JP5196668B2 - Ferritic stainless steel soft magnetic material and manufacturing method thereof - Google Patents

Ferritic stainless steel soft magnetic material and manufacturing method thereof Download PDF

Info

Publication number
JP5196668B2
JP5196668B2 JP2009254175A JP2009254175A JP5196668B2 JP 5196668 B2 JP5196668 B2 JP 5196668B2 JP 2009254175 A JP2009254175 A JP 2009254175A JP 2009254175 A JP2009254175 A JP 2009254175A JP 5196668 B2 JP5196668 B2 JP 5196668B2
Authority
JP
Japan
Prior art keywords
stainless steel
metal
magnetic material
soft magnetic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009254175A
Other languages
Japanese (ja)
Other versions
JP2010133023A5 (en
JP2010133023A (en
Inventor
剛 山本
渉 谷尾
礼一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Precision Ltd
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Precision Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Precision Ltd, Hitachi Metals Ltd filed Critical Hitachi Metals Precision Ltd
Priority to JP2009254175A priority Critical patent/JP5196668B2/en
Publication of JP2010133023A publication Critical patent/JP2010133023A/en
Publication of JP2010133023A5 publication Critical patent/JP2010133023A5/ja
Application granted granted Critical
Publication of JP5196668B2 publication Critical patent/JP5196668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、用途として例えば、センサ部品、電磁バルブ部品、燃料噴射部品、ソレノイド用コア、各種磁気回路用ヨークなどに使用される軟磁性材に係り、酷い損耗の発生が予測される環境下でフェライト系ステンレス材に所望される程度の耐食性を持たせながら磁性材料として使用するフェライトステンレス系軟磁性材およびその製造方法に関する。   The present invention relates to a soft magnetic material used for, for example, sensor parts, electromagnetic valve parts, fuel injection parts, solenoid cores, various magnetic circuit yokes, etc., in an environment where severe wear is expected to occur. The present invention relates to a ferritic stainless steel soft magnetic material used as a magnetic material while imparting a desired degree of corrosion resistance to the ferritic stainless steel material, and a method for producing the same.

従来、上述した用途に使用される磁性部材において、例えば電流の入り切りによって駆動される磁性部材は、駆動による機械的な衝突や接触が幾度も繰り返される状態で使用される。このような磁性部材には、フェライト系ステンレス材に所望される程度の耐食性を有しながら、幾度もの機械的な衝突や接触に耐えることのできる程度の耐衝撃性や耐摩耗性を有することが必要となり、例えば200〜300HV程度の低すぎることなく高すぎることのない表面硬さが望まれる。また、機器の作動を応答性良く確実に行うためには電流を入り切りしたときの磁化および脱磁(消磁ともいう)を素早く行なうことのできる磁気特性を有することが必要となり、例えば、ある程度大きな1.0T以上の磁束密度(B10)や2500以上の最大透磁率、ある程度小さな150A/m以下の保磁力が望まれる。   Conventionally, among magnetic members used for the above-described applications, for example, a magnetic member driven by turning on and off of an electric current is used in a state where mechanical collision and contact due to driving are repeated many times. Such a magnetic member may have impact resistance and wear resistance enough to withstand many mechanical collisions and contacts while having the corrosion resistance desired for ferritic stainless steel. For example, a surface hardness that is not too low without being too low, such as about 200 to 300 HV, is desired. In addition, in order to perform the operation of the device with good responsiveness, it is necessary to have a magnetic characteristic that can quickly perform magnetization and demagnetization (also referred to as demagnetization) when the current is turned on and off. A magnetic flux density (B10) of 0.0 T or more, a maximum magnetic permeability of 2500 or more, and a coercive force of 150 A / m or less that is somewhat small are desired.

