WO2019181249A1 - Method for producing r-t-b system sintered magnet - Google Patents

Method for producing r-t-b system sintered magnet Download PDF

Info

Publication number
WO2019181249A1
WO2019181249A1 PCT/JP2019/004166 JP2019004166W WO2019181249A1 WO 2019181249 A1 WO2019181249 A1 WO 2019181249A1 JP 2019004166 W JP2019004166 W JP 2019004166W WO 2019181249 A1 WO2019181249 A1 WO 2019181249A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered magnet
mass
raw material
rtb
maximum thickness
Prior art date
Application number
PCT/JP2019/004166
Other languages
French (fr)
Japanese (ja)
Inventor
倫太郎 石井
國吉 太
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2019534905A priority Critical patent/JP7276132B2/en
Priority to CN201980001826.0A priority patent/CN110537235B/en
Publication of WO2019181249A1 publication Critical patent/WO2019181249A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to a method for manufacturing an RTB-based sintered magnet.
  • the RTB-based sintered magnet (R is at least one of rare earth elements and always contains Nd, and T is at least one kind of transition metal element and always contains Fe) is the highest among permanent magnets. It is known as a high-performance magnet, and is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.
  • VCM voice coil motors
  • EV electric vehicles
  • HV electric vehicles
  • PHV PHV
  • home appliances for industrial equipment, and home appliances.
  • the RTB-based sintered magnet is mainly composed of a main phase composed of an R 2 T 14 B compound and a grain boundary phase located at the grain boundary portion of the main phase.
  • the main phase, R 2 T 14 B compound is a ferromagnetic material having high magnetization, and forms the basis of the characteristics of the RTB-based sintered magnet.
  • the RTB -based sintered magnet has irreversible thermal demagnetization because the coercive force H cJ (hereinafter sometimes simply referred to as “H cJ ”) decreases at high temperatures. Therefore, especially when used for a motor for an electric vehicle, it is required to have a high HcJ even under a high temperature.
  • H cJ coercive force
  • Dy has problems such as unstable supply and price fluctuations because it originally has a small amount of resources and its production area is limited. Therefore, without using much as possible RH such as Dy (i.e., to minimize the amount), while suppressing the decrease in B r, it is required to obtain a high H cJ.
  • an R 2 Fe 17 phase is formed by lowering the amount of B than that of a normal RTB alloy and containing one or more metal elements M selected from Al, Ga, and Cu.
  • transition metal rich phase R 6 T 13 M
  • the transition metal rich phase R 6 T 13 M
  • RTB -based sintered magnets are most often used for motors, and in particular for improving high temperature stability in order to ensure high-temperature stability in applications such as motors for electric vehicles.
  • the squareness ratio H k / H cJ (hereinafter sometimes simply referred to as H k / H cJ ) must also be high. If H k / H cJ is low, it causes a problem that demagnetization tends to occur. Therefore, an RTB -based sintered magnet having high H cJ and high H k / H cJ is required.
  • H k is a parameter to be measured to determine the H k / H cJ is, J (intensity of magnetization) -H (field intensity )
  • J r intensity of magnetization
  • J r B r
  • the RTB-based rare earth sintered magnet described in Patent Document 1 can obtain a high H cJ while reducing the Dy content, but a general RTB -based sintered magnet (R).
  • R There is a problem that it is difficult to improve H k / H cJ as compared with the case where the B amount is larger than the stoichiometric ratio of the 2 T 14 B type compound.
  • H k is about 90% of H cJ (that is, H k / H cJ is about 90%).
  • the RTB-based rare earth magnet described in Patent Document 1 has a high HcJ , and therefore has a higher H k value than a general RTB -based sintered magnet.
  • H k / H cJ there is a problem that it is difficult to increase H k / H cJ to 90% or more.
  • R 28.5-33.0% by mass
  • R is at least one rare earth element and includes at least one of Nd and Pr
  • B 0.85 to 0.91% by mass
  • Ga 0.2 to 0.7% by mass
  • Co 0.1 to 0.9% by mass
  • Cu 0.05 to 0.50 mass%
  • Al 0.05 to 0.50% by mass
  • Fe 61.5% by mass or more
  • An RTB-based sintered magnet manufacturing method that satisfies the following formula (1): 14 [B] /10.8 ⁇ [T] /55.85 (1) ([B] is the B content in mass%, [T] is the T in mass% (T is the content of Fe and Co))
  • Aspect 2 of the present invention is the method for producing an RTB-based sintered magnet according to aspect 1, wherein the maximum thickness of the raw material Co is 100 ⁇ m to 1 mm.
  • Aspect 3 of the present invention is the RTB according to aspect 1 or 2, wherein the obtained RTB -based sintered magnet satisfies H cJ ⁇ 1500 kA / m and H k ⁇ 1400 kA / m. It is a manufacturing method of a system sintered magnet.
  • Aspect 4 of the present invention is the aspect 4 according to any one of the aspects 1 to 3, wherein Dy and Tb in the R are 0% by mass or more and 0.5% by mass or less of the entire RTB-based sintered magnet. This is a method of manufacturing an RTB-based sintered magnet.
  • the manufacturing method according to the embodiment of the present invention while reducing the content of RH, it is possible to produce the R-T-B based sintered magnet having a high H cJ and high H k.
  • FIG. 1A is a schematic perspective view of a plate-shaped raw material Co
  • FIG. 1B is a projection view of the raw material Co from the direction of the arrow 1A in FIG.
  • FIG. 2A is a schematic perspective view of a plate-shaped raw material Co having a wedge shape on one side
  • FIG. 2B is a projection view of the raw material Co from the direction of arrow 2A in FIG. 2A.
  • FIG. 3A is a schematic perspective view of a thin plate-like raw material Co bent in a wave shape
  • FIG. 3B is an outline of the raw material Co obtained by extending the raw material Co of FIG. 3A into a flat plate shape
  • FIG. 3C is a perspective view
  • FIG. 3C is a perspective view
  • FIG. 3C is a perspective view
  • FIG. 3C is a projection view of the raw material Co from the direction of arrow 3A in FIG. 4A is a schematic enlarged perspective view of granular raw material Co
  • FIG. 4B is a projection view of raw material Co from the direction of arrow 4A in FIG. 4A.
  • FIG. 5A is a schematic perspective view of the rod-shaped raw material Co
  • FIG. 5B is a projection view of the raw material Co from the direction of the arrow 5A in FIG. 6 (a) is a schematic perspective view of a rod-shaped raw material Co
  • FIG. 6 (b) is a schematic cross-sectional view taken along the line YY ′ of FIG. 6 (a)
  • FIG. 7 is a projection view of a raw material Co from the direction of an arrow 6A in FIG.
  • FIG. 7 is a graph plotting the magnetic properties (H k -B r ) of a sintered magnet manufactured using a raw material Co having a maximum thickness of 10 mm.
  • FIG. 8 is a graph plotting the magnetic properties (H k ⁇ B r ) of a sintered magnet manufactured using a raw material Co having a maximum thickness of 2 mm.
  • the increase in H k of the sintered magnet of changing the maximum thickness of the material Co from 10mm to 2 mm is a graph plotting against B amount.
  • FIG. 1 is a projection view of a raw material Co from the direction of an arrow 6A in FIG.
  • FIG. 7 is a graph plotting the magnetic properties (H k -B r ) of a sintered magnet manufactured using a raw material Co having a maximum thickness of 10 mm.
  • FIG. 8 is a graph plotting the magnetic properties (H
  • the maximum thickness of the material Co used is a graph plotting the H k of the sintered magnet produced by using it.
  • FIG. 14 For sintered magnet having a composition of 14, the maximum thickness of the material Co used is a graph plotting the H k of the sintered magnet produced by using it.
  • FIG. 16 For sintered magnet having a 16 composition, the maximum thickness of the material Co used is a graph plotting the H k of the sintered magnet produced by using it.
  • FIG. for sintered magnet having a composition of 17 the maximum thickness of the material Co used is a graph plotting the H k of the sintered magnet produced by using it.
  • FIG. 18 For sintered magnet having a composition of 18, the maximum thickness of the material Co used is a graph plotting the H k of the sintered magnet produced by using it.
  • FIG. 22 For sintered magnet having a composition of 22, the maximum thickness of the material Co used is a graph plotting the H k of the sintered magnet produced by using it.
  • the present inventors have determined the form of the raw material Co in the production of an RTB-based sintered magnet having a specific composition range as specified below, particularly an extremely narrow specific range of B content. It has been found that the magnetic properties of the finally obtained RTB-based sintered magnet can be improved by controlling.
  • the raw material Co one having a Co content of 50% by mass or more can be used.
  • a generally available raw material Co a thin plate-like or block-like Co material is known.
  • the thin plate-like raw material Co there is electrolytic Co produced by electrolysis, and the maximum thickness is about 3 mm.
  • the block raw material Co one having a thickness of 10 mm or more is available. Since the raw material Co used as the raw material of the sintered magnet is completely melted during the production of the alloy, it is considered unnecessary to thin or pulverize the commercially available raw material Co. It wasn't.
  • the present inventors dare to maximize the production of RTB-based sintered magnets having a specific composition range, particularly a very narrow specific range of B content, even if the raw material Co is dissolved. by processing a thickness up to 2 mm, in which found that the value of H k of the sintered magnet of the final product can be greatly improved.
  • the manufacturing method according to the embodiment of the present invention will be described in detail below.
  • composition of the RTB-based sintered magnet is: R: 28.5-33.0% by mass (R is at least one rare earth element and includes at least one of Nd and Pr), B: 0.85 to 0.91% by mass, Ga: 0.2 to 0.7% by mass, Co: 0.1 to 0.9% by mass, Cu: 0.05 to 0.50 mass%, Al: 0.05 to 0.50% by mass, and Fe: 61.5% by mass or more,
  • R 28.5-33.0% by mass
  • R is at least one rare earth element and includes at least one of Nd and Pr
  • B 0.85 to 0.91% by mass
  • Ga 0.2 to 0.7% by mass
  • Co 0.1 to 0.9% by mass
  • Cu 0.05 to 0.50 mass%
  • Al 0.05 to 0.50% by mass
  • Fe 61.5% by mass or more
  • the amount of B is smaller than that of a general RTB-based sintered magnet, and Ga and the like are contained. Therefore, an RT-Ga phase is generated at the two-grain grain boundary, High H cJ can be obtained.
  • the RT-Ga phase is typically an Nd 6 Fe 13 Ga compound.
  • the R 6 T 13 Ga compound has a La 6 Co 11 Ga 3 type crystal structure.
  • the R 6 T 13 Ga compound may be an R 6 T 13- ⁇ Ga 1 + ⁇ compound ( ⁇ is typically 2 or less) depending on the state.
  • R 6 T 13- ⁇ (Ga 1-xy Cu x Al y ) 1 + ⁇ may be obtained. is there.
  • each composition is explained in full detail.
  • R is at least one of rare earth elements and includes at least one of Nd and Pr.
  • the content of R is 28.5 to 33.0% by mass.
  • R is may become difficult to densification during sintering is less than 28.5% by mass may main phase proportion exceeds 33.0% by weight can not be obtained a high B r drops .
  • the content of R is preferably 29.5 to 32.5% by mass. If R is in such a range, higher Br can be obtained.
  • R may contain RH such as Dy and Tb.
  • RH such as Dy and Tb.
  • the content of RH is reduced, and the RTB -based sintering having high H cJ and high H k is achieved.
  • a magnet can be obtained. That is, according to the embodiment of the present invention, the content of RH, more specifically, the content of Dy and Tb (total content) may be suppressed extremely low.
  • Dy and Tb in R may be 0% by mass or more and 0.5% by mass or less of the entire RTB-based sintered magnet.
  • Dy and Tb in R means that the content of Dy and Tb (0 to 0.5 mass%) is a part of the content of R (28.5 to 33.0 mass%). Means. Further, “0 mass% or more and 0.5 mass% or less of the entire RTB-based sintered magnet” means Dy and Tb when the entire RTB-based sintered magnet is 100 mass%. It means that the total content of is 0% by mass or more and 0.5% by mass or less.
  • Dy and Tb may include only one or both. That is, when the total content of Dy and Tb is limited to 0 to 0.5% by mass, Dy is contained but Tb is not contained (Tb content is 0% by mass). It may be 0 to 0.5% by mass or less. Similarly, when Tb is contained but Dy is not contained (Dy content is 0% by mass), the Tb content may be 0 to 0.5% by mass or less. When both Dy and Tb are contained, the total content of the Dy content and the Tb content is 0 to 0.5% by mass or less. Preferably, the total content of Dy and Tb is 0 to 0.3% by mass, and most preferably, both Dy and Tb are not contained (the total content of Dy and Tb is 0% by mass).
  • B 0.85 to 0.91 mass%
  • the content of B is 0.85 to 0.91% by mass. If B is less than 0.85% by mass, R 2 T 17 phase may be produced and high H cJ may not be obtained. If it exceeds 0.91% by mass, the amount of R—T—Ga phase produced is small. Therefore, there is a possibility that high HcJ cannot be obtained.
  • the content of B is preferably 0.87 to 0.91% by mass, and a higher effect of improving HcJ can be obtained.
  • the B content is smaller than that of a general RTB-based sintered magnet.
  • a general RTB-based sintered magnet has [T] /55.85 (so that an R 2 T 17 phase, which is a soft magnetic phase, is not generated in addition to an R 2 T 14 B phase, which is a main phase.
  • the atomic weight of Fe is less than 14 [B] /10.8 (the atomic weight of B) ([T] is the content of T expressed in mass%).
  • the RTB-based sintered magnet of the embodiment of the present invention differs from a general RTB-based sintered magnet in that [T] /55.85 is more than 14 [B] /10.8. It is defined by equation (1) so as to increase. Since the main component of T in the RTB-based sintered magnet of the embodiment of the present invention is Fe, the atomic weight of Fe was used.
  • Ga 0.2 to 0.7% by mass
  • the Ga content is 0.2 to 0.7% by mass. If Ga is less than 0.2% by mass, the amount of RT-Ga phase produced is so small that the R 2 T 17 phase cannot be lost and high H cJ may not be obtained. It will be present unnecessary Ga exceeds 0.7 weight%, there is a possibility that B r decreases to decrease the main phase proportion.
  • the Co content is 0.1 to 0.9% by mass.
  • the addition of Co can suppress the formation of R 6 T 13 B 1 formed when the molded body is sintered. B r , high H cJ , and high H k are obtained.
  • Co is not possible to suppress the generation of R 6 T 13 B 1 is less than 0.1 wt%, there may not be to improve the H k, the content of Co is more than 0.9 mass% When the molded body during sintering will be generated by the R 2 T 17 phase, H cJ and H k may be reduced.
  • Cu 0.05 to 0.50 mass%
  • the Cu content is 0.05 to 0.50 mass%. If Cu is less than 0.05% by mass, high H cJ may not be obtained, and if it exceeds 0.50% by mass, sinterability may deteriorate and high H cJ may not be obtained.
  • Al 0.05 to 0.50 mass%
  • Al is usually contained in an amount of 0.05% by mass or more as an unavoidable impurity in the production process, but may be contained in an amount of 0.50% by mass or less in total of the amount contained as an inevitable impurity and the amount intentionally added. Good.
  • Fe 61.5% by mass or more
  • the content of Fe in the sintered magnet is 61.5% by mass or more and is an amount satisfying the above-described formula (1).
  • the content of Fe is less than 61.5% by mass may greatly B r drops.
  • Fe is the balance.
  • the RTB-based sintered magnet according to the embodiment of the present invention is an inevitable impurity usually contained in didymium alloy (Nd—Pr), electrolytic iron, ferroboron, and the like. Cr, Mn, Si, La, Ce, Sm, Ca, Mg and the like can be contained. Furthermore, O (oxygen), N (nitrogen), C (carbon), etc. can be illustrated as an inevitable impurity in a manufacturing process.
  • the RTB-based sintered magnet according to the embodiment of the present invention may include one or more other elements (elements added intentionally other than inevitable impurities).
  • an element for example, a small amount (each about 0.1% by mass) of Ag, Zn, In, Sn, Ti, Ge, Y, H, F, P, S, V, Ni, Mo, Hf, Ta , W, Nb, Zr and the like may be contained. Moreover, you may intentionally add the element mentioned as an inevitable impurity mentioned above. Such elements may be included in a total of about 1.0% by mass, for example. At this level, it is possible to obtain an RTB -based sintered magnet having high HcJ .
  • R-T-B based sintered magnet of the present embodiment show a high H cJ and high H k.
  • H cJ is 1500 kA / m or more, preferably H k is 1400kA / m or more, H cJ is 1520kA / m or more, more preferably H k is 1420kA / m or more, H cJ 1530kA / m or more, H k is more preferably 1425 kA / m or more, H cJ is 1550 kA / m or more, and H k is particularly preferably 1440 kA / m or more.
  • the above magnetic characteristics can also be achieved in an RTB-based sintered magnet in which the contents of Dy and Tb that can be contained in R (rare earth element) are 0.5% by mass or less in total.
  • the manufacturing method of the RTB-based sintered magnet includes a process for producing an alloy, a process for producing an alloy powder, a forming process, a sintering process, and a heat treatment process. Hereinafter, each step will be described.
  • (1) Process for producing an alloy A metal or an alloy (melting raw material) of each element is prepared so as to have a composition of an RTB-based sintered magnet according to an embodiment of the present invention, and an alloy is produced.
  • the raw material Co to be used is limited to a predetermined dimension, specifically, a maximum thickness of 2 mm or less.
  • the sintered magnet such B amount is small as defined in the present application, it is possible to improve the H cJ, it has been considered to be difficult to improve the H k.
