下である。T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and T1 always contains Fe. That is, T1 may be Fe alone, or may be Fe and at least one of Co, Al, Mn, and Si. However, the content of Fe with respect to the entire T1 is 80 mass% or more. When the content of Fe is less than 80 mass%, B r and H cJ may be reduced. Here, “the Fe content with respect to the entire T1 is 80 mass% or more” means that, for example, when the T1 content in the R1-T1-Cu—B-based sintered body is 70 mass%, the R1-T1-Cu— It means that 56 mass% or more of the B-based sintered body is Fe. Preferably, the Fe content relative to the entire T1 is 90 mass% or more. This is because it is possible to obtain a higher B r and a high H cJ. When Co, Al, Mn, and Si are contained, the preferable content is as follows: Co of the entire R1-T1-Cu-B-based sintered body is 5.0 mass% or less, Al is 1.5 mass% or less, and Mn and Si are Each is 0.2 mass% or less.

Bに対するT1のmol比([T1]/[B])は14.0超15.0以下である。   The molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and not more than 15.0.

本開示におけるBに対するT1のmol比([T1]/[B])とは、前述したように、T1を構成する各元素(Fe又はCo、Al、Mn、Siの少なくとも1つとFe)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。   In the present disclosure, the molar ratio of T1 to B ([T1] / [B]) is the analysis of each element (Fe or at least one of Co, Al, Mn, Si and Fe) as described above. A value obtained by dividing the value (mass%) by the atomic weight of each element, a sum of those values (a), and an analysis value of B (mass%) divided by the atomic weight of B (b) Ratio (a / b).

Bに対するT1のmol比([T1]/[B])が14.0を超えるという条件は、主相(R214B化合物)形成に使われるT1量に対して相対的にB量が少ないことを示している。[T1]/[B]が14.0以下であると高いHcJを得ることができない。一方、[T1]/[B]が15.0を超えるとBrが低下する可能性がある。[T1]/[B]は14.3以上15.0以下であることが好ましい。更に高いBrと高いHcJを得ることができる。また、Bの含有量はR1−T1−Cu−B系焼結体全体の0.9mass%以上1.0mass%未満が好ましい。The condition that the molar ratio of T1 to B ([T1] / [B]) exceeds 14.0 is that the amount of B is relative to the amount of T1 used to form the main phase (R 2 T 14 B compound). It shows that there are few. When [T1] / [B] is 14.0 or less, high H cJ cannot be obtained. On the other hand, there is a possibility to lower the B r exceeds the 15.0 [T1] / [B] . [T1] / [B] is preferably 14.3 to 15.0. It is possible to obtain a higher B r and a high H cJ. Further, the content of B is preferably 0.9 mass% or more and less than 1.0 mass% of the entire R1-T1-Cu-B-based sintered body.

Cuの含有量は、R1−T1−Cu−B系焼結体全体の0.1mass%以上1.5mass%以下である。Cuが0.1mass%未満であると、後述する第一の熱処理で拡散が十分に進行せず、高いHcJを得ることができない可能性がある。一方、Cuが1.5mass%を超えるとBrが低下する可能性がある。Content of Cu is 0.1 mass% or more and 1.5 mass% or less of the whole R1-T1-Cu-B type sintered compact. If Cu is less than 0.1 mass%, diffusion does not proceed sufficiently in the first heat treatment described later, and high H cJ may not be obtained. On the other hand, Cu is the exceeding 1.5 mass% B r may be reduced.

本実施形態においても、R1−T1−Cu−B系焼結体は、上記元素の他にGa、Ag、Zn、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。含有量は、Ga、Ag、Zn、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下が好ましい。これらの元素の合計の含有量は、R1−T1−Cu−B系焼結体全体の5mass%以下が好ましい。これらの元素の合計の含有量がR1−T1−Cu−B系焼結体全体の5mass%を超えると高いBrと高いHcJを得ることができない可能性がある。Also in this embodiment, the R1-T1-Cu-B-based sintered body includes Ga, Ag, Zn, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, in addition to the above elements. Mo, V, Y, La, Ce, Sm, Ca, Mg, Cr, H, F, P, S, Cl, O, N, C and the like may be contained. The contents of Ga, Ag, Zn, In, Sn, Zr, Nb, and Ti are 0.5 mass% or less, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, and Cr are each preferably 0.2 mass% or less, H, F, P, S, and Cl are 500 ppm or less, O is 6000 ppm or less, N is 1000 ppm or less, and C is preferably 1500 ppm or less. The total content of these elements is preferably 5 mass% or less of the entire R1-T1-Cu-B-based sintered body. The total content of these elements may not be able to obtain more than the high B r and high H cJ of 5 mass% of the total R1-T1-Cu-B-based sintered body.

次にR1−T1−Cu−B系焼結体を準備する工程について説明する。R1−T1−Cu−B系焼結体を準備する工程は、R−T−B系焼結磁石に代表される一般的な製造方法を用いて準備することができる。R1−T1−Cu−B系焼結体は、原料合金を粒径D50(気流分散式レーザー回折法による測定で得られる体積中心値=D50)が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことが好ましい。一例を挙げると、ストリップキャスト法などで作製された原料合金を、ジェットミル装置などを用いて粒径D50が3μm以上10μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより準備することができる。原料合金の粒径D50が3μm未満では粉砕粉を作製するのが非常に困難であり、生産効率が大幅に低下するため好ましくない。一方、粒径D50が10μmを超えると最終的に得られるR1−T1−Cu−B系焼結体の結晶粒径が大きくなり過ぎ、高いHcJを得ることが困難となるため好ましくない。粒径D50は好ましくは、3μm以上5μm以下である。Next, the process for preparing the R1-T1-Cu-B based sintered body will be described. The step of preparing the R1-T1-Cu-B-based sintered body can be prepared using a general manufacturing method represented by an RTB-based sintered magnet. In the R1-T1-Cu-B sintered body, the raw material alloy is pulverized so that the particle size D 50 (volume center value obtained by measurement by an air flow dispersion type laser diffraction method = D 50 ) is 3 μm or more and 10 μm or less. It is preferable to sinter by orientation. For example, a raw material alloy produced by a strip casting method or the like is pulverized to a particle size D 50 of 3 μm or more and 10 μm or less using a jet mill apparatus or the like, and then molded in a magnetic field, and 900 ° C. or more and 1100 ° C. or less. It can prepare by sintering at the temperature of. If the particle diameter D 50 of the raw material alloy is less than 3 μm, it is very difficult to produce a pulverized powder, which is not preferable because the production efficiency is greatly reduced. On the other hand, when the particle size D 50 exceeds 10 μm, the crystal particle size of the finally obtained R1-T1-Cu—B-based sintered body becomes too large, and it becomes difficult to obtain high H cJ, which is not preferable. The particle size D 50 is preferably 3 μm or more and 5 μm or less.

R1−T1−Cu−B系焼結体は、前記の各条件を満たしていれば、一種類の原料合金(単一原料合金)から作製してもよいし、二種類以上の原料合金を用いてそれらを混合する方法(ブレンド法)によって作製してもよい。また、得られたR1−T1−Cu−B系焼結体は、必要に応じて切断や切削など公知の機械加工を行った後、後述する第一の熱処理及び第二の熱処理を実施してもよい。   The R1-T1-Cu-B-based sintered body may be produced from one type of raw material alloy (single raw material alloy) or two or more types of raw material alloys as long as the above-described conditions are satisfied. Alternatively, it may be produced by a method of mixing them (blending method). In addition, the obtained R1-T1-Cu-B-based sintered body is subjected to a first heat treatment and a second heat treatment, which will be described later, after performing known machining such as cutting and cutting as necessary. Also good.

(R2−Ga−Co系合金を準備する工程)
まず、R2−Ga−Co系合金を準備する工程におけるR2−Ga−Co系合金の組成を説明する。以下に説明する特定の範囲でR、Ga、Coを全て含有することにより、後述する第一の熱処理を実施する工程においてR2−Ga−Co系合金中のR2、Ga、CoをR1−T1−Cu−B系焼結体内部に導入することができる。
(Step of preparing an R2-Ga-Co alloy)
First, the composition of the R2-Ga-Co alloy in the step of preparing the R2-Ga-Co alloy will be described. By containing all of R, Ga, and Co in a specific range described below, R2, Ga, and Co in the R2-Ga-Co-based alloy are R1-T1- It can introduce | transduce in a Cu-B type sintered compact.

R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む。R2の50mass%以上がPrであることが好ましい。より高いHcJを得ることができるからである。ここで「R2の50mass%以上がPrである」とは、例えばR2−Ga−Co系合金中におけるR2の含有量が50mass%である場合、R2−Ga−Co系合金の25mass%以上がPrであることを言う。更に好ましくは、R2の70mass%以上がPrであり、最も好ましくはR2がPrのみ(不可避的不純物は含む)である。これにより、更に高いHcJを得ることができる。また、R2として、Dy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。ただし、本開示の製造方法によれば、重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量はR2−Ga−Co系合金全体の10mass%以下(R2−Ga−Co系合金中の重希土類元素が10mass%以下)であることが好ましく、5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことが更に好ましい。R2−Ga−Co系合金のR2が重希土類元素を含有する場合も、R2の50%以上がPrであることが好ましく、重希土類元素を除いたR2がPrのみ(不可避的不純物は含む)であることがより好ましい。R2 is at least one kind of rare earth elements and always contains at least one of Nd and Pr. It is preferable that 50 mass% or more of R2 is Pr. This is because a higher H cJ can be obtained. Here, "50 mass% or more of R2 is Pr" means that, for example, when the content of R2 in the R2-Ga-Co alloy is 50 mass%, 25 mass% or more of the R2-Ga-Co alloy is Pr. Say that. More preferably, 70 mass% or more of R2 is Pr, and most preferably R2 is Pr alone (including inevitable impurities). Thereby, higher H cJ can be obtained. Further, as R2, a small amount of heavy rare earth elements such as Dy, Tb, Gd, and Ho may be contained. However, according to the production method of the present disclosure, sufficiently high H cJ can be obtained without using a large amount of heavy rare earth elements. Therefore, the content of the heavy rare earth element is preferably 10 mass% or less of the entire R2-Ga-Co alloy (the heavy rare earth element in the R2-Ga-Co alloy is preferably 10 mass% or less), and is preferably 5 mass% or less. More preferably, it is not contained (substantially 0 mass%). Even when R2 of the R2-Ga-Co-based alloy contains a heavy rare earth element, 50% or more of R2 is preferably Pr, and R2 excluding the heavy rare earth element is only Pr (including inevitable impurities). More preferably.