上述した用途に使用され、表面硬さが200〜300HV程度と好適であって、上述したような磁気特性を有する磁性部材は、従来、適正条件下で磁性焼鈍することによって磁気特性を有することができて比較的安価で入手しやすい軟磁性材料であるフェライト系ステンレス鋼からなる棒材、角材、ブロックなどを素材に用い、このような素材から製品形状を削り出すなどの機械加工によって所望の製品形状を得ていた。しかしながら、上述の鋼材自体は比較的安価で入手しやすいものの、素材から製品形状を削り出すなどの機械加工によるため、材料歩留が低く、加工工数を要することから磁性部材の量産性や廉価化な供給を阻む要因となっていたため、技術的改善が望まれていた。   A magnetic member having a surface hardness of about 200 to 300 HV, which is suitable for the above-described uses, and having the above-described magnetic properties may have magnetic properties by magnetic annealing under appropriate conditions. Desired products by machining such as cutting bar shapes, squares, blocks, etc. made of ferritic stainless steel, which is a relatively inexpensive and easily available soft magnetic material, and cutting the product shape from such materials I got the shape. However, although the above-mentioned steel materials themselves are relatively inexpensive and easy to obtain, they are manufactured by machining such as carving out the product shape from the materials, so the material yield is low and the number of processing steps is required, so the mass productivity and low price of magnetic members are reduced. Therefore, technical improvement was desired.

このため、上述したように磁性部材の量産性や廉価化に不満のあるフェライト系ステンレス鋼材を素材に用いる従来の機械加工手段に替えて、所望の製品形状に近似の形状を有することのできる金属焼結体でなる磁性部材を形成する提案がなされている。例えば、電磁ステンレスとも称される鉄クロム系磁性合金に係る特開平7−138693号公報(特許文献1)や特開平7−157838号公報(特許文献2)などであり、実際に実用化されて公用されている鉄クロム系磁性合金としては、東北特殊鋼株式会社のK−M31(質量%でCrが13%、Siが2%)や大同特殊鋼株式会社のTICS(質量%でCrが13%、Siが1%)などが知られている。   Therefore, as described above, a metal that can have a shape approximate to the desired product shape, instead of the conventional machining means that uses ferritic stainless steel material that is unsatisfactory for mass production and cost reduction of the magnetic member. Proposals for forming a magnetic member made of a sintered body have been made. For example, Japanese Patent Application Laid-Open No. 7-138693 (Patent Document 1) and Japanese Patent Application Laid-Open No. 7-155788 (Patent Document 2) relating to an iron-chromium-based magnetic alloy, also called electromagnetic stainless steel, have been put into practical use. Examples of iron-chromium-based magnetic alloys that are used in public use are K-M31 (Tohoku Special Steel Co., Ltd., 13% by mass and 2% Si) and TICS (Daido Special Steel Co., Ltd., 13% by mass). %, Si is 1%).

特開平7−138693号公報JP-A-7-138893 特開平7−157838号公報JP-A-7-1557838

本発明者は、フェライト系ステンレス材の化学成分を有し、上述した金属焼結体でなるフェライトステンレス系軟磁性材を得ることを検討した。具体的には、JIS−G4303などに規定されるフェライト系ステンレス鋼であるSUS410L(質量%で、Cr:11.0〜13.5%、Si:1.0%以下、Mn:1.0%以下、Ni:0.60%以下、残部Feおよび不可避的不純物)と同等の化学成分を有する金属焼結体を、製品形状との近似性を得やすい金属粉末射出成形法(以下、MIM法という)によって成形焼結し、得られた金属焼結体を適正条件下で磁性焼鈍することによってフェライトステンレス系軟磁性材を形成した。   The present inventor has studied to obtain a ferrite stainless steel soft magnetic material having a chemical component of a ferrite stainless material and made of the above-described sintered metal. Specifically, SUS410L (mass%, Cr: 11.0 to 13.5%, Si: 1.0% or less, Mn: 1.0%, which is a ferritic stainless steel specified in JIS-G4303 and the like. Hereinafter, a metal sintered body having a chemical component equivalent to Ni: 0.60% or less, the balance Fe and unavoidable impurities) is easily obtained by a metal powder injection molding method (hereinafter referred to as MIM method). The ferrite sintered stainless soft magnetic material was formed by magnetically annealing the obtained metal sintered body under appropriate conditions.