  • the present inventors have found that by using the alloy produced on that the maximum thickness of the material Co to 2mm or less, it has been found that the alloy pulverization, thereby improving the H k of the sintered magnet obtained by sintering.
  • H k Detailed mechanism capable of improving the H k is unknown, by the maximum thickness of the material Co is limited to 2mm or less, dissolved starting materials Co uniformly and quickly when melting an alloy, its possible It is presumed that the value of H k of the finally obtained sintered magnet is improved, and as a result, H k / H cJ (square ratio) is improved.
  • the “maximum thickness” of the raw material Co is the thickest part of the thickness of the raw material Co in the case of the raw material Co having a clear “thickness” such as a plate shape. .
  • the maximum thickness is defined as follows. In the projection view of the raw material Co projected so as to minimize the area, two parallel lines in contact with the projection view are drawn so as to sandwich the projection view. By changing the angle of the parallel lines in various ways, the distance when the distance between the parallel lines is minimized becomes the maximum thickness of the raw material Co.
  • FIG. 1A is a schematic perspective view of a plate-shaped raw material Co (Co plate) 10.
  • the area of the projection view is minimized when projected from the direction of the arrow 1A.
  • FIG. 1B shows a projection view 11 of the Co plate 10 projected from the direction of the arrow 1A.
  • two parallel lines L 11b in contact with the projection diagram 11 were drawn from another angle so as to sandwich the projection diagram 11.
  • a distance T 1a between the first parallel lines L 11a and L 11a is shorter than a distance W 1a between the second parallel lines L 11b and L 11b . Therefore, the maximum thickness of the Co plate 10 is T 1a .
  • FIG. 1C shows a modification in the case where the surface is curved in the projection view 11 of the Co plate 10 shown in FIG.
  • the outline of the projection diagram 12 is curved.
  • Two parallel lines L 12a in contact with the projection 12 are drawn so as to sandwich the projection 12.
  • two parallel lines L 12b in contact with the projection diagram 12 were drawn from another angle so as to sandwich the projection diagram 12.
  • a distance T 1b between the first parallel line L 12a and the parallel line L 12a is shorter than a distance W 1b between the second parallel lines L 12b and L 12b . Therefore, the maximum thickness of the Co plate 10 is T 1b .
  • FIG. 2A is a schematic perspective view of a plate-shaped raw material Co (Co plate) 20 in which one side 25 is formed in a wedge shape (a blade shape whose thickness decreases toward the outside).
  • Co plate 20 the area of the projection view is minimized when projected from the direction of the arrow 2A.
  • FIG. 2B shows a projection view 21 of the Co plate 20 projected from the direction of the arrow 2A.
  • two parallel lines L 2 a that are in contact with the projection diagram 21 are drawn so as to sandwich the projection diagram 21.
  • two parallel lines L 2b in contact with the projection diagram 21 were drawn from another angle so as to sandwich the projection diagram 21.
  • the distance T 2a between the first parallel lines L 2a and L 2a is the distance W 2 between the second parallel lines L 2b and L 2b and the distance between the third parallel lines L 2c and L 2c. shorter than the Y 2. Therefore, the maximum thickness of the Co plate 20 is T 2a .
  • the “thickness” in the projection diagram 21 shown in FIG. 2B includes not only the thickness T 2a but also the thickness of the wedge-shaped portion (for example, the thickness T 2b and T 2c ).
  • the “maximum thickness” in the embodiment of the present invention is the thickest T 2a among those thicknesses. This is because the meltability of the raw material Co is considered to be important, and even if it is partially thin, the thick part has the most influence.
  • FIG. 3A is a schematic perspective view of a thin plate-like raw material Co (Co wave plate) 30 bent in a wave shape.
  • Co Co wave plate
  • FIG. 3A is a schematic perspective view of a thin plate-like raw material Co (Co wave plate) 30 bent in a wave shape.
  • Co curved raw material
  • one end 30a is pulled in the direction Xa, and the other end 30b is pulled in Xb, and is extended into a flat plate shape as shown in FIG. Called).
  • the maximum thickness obtained with the Co extension plate 35 is the maximum thickness of the Co wave plate 30.
  • FIG. 3C shows a projection 31 of the Co extension plate 35 projected from the direction of the arrow 3A.
  • two parallel lines L 3 a in contact with the projection diagram 31 are drawn so as to sandwich the projection diagram 31.
  • two parallel lines L 3b in contact with the projection diagram 31 were drawn from another angle so as to sandwich the projection diagram 31.
  • the maximum thickness of the Co corrugated plate 30 is determined by the state of the Co extension plate 35 for the following reason.
  • the maximum thickness is an index of the melting property of the raw material Co. If the curved plate is formed from a thin plate, it should exhibit the same meltability as the thin plate when not curved. Therefore, in the embodiment of the present invention, the maximum thickness of the Co wave plate 30 is determined by the state of the Co extension plate 35.
  • FIG. 4A is a schematic perspective view of granular raw material Co (Co particles).
  • Co particles granular raw material
  • FIG. 4B shows a projection 41 of the Co particles 40 projected from the direction of the arrow 4A.
  • two parallel lines L 4 a in contact with the projection 41 are drawn so as to sandwich the projection 41.
  • two parallel lines L 4b in contact with the projection diagram 41 were drawn from another angle so as to sandwich the projection diagram 41.
  • two parallel lines L 4c in contact with the projection 41 are drawn from another angle so as to sandwich the projection 41.
  • the distance T 4a between the first parallel lines L 4a and L 4a is the distance W 4 between the second parallel lines L 4b and L 4b and the distance between the third parallel lines L 4c and L 4c. shorter than the Y 4. Therefore, the maximum thickness of the Co plate 20 is T4a .
  • the “thickness” in the projection diagram 41 shown in FIG. 4B includes not only the thickness T 4a but also the thickness of the constricted portion of the Co particles 40 (for example, the thickness T 4b and T 4c ). Can be. However, the “maximum thickness” in the embodiment of the present invention is the thickest T 4a among those thicknesses.
  • FIG. 5A is a schematic perspective view of a rod-shaped raw material Co (Co rod).
  • Co rod a rod-shaped raw material
  • FIG. 5B shows a projection 51 of the Co bar 50 projected from the direction of the arrow 5A.
  • two parallel lines L 5 a in contact with the projection 51 are drawn so as to sandwich the projection 51.
  • two parallel lines L 5b in contact with the projection 51 are drawn from another angle so as to sandwich the projection 51.
  • a distance T 5a between the first parallel lines L 5a and L 5a is shorter than a distance T 5b between the second parallel lines L 5b and L 5b . Therefore, the maximum thickness of the Co bar 50 is T5a . Note that the maximum thickness of such a bar corresponds to the minor axis in the cross-sectional view of the bar.
  • FIG. 6A is a schematic perspective view of a rod-shaped raw material Co (constricted Co rod) partially reduced in diameter (that is, partially constricted).
  • the short diameter T 6b of the constricted portion 65 is the short diameter T 6a of the non-constricted portion 66. Smaller.
  • the constricted portion is not reflected in the projection 61 (FIG. 6C) of the Co bar 60 projected from the direction of the arrow 6A where the area of the projection is minimized.
  • the raw material Co having a maximum thickness of 2 mm or less and the raw materials of other components are melted to produce an alloy.
  • the alloy can be made into flakes, for example, by strip casting.
  • the alloy obtained in the step (1) is pulverized to produce alloy powder.
  • the obtained alloy for example, flaky raw material alloy
  • the coarsely pulverized powder by pulverizing by a jet mill or the like, for example, the particle size D 50 (a value obtained by laser diffraction method using air flow dispersion method (median diameter)) is 3 ⁇ 7 [mu] m milled powder (Alloy Powder).
  • a known lubricant may be used as an auxiliary agent for the coarsely pulverized powder before jet mill pulverization and the alloy powder during and after jet mill pulverization.
  • the forming is performed in a magnetic field to obtain a formed body.
  • a dry alloy method in which a dry alloy powder is inserted into a mold cavity and molded while applying a magnetic field, a slurry in which the alloy powder is dispersed is injected into the mold cavity, Any known forming method in a magnetic field may be used, including a wet forming method of forming while discharging the slurry dispersion medium.
  • the sintered compact (sintered magnet) is obtained by sintering the molded object obtained at the formation process.
  • a known method can be used for sintering the molded body.
  • the atmosphere gas is preferably an inert gas such as helium or argon.
  • Heat treatment process It is preferable to heat-treat with respect to the obtained sintered magnet for the purpose of improving a magnetic characteristic.
  • Known conditions can be used for the heat treatment temperature, the heat treatment time, and the like.
  • heat treatment one-step heat treatment only at a relatively low temperature (400 ° C. or more and 600 ° C. or less) may be performed, or heat treatment is performed at a relatively high temperature (700 ° C. or more and sintering temperature or less (eg, 1050 ° C. or less)).
  • heat treatment two-stage heat treatment
  • Preferable conditions are as follows: heat treatment at 730 ° C.
  • the heat treatment atmosphere is preferably a vacuum atmosphere or an inert gas (such as helium or argon).
  • the obtained sintered magnet may be subjected to machining such as grinding.
  • the heat treatment may be performed before or after machining.
  • the surface treatment may be a known surface treatment, and for example, a surface treatment such as Al deposition, electric Ni plating, or resin coating can be performed.
  • Sintered magnet thus obtained has a high H cJ and high H k are obtained had a high squareness ratio.
  • the composition of the RTB-based sintered magnet is approximately No. 1 in Table 1.
  • the raw materials for each element were blended so that each composition shown in 1 to 23 was obtained.
  • the raw material Co is Co metal, and the maximum thickness is 10 mm (cube), 4 mm (cube), 2 mm (plate), 1 mm (bar), 425 ⁇ m (particle), 100 ⁇ m (powder), 5 ⁇ m ( Fine powder) was used.
  • the raw material Co of each dimension was prepared by cutting from a block-like Co material. Note that the raw material Co having a maximum thickness of 10 mm (cubic) and 2 mm (plate-like) is a sample No. in Table 1.
  • the blended raw materials were melted and cast by a strip casting method to obtain a flaky alloy having a thickness of 0.2 to 0.4 mm.
  • the obtained flake-like alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then subjected to dehydrogenation treatment in which it was heated and cooled in vacuum to 550 ° C. to obtain coarsely pulverized powder.
  • the obtained coarsely pulverized powder was mixed with an airflow type pulverizer (jet mill device).
  • finely pulverized powder (alloy powder) having a particle diameter D 50 (median diameter) of 4 ⁇ m.
  • the oxygen concentration in the nitrogen gas during pulverization was controlled to 50 ppm or less.
  • the particle size D 50 is a value obtained by a laser diffraction method using an airflow dispersion method.
  • the obtained alloy powder was mixed with a dispersion medium to prepare a slurry.
  • Normal decane was used as a dispersion medium, and methyl caprylate was mixed as a lubricant.
  • the concentration of the slurry was 70% by mass of the alloy powder and 30% by mass of the dispersion medium, and the lubricant was 0.16% by mass with respect to 100% by mass of the alloy powder.
  • the slurry was molded in a magnetic field to obtain a molded body.
  • the magnetic field during molding was a static magnetic field of 0.8 MA / m, and the applied pressure was 5 MPa.
  • molding apparatus lateral magnetic field shaping
  • the obtained molded body was sintered at 1000 ° C. or higher and 1050 ° C. or lower (a temperature at which densification by sintering was sufficiently selected for each sample) for 4 hours, and then rapidly cooled to obtain a sintered body.
  • the density of the obtained sintered body was 7.5 Mg / m 3 or more.
  • the obtained sintered body was held in vacuum at 800 ° C. for 2 hours, then cooled to room temperature, then held in vacuum at 430 ° C. for 2 hours, and then subjected to a heat treatment to cool to room temperature to obtain an RTB system Sintered magnets (No. 1 to 23) were obtained.
  • Table 1 shows the components of the obtained RTB-based sintered magnet.
  • each component (except O, N, and C) in Table 1 was measured using a high frequency inductively coupled plasma optical emission spectrometry (ICP-OES).
  • the O (oxygen) content is determined by gas melting-infrared absorption method
  • the N (nitrogen) content is determined by gas melting-heat conduction method
  • the C (carbon) content is determined by combustion-infrared absorption method. Measured using.
  • Table 2 shows the B amount, the T amount (the sum of the Co amount and the Fe amount), the value of the left side (14 [B] /10.8) of the formula (1), and the right side ([T] /55.85). The value is shown. Table 2 also shows the satisfiability of the formula (1). Here, “ ⁇ ” means that Expression (1) is satisfied, and “X” means that Expression (1) is not satisfied.
  • the RTB-based sintered magnets after heat treatment (Sample Nos. 1 to 23) are each machined to prepare samples having a length of 7 mm, a width of 7 mm, and a thickness of 7 mm, and a BH tracer at room temperature (20
  • the magnetic properties (B r , H cJ , H k , H k / H cJ ) of each sample were measured at a temperature of ⁇ 10 ° C. Table 3 shows the measurement results.
  • Tables 4 to 6 show the measurement results of the magnetic characteristics of 14, 16 to 18, and 22.
  • Sample No. 1 to 12 do not satisfy the definition of the composition of the sintered magnet according to the embodiment of the present invention.
  • Sample No. In 1-2, 4-5, and 7-10 the amount of B does not satisfy the definition of the present invention.
  • Sample No. 6 and 11 the Ga amount does not satisfy the rule according to the embodiment of the present invention.
  • Sample No. In No. 12 the amount of Co does not satisfy the rule according to the embodiment of the present invention.
  • Sample No. 1 to 3, 5, 8, and 10 do not satisfy the definition of the expression (1). As can be seen from Table 3, most of these samples tend to have a relatively low value of HcJ at any of the maximum thicknesses of the raw material Co, 10 mm and 2 mm.
  • Sample No. Nos. 13 to 23 satisfy all the requirements for the composition of the sintered magnet according to the embodiment of the present invention. Therefore, sample no. Nos . 13 to 23 have relatively high values of HcJ in any of the maximum thicknesses of the raw material Co of 10 mm and 2 mm (Table 3).
  • FIG. 7 is a graph plotting the magnetic properties (H k -B r ) of a sintered magnet manufactured using a raw material Co having a maximum thickness of 10 mm.
  • FIG. 8 is a graph plotting the magnetic properties (H k ⁇ B r ) of a sintered magnet manufactured using a raw material Co having a maximum thickness of 2 mm.
  • the data of 1 to 12 are plotted, and the symbol “ ⁇ ” indicates the sample No.
  • the data of 13 to 23 are plotted.
  • the maximum thickness of the raw material Co when the maximum thickness of the raw material Co is 10 mm, the sample No. In any of 1 to 12 and Samples 13 to 23, the obtained sintered magnet had an H k of less than 1400 kA / m.
  • the maximum thickness of the raw material Co is 2 mm as shown in FIG. In 1 to 12, the H k of the obtained sintered magnet remained less than 1400 kA / m, but in Samples 13 to 23, the H k of the obtained sintered magnet was 1400 kA / m or more. .
  • H k (10 mm) and “H k (2 mm)” in Table 3 and the like mean values of H k of sintered magnets manufactured using raw material Co having a maximum thickness of 10 mm and 2 mm, respectively. Further, in FIG. 9, the increase amount of H k is plotted against the B amount.
  • sample no Examples sintered magnet having a composition of 14 ⁇ 18, 22, examined the effect of the H k in the case of using a raw material Co with different maximum thicknesses.
  • Table 4 shows sample Nos. Manufactured using raw material Co having a maximum thickness of 10 mm and 4 mm. The measurement results of the magnetic properties of the sintered magnets 14, 16 to 18, 22 are shown.
  • Table 5 shows sample Nos. Manufactured using raw material Co having a maximum thickness of 2 mm and 1 mm. The measurement result of the magnetic characteristic of 16 sintered magnets is shown.
  • Table 6 shows sample Nos. Manufactured using raw material Co having a maximum thickness of 425 ⁇ m, 100 ⁇ m, and 5 ⁇ m.
  • the H k was 1420 kA / m or more. Furthermore, when raw material Co having a maximum thickness of 100 ⁇ m to 2 mm was used, H k of the obtained sintered magnet was 1425 kA / m or more.
  • the H k was 1440 kA / m or more. Further, when the raw material Co having a maximum thickness of 100 ⁇ m to 1 mm was used, the H k of the obtained sintered magnet was 1460 kA / m or more.
  • the H k was 1460 kA / m or more. Furthermore, when raw material Co having a maximum thickness of 100 ⁇ m to 1 mm was used, H k of the obtained sintered magnet was 1480 kA / m or more.
  • the sintered magnet maximum thickness was prepared using the following ingredients Co 2 mm, H k became 1465kA / m or more. Furthermore, when raw material Co having a maximum thickness of 100 ⁇ m to 1 mm was used, H k of the obtained sintered magnet was 1485 kA / m or more.
  • the H k was 1400 kA / m or more. Furthermore, when raw material Co having a maximum thickness of 100 ⁇ m to 1 mm was used, H k of the obtained sintered magnet was 1420 kA / m or more.