R2の含有量はR2−Ga−Co系合金全体の35mass%以上87mass%未満である。R2の含有量が35mass%未満では後述する第一の熱処理で拡散が十分に進行しない可能性がある。一方、R2の含有量が87mass%以上でも本開示の効果を得ることはできるが、R2−Ga−Co系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、R2の含有量はR2−Ga−Co系合金全体の85mass%未満が好ましい。R2の含有量は50mass%以上85mass%未満であることがより好ましく、60mass%以上85mass%未満であることが更に好ましい。より高いHcJを得ることができるからである。Content of R2 is 35 mass% or more and less than 87 mass% of the whole R2-Ga-Co-based alloy. If the content of R2 is less than 35 mass%, the diffusion may not sufficiently proceed in the first heat treatment described later. On the other hand, even if the content of R2 is 87 mass% or more, the effect of the present disclosure can be obtained, but the alloy powder in the manufacturing process of the R2-Ga-Co alloy becomes very active. As a result, since significant oxidation or ignition of the alloy powder may occur, the R2 content is preferably less than 85 mass% of the entire R2-Ga-Co-based alloy. The content of R2 is more preferably 50 mass% or more and less than 85 mass%, and further preferably 60 mass% or more and less than 85 mass%. This is because a higher H cJ can be obtained.

Gaは、R2−Ga−Co系合金全体の2.5mass%以上30mass%以下である。Gaが2.5mass%未満では、後述する第一の熱処理を実施する工程においてR2−Ga−Co系合金中のCoがR1−T1−Cu−B系焼結体の内部に導入され難くなり高いBrを得ることができない。更に、R−T−Ga相の生成量が少なすぎて、高いHcJを得ることができない。一方、Gaが30mass%を超えると、Brが大幅に低下する可能性がある。Gaは4mass%以上20mass%以下であることがより好ましく、4mass%以上10mass%以下であることが更に好ましい。より高いBrと高いHcJを得ることができるからである。Ga is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Co-based alloy. If Ga is less than 2.5 mass%, it is difficult to introduce Co in the R2-Ga-Co-based alloy into the R1-T1-Cu-B-based sintered body in the step of performing the first heat treatment described later. Br cannot be obtained. Furthermore, since the amount of R—T—Ga phase produced is too small, high H cJ cannot be obtained. On the other hand, if Ga is more than 30 mass%, B r may be lowered significantly. Ga is more preferably 4 mass% or more and 20 mass% or less, and further preferably 4 mass% or more and 10 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.

Coは、R2−Ga−Co系合金全体の10mass%超45mass%以下である。Coが10mass%以下では、最終的に得られるR−T−B系焼結磁石のBrを充分に高めることができない。一方、Coが45mass%を超えると、後述する第一の熱処理で拡散が十分に進行せず、高いBrと高いHcJを得ることができない可能性がある。Coは15mass%以上30mass%以下であることがより好ましい。より高いBrと高いHcJを得ることができるからである。Co is more than 10 mass% and 45 mass% or less of the entire R2-Ga-Co-based alloy. Co is in the following 10 mass%, it is impossible to sufficiently enhance the finally obtained R-T-B based sintered magnet of B r. On the other hand, when Co exceeds 45Mass%, it may not be able to spread with a first heat treatment to be described later does not proceed sufficiently to obtain a high B r and high H cJ. Co is more preferably 15 mass% or more and 30 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.

また、本開示におけるR2−Ga−Cu−Co系合金では、R2の含有量>Coの含有量>Gaの含有量の不等式が成立している。このため、高いBr及び高いHcJを得ることができる。これは本開示の不等式を満足することにより、適切な量のR、Co及びGaを含む相が二粒子粒界に生成されるからだと考えられる。In the R2-Ga-Cu-Co-based alloy in the present disclosure, the inequality of R2 content> Co content> Ga content is established. Therefore, it is possible to obtain a high B r and a high H cJ. This is considered to be because a phase containing an appropriate amount of R, Co, and Ga is generated at the grain boundary by satisfying the inequality of the present disclosure.

R2−Ga−Co系合金は、上記元素の他にCu、Al、Ag、Zn、Si、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。   In addition to the above elements, R2-Ga-Co-based alloys include Cu, Al, Ag, Zn, Si, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.

含有量は、Cu、Alは1.0mass%以下、Ag、Zn、Si、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Si、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下が好ましい。ただし、これらの元素の合計の含有量が20mass%を超えると、R2−Ga−Co系合金におけるR2、Ga、Coの含有量が少なくなり、高いBrと高いHcJを得ることができない可能性がある。そのため、R2−Ga−Co系合金におけるR2、Ga、Coの合計の含有量は80mass%以上が好ましく、90mass%以上が更に好ましい。The content of Cu and Al is 1.0 mass% or less, Ag, Zn, Si, In, Sn, Zr, Nb, and Ti are 0.5 mass% or less, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, and Cr are each 0.2 mass% or less, H, F, P, S, and Cl are 500 ppm or less, O is 6000 ppm or less, and N is 1000 ppm or less. C is preferably 1500 ppm or less. However, when the total content of these elements exceeds 20mass%, R2-Ga-Co-based R2 in the alloy, Ga, then the amount of Co, can not be obtained a high B r and high H cJ There is sex. Therefore, the total content of R2, Ga, and Co in the R2-Ga-Co alloy is preferably 80 mass% or more, and more preferably 90 mass% or more.

次にR2−Ga−Co系合金を準備する工程について説明する。R2−Ga−Co系合金は、Nd−Fe−B系焼結磁石に代表される一般的な製造方法において採用されている原料合金の作製方法、例えば、金型鋳造法やストリップキャスト法や単ロール超急冷法(メルトスピニング法)やアトマイズ法などを用いて準備することができる。また、R2−Ga−Co系合金は、前記によって得られた合金をピンミルなどの公知の粉砕手段によって粉砕されたものであってもよい。また、前記によって得られた合金の粉砕性を向上させるために、水素雰囲気中で700℃以下の熱処理を行って水素を含有させてから粉砕を行っても良い。   Next, the process for preparing the R2-Ga-Co alloy will be described. The R2-Ga-Co-based alloy is a raw material alloy manufacturing method employed in a general manufacturing method typified by an Nd-Fe-B-based sintered magnet, such as a die casting method, a strip casting method, or a simple method. It can be prepared using a roll rapid quenching method (melt spinning method) or an atomizing method. The R2-Ga-Co-based alloy may be one obtained by pulverizing the alloy obtained as described above by a known pulverizing means such as a pin mill. Further, in order to improve the pulverizability of the alloy obtained as described above, the pulverization may be performed after heat treatment at 700 ° C. or less in a hydrogen atmosphere to contain hydrogen.

(第一の熱処理を実施する工程)
前記によって準備したR1−T1−Cu−B系焼結体の表面の少なくとも一部に、前記R2−Ga−Co系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で熱処理をする。本開示において、この熱処理を第一の熱処理という。これにより、R2−Ga−Co系合金からGa及びCoを含む液相が生成し、その液相がR1−T1−Cu−B系焼結体の粒界を経由して焼結体表面から内部に拡散導入される。第一の熱処理温度が700℃未満であると、Ga及びCoを含む液相量が少なすぎて、高いBrと高いHcJを得ることができない可能性がある。一方、1100℃を超えると主相の異常粒成長が起こり、HcJが低下する可能性がある。第一の熱処理温度は、800℃以上1000℃以下が好ましい。より高いBrと高いHcJを得ることができるからである。なお、熱処理時間はR1−T1−Cu−B系焼結体やR2−Ga−Co系合金の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下が更に好ましい。また、R2−Ga−Co系合金は、R1−T1−Cu−B系焼結体の重量に対し2mass%以上30mass%以下準備した方が好ましい。R2−Ga−Co系合金がR1−T1−Cu−B系焼結体の重量に対し2mass%未満であるとHcJが低下する可能性がある。一方、30mass%を超えるとBrが低下する可能性がある。
(Step of performing the first heat treatment)
At least a part of the R2-Ga-Co-based alloy is brought into contact with at least a part of the surface of the R1-T1-Cu-B-based sintered body prepared as described above, and is 700 ° C or higher in a vacuum or an inert gas atmosphere. Heat treatment is performed at a temperature of 1100 ° C. or lower. In the present disclosure, this heat treatment is referred to as a first heat treatment. Thereby, a liquid phase containing Ga and Co is generated from the R2-Ga-Co-based alloy, and the liquid phase passes through the grain boundary of the R1-T1-Cu-B-based sintered body from the surface of the sintered body. Introduced into the diffusion. When the first heat treatment temperature is lower than 700 ° C., and too small amount of liquid phase containing Ga and Co, there is a possibility that it is impossible to obtain a high B r and high H cJ. On the other hand, when the temperature exceeds 1100 ° C., abnormal grain growth of the main phase occurs and H cJ may decrease. The first heat treatment temperature is preferably 800 ° C. or higher and 1000 ° C. or lower. This is because it is possible to obtain a higher B r and a high H cJ. In addition, although heat processing time sets an appropriate value with the composition, dimension, heat processing temperature, etc. of a R1-T1-Cu-B type sintered compact or a R2-Ga-Co type alloy, 5 minutes or more and 20 hours or less are preferable, and 10 It is more preferably from 15 minutes to 15 hours, and further preferably from 30 minutes to 10 hours. Further, it is preferable that the R2-Ga-Co-based alloy is prepared in a range of 2 mass% to 30 mass% with respect to the weight of the R1-T1-Cu-B-based sintered body. If the R2-Ga-Co-based alloy is less than 2 mass% with respect to the weight of the R1-T1-Cu-B-based sintered body, HcJ may be lowered. On the other hand, there is a possibility that the B r decreases exceeds 30 mass%.