しかしながら、得られた金属焼結体でなるフェライトステンレス系軟磁性材は、SUS410L相当の化学成分を有してなるステンレス鋼材を素材として機械加工で削り出して形成したフェライトステンレス系軟磁性材に比べ、これと同等の化学成分を有しているものの、磁気特性が劣化し、磁性部材の表面硬さも低下してしまう問題を生じた。   However, the obtained ferritic stainless steel soft magnetic material made of sintered metal is compared with the ferritic stainless steel soft magnetic material formed by machining a stainless steel material having a chemical component equivalent to SUS410L. Although it has a chemical component equivalent to this, the magnetic characteristics deteriorated and the surface hardness of the magnetic member also deteriorated.

本発明の目的は、従来のSUS410L相当の化学成分を有してなるステンレス鋼材を素材に用いて機械加工で削り出して形成された磁性部品に比べ、同等もしくはそれ以上の磁気特性を有しながらも好適な表面硬さを有する、金属焼結体でなるフェライトステンレス系軟磁性材およびその製造方法を提供することである。   The object of the present invention is to have the same or better magnetic properties as compared with a magnetic part formed by machining a stainless steel material having a chemical component equivalent to SUS410L as a raw material. The present invention also provides a ferritic stainless steel soft magnetic material made of a sintered metal having a suitable surface hardness and a method for producing the same.

本発明者は、上述の課題を鑑み、フェライトステンレス系軟磁性材となる金属焼結体において、磁気特性の向上および表面硬さを高めることを検討し、金属焼結体の化学成分の最適化を図った。つまり、金属焼結体において、フェライトステンレス系軟磁性材の主成分となるFe(鉄)およびCr(クロム)に対し、Si(珪素)や不可避的に含有される可能性のある不純物のうち金属焼結体の諸特性に及ぼす影響が特に大きいと考えられたO(酸素)およびC(炭素)の許容範囲を検討した。そして、金属焼結体におけるFeやCrに対するSiとOおよびCの含有範囲を最適化することによって、得られるフェライトステンレス系軟磁性材において磁気特性の向上や表面硬さを高めて好適な範囲にすることが可能となることを見出し本発明に到達した。   In view of the above-mentioned problems, the present inventor has studied the improvement of magnetic properties and the surface hardness of a sintered metal that is a ferritic stainless steel soft magnetic material, and has optimized the chemical components of the sintered metal. I planned. In other words, in the sintered metal, Si (silicon) or an unavoidable impurity contained in the metal with respect to Fe (iron) and Cr (chromium), which are the main components of the ferritic stainless steel soft magnetic material. The allowable ranges of O (oxygen) and C (carbon), which are considered to have a particularly large effect on various properties of the sintered body, were examined. And by optimizing the content range of Si, O, and C with respect to Fe and Cr in the sintered metal, the magnetic properties are improved and the surface hardness is increased in a suitable range in the obtained ferritic stainless steel soft magnetic material. The inventors have found that it is possible to achieve the present invention.

すなわち本発明は、質量%で、Crを8.0〜13.5%、Siを3.0〜5.0%、残部Feおよび不可避的不純物を含有し、該不可避的不純物のうちOを0.30%以下およびCを0.07%以下の含有に抑制され、前記Cと前記Oの含有比C/Oが0.5〜1.4とされた金属焼結体でなる、フェライトステンレス系軟磁性材である。 That is, the present invention contains, in mass%, Cr in an amount of 8.0 to 13.5%, Si in an amount of 3.0 to 5.0%, the balance Fe and unavoidable impurities. Ferritic stainless steel made of a metal sintered body that is suppressed to contain 30% or less and C is 0.07% or less, and the C / O content ratio C / O is 0.5 to 1.4. Soft magnetic material.

本発明のフェライトステンレス系軟磁性材は、相対密度96%以上、表面硬さ200〜300HVを有することができる。   The ferrite stainless steel soft magnetic material of the present invention can have a relative density of 96% or more and a surface hardness of 200 to 300 HV.

また、最大透磁率2500以上、磁束密度(B10)1.0T以上、保磁力150A/m以下を有することができる。   Moreover, it can have maximum magnetic permeability 2500 or more, magnetic flux density (B10) 1.0T or more, and coercive force 150A / m or less.

また、金属粉末射出成形体が焼結された金属焼結体でなることが望ましい。   Moreover, it is desirable that the metal powder injection molded body is a sintered metal body that is sintered.