Abstract

The present invention is a method for producing an R-T-B system sintered magnet that has a specific composition and satisfies formula (1). This method for producing an R-T-B system sintered magnet comprises: a step for forming an alloy that satisfies the composition of the R-T-B system sintered magnet with use of a starting material Co that has a maximum thickness of 2 mm or less; a step for forming an alloy powder from the alloy; a molding step for obtaining a molded body by molding the alloy powder; a sintering step for obtaining a sintered body by sintering the molded body; and a heat treatment step for subjecting the sintered body to a heat treatment. (1): 14(B)/10.8 < (T)/55.85 (In the formula, (B) represents the content of B expressed in terms of mass%; and (T) represents the content of T (T is composed of Fe and Co) expressed in terms of mass%.)

Description

R-T-B系焼結磁石の製造方法Method for producing RTB-based sintered magnet
 本開示は、R-T-B系焼結磁石の製造方法に関する。 The present disclosure relates to a method for manufacturing an RTB-based sintered magnet.
 R-T-B系焼結磁石(Rは希土類元素のうち少なくとも一種でありNdを必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。 The RTB-based sintered magnet (R is at least one of rare earth elements and always contains Nd, and T is at least one kind of transition metal element and always contains Fe) is the highest among permanent magnets. It is known as a high-performance magnet, and is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.
 R-T-B系焼結磁石は主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR14B化合物は、高い磁化を持つ強磁性材料であり、R-T-B系焼結磁石の特性の根幹をなしている。 The RTB-based sintered magnet is mainly composed of a main phase composed of an R 2 T 14 B compound and a grain boundary phase located at the grain boundary portion of the main phase. The main phase, R 2 T 14 B compound, is a ferromagnetic material having high magnetization, and forms the basis of the characteristics of the RTB-based sintered magnet.
 R-T-B系焼結磁石は、高温下では保磁力HcJ(以下、単に「HcJ」という場合がある)が低下するため、不可逆熱減磁が起こる。そのため、特に電気自動車用モータに使用される場合、高温下でも高いHcJを有することが要求されている。 The RTB -based sintered magnet has irreversible thermal demagnetization because the coercive force H cJ (hereinafter sometimes simply referred to as “H cJ ”) decreases at high temperatures. Therefore, especially when used for a motor for an electric vehicle, it is required to have a high HcJ even under a high temperature.
 従来、HcJ向上のために、Dy、Tb等の重希土類元素RHをR-T-B系焼結磁石に多量に添加していた。しかし、重希土類元素RHを多量に添加すると、HcJは向上するが、残留磁束密度B(以下、単に「B」という場合がある)が低下するという問題があった。そのため、近年、R-T-B系焼結磁石の表面から内部にRHを拡散させて主相結晶粒の外殻部にRHを濃化させることでBの低下を抑制しつつ、高いHcJを得る方法が提案されている。 Conventionally, in order to improve HcJ , heavy rare earth elements RH such as Dy and Tb have been added in a large amount to an RTB-based sintered magnet. However, when a large amount of the heavy rare earth element RH is added, HcJ is improved, but there is a problem that the residual magnetic flux density B r (hereinafter sometimes simply referred to as “B r ”) is lowered. Therefore, in recent years, while suppressing a decrease in B r by causing thickening of the RH in the outer shell surface from the main phase crystal grains by diffusing RH inside the R-T-B based sintered magnet, high H A method for obtaining cJ has been proposed.
 しかし、Dyは、もともと資源量が少ないうえ産出地が限定されている等の理由から、供給が不安定であり、価格変動するなどの問題を有している。そのため、DyなどのRHをできるだけ使用せず(つまり、使用量をできるだけ少なくして)、Bの低下を抑制しつつ、高いHcJを得ることが求められている。 However, Dy has problems such as unstable supply and price fluctuations because it originally has a small amount of resources and its production area is limited. Therefore, without using much as possible RH such as Dy (i.e., to minimize the amount), while suppressing the decrease in B r, it is required to obtain a high H cJ.
 特許文献1には、通常のR-T-B合金よりもB量を低くするとともに、Al、Ga、Cuのうちから選ばれる1種類以上の金属元素Mを含有させることによりRFe17相を生成させ、該RFe17相を原料として生成させた遷移金属リッチ相(R13M)の体積率を十分に確保することにより、Dyの含有量を抑制しつつ、保磁力の高いR-T-B系希土類焼結磁石が得られることが記載されている。 In Patent Document 1, an R 2 Fe 17 phase is formed by lowering the amount of B than that of a normal RTB alloy and containing one or more metal elements M selected from Al, Ga, and Cu. Of the transition metal rich phase (R 6 T 13 M) generated from the R 2 Fe 17 phase as a raw material, while maintaining the Dy content and reducing the coercive force. It is described that a high RTB system rare earth sintered magnet can be obtained.
 また、上述の通りR-T-B系焼結磁石が最も利用される用途はモータであり、特に電気自動車用モータなどの用途で高温安定性を確保するためにHcJの向上は大変有効であるが、それらの特性とともに角形比H/HcJ(以下、単にH/HcJという場合がある)も高くなければならない。H/HcJが低いと減磁しやすくなるという問題を引き起こす。そのため、高いHcJを有するとともに、高いH/HcJを有するR-T-B系焼結磁石が求められている。なお、R-T-B系焼結磁石の分野においては、一般に、H/HcJを求めるために測定するパラメータであるHは、J(磁化の強さ)-H(磁界の強さ)曲線の第2象限において、Jが0.9×J(Jは残留磁化、J=B)の値になる位置のH軸の読み値が用いられている。このHを減磁曲線のHcJで除した値(H/HcJ=H(kA/m)/HcJ(kA/m)×100(%))が角形比として定義される。 In addition, as described above, RTB -based sintered magnets are most often used for motors, and in particular for improving high temperature stability in order to ensure high-temperature stability in applications such as motors for electric vehicles. However, along with these characteristics, the squareness ratio H k / H cJ (hereinafter sometimes simply referred to as H k / H cJ ) must also be high. If H k / H cJ is low, it causes a problem that demagnetization tends to occur. Therefore, an RTB -based sintered magnet having high H cJ and high H k / H cJ is required. In the field of R-T-B based sintered magnet, typically, H k is a parameter to be measured to determine the H k / H cJ is, J (intensity of magnetization) -H (field intensity ) In the second quadrant of the curve, the H-axis reading at a position where J is 0.9 × J r (J r is the residual magnetization, J r = B r ) is used. A value obtained by dividing H k by H cJ of the demagnetization curve (H k / H cJ = H k (kA / m) / H cJ (kA / m) × 100 (%)) is defined as the square ratio.
国際公開第2013/008756号International Publication No. 2013/008756
 特許文献1に記載されているR-T-B系希土類焼結磁石では、Dyの含有量を低減しつつ高いHcJが得られるものの、一般的なR-T-B系焼結磁石 (R14B型化合物の化学量論比よりもB量が多い)と比べてH/HcJを向上するのが難しいという問題点があった。具体的には、一般的なR-T-B系焼結磁石では、Hは、HcJの90%程度の値(つまりH/HcJは90%程度)となる。これに対し、特許文献1に記載されているR-T-B系希土類磁石では、高いHcJが得られるため、一般的なR-T-B系焼結磁石よりもHの値も高いものの、H/HcJを90%以上にするのが難しいという問題があった。 The RTB-based rare earth sintered magnet described in Patent Document 1 can obtain a high H cJ while reducing the Dy content, but a general RTB -based sintered magnet (R There is a problem that it is difficult to improve H k / H cJ as compared with the case where the B amount is larger than the stoichiometric ratio of the 2 T 14 B type compound. Specifically, in a general RTB -based sintered magnet, H k is about 90% of H cJ (that is, H k / H cJ is about 90%). On the other hand, the RTB-based rare earth magnet described in Patent Document 1 has a high HcJ , and therefore has a higher H k value than a general RTB -based sintered magnet. However, there is a problem that it is difficult to increase H k / H cJ to 90% or more.
 そこで本発明の実施形態は、Dy、Tb等のRHの含有量を低減しつつ、高いHcJと高いHを有するR-T-B系焼結磁石を製造するための方法を提供することを目的とする。 Therefore embodiments of the present invention to provide Dy, while reducing the content of RH of Tb or the like, a method for manufacturing the R-T-B based sintered magnet having a high H cJ and high H k With the goal.
 本発明の態様1は、
 R:28.5~33.0質量%(Rは希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む)、
 B:0.85~0.91質量%、
 Ga:0.2~0.7質量%、
 Co:0.1~0.9質量%、
 Cu:0.05~0.50質量%、
 Al:0.05~0.50質量%、および
 Fe:61.5質量%以上を含有し、
 下記式(1)を満足するR-T-B系焼結磁石の製造方法であって、

  14[B]/10.8<[T]/55.85   (1)
 ([B]は質量%で示すBの含有量であり、[T]は質量%で示すT(TはFeとCo)の含有量である)

 最大厚さが2mm以下である原料Coを使用して、前記R-T-B系焼結磁石の組成を満足する合金を作製する工程と
 前記合金から合金粉末を作製する工程と、
 前記合金粉末を成形して成形体を得る成形工程と、
 前記成形体を焼結して焼結体を得る焼結工程と、
 前記焼結体に熱処理を施す熱処理工程と、
を含む、R-T-B系焼結磁石の製造方法である。
Aspect 1 of the present invention
R: 28.5-33.0% by mass (R is at least one rare earth element and includes at least one of Nd and Pr),
B: 0.85 to 0.91% by mass,
Ga: 0.2 to 0.7% by mass,
Co: 0.1 to 0.9% by mass,
Cu: 0.05 to 0.50 mass%,
Al: 0.05 to 0.50% by mass, and Fe: 61.5% by mass or more,
An RTB-based sintered magnet manufacturing method that satisfies the following formula (1):

14 [B] /10.8 <[T] /55.85 (1)
([B] is the B content in mass%, [T] is the T in mass% (T is the content of Fe and Co))