第一の熱処理は、R1−T1−Cu−B系焼結体表面に、任意形状のR2−Ga−Co系合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R1−T1−Cu−B系焼結体表面をR2−Ga−Co系合金の粉末層で覆い、第一の熱処理を行うことができる。例えば、R2−Ga−Co系合金を分散媒中に分散させたスラリーをR1−T1−Cu−B系焼結体表面に塗布した後、分散媒を蒸発させてR2−Ga−Co系合金とR1−T1−Cu−B系焼結体とを接触させてもよい。また、後述する実験例に示すように、R2−Ga−Co系合金は、少なくともR1−T1−Cu−B系焼結体の配向方向に対して垂直な表面に接触させるように配置することが好ましい。なお、分散媒として、アルコール(エタノール等)、NMP(N−メチルピロリドン)、アルデヒド及びケトンを例示できる。また、第一の熱処理が実施されたR1−T1−Cu−B系焼結体に対して切断や切削など公知の機械加工を行ってもよい。   The first heat treatment can be performed using a known heat treatment apparatus by disposing an R2-Ga-Co alloy having an arbitrary shape on the surface of the R1-T1-Cu-B-based sintered body. For example, the surface of the R1-T1-Cu-B-based sintered body can be covered with a powder layer of R2-Ga-Co-based alloy, and the first heat treatment can be performed. For example, after applying a slurry in which an R2-Ga-Co-based alloy is dispersed in a dispersion medium to the surface of the R1-T1-Cu-B-based sintered body, the dispersion medium is evaporated to obtain an R2-Ga-Co-based alloy The R1-T1-Cu-B sintered body may be contacted. Further, as shown in an experimental example to be described later, the R2-Ga-Co-based alloy may be disposed so as to be in contact with at least a surface perpendicular to the orientation direction of the R1-T1-Cu-B-based sintered body. preferable. In addition, alcohol (ethanol etc.), NMP (N-methylpyrrolidone), an aldehyde, and a ketone can be illustrated as a dispersion medium. Moreover, you may perform well-known machining, such as a cutting | disconnection and cutting, with respect to the R1-T1-Cu-B type sintered compact in which the 1st heat processing was implemented.

(第二の熱処理を実施する工程)
第一の熱処理が実施されたR1−T1−Cu−B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で熱処理を行う。本開示においてこの熱処理を第二の熱処理という。第二の熱処理を行うことにより、高いBrと高いHcJを得ることができる。第二の熱処理の温度が450℃未満及び600℃超の場合は、R−T−Ga相(典型的にはR613Z相(ZはCu及びGaの少なくとも1つ))の生成量が少なすぎて、高いBrと高いHcJを得ることができない可能性がある。第二の熱処理温度は、480℃以上560℃以下が好ましい。より高いHcJを得ることができる。なお、熱処理時間はR1−T1−Cu−B系焼結体の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下が更に好ましい。
(Step of performing the second heat treatment)
The R1-T1-Cu-B sintered body subjected to the first heat treatment is heat-treated at a temperature of 450 ° C. or higher and 600 ° C. or lower in a vacuum or an inert gas atmosphere. In the present disclosure, this heat treatment is referred to as a second heat treatment. By performing the second heat treatment, it is possible to obtain a high B r and high H cJ. When the temperature of the second heat treatment is less than 450 ° C. and more than 600 ° C., the amount of R—T—Ga phase (typically, R 6 T 13 Z phase (Z is at least one of Cu and Ga)) is too small, it may not be able to obtain a high B r and high H cJ. The second heat treatment temperature is preferably 480 ° C. or higher and 560 ° C. or lower. Higher H cJ can be obtained. The heat treatment time is set to an appropriate value depending on the composition and dimensions of the R1-T1-Cu-B-based sintered body, the heat treatment temperature, etc., preferably 5 minutes to 20 hours, more preferably 10 minutes to 15 hours. More preferably, it is 30 minutes or more and 10 hours or less.

なお、前記のR613Z相(R613Z化合物)において、Rは希土類元素のうち少なくとも一種でありPr及びNdの少なくとも一方を必ず含み、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。R613Z化合物は代表的にはNd6Fe13Ga化合物である。また、R613Z化合物はLa6Co11Ga3型結晶構造を有する。R613Z化合物はその状態によってはR613-δZ1+δ化合物になっている場合がある。なお、R−T−B系焼結磁石中に比較的多くのCu、Al及びSiが含有される場合、R613-δ(Ga1-a-b-cCuaAlbSic1+δになっている場合がある。In the above R 6 T 13 Z phase (R 6 T 13 Z compound), R is at least one of rare earth elements and always contains at least one of Pr and Nd, and T is at least one of transition metal elements. Yes Fe is always included. The R 6 T 13 Z compound is typically an Nd 6 Fe 13 Ga compound. The R 6 T 13 Z compound has a La 6 Co 11 Ga 3 type crystal structure. The R 6 T 13 Z compound may be an R 6 T 13- δZ 1 + δ compound depending on the state. Incidentally, the relatively large in R-T-B based sintered magnet Cu, if the Al and Si are contained, R 6 T 13- δ (Ga 1-abc Cu a Al b Si c) to 1+ [delta] It may be.

前記の第二の熱処理を実施する工程によって得られたR−T−B系焼結磁石は、切断や切削など公知の機械加工を行ったり、耐食性を付与するためのめっきなど、公知の表面処理を行うことができる。また、本開示の製造方法により得られたR−T−B系焼結磁石は、前記R−T−B系焼結磁石におけるFe又はCo、Al、Mn、Siの少なくとも1つとFeをT2(R1−T1−Cu−B系焼結体におけるT1に相当)としたとき、Bに対するT2のmol比([T2]/[B])が14.0超であり、R、Fe、B、Cu、Gaを含有している。更に、R、Fe、B、Cu、Ga以外にもCo、Al、Ag、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Si、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。   The RTB-based sintered magnet obtained by the step of performing the second heat treatment is a known surface treatment such as known machining such as cutting or cutting, or plating for imparting corrosion resistance. It can be performed. In addition, the RTB-based sintered magnet obtained by the manufacturing method of the present disclosure includes at least one of Fe, Co, Al, Mn, and Si in the RTB-based sintered magnet and T2 ( R1-T1-Cu-B based sintered body), the molar ratio of T2 to B ([T2] / [B]) is more than 14.0, and R, Fe, B, Cu , Ga is contained. In addition to R, Fe, B, Cu and Ga, Co, Al, Ag, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.

<第1の実施形態の実施例>
本発明を実施例により更に詳細に説明するが、本発明はそれらに限定されるものではない。
<Example of the first embodiment>
The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

実験例1
[R1−T1−B系焼結体を準備する工程]
R1−T1−B系焼結体がおよそ表1の符号1−Aとなるよう各元素を秤量しストリップキャスト法により鋳造し、厚さ0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 1
[Step of preparing R1-T1-B based sintered body]
Each element is weighed so that the R1-T1-B sintered body becomes approximately 1-A in Table 1, and cast by a strip cast method to obtain a flaky raw material alloy having a thickness of 0.2 to 0.4 mm. It was. The obtained flaky raw material alloy was pulverized with hydrogen, heated to 550 ° C. in a vacuum and then cooled to obtain a coarsely pulverized powder. Next, after adding and mixing 0.04 mass% of zinc stearate as a lubricant with respect to 100 mass% of the coarsely pulverized powder, the resulting coarsely pulverized powder is mixed with nitrogen using an airflow pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle diameter D50 of 4 μm. The particle diameter D 50 is a volume center value (volume reference median diameter) obtained by a laser diffraction method using an airflow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。   To the finely pulverized powder, zinc stearate as a lubricant was added and mixed in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and then molded in a magnetic field to obtain a molded body. In addition, what was called a perpendicular magnetic field shaping | molding apparatus (transverse magnetic field shaping | molding apparatus) with which the magnetic field application direction and the pressurization direction orthogonally crossed was used for the shaping | molding apparatus.

得られた成形体を、真空中、1030℃(焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、R1−T1−B系焼結体を得た。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表1に示す。表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、焼結体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。表1における「[T1]/[B]」は、T1を構成する各元素(ここではFe、Al、Si、Mn)に対し、分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表1の各組成及び酸素量、炭素量を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるためである。その他の表についても同様である。The obtained molded body was sintered in vacuum at 1030 ° C. (selecting a temperature at which densification by sintering was sufficiently selected) for 4 hours and then rapidly cooled to obtain an R1-T1-B sintered body. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 1. Each component in Table 1 was measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). In addition, as a result of measuring the oxygen content of the sintered body by the gas melting-infrared absorption method, it was confirmed that all were around 0.2 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%. “[T1] / [B]” in Table 1 is obtained by dividing the analysis value (mass%) by the atomic weight of each element for each element (here Fe, Al, Si, Mn) constituting T1. Is the ratio (a / b) between the sum of these values (a) and the B analysis value (mass%) divided by the atomic weight of B (b). The same applies to all the tables below. In addition, even if each composition of Table 1, oxygen amount, and carbon amount are totaled, it does not become 100 mass%. This is because the analysis method differs depending on each component as described above. The same applies to the other tables.

Figure 2019065481
Figure 2019065481

[R2−Ga−Cu−Co系合金を準備する工程]
R2−Ga−Cu−Co系合金がおよそ表2の符号1−aから1−gの組成になるよう各元素を秤量し、それらの原料を溶解して、単ロール超急冷法(メルトスピニング法)により、リボン又はフレーク状の合金を得た。得られた合金を、乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き425μmの篩を通過させ、R2−Ga−Cu−Co系合金を準備した。得られたR2−Ga−Cu−Co系合金の組成を表2に示す。なお、表2における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Step of preparing R2-Ga-Cu-Co-based alloy]
Each element is weighed so that the R2-Ga-Cu-Co-based alloy has a composition of reference numerals 1-a to 1-g in Table 2, and those raw materials are dissolved, and a single-roll ultra-rapid cooling method (melt spinning method) ) To obtain a ribbon or flaky alloy. The obtained alloy was pulverized in an argon atmosphere using a mortar and then passed through a sieve having an opening of 425 μm to prepare an R 2 -Ga—Cu—Co alloy. Table 2 shows the composition of the obtained R2-Ga-Cu-Co-based alloy. In addition, each component in Table 2 was measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES).