上述した本発明のフェライトステンレス系軟磁性材は、金属粉末射出成形法によって形成した金属粉末成形体を脱脂後に焼結し、質量%で、Crを8.0〜13.5%、Siを3.0〜5.0%、残部Feおよび不可避的不純物を含有し、該不可避的不純物のうちOが0.30%以下およびCが0.07%以下の含有に抑制され、前記Cと前記Oの含有比C/Oが0.5〜1.4とされた金属焼結体を形成し、該金属焼結体を磁性焼鈍して得る製造方法が適用できる。 The ferritic stainless steel soft magnetic material of the present invention described above is sintered after degreasing a metal powder molded body formed by a metal powder injection molding method, and is 8.0% to 13.5% Cr and 3% Si in mass%. .0~5.0%, contain the remainder Fe and unavoidable impurities, O 0.30% or less and C of the unavoidable impurities are suppressed to the inclusion of 0.07% or less, the said C O A manufacturing method obtained by forming a metal sintered body having a C / O content ratio of 0.5 to 1.4 and magnetically annealing the metal sintered body can be applied.

また、相対密度96%以上、表面硬さ200〜300HVに調整して焼結した前記金属焼結体を、磁性焼鈍することによって最大透磁率2500以上、磁束密度(B10)1.0T以上、保磁力150A/m以下に調整して得る製造方法が適用できる。   Further, the metal sintered body adjusted to a relative density of 96% or more and a surface hardness of 200 to 300 HV and sintered is subjected to magnetic annealing to maintain a maximum permeability of 2500 or more and a magnetic flux density (B10) of 1.0 T or more. A manufacturing method obtained by adjusting the magnetic force to 150 A / m or less can be applied.

本発明のフェライトステンレス系軟磁性材は、従来のフェライト系ステンレス鋼材を用いて形成した軟磁性材と同等もしくはそれ以上の磁気特性を有しながらも好適な表面硬さを有する軟磁性材であって、製品形状との近似性に優れた金属焼結体でなるので、フェライトステンレス系軟磁性材の量産性の向上や廉価化が可能となる。そして、表面硬さが高いので耐摩耗性に優れる本発明のフェライトステンレス系軟磁性材は、例えば電流の入り切りによって駆動される磁性部品などのように、駆動によって酷い損耗の発生が予測される環境下でフェライト系ステンレス材に所望される程度の耐食性を持たせて使用する各種の磁性部材や磁性部品の用途に好適である。   The ferrite stainless steel soft magnetic material of the present invention is a soft magnetic material having a suitable surface hardness while having a magnetic property equal to or higher than that of a soft magnetic material formed using a conventional ferritic stainless steel material. In addition, since it is a sintered metal having excellent approximation to the product shape, it is possible to improve the mass productivity of the ferritic stainless steel soft magnetic material and to reduce the cost. In addition, the ferritic stainless steel soft magnetic material of the present invention, which has a high surface hardness and excellent wear resistance, is an environment in which severe wear is expected to be generated by driving, such as a magnetic component driven by turning on and off of current. It is suitable for the use of various magnetic members and magnetic parts that are used with the desired degree of corrosion resistance applied to the ferritic stainless steel.