Using raw material Co having a maximum thickness of 2 mm or less, producing an alloy satisfying the composition of the RTB-based sintered magnet, producing an alloy powder from the alloy,
A molding step of molding the alloy powder to obtain a molded body;
Sintering step for obtaining a sintered body by sintering the molded body;
A heat treatment step for heat-treating the sintered body;
Is a method for producing an RTB-based sintered magnet.
 本発明の態様2は、前記原料Coの前記最大厚さが100μm~1mmである、態様1に記載のR-T-B系焼結磁石の製造方法である。 Aspect 2 of the present invention is the method for producing an RTB-based sintered magnet according to aspect 1, wherein the maximum thickness of the raw material Co is 100 μm to 1 mm.
 本発明の態様3は、得られる前記R-T-B系焼結磁石が、HcJ≧1500kA/mおよびH≧1400kA/mを満足する、態様1または2に記載のR-T-B系焼結磁石の製造方法である。 Aspect 3 of the present invention is the RTB according to aspect 1 or 2, wherein the obtained RTB -based sintered magnet satisfies H cJ ≧ 1500 kA / m and H k ≧ 1400 kA / m. It is a manufacturing method of a system sintered magnet.
 本発明の態様4は、前記RにおけるDyおよびTbは、前記R-T-B系焼結磁石全体の0質量%以上、0.5質量%以下である態様1から3のいずれかに記載のR-T-B系焼結磁石の製造方法である。 Aspect 4 of the present invention is the aspect 4 according to any one of the aspects 1 to 3, wherein Dy and Tb in the R are 0% by mass or more and 0.5% by mass or less of the entire RTB-based sintered magnet. This is a method of manufacturing an RTB-based sintered magnet.
 本発明の実施形態に係る製造方法によれば、RHの含有量を低減しつつ、高いHcJと高いHを有するR-T-B系焼結磁石を製造することができる。 According to the manufacturing method according to the embodiment of the present invention, while reducing the content of RH, it is possible to produce the R-T-B based sintered magnet having a high H cJ and high H k.
図1(a)は、板状の原料Coの概略斜視図であり、図1(b)は、図1(a)の矢印1A方向からの原料Coの投影図であり、図1(c)は、図1(b)の変形例である。FIG. 1A is a schematic perspective view of a plate-shaped raw material Co, and FIG. 1B is a projection view of the raw material Co from the direction of the arrow 1A in FIG. Is a modification of FIG. 図2(a)は、片側がくさび状にされた板状の原料Coの概略斜視図であり、図2(b)は、図2(a)の矢印2A方向からの原料Coの投影図である。2A is a schematic perspective view of a plate-shaped raw material Co having a wedge shape on one side, and FIG. 2B is a projection view of the raw material Co from the direction of arrow 2A in FIG. 2A. is there. 図3(a)は、波状に屈曲した薄板状の原料Coの概略斜視図であり、図3(b)は、図3(a)の原料Coを平坦な板状に伸展した原料Coの概略斜視図であり、図3(c)は、図3(b)の矢印3A方向からの原料Coの投影図である。FIG. 3A is a schematic perspective view of a thin plate-like raw material Co bent in a wave shape, and FIG. 3B is an outline of the raw material Co obtained by extending the raw material Co of FIG. 3A into a flat plate shape. FIG. 3C is a perspective view, and FIG. 3C is a projection view of the raw material Co from the direction of arrow 3A in FIG. 図4(a)は、粒状の原料Coの概略拡大斜視図であり、図4(b)は、図4(a)の矢印4A方向からの原料Coの投影図である。4A is a schematic enlarged perspective view of granular raw material Co, and FIG. 4B is a projection view of raw material Co from the direction of arrow 4A in FIG. 4A. 図5(a)は、棒状の原料Coの概略斜視図であり、図5(b)は、図5(a)の矢印5A方向からの原料Coの投影図である。FIG. 5A is a schematic perspective view of the rod-shaped raw material Co, and FIG. 5B is a projection view of the raw material Co from the direction of the arrow 5A in FIG. 図6(a)は、棒状の原料Coの概略斜視図であり、図6(b)は、図6(a)のY-Y’線における概略断面図であり、図6(c)は、図6(a)の矢印6A方向からの原料Coの投影図である。6 (a) is a schematic perspective view of a rod-shaped raw material Co, FIG. 6 (b) is a schematic cross-sectional view taken along the line YY ′ of FIG. 6 (a), and FIG. FIG. 7 is a projection view of a raw material Co from the direction of an arrow 6A in FIG. 図7は、最大厚さが10mmの原料Coを用いて製造した焼結磁石の磁気特性(H-B)をプロットしたグラフである。FIG. 7 is a graph plotting the magnetic properties (H k -B r ) of a sintered magnet manufactured using a raw material Co having a maximum thickness of 10 mm. 図8は、最大厚さが2mmの原料Coを用いて製造した焼結磁石の磁気特性(H-B)をプロットしたグラフである。FIG. 8 is a graph plotting the magnetic properties (H k −B r ) of a sintered magnet manufactured using a raw material Co having a maximum thickness of 2 mm. 図9は、原料Coの最大厚さを10mmから2mmに変更したときの焼結磁石のHの増加量を、B量に対してプロットしたグラフである。9, the increase in H k of the sintered magnet of changing the maximum thickness of the material Co from 10mm to 2 mm, is a graph plotting against B amount. 図10は、試料No.14の組成を有する焼結磁石について、使用した原料Coの最大厚さに対して、それを用いて製造した焼結磁石のHをプロットしたグラフである。FIG. For sintered magnet having a composition of 14, the maximum thickness of the material Co used is a graph plotting the H k of the sintered magnet produced by using it. 図11は、試料No.16の組成を有する焼結磁石について、使用した原料Coの最大厚さに対して、それを用いて製造した焼結磁石のHをプロットしたグラフである。FIG. For sintered magnet having a 16 composition, the maximum thickness of the material Co used is a graph plotting the H k of the sintered magnet produced by using it. 図12は、試料No.17の組成を有する焼結磁石について、使用した原料Coの最大厚さに対して、それを用いて製造した焼結磁石のHをプロットしたグラフである。FIG. For sintered magnet having a composition of 17, the maximum thickness of the material Co used is a graph plotting the H k of the sintered magnet produced by using it. 図13は、試料No.18の組成を有する焼結磁石について、使用した原料Coの最大厚さに対して、それを用いて製造した焼結磁石のHをプロットしたグラフである。FIG. For sintered magnet having a composition of 18, the maximum thickness of the material Co used is a graph plotting the H k of the sintered magnet produced by using it. 図14は、試料No.22の組成を有する焼結磁石について、使用した原料Coの最大厚さに対して、それを用いて製造した焼結磁石のHをプロットしたグラフである。FIG. For sintered magnet having a composition of 22, the maximum thickness of the material Co used is a graph plotting the H k of the sintered magnet produced by using it.
 以下に示す実施形態は、本発明の技術思想を具体化するためのR-T-B系焼結磁石の製造方法を例示するものであって、本発明を以下に限定するものではない。 The embodiment described below exemplifies a manufacturing method of an RTB-based sintered magnet for embodying the technical idea of the present invention, and the present invention is not limited to the following.
 本発明者らは鋭意検討した結果、以下に規定するような特定の組成範囲、特に極めて狭い特定範囲のB含有量を有するR-T-B系焼結磁石の製造において、原料Coの形態を制御することにより、最終的に得られるR-T-B系焼結磁石の磁気的特性を向上できることを見いだした。 As a result of intensive studies, the present inventors have determined the form of the raw material Co in the production of an RTB-based sintered magnet having a specific composition range as specified below, particularly an extremely narrow specific range of B content. It has been found that the magnetic properties of the finally obtained RTB-based sintered magnet can be improved by controlling.
 原料Coとしては、Coの含有量が50質量%以上のものが利用できる。一般的に入手可能な原料Coとして、薄板状またはブロック状のCo材料が知られている。薄板状の原料Coとしては電解製造された電解Coがあり、その最大厚さが3mm程度である。ブロック状の原料Coでは、厚さ10mm以上のものが入手可能である。
 焼結磁石の原料として使用される原料Coは、合金作製の際に完全に溶融されるため、市販された原料Coを薄板化または粉末化することは不要な手間と考えられており、従来行われていなかった。しかしながら本発明者らは、溶解されてしまう原料Coであっても、特定の組成範囲、特に極めて狭い特定範囲のB含有量を有するR-T-B系焼結磁石の製造においては、敢えて最大厚さを2mmまで加工することにより、最終製品の焼結磁石のHの値を大幅に向上できることを見いだしたものである。
 以下に本発明の実施形態に係る製造方法について詳述する。
As the raw material Co, one having a Co content of 50% by mass or more can be used. As a generally available raw material Co, a thin plate-like or block-like Co material is known. As the thin plate-like raw material Co, there is electrolytic Co produced by electrolysis, and the maximum thickness is about 3 mm. As the block raw material Co, one having a thickness of 10 mm or more is available.
Since the raw material Co used as the raw material of the sintered magnet is completely melted during the production of the alloy, it is considered unnecessary to thin or pulverize the commercially available raw material Co. It wasn't. However, the present inventors dare to maximize the production of RTB-based sintered magnets having a specific composition range, particularly a very narrow specific range of B content, even if the raw material Co is dissolved. by processing a thickness up to 2 mm, in which found that the value of H k of the sintered magnet of the final product can be greatly improved.
The manufacturing method according to the embodiment of the present invention will be described in detail below.
<R-T-B系焼結磁石>
 まず、本発明の実施形態に係る製造方法によって得られるR-T-B系焼結磁石について説明する。
<RTB-based sintered magnet>
First, the RTB-based sintered magnet obtained by the manufacturing method according to the embodiment of the present invention will be described.
(R-T-B系焼結磁石の組成)
 本実施形態に係るR-T-B系焼結磁石の組成は、
 R:28.5~33.0質量%(Rは希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む)、
 B:0.85~0.91質量%、
 Ga:0.2~0.7質量%、
 Co:0.1~0.9質量%、
 Cu:0.05~0.50質量%、
 Al:0.05~0.50質量%、および
 Fe:61.5質量%以上を含有し、
 下記式(1)を満足する。

  14[B]/10.8<[T]/55.85   (1)
 ([B]は質量%で示すBの含有量であり、[T]は質量%で示すTの含有量である)
(Composition of RTB-based sintered magnet)
The composition of the RTB-based sintered magnet according to this embodiment is:
R: 28.5-33.0% by mass (R is at least one rare earth element and includes at least one of Nd and Pr),
B: 0.85 to 0.91% by mass,
Ga: 0.2 to 0.7% by mass,
Co: 0.1 to 0.9% by mass,
Cu: 0.05 to 0.50 mass%,
Al: 0.05 to 0.50% by mass, and Fe: 61.5% by mass or more,
The following formula (1) is satisfied.

14 [B] /10.8 <[T] /55.85 (1)
([B] is the B content in mass%, and [T] is the T content in mass%)
 上記組成により、一般的なR-T-B系焼結磁石よりもB量を少なくするとともに、Ga等を含有させているので、二粒子粒界にR-T-Ga相が生成して、高いHcJを得ることができる。ここで、R-T-Ga相とは、代表的にはNdFe13Ga化合物である。R13Ga化合物は、LaCo11Ga型結晶構造を有する。また、R13Ga化合物は、その状態によっては、R13-δGa1+δ化合物(δは典型的には2以下)になっている場合がある。例えば、R-T-B系焼結磁石中にCu、Alが比較的多く含有される場合、R13-δ(Ga1-x-yCuAl1+δになっている場合がある。
 以下に、各組成について詳述する。
With the above composition, the amount of B is smaller than that of a general RTB-based sintered magnet, and Ga and the like are contained. Therefore, an RT-Ga phase is generated at the two-grain grain boundary, High H cJ can be obtained. Here, the RT-Ga phase is typically an Nd 6 Fe 13 Ga compound. The R 6 T 13 Ga compound has a La 6 Co 11 Ga 3 type crystal structure. In addition, the R 6 T 13 Ga compound may be an R 6 T 13-δ Ga 1 + δ compound (δ is typically 2 or less) depending on the state. For example, when a relatively large amount of Cu and Al is contained in an RTB-based sintered magnet, R 6 T 13-δ (Ga 1-xy Cu x Al y ) 1 + δ may be obtained. is there.
Below, each composition is explained in full detail.
(R:28.5~33.0質量%)
 Rは、希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む。Rの含有量は、28.5~33.0質量%である。Rが28.5質量%未満であると焼結時の緻密化が困難となるおそれがあり、33.0質量%を超えると主相比率が低下して高いBを得られないおそれがある。Rの含有量は、好ましくは29.5~32.5質量%である。Rがこのような範囲であれば、より高いBを得ることができる。
(R: 28.5-33.0% by mass)
R is at least one of rare earth elements and includes at least one of Nd and Pr. The content of R is 28.5 to 33.0% by mass. R is may become difficult to densification during sintering is less than 28.5% by mass may main phase proportion exceeds 33.0% by weight can not be obtained a high B r drops . The content of R is preferably 29.5 to 32.5% by mass. If R is in such a range, higher Br can be obtained.
 Rは、DyおよびTb等のRHを含有してもよい。ただし、本発明の実施形態では、B、Ga、Co等の含有量を制御することにより、RHの含有量を低減しつつ、高いHcJと高いHを有するR-T-B系焼結磁石を得ることができる。つまり、本発明の実施形態によれば、RHの含有量、より具体的にはDyおよびTbの含有量(合計含有量)を、極めて低く抑制してもよい。具体的には、RにおけるDyおよびTbは、前記R-T-B系焼結磁石全体の0質量%以上、0.5質量%以下としてもよい。ここで「RにおけるDyおよびTb」とは、DyおよびTbの含有量(0~0.5質量%)は、Rの含有量(28.5~33.0質量%)の一部であることを意味している。また、「R-T-B系焼結磁石全体の0質量%以上、0.5質量%以下」とは、R-T-B系焼結磁石全体を100質量%としたときのDyおよびTbの含有量の合計が0質量%以上、0.5質量%以下であることをいう。 R may contain RH such as Dy and Tb. However, in the embodiment of the present invention, by controlling the content of B, Ga, Co, etc., the content of RH is reduced, and the RTB -based sintering having high H cJ and high H k is achieved. A magnet can be obtained. That is, according to the embodiment of the present invention, the content of RH, more specifically, the content of Dy and Tb (total content) may be suppressed extremely low. Specifically, Dy and Tb in R may be 0% by mass or more and 0.5% by mass or less of the entire RTB-based sintered magnet. Here, “Dy and Tb in R” means that the content of Dy and Tb (0 to 0.5 mass%) is a part of the content of R (28.5 to 33.0 mass%). Means. Further, “0 mass% or more and 0.5 mass% or less of the entire RTB-based sintered magnet” means Dy and Tb when the entire RTB-based sintered magnet is 100 mass%. It means that the total content of is 0% by mass or more and 0.5% by mass or less.
 なお、Dy、Tbは、いずれか一方のみを含んでも、両方とも含んでもよい。つまり、DyとTbの合計含有量を0~0.5質量%に制限するとき、Dyを含有するが、Tbを含有しない(Tbの含有量が0質量%)場合は、Dyの含有量を0~0.5質量%以下とすればよい。同様に、Tbを含有するが、Dyを含有しない(Dyの含有量が0質量%)場合は、Tbの含有量を0~0.5質量%以下とすればよい。DyおよびTbの両方を含有する場合は、Dyの含有量とTbの含有量の合計の含有量を、0~0.5質量%以下とすることになる。
 好ましくは、DyおよびTbの含有量は、合計で、0~0.3質量%であり、最も好ましくは、DyおよびTbの両方とも含有しない(DyとTbの合計含有量が0質量%)。
Dy and Tb may include only one or both. That is, when the total content of Dy and Tb is limited to 0 to 0.5% by mass, Dy is contained but Tb is not contained (Tb content is 0% by mass). It may be 0 to 0.5% by mass or less. Similarly, when Tb is contained but Dy is not contained (Dy content is 0% by mass), the Tb content may be 0 to 0.5% by mass or less. When both Dy and Tb are contained, the total content of the Dy content and the Tb content is 0 to 0.5% by mass or less.
Preferably, the total content of Dy and Tb is 0 to 0.3% by mass, and most preferably, both Dy and Tb are not contained (the total content of Dy and Tb is 0% by mass).
(B:0.85~0.91質量%)
 Bの含有量は、0.85~0.91質量%である。Bが0.85質量%未満であるとR17相が生成されて高いHcJが得られないおそれがあり、0.91質量%を超えるとR-T-Ga相の生成量が少なすぎて高いHcJが得られないおそれがある。Bの含有量は、好ましくは0.87~0.91質量%であり、より高いHcJ向上効果が得られる。
(B: 0.85 to 0.91 mass%)
The content of B is 0.85 to 0.91% by mass. If B is less than 0.85% by mass, R 2 T 17 phase may be produced and high H cJ may not be obtained. If it exceeds 0.91% by mass, the amount of R—T—Ga phase produced is small. Therefore, there is a possibility that high HcJ cannot be obtained. The content of B is preferably 0.87 to 0.91% by mass, and a higher effect of improving HcJ can be obtained.
 さらに、Bの含有量は下記式(1)を満たす。

  14[B]/10.8<[T]/55.85   (1)

 ここで、[B]は質量%で示すBの含有量であり、[T]は質量%で示すTの含有量である。なお、TとはFeとCoのことである。よって、[T]は、以下のように書き換えることができる。

  [T]=[Fe]+[Co]

 ここで、[Fe]と[Co]はそれぞれ、質量%で示すFeとCoの含有量である。
Furthermore, the content of B satisfies the following formula (1).