Figure 2019065481
Figure 2019065481

[第一の熱処理を実施する工程]
表1の符号1−AのR1−T1−B系焼結体を切断、切削加工し、4.4mm×10.0mm×11.0mmの直方体(10.0mm×11.0mmの面が配向方向と垂直な面)とした。次に、図3に示すように、ニオブ箔により作製した処理容器3中に、主にR1−T1−B系焼結体1の配向方向(図中の矢印方向)と垂直な面がR2−Ga−Cu−Co系合金2と接触するように、表2に示す符号1−aから1−gのR2−Ga−Cu−Co系合金を、符号1−AのR1−T1−B系焼結体の上下にR1−T1−B系焼結体の重量に対し10mass%ずつ計20mass%を配置した。次に、管状流気炉を用いて、200Paに制御した減圧アルゴン中で、表3の第一の熱処理に示す温度及び時間でR2−Ga−Cu−Co系合金及びR1−T1−B系焼結体を加熱して第一の熱処理を実施した後、冷却した。
[Step of performing first heat treatment]
The R1-T1-B sintered body indicated by reference numeral 1-A in Table 1 was cut and machined, and a rectangular parallelepiped of 4.4 mm × 10.0 mm × 11.0 mm (the 10.0 mm × 11.0 mm plane is the orientation direction) Vertical plane). Next, as shown in FIG. 3, in the processing container 3 made of niobium foil, a surface perpendicular to the orientation direction (arrow direction in the figure) of the R1-T1-B based sintered body 1 is mainly R2-. In order to come into contact with the Ga—Cu—Co alloy 2, R2-Ga—Cu—Co alloys 1-a to 1-g shown in Table 2 are converted into R1-T1-B alloys 1-A. A total of 20 mass% was arranged at 10 mass% with respect to the weight of the R1-T1-B sintered body above and below the bonded body. Next, the R2-Ga-Cu-Co-based alloy and the R1-T1-B-based firing were performed in a reduced pressure argon controlled to 200 Pa using a tubular air furnace at the temperature and time shown in the first heat treatment of Table 3. The bonded body was heated and subjected to the first heat treatment, and then cooled.

[第二の熱処理を実施する工程]
第二の熱処理を、管状流気炉を用いて200Paに制御した減圧アルゴン中で、表3の第二の熱処理に示す温度及び時間で、第一の熱処理が実施されたR1−T1−B系焼結体に対して実施した後、冷却した。熱処理後の各サンプルの表面近傍に存在するR2−Ga−Cu−Co系合金の濃化部を除去するため、表面研削盤を用いて各サンプルの全面を切削加工し、4.0mm×4.0mm×4.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。なお、第一の熱処理を実施する工程におけるR2−Ga−Cu−Co系合金及びR1−T1−B系焼結体の加熱温度、並びに、第二の熱処理を実施する工程におけるR1−T1―B系焼結体の加熱温度は、それぞれ熱電対を取り付けることにより測定した。
[Step of performing second heat treatment]
R1-T1-B system in which the first heat treatment was carried out at a temperature and time shown in the second heat treatment of Table 3 in reduced pressure argon controlled to 200 Pa using a tubular air-flow furnace. After carrying out with respect to a sintered compact, it cooled. In order to remove the concentrated portion of the R2-Ga-Cu-Co-based alloy existing in the vicinity of the surface of each sample after the heat treatment, the entire surface of each sample was cut using a surface grinder, and 4.0 mm × 4. A cubic sample (R-T-B system sintered magnet) of 0 mm × 4.0 mm was obtained. In addition, the heating temperature of the R2-Ga-Cu-Co-based alloy and the R1-T1-B-based sintered body in the step of performing the first heat treatment, and R1-T1-B in the step of performing the second heat treatment The heating temperature of the sintered system was measured by attaching a thermocouple.

[サンプル評価]
得られたサンプルを、得られたサンプルのBr及びHcJをB−Hトレーサによって測定した。測定結果を表3に示す。表3の通り、R2−Cu−Ga−Fe系合金のCo量が10mass%超45mass%以下である本発明例は高いBr及び高いHcJが得られていることがわかる。これに対し、R2−Ga−Cu−Co系合金のCo量が10mass%以下であり、Coの含有量<Gaの含有量であるサンプルNo.1−1及び1−2は、高いBrが得られていない。また、R2−Cu−Ga−Co系合金のCo量が45mass%を超えており、Prの含有量<Coの含有量であるサンプルNo.1−7は、高いHcJが得られていない。
[sample test]
The obtained sample, the B r and H cJ of the sample obtained was measured by B-H tracer. Table 3 shows the measurement results. As Table 3, the present invention examples of the Co content is less than 10 mass% ultra 45Mass% of R2-Cu-Ga-Fe-based alloy it can be seen that the high B r and a high H cJ are achieved. On the other hand, in the sample No. 2 in which the Co content of the R2-Ga-Cu-Co-based alloy is 10 mass% or less, and the Co content <Ga content. In 1-1 and 1-2, high Br is not obtained. Further, the sample No. in which the Co content of the R2-Cu-Ga-Co-based alloy exceeds 45 mass%, and the Pr content <Co content. As for 1-7, high HcJ is not obtained.

Figure 2019065481
Figure 2019065481

実験例2
[R1−T1−B系焼結体を準備する工程]
R1−T1−B系焼結体がおよそ表4の符号2−Aに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法で焼結体を作製した。なお、焼結は、1000℃以上1050℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)の範囲で行った。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表4に示す。表4における各成分は実験例1と同じ方法で測定した。なお、焼結体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental example 2
[Step of preparing R1-T1-B based sintered body]
A sintered body was produced in the same manner as in Experimental Example 1 except that each element was weighed so that the R1-T1-B based sintered body had a composition indicated by reference numeral 2-A in Table 4. In addition, sintering was performed in the range of 1000 ° C. or more and 1050 ° C. or less (a temperature at which sufficient densification by sintering is selected for each sample). The density of the obtained sintered body was 7.5 Mg / m 3 or more. Table 4 shows the results of the components of the obtained sintered body. Each component in Table 4 was measured by the same method as in Experimental Example 1. In addition, as a result of measuring the oxygen content of the sintered body by the gas melting-infrared absorption method, it was confirmed that all were around 0.2 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%.

Figure 2019065481
Figure 2019065481

[R2−Ga−Cu−Co系合金を準備する工程]
R2−Ga−Cu−Co系合金がおよそ表5の符号2−aから2−mに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR2−Ga−Cu−Co系合金を準備した。R2−Ga−Cu−Co系合金の組成を表5に示す。表5における各成分は実験例1と同じ方法で測定した。
[Step of preparing R2-Ga-Cu-Co-based alloy]
The R2-Ga-Cu-Co-based alloy was R2-Ga-Cu- in the same manner as in Experimental Example 1 except that each element was weighed so that the R2-Ga-Cu-Co-based alloy had a composition indicated by reference numerals 2-a to 2-m in Table 5. A Co-based alloy was prepared. Table 5 shows the composition of the R2-Ga-Cu-Co alloy. Each component in Table 5 was measured by the same method as in Experimental Example 1.

Figure 2019065481
Figure 2019065481

[第一の熱処理を実施する工程]
表6の第一の熱処理に示す温度及び時間でR2−Ga−Cu−Co系合金及びR1−T1−B系焼結体を加熱すること以外は実験例1と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
The first heat treatment is performed in the same manner as in Experimental Example 1 except that the R2-Ga-Cu-Co-based alloy and the R1-T1-B-based sintered body are heated at the temperature and time shown in Table 6 for the first heat treatment. Carried out.

[第二の熱処理を実施する工程]
表6の第二の熱処理に示す温度及び時間でR2−Ga−Cu−Co系合金及びR1−T1−B系焼結体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例1と同じ方法で加工しR−T−B系焼結磁石を得た。
[Step of performing second heat treatment]
The second heat treatment is performed in the same manner as in Experimental Example 1 except that the R2-Ga-Cu-Co-based alloy and the R1-T1-B-based sintered body are heated at the temperature and time shown in the second heat treatment of Table 6. Carried out. Each sample after the heat treatment was processed in the same manner as in Experimental Example 1 to obtain an RTB-based sintered magnet.

[サンプル評価]
得られたサンプルのBr及びHcJをB−Hトレーサによって測定した。測定結果を表6に示す。表6の通り、R2−Ga−Cu−Co系合金のR2量が35mass%以上85mass%未満、Ga量が2.5mass%以上30mass%以下、Cu量が2.5mass%以上20mass%以下、及びR2の含有量>Coの含有量>Gaの含有量>Cuの含有量の不等式を満たす組成である本発明例は高いBr及び高いHcJが得られていることがわかる。これに対し、R2−Ga−Cu−Co系合金におけるR、Cu、Gaのいずれかが本開示の範囲外(サンプルNo.2−1及び2−3はR2及びCoが範囲外、サンプルNo.2−4、2−6、及び2−12はGaが範囲外、サンプルNo.2−7及び2−9はCuが範囲外、サンプルNo.2−13は、Cu及びGaが範囲外)であったり、R2の含有量>Coの含有量>Gaの含有量>Cuの含有量の不等式を満たさない組成(サンプルNo.2−8はGaの含有量<Cuの含有量、サンプルNo.2−10はCoの含有量<Gaの含有量)であると高いHcJを得ることができない。このように、R2−Ga−Cu−Co系合金のR、Cu、Ga(及び実験例1に示すようにCo)の含有量が本開示の範囲内にあり、R2の含有量>Coの含有量>Gaの含有量>Cuの含有量の式を満たす組成であることにより、高いBr及び高いHcJを得ることができる。
[sample test]
The obtained sample of B r and H cJ was measured by B-H tracer. Table 6 shows the measurement results. As shown in Table 6, the R2 amount of the R2-Ga-Cu-Co-based alloy is 35 mass% or more and less than 85 mass%, the Ga amount is 2.5 mass% or more and 30 mass% or less, the Cu amount is 2.5 mass% or more and 20 mass% or less, and the present invention examples in a composition satisfying the inequality of content> content of Co> content of Ga> content of Cu of R2 it is found that a high B r and a high H cJ are achieved. On the other hand, any of R, Cu, and Ga in the R2-Ga-Cu-Co-based alloy is out of the scope of the present disclosure (R2 and Co are out of range, sample No. 2-4, 2-6, and 2-12 are out of range for Ga, sample Nos. 2-7 and 2-9 are out of range for Cu, and sample No. 2-13 is out of range for Cu and Ga) Or a composition that does not satisfy the inequality of R2 content> Co content> Ga content> Cu content (Sample No. 2-8 is Ga content <Cu content, Sample No. 2) When -10 is Co content <Ga content), high H cJ cannot be obtained. Thus, the content of R, Cu, Ga (and Co as shown in Experimental Example 1) in the R2-Ga-Cu-Co-based alloy is within the scope of the present disclosure, and the content of R2> the content of Co. by having a composition satisfying the formula of the content of an amount> the content of Ga> Cu, it is possible to obtain a high B r and a high H cJ.

Figure 2019065481
Figure 2019065481

実験例3
[R1−T1−B系焼結体を準備する工程]
R1−T1−B系焼結体がおよそ表7の符号3−Aに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法で焼結体を作製した。なお、焼結は、1000℃以上1050℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)の範囲で行った。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表7に示す。表7における各成分は実験例1と同じ方法で測定した。なお、焼結体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental example 3
[Step of preparing R1-T1-B based sintered body]
A sintered body was produced in the same manner as in Experimental Example 1 except that each element was weighed so that the R1-T1-B-based sintered body had a composition indicated by reference numeral 3-A in Table 7. In addition, sintering was performed in the range of 1000 ° C. or more and 1050 ° C. or less (a temperature at which sufficient densification by sintering is selected for each sample). The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 7. Each component in Table 7 was measured by the same method as in Experimental Example 1. In addition, as a result of measuring the oxygen content of the sintered body by the gas melting-infrared absorption method, it was confirmed that all were around 0.2 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%.

Figure 2019065481
Figure 2019065481

[R2−Ga−Cu−Co系合金を準備する工程]
R2−Ga−Cu−Co系合金がおよそ表8の符号3−aに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR2−Ga−Cu−Co系合金を準備した。R2−Ga−Cu−Co系合金の組成を表8に示す。表8における各成分は実験例1と同じ方法で測定した。
[Step of preparing R2-Ga-Cu-Co-based alloy]
The R2-Ga-Cu-Co-based alloy was prepared in the same manner as in Experimental Example 1 except that each element was weighed so that the R2-Ga-Cu-Co-based alloy had a composition indicated by reference numeral 3-a in Table 8. Got ready. Table 8 shows the composition of the R2-Ga-Cu-Co alloy. Each component in Table 8 was measured by the same method as in Experimental Example 1.

Figure 2019065481
Figure 2019065481

[第一の熱処理を実施する工程]
表9の第一の熱処理に示す温度及び時間でR2−Ga−Cu−Co系合金及びR1−T1−B系焼結体を加熱すること以外は実験例1と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
The first heat treatment is performed in the same manner as in Experimental Example 1 except that the R2-Ga-Cu-Co-based alloy and the R1-T1-B-based sintered body are heated at the temperature and time shown in Table 9 for the first heat treatment. Carried out.

[第二の熱処理を実施する工程]
表9の第二の熱処理に示す温度及び時間でR2−Ga−Cu−Co系合金及びR1−T1−B系焼結体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例1と同じ方法で加工しR−T−B系焼結磁石を得た。
[Step of performing second heat treatment]
The second heat treatment is performed in the same manner as in Experimental Example 1 except that the R2-Ga-Cu-Co-based alloy and the R1-T1-B-based sintered body are heated at the temperature and time shown in Table 9 for the second heat treatment. Carried out. Each sample after the heat treatment was processed in the same manner as in Experimental Example 1 to obtain an RTB-based sintered magnet.

[サンプル評価]
得られたサンプルのBr及びHcJをB−Hトレーサによって測定した。測定結果を表9に示す。表9の通り、本開示の第一の熱処理温度(700℃以上1100℃以下)及び第二の熱処理温度(450℃以上600℃以下)である本発明例は高いBr及び高いHcJが得られていることがわかる。また、表9の通り、第一の熱処理における温度が800℃以上1000℃以下及び第二の熱処理における温度が480℃以上560℃以下であると、更に高いHcJが得られている。これに対し、第一の熱処理温度及び第二の熱処理温度のいずれか本開示の範囲外(サンプルNo.3−1は第一の熱処理が範囲外、サンプルNo.3−4及び3−9は第二の熱処理が範囲外)であると高いHcJを得ることができない。
[sample test]
The obtained sample of B r and H cJ was measured by B-H tracer. Table 9 shows the measurement results. As shown in Table 9, the first heat treatment temperature (700 ° C. or higher 1100 ° C. or less) and the present invention embodiment is a second heat treatment temperature (450 ° C. or higher 600 ° C. or less) of the present disclosure is higher B r and a high H cJ is obtained You can see that Further, as shown in Table 9, higher H cJ is obtained when the temperature in the first heat treatment is 800 ° C. or higher and 1000 ° C. or lower and the temperature in the second heat treatment is 480 ° C. or higher and 560 ° C. or lower. On the other hand, either the first heat treatment temperature or the second heat treatment temperature is outside the scope of the present disclosure (sample No. 3-1 is out of the first heat treatment range, sample Nos. 3-4 and 3-9 are If the second heat treatment is out of range, high H cJ cannot be obtained.

Figure 2019065481
Figure 2019065481

<第2の実施形態の実施例>
実験例4
[R1−T1−Cu−B系焼結体を準備する工程]
R1−T1−Cu−B系焼結体がおよそ表10の符号4−Aから4−Eとなるよう各元素を秤量しストリップキャスト法により鋳造し、厚さ0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
<Example of the second embodiment>
Experimental Example 4
[Step of preparing R1-T1-Cu-B-based sintered body]
Each element was weighed so that the R1-T1-Cu-B-based sintered body had the signs 4-A to 4-E in Table 10 and cast by the strip casting method, and flakes having a thickness of 0.2 to 0.4 mm A raw material alloy was obtained. The obtained flaky raw material alloy was pulverized with hydrogen, heated to 550 ° C. in a vacuum and then cooled to obtain a coarsely pulverized powder. Next, after adding and mixing 0.04 mass% of zinc stearate as a lubricant with respect to 100 mass% of the coarsely pulverized powder, the resulting coarsely pulverized powder is mixed with nitrogen using an airflow pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle diameter D 50 of 4 μm. The particle diameter D 50 is a volume center value (volume reference median diameter) obtained by a laser diffraction method using an airflow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。   To the finely pulverized powder, zinc stearate as a lubricant was added and mixed in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and then molded in a magnetic field to obtain a molded body. In addition, what was called a perpendicular magnetic field shaping | molding apparatus (transverse magnetic field shaping | molding apparatus) with which the magnetic field application direction and the pressurization direction orthogonally crossed was used for the shaping | molding apparatus.

得られた成形体を、真空中、1000℃以上1050℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、R1−T1−B系焼結体を得た。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表10に示す。表10における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、焼結体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。表10における「[T1]/[B]」は、T1を構成する各元素(ここではFe、Al、Si、Mn)に対し、分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表10の各組成及び酸素量、炭素量を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるためである。その他の表についても同様である。The obtained molded body was sintered at 1000 ° C. or higher and 1050 ° C. or lower (a temperature at which sufficient densification by sintering was selected for each sample) for 4 hours and then rapidly cooled to obtain an R1-T1-B system sintering. Got the body. The density of the obtained sintered body was 7.5 Mg / m 3 or more. Table 10 shows the results of the components of the obtained sintered body. Each component in Table 10 was measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). In addition, as a result of measuring the oxygen content of the sintered body by the gas melting-infrared absorption method, it was confirmed that all were around 0.2 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%. “[T1] / [B]” in Table 10 is obtained by dividing the analysis value (mass%) by the atomic weight of each element for each element (here, Fe, Al, Si, Mn) constituting T1. Is the ratio (a / b) between the sum of these values (a) and the B analysis value (mass%) divided by the atomic weight of B (b). The same applies to all the tables below. In addition, even if each composition of Table 10, oxygen amount, and carbon amount are totaled, it does not become 100 mass%. This is because the analysis method differs depending on each component as described above. The same applies to the other tables.

Figure 2019065481
Figure 2019065481

[R2−Ga−Co系合金を準備する工程]
R2−Ga−Co系合金がおよそ表11の符号4−aの組成になるよう各元素を秤量し、それらの原料を溶解して、単ロール超急冷法(メルトスピニング法)により、リボン又はフレーク状の合金を得た。得られた合金を、乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き425μmの篩を通過させ、R2−Ga−Co系合金を準備した。得られたR2−Ga−Co系合金の組成を表11に示す。なお、表11における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Step of preparing R2-Ga-Co alloy]
Each element is weighed so that the R2-Ga-Co-based alloy has the composition indicated by 4-a in Table 11, the raw materials are dissolved, and a ribbon or flake is obtained by a single roll rapid quenching method (melt spinning method). A shaped alloy was obtained. The obtained alloy was pulverized in an argon atmosphere using a mortar, and then passed through a sieve having an opening of 425 μm to prepare an R2-Ga—Co-based alloy. Table 11 shows the composition of the obtained R2-Ga-Co-based alloy. In addition, each component in Table 11 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2019065481
Figure 2019065481

[第一の熱処理を実施する工程]
表10の符号4−Aから4−EのR1−T1−Cu−B系焼結体を切断、切削加工し、4.4mm×10.0mm×11.0mmの直方体(10.0mm×11.0mmの面が配向方向と垂直な面)とした。次に、図3に示すように、ニオブ箔により作製した処理容器3中に、主にR1−T1−Cu−B系焼結体1の配向方向(図中の矢印方向)と垂直な面がR2−Ga−Co系合金2と接触するように、表11に示す符号4−aのR2−Ga−Co系合金を、符号4−Aから4−EのR1−T1−Cu−B系焼結体の上下にR1−T1−Cu−B系焼結体の重量に対し10mass%ずつ計20mass%を配置した。次に、管状流気炉を用いて、200Paに制御した減圧アルゴン中で、表12の第一の熱処理に示す温度及び時間でR2−Ga−Co系合金及びR1−T1−Cu−B系焼結体を加熱して第一の熱処理を実施した後、冷却した。
[Step of performing first heat treatment]
The R1-T1-Cu-B-based sintered bodies denoted by reference numerals 4-A to 4-E in Table 10 were cut and machined to form a rectangular parallelepiped (10.0 mm × 11.11 mm) of 4.4 mm × 10.0 mm × 11.0 mm. The 0 mm plane was a plane perpendicular to the orientation direction). Next, as shown in FIG. 3, a surface perpendicular to the orientation direction (arrow direction in the figure) of the R1-T1-Cu—B based sintered body 1 is mainly present in the processing container 3 made of niobium foil. In order to come into contact with the R2-Ga-Co-based alloy 2, the R2-Ga-Co-based alloy denoted by reference numeral 4-a shown in Table 11 is fired from the R1-T1-Cu-B-based firing denoted by reference numerals 4-A to 4-E. A total of 20 mass% was arranged 10 mass% with respect to the weight of the R1-T1-Cu-B sintered body above and below the bonded body. Next, in a reduced pressure argon controlled to 200 Pa using a tubular air-flow furnace, the R2-Ga-Co alloy and the R1-T1-Cu-B system firing were performed at the temperature and time shown in the first heat treatment of Table 12. The bonded body was heated and subjected to the first heat treatment, and then cooled.