14 [B] /10.8 <[T] /55.85 (1)

Here, [B] is the B content expressed in mass%, and [T] is the T content expressed in mass%. T is Fe and Co. Therefore, [T] can be rewritten as follows.

[T] = [Fe] + [Co]

Here, [Fe] and [Co] are the contents of Fe and Co in mass%, respectively.
 式(1)を満足することにより、Bの含有量が一般的なR-T-B系焼結磁石よりも少なくなる。一般的なR-T-B系焼結磁石は、主相であるR14B相以外に軟磁性相であるR17相が生成しないように、[T]/55.85(Feの原子量)は14[B]/10.8(Bの原子量)よりも少ない組成となっている([T]は、質量%で示すTの含有量である)。本発明の実施形態のR-T-B系焼結磁石は、一般的なR-T-B系焼結磁石と異なり、[T]/55.85が14[B]/10.8よりも多くなるように式(1)で規定している。なお、本発明の実施形態のR-T-B系焼結磁石におけるTの主成分はFeであるため、Feの原子量を用いた。 By satisfying the formula (1), the B content is smaller than that of a general RTB-based sintered magnet. A general RTB-based sintered magnet has [T] /55.85 (so that an R 2 T 17 phase, which is a soft magnetic phase, is not generated in addition to an R 2 T 14 B phase, which is a main phase. The atomic weight of Fe is less than 14 [B] /10.8 (the atomic weight of B) ([T] is the content of T expressed in mass%). The RTB-based sintered magnet of the embodiment of the present invention differs from a general RTB-based sintered magnet in that [T] /55.85 is more than 14 [B] /10.8. It is defined by equation (1) so as to increase. Since the main component of T in the RTB-based sintered magnet of the embodiment of the present invention is Fe, the atomic weight of Fe was used.
(Ga:0.2~0.7質量%)
 Gaの含有量は、0.2~0.7質量%である。Gaが0.2質量%未満であると、R-T-Ga相の生成量が少なすぎて、R17相を消失させることができず、高いHcJを得ることができないおそれがあり、0.7質量%を超えると不要なGaが存在することになり、主相比率が低下してBが低下するおそれがある。
(Ga: 0.2 to 0.7% by mass)
The Ga content is 0.2 to 0.7% by mass. If Ga is less than 0.2% by mass, the amount of RT-Ga phase produced is so small that the R 2 T 17 phase cannot be lost and high H cJ may not be obtained. It will be present unnecessary Ga exceeds 0.7 weight%, there is a possibility that B r decreases to decrease the main phase proportion.
(Co:0.1~0.9質量%)
 Coの含有量は、0.1~0.9質量%である。本発明の実施形態のR-T-B系焼結磁石では、Coを添加することにより成形体を焼結する際に形成されるR13の生成を抑制することができ、高B、高HcJ、高Hが得られる。しかし、Coが0.1質量%未満であるとR13の生成を抑制できず、Hを向上させることができない恐れがあり、Coの含有量が0.9質量%を超えると、成形体を焼結する際にR17相が生成してしまい、HcJやHが低下する恐れがある。
(Co: 0.1 to 0.9% by mass)
The Co content is 0.1 to 0.9% by mass. In the RTB-based sintered magnet according to the embodiment of the present invention, the addition of Co can suppress the formation of R 6 T 13 B 1 formed when the molded body is sintered. B r , high H cJ , and high H k are obtained. However, Co is not possible to suppress the generation of R 6 T 13 B 1 is less than 0.1 wt%, there may not be to improve the H k, the content of Co is more than 0.9 mass% When the molded body during sintering will be generated by the R 2 T 17 phase, H cJ and H k may be reduced.
(Cu:0.05~0.50質量%)
 Cuの含有量は、0.05~0.50質量%である。Cuが0.05質量%未満であると高いHcJを得ることができないおそれがあり、0.50質量%を超えると焼結性が悪化して高いHcJが得られないおそれがある。
(Cu: 0.05 to 0.50 mass%)
The Cu content is 0.05 to 0.50 mass%. If Cu is less than 0.05% by mass, high H cJ may not be obtained, and if it exceeds 0.50% by mass, sinterability may deteriorate and high H cJ may not be obtained.
(Al:0.05~0.50質量%)
 Alの含有量は、0.05~0.50質量%である。Alを含有することによりHcJを向上させることができる。Alは通常、製造工程で不可避的不純物として0.05質量%以上含有されるが、不可避的不純物で含有される量と意図的に添加した量の合計で0.50質量%以下含有してもよい。
(Al: 0.05 to 0.50 mass%)
The Al content is 0.05 to 0.50 mass%. By containing Al, HcJ can be improved. Al is usually contained in an amount of 0.05% by mass or more as an unavoidable impurity in the production process, but may be contained in an amount of 0.50% by mass or less in total of the amount contained as an inevitable impurity and the amount intentionally added. Good.
(Fe:61.5質量%以上)
 焼結磁石中のFeの含有量は61.5質量%以上であり、かつ上述した式(1)を満足する量である。Feの含有量が61.5質量%未満であると、大幅にBが低下する恐れがある。好ましくは、Feが残部である。
(Fe: 61.5% by mass or more)
The content of Fe in the sintered magnet is 61.5% by mass or more and is an amount satisfying the above-described formula (1). When the content of Fe is less than 61.5% by mass may greatly B r drops. Preferably, Fe is the balance.
 さらに、Feが残部の場合においても、本発明の実施形態に係るR-T-B系焼結磁石は、ジジム合金(Nd-Pr)、電解鉄、フェロボロンなどに通常含有される不可避的不純物としてCr、Mn、Si、La、Ce、Sm、Ca、Mgなどを含有することができる。さらに、製造工程中の不可避的不純物として、O(酸素)、N(窒素)およびC(炭素)などを例示できる。また、本発明の実施形態に係るR-T-B系焼結磁石は、1種以上の他の元素(不可避的不純物以外の意図的に加えた元素)を含んでもよい。例えば、このような元素として、少量(各々0.1質量%程度)のAg、Zn、In、Sn、Ti、Ge、Y、H、F、P、S、V、Ni、Mo、Hf、Ta、W、Nb、Zrなどを含有してもよい。また、上述した不可避的不純物として挙げた元素を意図的に加えてもよい。このような元素は、合計で例えば1.0質量%程度含まれてもよい。この程度であれば、高いHcJを有するR-T-B系焼結磁石を得ることが十分に可能である。 Further, even when Fe is the balance, the RTB-based sintered magnet according to the embodiment of the present invention is an inevitable impurity usually contained in didymium alloy (Nd—Pr), electrolytic iron, ferroboron, and the like. Cr, Mn, Si, La, Ce, Sm, Ca, Mg and the like can be contained. Furthermore, O (oxygen), N (nitrogen), C (carbon), etc. can be illustrated as an inevitable impurity in a manufacturing process. In addition, the RTB-based sintered magnet according to the embodiment of the present invention may include one or more other elements (elements added intentionally other than inevitable impurities). For example, as such an element, a small amount (each about 0.1% by mass) of Ag, Zn, In, Sn, Ti, Ge, Y, H, F, P, S, V, Ni, Mo, Hf, Ta , W, Nb, Zr and the like may be contained. Moreover, you may intentionally add the element mentioned as an inevitable impurity mentioned above. Such elements may be included in a total of about 1.0% by mass, for example. At this level, it is possible to obtain an RTB -based sintered magnet having high HcJ .
(R-T-B系焼結磁石の磁気的特性)
 本実施形態に係るR-T-B系焼結磁石は、高いHcJと高いHを示す。特に、HcJが1500kA/m以上、Hが1400kA/m以上であることが好ましく、HcJが1520kA/m以上、Hが1420kA/m以上であることがより好ましく、HcJが1530kA/m以上、Hが1425kA/m以上であることがさらに好ましく、HcJが1550kA/m以上、Hが1440kA/m以上であることが特に好ましい。上記磁気的特性は、R(希土類元素)に含まれ得るDyおよびTbの含有量が、合計で0.5質量%以下であるR-T-B系焼結磁石においても達成し得る。
(Magnetic characteristics of RTB-based sintered magnet)
R-T-B based sintered magnet of the present embodiment show a high H cJ and high H k. In particular, H cJ is 1500 kA / m or more, preferably H k is 1400kA / m or more, H cJ is 1520kA / m or more, more preferably H k is 1420kA / m or more, H cJ 1530kA / m or more, H k is more preferably 1425 kA / m or more, H cJ is 1550 kA / m or more, and H k is particularly preferably 1440 kA / m or more. The above magnetic characteristics can also be achieved in an RTB-based sintered magnet in which the contents of Dy and Tb that can be contained in R (rare earth element) are 0.5% by mass or less in total.
<R-T-B系焼結磁石の製造方法>
 次に、本発明に係るR-T-B系焼結磁石の製造方法を説明する。
 R-T-B系焼結磁石の製造方法は、合金を作製する工程、合金粉末を作製する工程、成形工程、焼結工程、および熱処理工程を含む。
 以下、各工程について説明する。
<Method for producing RTB-based sintered magnet>
Next, the manufacturing method of the RTB system sintered magnet which concerns on this invention is demonstrated.
The manufacturing method of the RTB-based sintered magnet includes a process for producing an alloy, a process for producing an alloy powder, a forming process, a sintering process, and a heat treatment process.
Hereinafter, each step will be described.
(1)合金を作製する工程
 本発明の実施形態に係るR-T-B系焼結磁石の組成となるように各元素の金属または合金(溶解原料)を準備し、合金を作製する。このとき、使用する原料Coが所定の寸法、具体的には最大厚さが2mm以下に制限する。一般的に、本願に規定されるようなB量が少ない焼結磁石では、HcJを向上させることができるが、Hを向上することは困難であると考えられてきた。しかしながら、本発明者らは、原料Coの最大厚さを2mm以下にした上で合金製造に使用することにより、その合金を粉砕、焼結した焼結磁石のHを向上できることを見いだした。特に、原料Coの最大厚さを100μm~1mmに制御するのが好ましく、Hを著しく向上させることができる。
(1) Process for producing an alloy A metal or an alloy (melting raw material) of each element is prepared so as to have a composition of an RTB-based sintered magnet according to an embodiment of the present invention, and an alloy is produced. At this time, the raw material Co to be used is limited to a predetermined dimension, specifically, a maximum thickness of 2 mm or less. Generally, the sintered magnet such B amount is small as defined in the present application, it is possible to improve the H cJ, it has been considered to be difficult to improve the H k. However, the present inventors have found that by using the alloy produced on that the maximum thickness of the material Co to 2mm or less, it has been found that the alloy pulverization, thereby improving the H k of the sintered magnet obtained by sintering. In particular, it is preferable to control the maximum thickness of the material Co in 100 [mu] m ~ 1 mm, it is possible to significantly improve the H k.
 Hを向上できる詳細なメカニズムは不明であるが、原料Coの最大厚さが2mm以下に制限されることにより、合金を溶製するときに原料Coが均一かつ迅速に溶解し、そのことが最終的に得られる焼結磁石のHの値を向上し、ひいてはH/HcJ(角形比)を向上するものと推測される。 Detailed mechanism capable of improving the H k is unknown, by the maximum thickness of the material Co is limited to 2mm or less, dissolved starting materials Co uniformly and quickly when melting an alloy, its possible It is presumed that the value of H k of the finally obtained sintered magnet is improved, and as a result, H k / H cJ (square ratio) is improved.
 ここで原料Coの「最大厚さ」とは、例えば板状のように「厚さ」が明確な形状の原料Coの場合には、原料Coの厚さのうち、最も厚い部分のことである。
 また、板状ではない(つまり、どの寸法が厚さか明確ではない形状の)原料Coについては、最大厚さは以下のように規定される。
 面積が最小になるように投影した原料Coの投影図において、その投影図に接する平行線を、投影図を挟むように2本引く。この平行線の角度を様々に変更して、平行線の間の距離が最小になったときの当該距離が、原料Coの最大厚さとなる。
Here, the “maximum thickness” of the raw material Co is the thickest part of the thickness of the raw material Co in the case of the raw material Co having a clear “thickness” such as a plate shape. .
For the raw material Co that is not plate-shaped (that is, the shape whose thickness is not clear), the maximum thickness is defined as follows.
In the projection view of the raw material Co projected so as to minimize the area, two parallel lines in contact with the projection view are drawn so as to sandwich the projection view. By changing the angle of the parallel lines in various ways, the distance when the distance between the parallel lines is minimized becomes the maximum thickness of the raw material Co.
(Co板10の最大厚さ)
 様々な形態の原料Coにおける「最大厚さ」を、図1~図6を参照しながら説明する。本発明の実施形態では、板状のみならず、粒子状、棒状、線状等の原料Coが用いることができる。
 図1(a)は、板状の原料Co(Co板)10の概略斜視図である。Co板10において、投影図の面積が最小になるのは、矢印1A方向から投影した場合である。矢印1A方向から投影したCo板10の投影図11を図1(b)に示す。図1(b)では、投影図11に接する平行線L11aを、投影図11を挟むように2本引いた。また、別の角度から、投影図11に接する平行線L11bを、投影図11を挟むように2本引いた。第1の平行線L11a、L11aの間の距離T1aは、第2の平行線L11b、L11bの間の距離W1aより短い。よって、このCo板10の最大厚さはT1aである。
(Maximum thickness of Co plate 10)
The “maximum thickness” of various forms of raw material Co will be described with reference to FIGS. In the embodiment of the present invention, not only the plate shape but also the raw material Co such as a particle shape, a rod shape, or a linear shape can be used.
FIG. 1A is a schematic perspective view of a plate-shaped raw material Co (Co plate) 10. In the Co plate 10, the area of the projection view is minimized when projected from the direction of the arrow 1A. FIG. 1B shows a projection view 11 of the Co plate 10 projected from the direction of the arrow 1A. In FIG. 1 (b), the parallel lines L 11a in contact with the projection 11, drawn two so as to sandwich the projection 11. Further, two parallel lines L 11b in contact with the projection diagram 11 were drawn from another angle so as to sandwich the projection diagram 11. A distance T 1a between the first parallel lines L 11a and L 11a is shorter than a distance W 1a between the second parallel lines L 11b and L 11b . Therefore, the maximum thickness of the Co plate 10 is T 1a .
 図1(c)には、図1(b)に示すCo板10の投影図11において、表面が湾曲していた場合の変形例を示す。図1(c)に示すように、表面が湾曲したCo板の投影図12では、投影図12の外郭線が湾曲する。この投影図12に接する平行線L12aを、投影図12を挟むように2本引いた。また、別の角度から、投影図12に接する平行線L12bを、投影図12を挟むように2本引いた。第1の平行線L12a、平行線L12aの間の距離T1bは、第2の平行線L12b、L12bの間の距離W1bより短い。よって、このCo板10の最大厚さはT1bである。 FIG. 1C shows a modification in the case where the surface is curved in the projection view 11 of the Co plate 10 shown in FIG. As shown in FIG. 1C, in the projection diagram 12 of the Co plate having a curved surface, the outline of the projection diagram 12 is curved. Two parallel lines L 12a in contact with the projection 12 are drawn so as to sandwich the projection 12. In addition, two parallel lines L 12b in contact with the projection diagram 12 were drawn from another angle so as to sandwich the projection diagram 12. A distance T 1b between the first parallel line L 12a and the parallel line L 12a is shorter than a distance W 1b between the second parallel lines L 12b and L 12b . Therefore, the maximum thickness of the Co plate 10 is T 1b .
(くさび状部分を有するCo板20の最大厚さ)
 図2(a)は、片側25がくさび状(外方に向かって厚さが薄くなった刃状)にされた板状の原料Co(Co板)20の概略斜視図である。Co板20において、投影図の面積が最小になるのは、矢印2A方向から投影した場合である。矢印2A方向から投影したCo板20の投影図21を図2(b)に示す。図2(b)では、投影図21に接する平行線L2aを、投影図21を挟むように2本引いた。また、別の角度から、投影図21に接する平行線L2bを、投影図21を挟むように2本引いた。さらに、別の角度から、投影図21に接する平行線L2cを、投影図21を挟むように2本引いた。第1の平行線L2a、L2aの間の距離T2aは、第2の平行線L2b、L2bの間の距離W、および第3の平行線L2c、L2cの間の距離Yより短い。よって、このCo板20の最大厚さはT2aである。
(Maximum thickness of Co plate 20 having a wedge-shaped portion)
FIG. 2A is a schematic perspective view of a plate-shaped raw material Co (Co plate) 20 in which one side 25 is formed in a wedge shape (a blade shape whose thickness decreases toward the outside). In the Co plate 20, the area of the projection view is minimized when projected from the direction of the arrow 2A. FIG. 2B shows a projection view 21 of the Co plate 20 projected from the direction of the arrow 2A. In FIG. 2B, two parallel lines L 2 a that are in contact with the projection diagram 21 are drawn so as to sandwich the projection diagram 21. In addition, two parallel lines L 2b in contact with the projection diagram 21 were drawn from another angle so as to sandwich the projection diagram 21. Further, two parallel lines L 2c in contact with the projection diagram 21 were drawn from another angle so as to sandwich the projection diagram 21. The distance T 2a between the first parallel lines L 2a and L 2a is the distance W 2 between the second parallel lines L 2b and L 2b and the distance between the third parallel lines L 2c and L 2c. shorter than the Y 2. Therefore, the maximum thickness of the Co plate 20 is T 2a .
 なお、図2(b)に示す投影図21における「厚さ」には、厚さT2aだけでなく、くさび状部分の厚さ(例えば厚さT2b、T2c)も含まれる。しかし、本発明の実施形態における「最大厚さ」は、それらの厚さのうちで最も厚みのあるT2aとなる。これは、原料Coの溶融性が重要になると考えられるため、部分的に薄い場合でも、厚い部分が最も影響があることによる。 Note that the “thickness” in the projection diagram 21 shown in FIG. 2B includes not only the thickness T 2a but also the thickness of the wedge-shaped portion (for example, the thickness T 2b and T 2c ). However, the “maximum thickness” in the embodiment of the present invention is the thickest T 2a among those thicknesses. This is because the meltability of the raw material Co is considered to be important, and even if it is partially thin, the thick part has the most influence.