[第二の熱処理を実施する工程]
第二の熱処理を、管状流気炉を用いて200Paに制御した減圧アルゴン中で、表12の第二の熱処理に示す温度及び時間で、第一の熱処理が実施されたR1−T1−B系焼結体に対して実施した後、冷却した。熱処理後の各サンプルの表面近傍に存在するR2−Ga−Co系合金の濃化部を除去するため、表面研削盤を用いて各サンプルの全面を切削加工し、4.0mm×4.0mm×4.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。なお、第一の熱処理を実施する工程におけるR2−Ga−Co合金及びR1−T1−Cu−B系焼結体の加熱温度、並びに、第二の熱処理を実施する工程におけるR1−T1―Cu−B系焼結体の加熱温度は、それぞれ熱電対を取り付けることにより測定した。
[Step of performing second heat treatment]
R1-T1-B system in which the first heat treatment was carried out at a temperature and time shown in the second heat treatment of Table 12 in a reduced pressure argon controlled to 200 Pa using a tubular air furnace. After carrying out with respect to a sintered compact, it cooled. In order to remove the concentrated portion of the R2-Ga-Co-based alloy existing near the surface of each sample after the heat treatment, the entire surface of each sample was cut using a surface grinder, and 4.0 mm x 4.0 mm x A 4.0 mm cubic sample (RTB-based sintered magnet) was obtained. Note that the heating temperature of the R2-Ga-Co alloy and the R1-T1-Cu-B-based sintered body in the step of performing the first heat treatment, and R1-T1-Cu- in the step of performing the second heat treatment. The heating temperature of the B-based sintered body was measured by attaching a thermocouple.

[サンプル評価]
得られた各サンプルのBr及びHcJをB−Hトレーサによって測定した。測定結果を表12に示す。表12の通り、R1−T1―Cu−B系焼結体のCu含有量が0.1mass%未満であるサンプルNo.4−1は、高いHcJが得られていない。また、Cuの含有量が1.5mass%を超えているサンプルNo.4−5は、高いBr及びHcJが得られていない。
[sample test]
Each sample of B r and H cJ obtained was measured by B-H tracer. Table 12 shows the measurement results. As shown in Table 12, the sample No. 1 in which the Cu content of the R1-T1-Cu-B-based sintered body is less than 0.1 mass%. As for 4-1, high HcJ is not obtained. In addition, Sample No. in which the Cu content exceeds 1.5 mass%. 4-5 does not obtain a high B r and H cJ.

Figure 2019065481
Figure 2019065481

実験例5
[R1−T1−Cu−B系焼結体を準備する工程]
R1−T1−Cu−B系焼結体がおよそ表13の符号5−Aに示す組成となるように、各元素を秤量する以外は実験例4と同じ方法で焼結体を作製した。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表13に示す。表13における各成分は実験例4と同じ方法で測定した。なお、焼結体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental Example 5
[Step of preparing R1-T1-Cu-B-based sintered body]
A sintered body was produced in the same manner as in Experimental Example 4 except that each element was weighed so that the R1-T1-Cu-B-based sintered body had a composition indicated by reference numeral 5-A in Table 13. The density of the obtained sintered body was 7.5 Mg / m 3 or more. Table 13 shows the results of the components of the obtained sintered body. Each component in Table 13 was measured by the same method as in Experimental Example 4. In addition, as a result of measuring the oxygen content of the sintered body by the gas melting-infrared absorption method, it was confirmed that all were around 0.2 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%.

Figure 2019065481
Figure 2019065481

[R2−Ga−Co系合金を準備する工程]
R2−Ga−Co系合金がおよそ表14の符号5−aから5−gに示す組成となるように、各元素を秤量する以外は実験例4と同じ方法でR2−Ga−Co系合金を準備した。R2−Ga−Co系合金の組成を表14に示す。表14における各成分は実験例4と同じ方法で測定した。
[Step of preparing R2-Ga-Co alloy]
The R2-Ga-Co-based alloy was prepared in the same manner as in Experimental Example 4 except that each element was weighed so that the R2-Ga-Co-based alloy had a composition represented by reference numerals 5-a to 5-g in Table 14. Got ready. Table 14 shows the composition of the R2-Ga-Co alloy. Each component in Table 14 was measured by the same method as in Experimental Example 4.

Figure 2019065481
Figure 2019065481

[第一の熱処理を実施する工程]
表15の第一の熱処理に示す温度及び時間でR2−Ga−Co合金及びR1−T1−Cu−B系焼結体を加熱すること以外は実験例4と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
The first heat treatment was performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B-based sintered body were heated at the temperature and time shown in Table 15 for the first heat treatment. did.

[第二の熱処理を実施する工程]
表15の第二の熱処理に示す温度及び時間でR2−Ga−Co合金及びR1−T1−Cu−B系焼結体を加熱すること以外は実験例4と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例4と同じ方法で加工しR−T−B系焼結磁石を得た。
[Step of performing second heat treatment]
The second heat treatment was performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B-based sintered body were heated at the temperature and time shown in the second heat treatment of Table 15. did. Each sample after the heat treatment was processed in the same manner as in Experimental Example 4 to obtain an RTB-based sintered magnet.

[サンプル評価]
得られた各サンプルのBr及びHcJをB−Hトレーサによって測定した。測定結果を表15に示す。表15の通り、R−Ga−Co系合金のCo量が10mass%超45mass%以下である本発明例は高いBr及び高いHcJが得られていることがわかる。これに対し、R−Ga−Co系合金のCo量が10mass%以下及びCoの含有量<Ga含有量であるサンプルNo.5−1及び5−2は、高いBrが得られていない。また、R−Ga−Co系合金のCo量が45mass%を超えており、Prの含有量<Co含有量であるサンプルNo.5−7は、高いHcJが得られていない。
[sample test]
Each sample of B r and H cJ obtained was measured by B-H tracer. Table 15 shows the measurement results. As Table 15, the present invention example Co amount of R-Ga-Co-based alloy is at most 10 mass% ultra 45Mass% It can be seen that the high B r and a high H cJ are achieved. In contrast, Sample No. in which the Co content of the R—Ga—Co alloy is 10 mass% or less and the Co content is less than the Ga content. 5-1 and 5-2 are not high B r is obtained. Further, the sample No. in which the Co content of the R—Ga—Co-based alloy exceeds 45 mass% and the Pr content <Co content is satisfied. As for 5-7, high HcJ is not obtained.

Figure 2019065481
Figure 2019065481

実験例6
[R1−T1−Cu−B系焼結体を準備する工程]
R1−T1−Cu−B系焼結体がおよそ表16の符号6−Aに示す組成となるように、各元素を秤量する以外は実験例4と同じ方法で焼結体を作製した。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表16に示す。表16における各成分は実験例4と同じ方法で測定した。なお、焼結体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental Example 6
[Step of preparing R1-T1-Cu-B-based sintered body]
A sintered body was produced in the same manner as in Experimental Example 4 except that each element was weighed so that the R1-T1-Cu-B-based sintered body had a composition indicated by reference numeral 6-A in Table 16. The density of the obtained sintered body was 7.5 Mg / m 3 or more. Table 16 shows the results of the components of the obtained sintered body. Each component in Table 16 was measured by the same method as in Experimental Example 4. In addition, as a result of measuring the oxygen content of the sintered body by the gas melting-infrared absorption method, it was confirmed that all were around 0.2 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%.

Figure 2019065481
Figure 2019065481

[R2−Ga−Co系合金を準備する工程]
R2−Ga−Co系合金がおよそ表17の符号6−aから6−iに示す組成となるように、各元素を秤量する以外は実験例4と同じ方法でR2−Ga−Co系合金を準備した。R2−Ga−Co系合金の組成を表17に示す。表17における各成分は実験例4と同じ方法で測定した。
[Step of preparing R2-Ga-Co alloy]
The R2-Ga-Co-based alloy was prepared in the same manner as in Experimental Example 4 except that each element was weighed so that the R2-Ga-Co-based alloy had a composition indicated by reference numerals 6-a to 6-i in Table 17. Got ready. Table 17 shows the composition of the R2-Ga-Co alloy. Each component in Table 17 was measured by the same method as in Experimental Example 4.

Figure 2019065481
Figure 2019065481

[第一の熱処理を実施する工程]
表18の第一の熱処理に示す温度及び時間でR2−Ga−Co合金及びR1−T1−Cu−B系焼結体を加熱すること以外は実験例4と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
The first heat treatment was performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body were heated at the temperature and time shown in Table 18 for the first heat treatment. did.

[第二の熱処理を実施する工程]
表18の第二の熱処理に示す温度及び時間でR2−Ga−Co合金及びR1−T1−Cu−B系焼結体を加熱すること以外は実験例4と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例4と同じ方法で加工しR−T−B系焼結磁石を得た。
[Step of performing second heat treatment]
The second heat treatment was performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body were heated at the temperature and time shown in the second heat treatment of Table 18. did. Each sample after the heat treatment was processed in the same manner as in Experimental Example 4 to obtain an RTB-based sintered magnet.