(Co波板30の最大厚さ)
 図3(a)は、波状に屈曲した薄板状の原料Co(Co波板)30の概略斜視図である。このような湾曲した原料Coの場合、まずは伸展して平坦にする。Co波板30の場合、一端30aを方向Xaに、他端30bをXbにそれぞれ引っ張って、図3(b)に示すような平坦な板状に伸展する(これを「Co伸展板35」と称する)。このCo伸展板35で求めた最大厚さが、Co波板30の最大厚さである。
(Maximum thickness of Co corrugated plate 30)
FIG. 3A is a schematic perspective view of a thin plate-like raw material Co (Co wave plate) 30 bent in a wave shape. In the case of such a curved raw material Co, first, it is extended and flattened. In the case of the Co corrugated plate 30, one end 30a is pulled in the direction Xa, and the other end 30b is pulled in Xb, and is extended into a flat plate shape as shown in FIG. Called). The maximum thickness obtained with the Co extension plate 35 is the maximum thickness of the Co wave plate 30.
 図3(b)に示すCo伸展板35において、投影図の面積が最小になるのは、矢印3A方向から投影した場合である。矢印3A方向から投影したCo伸展板35の投影図31を図3(c)に示す。図3(c)では、投影図31に接する平行線L3aを、投影図31を挟むように2本引いた。また、別の角度から、投影図31に接する平行線L3bを、投影図31を挟むように2本引いた。第1の平行線L3a、L3aの間の距離Tは、第2の平行線L3b、L3bの間の距離Wより短い。よって、このCo伸展板35および伸展前のCo波板30の最大厚さは、いずれもTである。 In the Co extension plate 35 shown in FIG. 3B, the area of the projected view is minimized when projected from the direction of the arrow 3A. FIG. 3C shows a projection 31 of the Co extension plate 35 projected from the direction of the arrow 3A. In FIG. 3C, two parallel lines L 3 a in contact with the projection diagram 31 are drawn so as to sandwich the projection diagram 31. Further, two parallel lines L 3b in contact with the projection diagram 31 were drawn from another angle so as to sandwich the projection diagram 31. The first parallel line L 3a, the distance T 3 between the L 3a, the second parallel line L 3b, shorter than the distance W 3 between the L 3b. Therefore, the maximum thickness of the Co extension plate 35 and extension before Co-wave plate 30 are both T 3.
 このように、Co波板30の最大厚さを、Co伸展板35の状態で決定するのは以下の理由による。Co波板30の状態で最大厚さを決定すると、湾曲の山部(上端)と谷部(下端)との間の距離が「最大厚さ」となる。しかしながら、本発明の実施形態において、最大厚さは、原料Coの溶融性の指標とされている。湾曲した板が薄板から形成されている場合、湾曲していない場合の薄板と同様の溶融性を示すはずである。よって、本発明の実施形態においては、Co波板30の最大厚さを、Co伸展板35の状態で決定する。 Thus, the maximum thickness of the Co corrugated plate 30 is determined by the state of the Co extension plate 35 for the following reason. When the maximum thickness is determined in the state of the Co corrugated plate 30, the distance between the peak portion (upper end) and the valley portion (lower end) of the curve becomes the “maximum thickness”. However, in the embodiment of the present invention, the maximum thickness is an index of the melting property of the raw material Co. If the curved plate is formed from a thin plate, it should exhibit the same meltability as the thin plate when not curved. Therefore, in the embodiment of the present invention, the maximum thickness of the Co wave plate 30 is determined by the state of the Co extension plate 35.
(Co粒子40の最大厚さ)
 図4(a)は、粒状の原料Co(Co粒子)の概略斜視図である。Co粒子40において、投影図の面積が最小になるのは、矢印4A方向から投影した場合である。矢印4A方向から投影したCo粒子40の投影図41を図4(b)に示す。図4(b)では、投影図41に接する平行線L4aを、投影図41を挟むように2本引いた。また、別の角度から、投影図41に接する平行線L4bを、投影図41を挟むように2本引いた。さらに、別の角度から、投影図41に接する平行線L4cを、投影図41を挟むように2本引いた。第1の平行線L4a、L4aの間の距離T4aは、第2の平行線L4b、L4bの間の距離W、および第3の平行線L4c、L4cの間の距離Yより短い。よって、このCo板20の最大厚さはT4aである。
(Maximum thickness of Co particles 40)
FIG. 4A is a schematic perspective view of granular raw material Co (Co particles). In the Co particle 40, the area of the projected view is minimized when projected from the direction of the arrow 4A. FIG. 4B shows a projection 41 of the Co particles 40 projected from the direction of the arrow 4A. In FIG. 4B, two parallel lines L 4 a in contact with the projection 41 are drawn so as to sandwich the projection 41. Further, two parallel lines L 4b in contact with the projection diagram 41 were drawn from another angle so as to sandwich the projection diagram 41. Further, two parallel lines L 4c in contact with the projection 41 are drawn from another angle so as to sandwich the projection 41. The distance T 4a between the first parallel lines L 4a and L 4a is the distance W 4 between the second parallel lines L 4b and L 4b and the distance between the third parallel lines L 4c and L 4c. shorter than the Y 4. Therefore, the maximum thickness of the Co plate 20 is T4a .
 なお、図4(b)に示す投影図41における「厚さ」には、厚さT4aだけでなく、Co粒子40のくびれた部分の厚さ(例えば厚さT4b、T4c)も含まれ得る。しかし、本発明の実施形態における「最大厚さ」は、それらの厚さのうちで最も厚みのあるT4aとなる。 Note that the “thickness” in the projection diagram 41 shown in FIG. 4B includes not only the thickness T 4a but also the thickness of the constricted portion of the Co particles 40 (for example, the thickness T 4b and T 4c ). Can be. However, the “maximum thickness” in the embodiment of the present invention is the thickest T 4a among those thicknesses.
(Co棒材50の最大厚さ)
 図5(a)は、棒状の原料Co(Co棒材)の概略斜視図である。Co棒材50において、投影図の面積が最小になるのは、矢印5A方向から投影した場合である。矢印5A方向から投影したCo棒材50の投影図51を図5(b)に示す。図5(b)では、投影図51に接する平行線L5aを、投影図51を挟むように2本引いた。また、別の角度から、投影図51に接する平行線L5bを、投影図51を挟むように2本引いた。第1の平行線L5a、L5aの間の距離T5aは、第2の平行線L5b、L5bの間の距離T5bより短い。よって、このCo棒材50の最大厚さはT5aである。
 なお、このような棒材における最大厚さは、棒材の断面図における短径に相当する。
(Maximum thickness of Co bar 50)
FIG. 5A is a schematic perspective view of a rod-shaped raw material Co (Co rod). In the Co bar 50, the area of the projection is minimized when projected from the direction of the arrow 5A. FIG. 5B shows a projection 51 of the Co bar 50 projected from the direction of the arrow 5A. In FIG. 5B, two parallel lines L 5 a in contact with the projection 51 are drawn so as to sandwich the projection 51. In addition, two parallel lines L 5b in contact with the projection 51 are drawn from another angle so as to sandwich the projection 51. A distance T 5a between the first parallel lines L 5a and L 5a is shorter than a distance T 5b between the second parallel lines L 5b and L 5b . Therefore, the maximum thickness of the Co bar 50 is T5a .
Note that the maximum thickness of such a bar corresponds to the minor axis in the cross-sectional view of the bar.
(くびれのあるCo棒材60の最大厚さ)
 図6(a)は、部分的に縮径された(つまり、部分的にくびれた)棒状の原料Co(くびれCo棒材)の概略斜視図である。図6(b)に示すように、Co棒材60のくびれ部分65の断面図(Y-Y’線)では、くびれ部分65の短径T6bは、くびれのない部分66の短径T6aより小さくなる。
 しかしながら、投影図の面積が最小になる矢印6A方向から投影したCo棒材60の投影図61(図6(c))では、くびれ部分が反映されない。よって、図6(c)では、投影図61に接する平行線L6aを、投影図61を挟むように2本引くと、その平行線L6a、L6aの間の距離T6aは、図6(b)に示す「くびれのない部分66の短径T6a」と一致する。そして、その平行線L6a、L6aの間の距離T6aが、このCo棒材60の最大厚さとなる。
(Maximum thickness of constricted Co bar 60)
FIG. 6A is a schematic perspective view of a rod-shaped raw material Co (constricted Co rod) partially reduced in diameter (that is, partially constricted). As shown in FIG. 6B, in the cross-sectional view (YY ′ line) of the constricted portion 65 of the Co rod 60, the short diameter T 6b of the constricted portion 65 is the short diameter T 6a of the non-constricted portion 66. Smaller.
However, the constricted portion is not reflected in the projection 61 (FIG. 6C) of the Co bar 60 projected from the direction of the arrow 6A where the area of the projection is minimized. Thus, in FIG. 6 (c), the parallel lines L 6a in contact with the projection drawing 61, subtract two so as to sandwich the projection view 61, the parallel lines L 6a, the distance T 6a between the L 6a, as shown in FIG. 6 This coincides with the “minor axis T 6a of the non-constricted portion 66” shown in FIG. Then, the parallel lines L 6a, the distance T 6a between the L 6a becomes the maximum thickness of the Co bar 60.
 このように規定された最大厚さが2mm以下の原料Coと、その他の成分の原料とを溶融して合金を製造する。合金は、例えばストリップキャスティング法等により、フレーク状にすることができる。 The raw material Co having a maximum thickness of 2 mm or less and the raw materials of other components are melted to produce an alloy. The alloy can be made into flakes, for example, by strip casting.
(2)合金粉末を作製する工程
 この工程では、上記工程(1)で得られた合金を粉砕して合金粉末を作製する。
 例えば、得られた合金(例えばフレーク状の原料合金)を水素粉砕し、粗粉砕粉のサイズを例えば1.0mm以下とする。次に、粗粉砕粉をジェットミル等により微粉砕することで、例えば粒径D50(気流分散法によるレーザー回折法で得られた値(メジアン径))が3~7μmの微粉砕粉(合金粉末)を得る。なお、ジェットミル粉砕前の粗粉砕粉、ジェットミル粉砕中およびジェットミル粉砕後の合金粉末に助剤として公知の潤滑剤を使用してもよい。
(2) Step of producing alloy powder In this step, the alloy obtained in the step (1) is pulverized to produce alloy powder.
For example, the obtained alloy (for example, flaky raw material alloy) is hydrogen pulverized so that the size of the coarsely pulverized powder is 1.0 mm or less, for example. Next, the coarsely pulverized powder by pulverizing by a jet mill or the like, for example, the particle size D 50 (a value obtained by laser diffraction method using air flow dispersion method (median diameter)) is 3 ~ 7 [mu] m milled powder (Alloy Powder). A known lubricant may be used as an auxiliary agent for the coarsely pulverized powder before jet mill pulverization and the alloy powder during and after jet mill pulverization.
(3)成形工程
 得られた合金粉末を用いて磁界中成形を行い、成形体を得る。磁界中成形は、金型のキャビティー内に乾燥した合金粉末を挿入し、磁界を印加しながら成形する乾式成形法、金型のキャビティー内に該合金粉末を分散させたスラリーを注入し、スラリーの分散媒を排出しながら成形する湿式成形法を含む既知の任意の磁界中成形方法を用いてよい。
(3) Forming step Using the obtained alloy powder, the forming is performed in a magnetic field to obtain a formed body. In the magnetic field molding, a dry alloy method in which a dry alloy powder is inserted into a mold cavity and molded while applying a magnetic field, a slurry in which the alloy powder is dispersed is injected into the mold cavity, Any known forming method in a magnetic field may be used, including a wet forming method of forming while discharging the slurry dispersion medium.
(4)焼結工程
 成形工程で得られた成形体を焼結することにより、焼結体(焼結磁石)を得る。成形体の焼結は既知の方法を用いることができる。なお、焼結時の雰囲気による酸化を防止するために、焼結は、真空雰囲気中または雰囲気ガス中で行うことが好ましい。雰囲気ガスは、ヘリウム、アルゴンなどの不活性ガスを用いることが好ましい。
(4) Sintering process The sintered compact (sintered magnet) is obtained by sintering the molded object obtained at the formation process. A known method can be used for sintering the molded body. In addition, in order to prevent the oxidation by the atmosphere at the time of sintering, it is preferable to perform sintering in a vacuum atmosphere or atmospheric gas. The atmosphere gas is preferably an inert gas such as helium or argon.
(5)熱処理工程
 得られた焼結磁石に対し、磁気特性を向上させることを目的とした熱処理を行うことが好ましい。熱処理温度、熱処理時間などは既知の条件を用いることができる。例えば、比較的低い温度(400℃以上600℃以下)のみでの熱処理(一段熱処理)をしてもよく、あるいは比較的高い温度(700℃以上焼結温度以下(例えば1050℃以下))で熱処理を行った後比較的低い温度(400℃以上600℃以下)で熱処理(二段熱処理)をしてもよい。好ましい条件は、730℃以上1020℃以下で5分から500分程度の熱処理を施し、冷却後(室温まで冷却後、または440℃以上550℃以下まで冷却後)、さらに440℃以上550℃以下で5分から500分程度熱処理をすることが挙げられる。熱処理雰囲気は、真空雰囲気あるいは不活性ガス(ヘリウムやアルゴンなど)で行うことが好ましい。
(5) Heat treatment process It is preferable to heat-treat with respect to the obtained sintered magnet for the purpose of improving a magnetic characteristic. Known conditions can be used for the heat treatment temperature, the heat treatment time, and the like. For example, heat treatment (one-step heat treatment) only at a relatively low temperature (400 ° C. or more and 600 ° C. or less) may be performed, or heat treatment is performed at a relatively high temperature (700 ° C. or more and sintering temperature or less (eg, 1050 ° C. or less)). After performing, heat treatment (two-stage heat treatment) may be performed at a relatively low temperature (400 ° C. or more and 600 ° C. or less). Preferable conditions are as follows: heat treatment at 730 ° C. to 1020 ° C. for 5 minutes to 500 minutes, cooling (after cooling to room temperature or after cooling to 440 ° C. to 550 ° C.), and further at 440 ° C. to 550 ° C. Heat treatment for about 500 minutes to 500 minutes. The heat treatment atmosphere is preferably a vacuum atmosphere or an inert gas (such as helium or argon).
 最終的な製品形状にするなどの目的で、得られた焼結磁石に研削などの機械加工を施してもよい。その場合、熱処理は機械加工前でも機械加工後でもよい。さらに、得られた焼結磁石に、表面処理を施してもよい。表面処理は、既知の表面処理であってもよく、例えばAl蒸着や電気Niめっきや樹脂塗料などの表面処理を行うことができる。 For the purpose of making a final product shape, the obtained sintered magnet may be subjected to machining such as grinding. In that case, the heat treatment may be performed before or after machining. Furthermore, you may surface-treat to the obtained sintered magnet. The surface treatment may be a known surface treatment, and for example, a surface treatment such as Al deposition, electric Ni plating, or resin coating can be performed.
 このようにして得られた焼結磁石は、高いHcJと高いHが得られ、高い角形比を有していた。 Sintered magnet thus obtained has a high H cJ and high H k are obtained had a high squareness ratio.
 R-T-B系焼結磁石の組成がおよそ表1のNo.1~23に示す各組成となるように各元素の原料を配合した。このとき、原料CoはCoメタルであり、最大厚さが10mm(立方体)、4mm(立方体)、2mm(板状)、1mm(棒状)、425μm(粒子状)、100μm(粉末状)、5μm(微粉末)のものを使用した。各寸法の原料Coは、ブロック状のCo材料から切削加工して調製した。なお、最大厚さが10mm(立方体)、2mm(板状)の原料Coは、表1の試料No.1~23の組成を有する全ての合金を製造するのに使用し、それ以外の原料Co(4mm(立方体)、1mm(棒状)、425μm(粒子状)、100μm(粉末状)、5μm(微粉末))は、試料No.14、16~18、22の組成を有する合金の製造のみに使用した。 The composition of the RTB-based sintered magnet is approximately No. 1 in Table 1. The raw materials for each element were blended so that each composition shown in 1 to 23 was obtained. At this time, the raw material Co is Co metal, and the maximum thickness is 10 mm (cube), 4 mm (cube), 2 mm (plate), 1 mm (bar), 425 μm (particle), 100 μm (powder), 5 μm ( Fine powder) was used. The raw material Co of each dimension was prepared by cutting from a block-like Co material. Note that the raw material Co having a maximum thickness of 10 mm (cubic) and 2 mm (plate-like) is a sample No. in Table 1. Used to produce all alloys having a composition of 1 to 23, and other raw materials Co (4 mm (cube), 1 mm (bar), 425 μm (particulate), 100 μm (powder)), 5 μm (fine powder) )) Is a sample No. Used only for the production of alloys having compositions of 14, 16-18, 22.
 配合した原料を溶解してストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の合金を得た。得られたフレーク状の合金に水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、粗粉砕粉100質量%に対して、潤滑剤として0.04質量%のステアリン酸亜鉛を添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50(メジアン径)が4μmの微粉砕粉(合金粉末)を得た。なお、粉砕時の窒素ガス中の酸素濃度は50ppm以下に制御した。また、粒径D50は、気流分散法によるレーザー回折法で得られた値である。 The blended raw materials were melted and cast by a strip casting method to obtain a flaky alloy having a thickness of 0.2 to 0.4 mm. The obtained flake-like alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then subjected to dehydrogenation treatment in which it was heated and cooled in vacuum to 550 ° C. to obtain coarsely pulverized powder. Next, after adding and mixing 0.04% by mass of zinc stearate as a lubricant with respect to 100% by mass of the coarsely pulverized powder, the obtained coarsely pulverized powder was mixed with an airflow type pulverizer (jet mill device). Then, dry pulverization was performed in a nitrogen stream to obtain finely pulverized powder (alloy powder) having a particle diameter D 50 (median diameter) of 4 μm. The oxygen concentration in the nitrogen gas during pulverization was controlled to 50 ppm or less. The particle size D 50 is a value obtained by a laser diffraction method using an airflow dispersion method.