[サンプル評価]
得られた各サンプルのBr及びHcJをB−Hトレーサによって測定した。測定結果を表18に示す。表18の通り、R2−Ga−Co系合金のR2量が35mass%以上87mass%以下、Ga量が2.5mass%以上30mass%以下、及びR2の含有量>Coの含有量>Gaの含有量の不等式を満たす組成である本発明例は高いBr及び高いHcJが得られていることがわかる。これに対し、R2−Ga−Co系合金におけるR、Gaのいずれかが本開示の範囲外(サンプルNo.6−1はR2が範囲外、サンプルNo.6−3はR2及びCoが範囲外、サンプルNo.6−4、6−6及び6−9はGaが範囲外)であったり、R2の含有量>Coの含有量>Gaの含有量の不等式を満たさない組成(サンプルNo.6−7はCoの含有量<Gaの含有量)であったりすると、高いHcJを得ることができない。このように、R2−Ga−Cu−Co系合金のR、Ga(及び実験例5に示すようにCo)の含有量が本開示の範囲内にあり、R2の含有量>Coの含有量>Gaの含有量の不等式を満たす組成であることにより、高いBr及び高いHcJを得ることができる。
[sample test]
Each sample of B r and H cJ obtained was measured by B-H tracer. The measurement results are shown in Table 18. As shown in Table 18, the R2-Ga-Co-based alloy has an R2 content of 35 mass% to 87 mass%, a Ga content of 2.5 mass% to 30 mass%, and an R2 content> Co content> Ga content. the present invention examples in a composition satisfying the inequality is seen that a high B r and a high H cJ are achieved. On the other hand, either R or Ga in the R2-Ga-Co-based alloy is out of the scope of the present disclosure (R2 is out of range for sample No. 6-1 and R2 and Co are out of range for sample No. 6-3. Sample Nos. 6-4, 6-6 and 6-9 are compositions that do not satisfy the inequality of R2 content> Co content> Ga content (Sample No. 6). If -7 is Co content <Ga content), high H cJ cannot be obtained. Thus, the content of R, Ga (and Co as shown in Experimental Example 5) in the R2-Ga-Cu-Co-based alloy is within the scope of the present disclosure, and the content of R2> the content of Co> by a composition satisfying the inequality of the content of Ga, it is possible to obtain a high B r and a high H cJ.

Figure 2019065481
Figure 2019065481

実験例7
[R1−T1−B系焼結体を準備する工程]
R1−T1−B系焼結体がおよそ表19の符号7−Aに示す組成となるように、各元素を秤量する以外は実験例4と同じ方法で焼結体を作製した。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表19に示す。表19における各成分は実験例4と同じ方法で測定した。なお、焼結体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental Example 7
[Step of preparing R1-T1-B based sintered body]
A sintered body was produced in the same manner as in Experimental Example 4 except that each element was weighed so that the R1-T1-B based sintered body had a composition indicated by reference numeral 7-A in Table 19. The density of the obtained sintered body was 7.5 Mg / m 3 or more. Table 19 shows the results of the components of the obtained sintered body. Each component in Table 19 was measured by the same method as in Experimental Example 4. In addition, as a result of measuring the oxygen content of the sintered body by the gas melting-infrared absorption method, it was confirmed that all were around 0.2 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%.

Figure 2019065481
Figure 2019065481

[R2−Ga−Co系合金を準備する工程]
R2−Ga−Co系合金がおよそ表20の符号7−aに示す組成となるように、各元素を秤量する以外は実験例4と同じ方法でR2−Ga−Co系合金を準備した。R2−Ga−Co系合金の組成を表20に示す。表20における各成分は実験例4と同じ方法で測定した。
[Step of preparing R2-Ga-Co alloy]
An R2-Ga-Co-based alloy was prepared in the same manner as in Experimental Example 4 except that each element was weighed so that the R2-Ga-Co-based alloy had a composition indicated by reference numeral 7-a in Table 20. Table 20 shows the composition of the R2-Ga-Co alloy. Each component in Table 20 was measured by the same method as in Experimental Example 4.

Figure 2019065481
Figure 2019065481

[第一の熱処理を実施する工程]
表21の第一の熱処理に示す温度及び時間でR2−Ga−Co合金及びR1−T1−Cu−B系焼結体を加熱すること以外は実験例4と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
The first heat treatment was performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B-based sintered body were heated at the temperature and time shown in Table 21 for the first heat treatment. did.

[第二の熱処理を実施する工程]
表21の第二の熱処理に示す温度及び時間でR2−Ga−Co合金及びR1−T1−Cu−B系焼結体を加熱すること以外は実験例4と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例4と同じ方法で加工しR−T−B系焼結磁石を得た。
[Step of performing second heat treatment]
The second heat treatment was performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body were heated at the temperature and time shown in the second heat treatment of Table 21. did. Each sample after the heat treatment was processed in the same manner as in Experimental Example 4 to obtain an RTB-based sintered magnet.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のBr及びHcJを測定した。測定結果を表21に示す。表21の通り、本開示の第一の熱処理温度(700℃以上1100℃以下)及び第二の熱処理温度(450℃以上600℃以下)である本発明例は高いBr及び高いHcJが得られていることがわかる。また、表21の通り、第一の熱処理における温度が800℃以上1000℃以下及び第二の熱処理における温度が480℃以上560℃以下であると、更に高いHcJが得られている。これに対し、第一の熱処理温度及び第二の熱処理温度のいずれか本開示の範囲外(サンプルNo.7−1は第一の熱処理が範囲外、サンプルNo.7−4及び7−9は第二の熱処理が範囲外)であると高いHcJを得ることができない。
[sample test]
The obtained sample was measured B r and H cJ of the sample by B-H tracer. Table 21 shows the measurement results. As Table 21, the first heat treatment temperature (700 ° C. or higher 1100 ° C. or less) and the present invention embodiment is a second heat treatment temperature (450 ° C. or higher 600 ° C. or less) of the present disclosure is higher B r and a high H cJ is obtained You can see that Further, as shown in Table 21, higher H cJ is obtained when the temperature in the first heat treatment is 800 ° C. or more and 1000 ° C. or less and the temperature in the second heat treatment is 480 ° C. or more and 560 ° C. or less. On the other hand, either the first heat treatment temperature or the second heat treatment temperature is out of the scope of the present disclosure (Sample No. 7-1 is out of the first heat treatment, Samples No. 7-4 and 7-9 are out of range) If the second heat treatment is out of range, high H cJ cannot be obtained.

Figure 2019065481
Figure 2019065481

本開示により得られたR−T−B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに好適に利用することができる。   R-T-B sintered magnets obtained by the present disclosure include various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, It can be suitably used for home appliances and the like.

1 R1−T1−B系焼結体(R1−T1−Cu−B系焼結体)
2 R2−Ga−Cu−Co系合金(R2−Ga−Co系合金)
3 処理容器
12 主相
14 粒界相
14a 二粒子粒界相
14b 粒界三重点
1 R1-T1-B sintered body (R1-T1-Cu-B sintered body)
2 R2-Ga-Cu-Co alloy (R2-Ga-Co alloy)
3 Processing Vessel 12 Main Phase 14 Grain Boundary Phase 14a Two Grain Boundary Phase 14b Grain Boundary Triple Point

Claims (16)