 得られた合金粉末を分散媒と混合しスラリーを作製した。分散媒にはノルマルドデカンを用い、潤滑剤としてカプリル酸メチルを混合した。スラリーの濃度は合金粉末70質量%、分散媒30質量%とし、潤滑剤は合金粉末100質量%に対して0.16質量%とした。前記スラリーを磁界中で成形して成形体を得た。成形時の磁界は0.8MA/mの静磁界で、加圧力は5MPaとした。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。 The obtained alloy powder was mixed with a dispersion medium to prepare a slurry. Normal decane was used as a dispersion medium, and methyl caprylate was mixed as a lubricant. The concentration of the slurry was 70% by mass of the alloy powder and 30% by mass of the dispersion medium, and the lubricant was 0.16% by mass with respect to 100% by mass of the alloy powder. The slurry was molded in a magnetic field to obtain a molded body. The magnetic field during molding was a static magnetic field of 0.8 MA / m, and the applied pressure was 5 MPa. In addition, what was called a right-angle magnetic field shaping | molding apparatus (lateral magnetic field shaping | molding apparatus) in which the magnetic field application direction and the pressurization direction orthogonally cross was used for the shaping | molding apparatus.
 得られた成形体を、真空中、1000℃以上1050℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し焼結体を得た。得られた焼結体の密度は7.5Mg/m以上であった。得られた焼結体に対し真空中、800℃で2時間保持した後室温まで冷却し、次いで真空中で430℃で2時間保持した後、室温まで冷却する熱処理を施しR-T-B系焼結磁石(No.1~23)を得た。得られたR-T-B系焼結磁石の成分を表1に示す。なお、表1における各成分(O、NおよびC以外)は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。また、O(酸素)含有量は、ガス融解-赤外線吸収法、N(窒素)含有量は、ガス融解-熱伝導法、C(炭素)含有量は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した。 The obtained molded body was sintered at 1000 ° C. or higher and 1050 ° C. or lower (a temperature at which densification by sintering was sufficiently selected for each sample) for 4 hours, and then rapidly cooled to obtain a sintered body. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The obtained sintered body was held in vacuum at 800 ° C. for 2 hours, then cooled to room temperature, then held in vacuum at 430 ° C. for 2 hours, and then subjected to a heat treatment to cool to room temperature to obtain an RTB system Sintered magnets (No. 1 to 23) were obtained. Table 1 shows the components of the obtained RTB-based sintered magnet. In addition, each component (except O, N, and C) in Table 1 was measured using a high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). The O (oxygen) content is determined by gas melting-infrared absorption method, the N (nitrogen) content is determined by gas melting-heat conduction method, and the C (carbon) content is determined by combustion-infrared absorption method. Measured using.
 表2には、B量、T量(Co量とFe量の合計)、式(1)の左辺(14[B]/10.8)の値、右辺([T]/55.85)の値を示した。また、式(1)の充足性も表2に示した。ここで「○」は式(1)を満たしていることを意味し、「×」は式(1)を満たしていないことを意味している。 Table 2 shows the B amount, the T amount (the sum of the Co amount and the Fe amount), the value of the left side (14 [B] /10.8) of the formula (1), and the right side ([T] /55.85). The value is shown. Table 2 also shows the satisfiability of the formula (1). Here, “◯” means that Expression (1) is satisfied, and “X” means that Expression (1) is not satisfied.
 熱処理後のR-T-B系焼結磁石(試料No.1~23)にそれぞれ機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B-Hトレーサによって室温下(20℃±10℃)で各試料の磁気特性(B、HcJ、H、H/HcJ)を測定した。測定結果を表3に示す。なお、H/HcJ(角形比)において、HはI(磁化の大きさ)-H(磁界の強さ)曲線の第2象限において、Iが0.9×J(Jは残留磁化、J=B)の値になる位置のHの値である。
 様々な最大厚さを有する原料Coを用いた試料No.14、16~18、22の磁気特性の測定結果を表4~表6に示す。
The RTB-based sintered magnets after heat treatment (Sample Nos. 1 to 23) are each machined to prepare samples having a length of 7 mm, a width of 7 mm, and a thickness of 7 mm, and a BH tracer at room temperature (20 The magnetic properties (B r , H cJ , H k , H k / H cJ ) of each sample were measured at a temperature of ± 10 ° C. Table 3 shows the measurement results. In H k / H cJ (square ratio), H k is in the second quadrant of the I (magnetization magnitude) -H (magnetic field strength) curve, and I is 0.9 × J r (J r is This is the value of H at the position where the value of remanent magnetization, J r = B r ).
Sample No. using raw material Co having various maximum thicknesses. Tables 4 to 6 show the measurement results of the magnetic characteristics of 14, 16 to 18, and 22.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 試料No.1~12は、本発明の実施形態に係る焼結磁石の組成の規定を満たしていない。試料No.1~2、4~5、7~10は、B量が本発明の規定を満たしていない。試料No.6、11はGa量が本発明の実施形態に係る規定を満たしていない。試料No.12は、Co量が本発明の実施形態に係る規定を満たしていない。また、試料No.1~3、5、8、10は、式(1)の規定を満たしていない。表3から分かるように、これらの試料の殆どは、原料Coの最大厚さ10mm、2mmのいずれにおいても、HcJの値が比較的低い傾向にある。 Sample No. 1 to 12 do not satisfy the definition of the composition of the sintered magnet according to the embodiment of the present invention. Sample No. In 1-2, 4-5, and 7-10, the amount of B does not satisfy the definition of the present invention. Sample No. 6 and 11, the Ga amount does not satisfy the rule according to the embodiment of the present invention. Sample No. In No. 12, the amount of Co does not satisfy the rule according to the embodiment of the present invention. Sample No. 1 to 3, 5, 8, and 10 do not satisfy the definition of the expression (1). As can be seen from Table 3, most of these samples tend to have a relatively low value of HcJ at any of the maximum thicknesses of the raw material Co, 10 mm and 2 mm.
 試料No.13~23は、本発明の実施形態に係る焼結磁石の組成の規定を全て満たしている。そのため、試料No.13~23は、原料Coの最大厚さ10mm、2mmのいずれにおいても、HcJの値が相対的に高い(表3)。 Sample No. Nos. 13 to 23 satisfy all the requirements for the composition of the sintered magnet according to the embodiment of the present invention. Therefore, sample no. Nos . 13 to 23 have relatively high values of HcJ in any of the maximum thicknesses of the raw material Co of 10 mm and 2 mm (Table 3).
 各試料において、Hと原料Coの最大厚さとの関係について考察する。図7は、最大厚さが10mmの原料Coを用いて製造した焼結磁石の磁気特性(H-B)をプロットしたグラフである。図8は、最大厚さが2mmの原料Coを用いて製造した焼結磁石の磁気特性(H-B)をプロットしたグラフである。図7、図8において、シンボルが「×」は、試料No.1~12のデータをプロットしたものであり、シンボルが「●」は、試料No.13~23のデータをプロットしたものである。 In each sample, consider the relationship between the maximum thickness of the H k and the raw material Co. FIG. 7 is a graph plotting the magnetic properties (H k -B r ) of a sintered magnet manufactured using a raw material Co having a maximum thickness of 10 mm. FIG. 8 is a graph plotting the magnetic properties (H k −B r ) of a sintered magnet manufactured using a raw material Co having a maximum thickness of 2 mm. In FIG. 7 and FIG. The data of 1 to 12 are plotted, and the symbol “●” indicates the sample No. The data of 13 to 23 are plotted.
 図7から分かるように、原料Coの最大厚さが10mmの場合、試料No.1~12、試料13~23のいずれも、得られた焼結磁石のHは1400kA/m未満となっていた。
 一方、図8に示すように、原料Coの最大厚さが2mmの場合、試料No.1~12では、得られた焼結磁石のHは1400kA/m未満のままであったが、試料13~23では、得られた焼結磁石のHは1400kA/m以上となっていた。
As can be seen from FIG. 7, when the maximum thickness of the raw material Co is 10 mm, the sample No. In any of 1 to 12 and Samples 13 to 23, the obtained sintered magnet had an H k of less than 1400 kA / m.
On the other hand, when the maximum thickness of the raw material Co is 2 mm as shown in FIG. In 1 to 12, the H k of the obtained sintered magnet remained less than 1400 kA / m, but in Samples 13 to 23, the H k of the obtained sintered magnet was 1400 kA / m or more. .
 各試料において、原料Coの最大厚さを10mmから2mmに変更したときのHの増加量(つまり、H(2mm)-H(10mm))を表3に示す。表3等における「H(10mm)」、「H(2mm)」はそれぞれ、最大厚さ10mm、2mmの原料Coを用いて製造した焼結磁石のHの値を意味する。また、図9に、Hの増加量を、B量に対してプロットした。 In each sample, the amount of increase H k when changing the maximum thickness of the material Co from 10mm to 2 mm (i.e., H k (2mm) -H k (10mm)) shown in Table 3. “H k (10 mm)” and “H k (2 mm)” in Table 3 and the like mean values of H k of sintered magnets manufactured using raw material Co having a maximum thickness of 10 mm and 2 mm, respectively. Further, in FIG. 9, the increase amount of H k is plotted against the B amount.
 図9から明らかなように、B量が0.85~0.91質量%の焼結磁石(試料No.13~23)の場合、原料Coの最大厚さを2mm以下にすることにより、Hの値が80kA/m以上も増加し、1400kA/m以上となった。
 一方、B量が0.85質量%未満、又は0.91質量%超の焼結磁石(試料No.1~12)の場合、原料Coの最大厚さを2mm以下に制限しても、Hの増加量は10kA/m未満と、殆ど増加しなかった。
As is apparent from FIG. 9, in the case of a sintered magnet (sample Nos. 13 to 23) having a B content of 0.85 to 0.91% by mass, the maximum thickness of the raw material Co is reduced to 2 mm or less. The value of k increased by 80 kA / m or more and reached 1400 kA / m or more.
On the other hand, in the case of a sintered magnet (sample Nos. 1 to 12) with a B content of less than 0.85 mass% or more than 0.91 mass%, even if the maximum thickness of the raw material Co is limited to 2 mm or less, H The amount of increase of k was less than 10 kA / m, and hardly increased.
 このように、本発明の実施形態に係る焼結磁石の組成の規定を満たす試料No.13~23では、製造の際に使用する原料Coの最大厚さを2mm以下に制限することにより、HcJが1500kA/m以上、Hが1400kA/m以上と優れた磁気特性を有することが分かった。特に、原料Coの最大厚さを制限する効果は、B量が0.85~0.91質量%の場合に顕著であった。 Thus, the sample No. 1 satisfying the definition of the composition of the sintered magnet according to the embodiment of the present invention. 13 to 23, by limiting the maximum thickness of the raw material Co used in production to 2 mm or less, it has excellent magnetic properties such that H cJ is 1500 kA / m or more and H k is 1400 kA / m or more. I understood. In particular, the effect of limiting the maximum thickness of the raw material Co was remarkable when the B content was 0.85 to 0.91% by mass.
 さらに、試料No.14、16~18、22の組成を有する焼結磁石を例に、様々な最大厚さを有する原料Coを用いた場合のHへの影響を調べた。表4は、最大厚さが10mm、4mmの原料Coを用いて製造した試料No.14、16~18、22の焼結磁石の磁気特性の測定結果を示す。表5は、最大厚さが2mm、1mmの原料Coを用いて製造した試料No.16の焼結磁石の磁気特性の測定結果を示す。表6は、最大厚さが425μm、100μm、5μmの原料Coを用いて製造した試料No.14、16~18、22の焼結磁石の磁気特性の測定結果を示す。また、図10~図14には、試料No.14、16~18、22のそれぞれについて、原料Coの最大厚さに対して、当該原料Coを用いて製造した焼結磁石のHをプロットした。 Furthermore, sample no. Examples sintered magnet having a composition of 14 ~ 18, 22, examined the effect of the H k in the case of using a raw material Co with different maximum thicknesses. Table 4 shows sample Nos. Manufactured using raw material Co having a maximum thickness of 10 mm and 4 mm. The measurement results of the magnetic properties of the sintered magnets 14, 16 to 18, 22 are shown. Table 5 shows sample Nos. Manufactured using raw material Co having a maximum thickness of 2 mm and 1 mm. The measurement result of the magnetic characteristic of 16 sintered magnets is shown. Table 6 shows sample Nos. Manufactured using raw material Co having a maximum thickness of 425 μm, 100 μm, and 5 μm. The measurement results of the magnetic properties of the sintered magnets 14, 16 to 18, 22 are shown. 10 to 14 show the sample Nos. For each 14-18,22, the maximum thickness of the material Co, was plotted H k of the sintered magnet produced by using the raw material Co.
 図10に示すように、試料No.14については、最大厚さが2mm以下の原料Coを使用して製造した焼結磁石では、Hが1420kA/m以上となった。さらに、最大厚さが100μm~2mmの原料Coを使用した場合、得られる焼結磁石のHは1425kA/m以上となった。 As shown in FIG. Regarding No. 14, in the sintered magnet manufactured using the raw material Co having a maximum thickness of 2 mm or less, the H k was 1420 kA / m or more. Furthermore, when raw material Co having a maximum thickness of 100 μm to 2 mm was used, H k of the obtained sintered magnet was 1425 kA / m or more.
 図11に示すように、試料No.16については、最大厚さが2mm以下の原料Coを使用して製造した焼結磁石では、Hが1440kA/m以上となった。さらに、最大厚さが100μm~1mmの原料Coを使用した場合、得られる焼結磁石のHは1460kA/m以上となった。 As shown in FIG. For No. 16, in the sintered magnet manufactured using the raw material Co having a maximum thickness of 2 mm or less, the H k was 1440 kA / m or more. Further, when the raw material Co having a maximum thickness of 100 μm to 1 mm was used, the H k of the obtained sintered magnet was 1460 kA / m or more.
 図12に示すように、試料No.17については、最大厚さが2mm以下の原料Coを使用して製造した焼結磁石では、Hが1460kA/m以上となった。さらに、最大厚さが100μm~1mmの原料Coを使用した場合、得られる焼結磁石のHは1480kA/m以上となった。 As shown in FIG. Regarding No. 17, in the sintered magnet manufactured using the raw material Co having a maximum thickness of 2 mm or less, the H k was 1460 kA / m or more. Furthermore, when raw material Co having a maximum thickness of 100 μm to 1 mm was used, H k of the obtained sintered magnet was 1480 kA / m or more.
 図13に示すように、試料No.18については、最大厚さが2mm以下の原料Coを使用して製造した焼結磁石では、Hが1465kA/m以上となった。さらに、最大厚さが100μm~1mmの原料Coを使用した場合、得られる焼結磁石のHは1485kA/m以上となった。 As shown in FIG. For 18, the sintered magnet maximum thickness was prepared using the following ingredients Co 2 mm, H k became 1465kA / m or more. Furthermore, when raw material Co having a maximum thickness of 100 μm to 1 mm was used, H k of the obtained sintered magnet was 1485 kA / m or more.
 図14に示すように、試料No.22については、最大厚さが2mm以下の原料Coを使用して製造した焼結磁石では、Hが1400kA/m以上となった。さらに、最大厚さが100μm~1mmの原料Coを使用した場合、得られる焼結磁石のHは1420kA/m以上となった。 As shown in FIG. For No. 22, in the sintered magnet manufactured using the raw material Co having a maximum thickness of 2 mm or less, the H k was 1400 kA / m or more. Furthermore, when raw material Co having a maximum thickness of 100 μm to 1 mm was used, H k of the obtained sintered magnet was 1420 kA / m or more.
 図10~14の結果から、原料Coの最大厚さが2mm以下とすることにより、Hを向上させることができ、さらに原料Coの最大厚さが100μm~1mmとすることにより、Hをより向上できることが分かった。 From the results of FIGS. 10 to 14, it is possible to improve H k by setting the maximum thickness of the raw material Co to 2 mm or less, and further, by setting the maximum thickness of the raw material Co to 100 μm to 1 mm, the H k can be reduced. It turned out that it can improve more.
 本出願は、出願日が2018年3月23日である日本国特許出願の特願第2018-056846号および出願日が2018年9月27日である日本国特許出願の特願第2018-182636号を基礎出願とする優先権主張を伴う。特願第2018-056846号および特願第2018-182636号は、参照することにより本明細書に取り込まれる。 The present application includes Japanese Patent Application No. 2018-056846 filed on March 23, 2018 and Japanese Patent Application No. 2018-182636 filed on September 27, 2018. Accompanied by claiming priority as a basic application. Japanese Patent Application No. 2018-056846 and Japanese Patent Application No. 2018-182636 are incorporated herein by reference.
  10、20、30、40、50、60 原料Co
  T1a、T1b、T2a、T、T4a、T5a、T6a 原料Coの最大厚さ
10, 20, 30, 40, 50, 60 Raw material Co
Maximum thickness of T 1a , T 1b , T 2a , T 3 , T 4a , T 5a , T 6a raw material Co