R1−T1−B系焼結体を準備する工程と、
R2−Ga−Cu−Co系合金を準備する工程と、
前記R1−T1−B系焼結体の表面の少なくとも一部に、前記R2−Ga−Cu−Co系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程と、
前記第一の熱処理が実施されたR1−T1−B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程と、
を含み、
前記R1−T1−B系焼結体において、
R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1−T1−B系焼結体全体の27mass%以上35mass%以下であり、
T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有し、T1全体に対するFeの含有量が80mass%以上であり、
Bに対するT1のmol比([T1]/[B])が14.0超15.0以下であり、
前記R2−Ga−Cu−Co系合金において、
R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R2の含有量は、R2−Ga−Cu−Co系合金全体の35mass%以上85mass%未満であり、
Gaの含有量は、R2−Ga−Cu−Co系合金全体の2.5mass%以上30mass%以下であり、
Cuの含有量は、R2−Ga−Cu−Co系合金全体の2.5mass%以上20mass%以下であり、
Coの含有量は、R2−Ga−Cu−Co系合金全体の10mass%超45mass%以下であり、
R2の含有量>Coの含有量>Gaの含有量>Cuの含有量の不等式が成立する、R−T−B系焼結磁石の製造方法。
Preparing an R1-T1-B-based sintered body;
Preparing an R2-Ga-Cu-Co-based alloy;
At least a part of the R2-Ga-Cu-Co-based alloy is brought into contact with at least a part of the surface of the R1-T1-B-based sintered body, and is 700 ° C or higher and 1100 ° C or lower in a vacuum or an inert gas atmosphere. Performing a first heat treatment at a temperature of
A step of performing a second heat treatment at a temperature of 450 ° C. or higher and 600 ° C. or lower in a vacuum or an inert gas atmosphere on the R1-T1-B sintered body on which the first heat treatment has been performed;
Including
In the R1-T1-B based sintered body,
R1 is at least one kind of rare earth elements, and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B sintered body,
T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T1 always contains Fe, and the content of Fe with respect to the entire T1 is 80 mass% or more,
The molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and not more than 15.0,
In the R2-Ga-Cu-Co alloy,
R2 is at least one of rare earth elements, and necessarily contains at least one of Nd and Pr, and the content of R2 is 35 mass% or more and less than 85 mass% of the entire R2-Ga-Cu-Co-based alloy,
The Ga content is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Cu-Co-based alloy,
The Cu content is 2.5 mass% or more and 20 mass% or less of the entire R2-Ga-Cu-Co-based alloy,
The Co content is more than 10 mass% and 45 mass% or less of the entire R2-Ga-Cu-Co-based alloy,
An R-T-B system sintered magnet manufacturing method in which the inequality of R2 content> Co content> Ga content> Cu content is satisfied.
前記Bに対するT1のmol比([T1]/[B])が14.5以上15.0以下である、請求項1に記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB system sintered magnet according to claim 1 whose molar ratio ([T1] / [B]) of T1 to B is 14.5 or more and 15.0 or less. 前記R2−Ga−Cu−Co系合金中のR2の50mass%以上がPrである、請求項1又は2に記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB system sintered magnet according to claim 1 or 2 whose 50 mass% or more of R2 in said R2-Ga-Cu-Co system alloy is Pr. 前記R2−Ga−Cu−Co系合金中のR2の70mass%以上がPrである、請求項1又は2に記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB system sintered magnet according to claim 1 or 2 whose 70 mass% or more of R2 in said R2-Ga-Cu-Co system alloy is Pr. R2−Ga−Cu−Co系合金におけるR2−Ga−Cu−Coの合計の含有量が80mass%以上である、請求項1から4のいずれかに記載のR−T−B系焼結磁石の製造方法。   The RTB-based sintered magnet according to any one of claims 1 to 4, wherein the total content of R2-Ga-Cu-Co in the R2-Ga-Cu-Co-based alloy is 80 mass% or more. Production method. 前記第一の熱処理における温度が800℃以上1000℃以下である、請求項1から5のいずれかに記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB type | system | group sintered magnet in any one of Claim 1 to 5 whose temperature in said 1st heat processing is 800 degreeC or more and 1000 degrees C or less. 前記第二の熱処理における温度が480℃以上560℃以下である、請求項1から6のいずれかに記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB type | system | group sintered magnet in any one of Claim 1 to 6 whose temperature in said 2nd heat processing is 480 degreeC or more and 560 degrees C or less. 前記R1−T1−B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことを含む、請求項1から7いずれかに記載のR−T−B系焼結磁石の製造方法。The step of preparing the R1-T1-B-based sintered body includes pulverizing the raw material alloy so that the particle size D 50 is 3 μm or more and 10 μm or less, and then orienting the raw alloy in a magnetic field to perform sintering. To 7. The method for producing an RTB-based sintered magnet according to any one of 7 to 7. R1−T1−Cu−B系焼結体を準備する工程と、
R2−Ga−Co系合金を準備する工程と、
前記R1−T1−Cu−B系焼結体の表面の少なくとも一部に、前記R2−Ga−Co系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程と、
前記第一の熱処理が実施されたR1−T1−Cu−B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程と、
を含み、
前記R1−T1−Cu−B系焼結体において、
R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1−T1−Cu−B系焼結体全体の27mass%以上35mass%以下であり、
T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有し、T1全体に対するFeの含有量が80mass%以上であり、
Bに対するT1のmol比([T1]/[B])が14.0超15.0以下であり、
Cuの含有量は、R1−T1−Cu−B系焼結体全体の0.1mass%以上1.5mass%以下であり、
前記R2−Ga−Co系合金において、
R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R2の含有量は、R2−Ga−Co系合金全体の35mass%以上87mass%未満であり、
Gaの含有量は、R2−Ga−Co系合金全体の2.5mass%以上30mass%以下であり、
Coの含有量は、R2−Ga−Co系合金全体の10mass%超45mass%以下であり、
R2の含有量>Coの含有量>Gaの含有量の不等式が成立する、
R−T−B系焼結磁石の製造方法。
A step of preparing an R1-T1-Cu-B-based sintered body;
Preparing an R2-Ga-Co-based alloy;
At least a part of the R2-Ga-Co-based alloy is brought into contact with at least a part of the surface of the R1-T1-Cu-B-based sintered body, and is 700 ° C to 1100 ° C in a vacuum or an inert gas atmosphere. Performing a first heat treatment at a temperature of
Performing a second heat treatment on the R1-T1-Cu-B-based sintered body subjected to the first heat treatment at a temperature of 450 ° C. or higher and 600 ° C. or lower in a vacuum or an inert gas atmosphere; ,
Including
In the R1-T1-Cu-B based sintered body,
R1 is at least one of rare earth elements, and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-Cu-B-based sintered body,
T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T1 always contains Fe, and the content of Fe with respect to the entire T1 is 80 mass% or more,
The molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and not more than 15.0,
The Cu content is 0.1 mass% or more and 1.5 mass% or less of the entire R1-T1-Cu-B sintered body,
In the R2-Ga-Co alloy,
R2 is at least one kind of rare earth elements, and necessarily contains at least one of Nd and Pr, and the content of R2 is 35 mass% or more and less than 87 mass% of the entire R2-Ga-Co-based alloy,
The Ga content is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Co-based alloy,
Co content is more than 10 mass% and 45 mass% or less of the entire R2-Ga-Co-based alloy,
The inequality of the content of R2> the content of Co> the content of Ga holds.
Manufacturing method of RTB-based sintered magnet.
前記Bに対するT1のmol比([T1]/[B])が14.3以上15.0以下である、請求項9に記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB system sintered magnet according to claim 9 whose molar ratio ([T1] / [B]) of T1 to B is 14.3 or more and 15.0 or less. 前記R2−Ga−Co系合金中のR2の50mass%以上がPrである、請求項9又は10に記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB system sintered magnet according to claim 9 or 10 whose 50 mass% or more of R2 in said R2-Ga-Co system alloy is Pr. 前記R2−Ga−Co系合金中のR2の70mass%以上がPrである、請求項9又は10に記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB system sintered magnet according to claim 9 or 10 whose 70 mass% or more of R2 in said R2-Ga-Co system alloy is Pr. R2−Ga−Co系合金におけるR2、Ga、Coの合計の含有量が80mass%以上である、請求項9から12のいずれかに記載のR−T−B系焼結磁石の製造方法。   The method for producing an RTB-based sintered magnet according to any one of claims 9 to 12, wherein the total content of R2, Ga, and Co in the R2-Ga-Co-based alloy is 80 mass% or more. 前記第一の熱処理における温度が800℃以上1000℃以下である、請求項9から13のいずれかに記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB type | system | group sintered magnet in any one of Claim 9 to 13 whose temperature in said 1st heat processing is 800 degreeC or more and 1000 degrees C or less. 前記第二の熱処理における温度が480℃以上560℃以下である、請求項9から14のいずれかに記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB type | system | group sintered magnet in any one of Claim 9 to 14 whose temperature in said 2nd heat processing is 480 degreeC or more and 560 degrees C or less. 前記R1−T1−Cu−B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことを含む、請求項9から15のいずれかに記載のR−T−B系焼結磁石の製造方法。Preparing the R1-T1-Cu-B based sintered body comprises performing after the material alloy particle size D 50 was pulverized to 3μm or 10μm or less, the sintering being oriented in a magnetic field, wherein Item 16. A method for producing an RTB-based sintered magnet according to any one of Items 9 to 15.
JP2019500604A 2017-09-26 2018-09-21 Method of manufacturing RTB based sintered magnet Active JP6508447B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017184566 2017-09-26
JP2017184566 2017-09-26
JP2017184567 2017-09-26
JP2017184567 2017-09-26
PCT/JP2018/034973 WO2019065481A1 (en) 2017-09-26 2018-09-21 Method for manufacturing r-t-b-based sintered magnet

Publications (2)

Publication Number Publication Date
JP6508447B1 JP6508447B1 (en) 2019-05-08
JPWO2019065481A1 true JPWO2019065481A1 (en) 2019-11-14

Family

ID=65900992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019500604A Active JP6508447B1 (en) 2017-09-26 2018-09-21 Method of manufacturing RTB based sintered magnet

Country Status (3)

Country Link
JP (1) JP6508447B1 (en)
CN (1) CN111052276B (en)
WO (1) WO2019065481A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7396148B2 (en) 2020-03-23 2023-12-12 株式会社プロテリアル Manufacturing method of RTB based sintered magnet
JP7044218B1 (en) * 2020-09-23 2022-03-30 日立金属株式会社 RTB-based sintered magnet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10109403B2 (en) * 2013-08-09 2018-10-23 Tdk Corporation R-T-B based sintered magnet and motor
JP6361813B2 (en) * 2015-02-18 2018-07-25 日立金属株式会社 Method for producing RTB-based sintered magnet
US20180047504A1 (en) * 2015-02-18 2018-02-15 Hitachi Metals, Ltd. Method for manufacturing r-t-b sintered magnet
US10943717B2 (en) * 2016-02-26 2021-03-09 Tdk Corporation R-T-B based permanent magnet
CN106328367B (en) * 2016-08-31 2017-11-24 烟台正海磁性材料股份有限公司 A kind of preparation method of R Fe B based sintered magnets
WO2018101402A1 (en) * 2016-12-01 2018-06-07 日立金属株式会社 R-t-b sintered magnet and production method therefor
CN106783124A (en) * 2016-12-05 2017-05-31 华南理工大学 A kind of grain boundary decision Al Cu alloys improve the corrosion proof method of neodymium iron boron magnetic body

Also Published As

Publication number Publication date
WO2019065481A1 (en) 2019-04-04
CN111052276A (en) 2020-04-21
CN111052276B (en) 2021-08-27
JP6508447B1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP6380652B2 (en) Method for producing RTB-based sintered magnet
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP6414654B1 (en) Method for producing RTB-based sintered magnet
JP6414653B1 (en) Method for producing RTB-based sintered magnet
JP6489201B2 (en) Method for producing RTB-based sintered magnet
JP6750543B2 (en) R-T-B system sintered magnet
JP6094612B2 (en) Method for producing RTB-based sintered magnet
JP6860808B2 (en) Manufacturing method of RTB-based sintered magnet
JP2019102708A (en) R-t-b based permanent magnet
CN109671547B (en) R-T-B sintered magnet and method for producing same
JP6380724B1 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP2015135935A (en) Rare earth based magnet
JP2023052675A (en) R-t-b system based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP7215044B2 (en) Method for producing RTB based sintered magnet
JP7020224B2 (en) RTB-based sintered magnet and its manufacturing method
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP7021577B2 (en) Manufacturing method of RTB-based sintered magnet
JP2019149525A (en) Method for manufacturing r-t-b-based sintered magnet
JP2021057564A (en) Method for manufacturing r-t-b based sintered magnet
JP2021153148A (en) Method for manufacturing r-t-b based sintered magnet and alloy for diffusion
JP2021155783A (en) Method of producing r-t-b-based sintered magnet
JP2021153146A (en) Method for manufacturing r-t-b based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190108

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190108

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R150 Certificate of patent or registration of utility model

Ref document number: 6508447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350