Claims (4)

  1.  R:28.5~33.0質量%(Rは希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む)、
     B:0.85~0.91質量%、
     Ga:0.2~0.7質量%、
     Co:0.1~0.9質量%、
     Cu:0.05~0.50質量%、
     Al:0.05~0.50質量%、
     Fe:61.5質量%以上を含有し、
     下記式(1)を満足するR-T-B系焼結磁石の製造方法であって、

      14[B]/10.8<[T]/55.85   (1)
     ([B]は質量%で示すBの含有量であり、[T]は質量%で示すT(TはFeとCo)の含有量である)

     最大厚さが2mm以下である原料Coを使用して、前記R-T-B系焼結磁石の組成を満足する合金を作製する工程と、
     前記合金から合金粉末を作製する工程と、
     前記合金粉末を成形して成形体を得る成形工程と、
     前記成形体を焼結して焼結体を得る焼結工程と、
     前記焼結体に熱処理を施す熱処理工程と、
    を含む、R-T-B系焼結磁石の製造方法。
    R: 28.5-33.0% by mass (R is at least one rare earth element and includes at least one of Nd and Pr),
    B: 0.85 to 0.91% by mass,
    Ga: 0.2 to 0.7% by mass,
    Co: 0.1 to 0.9% by mass,
    Cu: 0.05 to 0.50 mass%,
    Al: 0.05 to 0.50 mass%,
    Fe: 61.5% by mass or more,
    An RTB-based sintered magnet manufacturing method that satisfies the following formula (1):

    14 [B] /10.8 <[T] /55.85 (1)
    ([B] is the B content in mass%, [T] is the T in mass% (T is the content of Fe and Co))

    Using a raw material Co having a maximum thickness of 2 mm or less, producing an alloy satisfying the composition of the RTB-based sintered magnet;
    Producing an alloy powder from the alloy;
    A molding step of molding the alloy powder to obtain a molded body;
    Sintering step for obtaining a sintered body by sintering the molded body;
    A heat treatment step for heat-treating the sintered body;
    A method of manufacturing an RTB-based sintered magnet.
  2.  前記原料Coの前記最大厚さが100μm~1mmである、請求項1に記載のR-T-B系焼結磁石の製造方法。 2. The method for producing an RTB-based sintered magnet according to claim 1, wherein the maximum thickness of the raw material Co is 100 μm to 1 mm.
  3.  得られる前記R-T-B系焼結磁石が、HcJ≧1500kA/mおよびH≧1400kA/mを満足する、請求項1または2に記載のR-T-B系焼結磁石の製造方法。 3. The RTB -based sintered magnet according to claim 1, wherein the obtained RTB -based sintered magnet satisfies H cJ ≧ 1500 kA / m and H k ≧ 1400 kA / m. Method.
  4.  前記RにおけるDyおよびTbは、前記R-T-B系焼結磁石全体の0質量%以上、0.5質量%以下である、請求項1~3のいずれかに記載のR-T-B系焼結磁石の製造方法。 The RTB according to any one of claims 1 to 3, wherein Dy and Tb in R are 0% by mass or more and 0.5% by mass or less of the entire RTB-based sintered magnet. Manufacturing method of sintered magnet.
PCT/JP2019/004166 2018-03-23 2019-02-06 Method for producing r-t-b system sintered magnet WO2019181249A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019534905A JP7276132B2 (en) 2018-03-23 2019-02-06 Method for producing RTB based sintered magnet
CN201980001826.0A CN110537235B (en) 2018-03-23 2019-02-06 Method for producing R-T-B sintered magnet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-056846 2018-03-23
JP2018056846 2018-03-23
JP2018182636 2018-09-27
JP2018-182636 2018-09-27

Publications (1)

Publication Number Publication Date
WO2019181249A1 true WO2019181249A1 (en) 2019-09-26

Family

ID=67986468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004166 WO2019181249A1 (en) 2018-03-23 2019-02-06 Method for producing r-t-b system sintered magnet

Country Status (3)

Country Link
JP (1) JP7276132B2 (en)
CN (1) CN110537235B (en)
WO (1) WO2019181249A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111223628B (en) * 2020-02-26 2022-02-01 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method and application
CN111223626B (en) * 2020-02-26 2021-07-30 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method and application
CN111261355B (en) * 2020-02-26 2021-09-28 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method and application
CN111243810B (en) * 2020-02-29 2021-08-06 厦门钨业股份有限公司 Rare earth permanent magnetic material and preparation method and application thereof
CN111243812B (en) * 2020-02-29 2022-04-05 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof
CN111326306B (en) * 2020-02-29 2021-08-27 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof
CN111243811B (en) * 2020-02-29 2021-07-30 厦门钨业股份有限公司 Neodymium-iron-boron material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014407A (en) * 1983-07-04 1985-01-25 Sumitomo Special Metals Co Ltd Permanent magnet material
WO2011030635A1 (en) * 2009-09-09 2011-03-17 日産自動車株式会社 Molded rare-earth magnet and process for producing same
WO2017159576A1 (en) * 2016-03-17 2017-09-21 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119909A (en) 2005-09-29 2007-05-17 Sumitomo Metal Mining Co Ltd Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
JP2010098080A (en) * 2008-10-16 2010-04-30 Hitachi Metals Ltd Method of manufacturing r-t-b system sintered magnet
CN106030736B (en) * 2014-03-26 2018-04-27 日立金属株式会社 The manufacture method of R-T-B based sintered magnets
WO2016121790A1 (en) * 2015-01-27 2016-08-04 日立金属株式会社 Method for producing r-t-b sintered magnet
JP6642838B2 (en) * 2015-02-17 2020-02-12 日立金属株式会社 Method for producing RTB based sintered magnet
JP6443757B2 (en) * 2015-03-26 2018-12-26 日立金属株式会社 Method for producing RTB-based sintered magnet
WO2017110680A1 (en) * 2015-12-24 2017-06-29 日立金属株式会社 Method of producing r-t-b sintered magnet
CN106128673B (en) 2016-06-22 2018-03-30 烟台首钢磁性材料股份有限公司 A kind of Sintered NdFeB magnet and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014407A (en) * 1983-07-04 1985-01-25 Sumitomo Special Metals Co Ltd Permanent magnet material
WO2011030635A1 (en) * 2009-09-09 2011-03-17 日産自動車株式会社 Molded rare-earth magnet and process for producing same
WO2017159576A1 (en) * 2016-03-17 2017-09-21 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet

Also Published As

Publication number Publication date
JPWO2019181249A1 (en) 2021-02-04
JP7276132B2 (en) 2023-05-18
CN110537235B (en) 2023-08-18
CN110537235A (en) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2019181249A1 (en) Method for producing r-t-b system sintered magnet
JP6288076B2 (en) R-T-B sintered magnet
JP6090550B1 (en) R-T-B system sintered magnet and manufacturing method thereof
WO2014157448A1 (en) R-t-b-based sintered magnet
JP6489201B2 (en) Method for producing RTB-based sintered magnet
JPWO2018034264A1 (en) R-T-B sintered magnet
WO2018143230A1 (en) Method for producing r-t-b sintered magnet
JP6798546B2 (en) Manufacturing method of RTB-based sintered magnet
JP6443757B2 (en) Method for producing RTB-based sintered magnet
JP6541038B2 (en) RTB based sintered magnet
CN110431646B (en) Method for producing R-T-B sintered magnet
JP6213697B1 (en) Method for producing RTB-based sintered magnet
JP6474043B2 (en) R-T-B sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
JP6760160B2 (en) Manufacturing method of RTB-based sintered magnet
JP7021577B2 (en) Manufacturing method of RTB-based sintered magnet
JP7215044B2 (en) Method for producing RTB based sintered magnet
JP6702215B2 (en) R-T-B system sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP2020155657A (en) Method for manufacturing r-t-b based sintered magnet
JP7435134B2 (en) Manufacturing method of RTB based sintered magnet
JP2021057564A (en) Method for manufacturing r-t-b based sintered magnet
JP2021155783A (en) Method of producing r-t-b-based sintered magnet
JP2020161788A (en) R-t-b based sintered magnet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019534905

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771906

Country of ref document: EP

Kind code of ref document: A1