上述した用途において、フェライトステンレス系軟磁性材に所望される磁気特性としては、例えば、最大透磁率2500以上、磁束密度(B10)1.0T以上、保磁力150A/m以下といったものである。このような磁気特性を有するフェライトステンレス系軟磁性材は、磁化および脱磁に対する応答性が良いため、機器の作動を素早く確実に行うことが望まれる磁性部材や磁性部品の用途への適用が好適となる。なお、最大透磁率は、磁界中でさらに微小な外部磁界を加えたときに磁性材中にどれだけの磁束密度が新たに生じるかに係り、磁場(磁界)の強さHと磁束密度Bとの関係をB=μHで表わした時の比例定数μ(透磁率)の最大値であって磁性材の磁化のしやすさを示し、実用的には比透磁率の最大値を最大透磁率と呼ぶこともあって本発明ではこれに従う。磁束密度(B10)は10A/mの外部磁界を加えたときの磁性材中の単位面積当たりの磁束を示す。保磁力は外部磁界を加えた状態から外部磁界を取り去って更に反対方向に磁化していったときの磁性材中の磁束密度を零にする磁界の強さを示す。   In the above-described applications, magnetic properties desired for the ferrite stainless steel soft magnetic material include, for example, a maximum magnetic permeability of 2500 or more, a magnetic flux density (B10) of 1.0 T or more, and a coercive force of 150 A / m or less. Ferritic stainless steel soft magnetic materials with such magnetic properties have good responsiveness to magnetization and demagnetization, and are therefore suitable for application to magnetic members and magnetic parts where it is desired to operate the equipment quickly and reliably. It becomes. Note that the maximum magnetic permeability depends on how much magnetic flux density is newly generated in the magnetic material when a further minute external magnetic field is applied in the magnetic field, and the magnetic field strength (magnetic field) strength H and magnetic flux density B Is the maximum value of the proportionality constant μ (permeability) when B = μH and indicates the ease of magnetization of the magnetic material, and practically the maximum value of the relative permeability is the maximum permeability. This is followed in the present invention. The magnetic flux density (B10) indicates the magnetic flux per unit area in the magnetic material when an external magnetic field of 10 A / m is applied. The coercive force indicates the strength of the magnetic field that makes the magnetic flux density in the magnetic material zero when the external magnetic field is removed from the state where the external magnetic field is applied and magnetized in the opposite direction.

上述した好適な磁気特性を有することができる本発明のフェライトステンレス系軟磁性材において、その重要な特徴は、金属焼結体でなるフェライトステンレス系軟磁性材の化学成分に係り、主成分であるFeおよびCrに対し、Si含有量を最適化し、同時に、不可避的不純物であるOおよびCの許容範囲を明確化したことにある。具体的には、本発明のフェライトステンレス系軟磁性材は、質量%で、Crを8.0〜13.5%、Siを3.0〜5.0%、残部Feおよび不可避的不純物を含有し、該不可避的不純物のうちOを0.30%以下およびCを0.07%以下の含有に抑制する。以下、特に断わりのない限り、元素の含有量を質量%で示す。   In the ferritic stainless steel soft magnetic material of the present invention that can have the preferred magnetic properties described above, the important feature is related to the chemical component of the ferritic stainless steel soft magnetic material made of a sintered metal and is the main component. The reason is that the Si content is optimized with respect to Fe and Cr, and at the same time, the allowable range of O and C, which are inevitable impurities, is clarified. Specifically, the ferritic stainless steel soft magnetic material of the present invention contains, in mass%, Cr of 8.0 to 13.5%, Si of 3.0 to 5.0%, the balance Fe and inevitable impurities. Of the inevitable impurities, O is suppressed to 0.30% or less and C is suppressed to 0.07% or less. Hereinafter, unless otherwise specified, the element content is expressed in mass%.

本発明において第一に重要なことは、金属焼結体でなるフェライトステンレス系軟磁性材に不可避的に含有される不純物のうち、Oを0.30%以下に抑制することである。これにより、金属焼結体にポアなどの焼結欠陥が内在し難くなって、金属焼結体の焼結密度すなわち相対密度がより高まる。そして、上述の化学成分を有する金属焼結体は適正条件下で磁性焼鈍することで軟磁性を有することができるが、このとき金属焼結体の相対密度が高いほど上述した用途に好適な磁気特性を有する軟磁性材を得やすくなる。具体的には、最大透磁率や磁束密度が大きく、保磁力が小さいといった磁気特性を有する軟磁性材である。   In the present invention, the first important thing is to suppress O to 0.30% or less among impurities inevitably contained in the ferritic stainless steel soft magnetic material made of a metal sintered body. As a result, sintering defects such as pores are less likely to be inherent in the metal sintered body, and the sintered density, that is, the relative density of the metal sintered body is further increased. The sintered metal body having the above-described chemical components can have soft magnetism by magnetic annealing under appropriate conditions. At this time, the higher the relative density of the sintered metal body, the more suitable the magnetic field for the above-described use. It becomes easy to obtain a soft magnetic material having characteristics. Specifically, it is a soft magnetic material having magnetic properties such as maximum magnetic permeability and magnetic flux density, and low coercive force.

本発明において金属焼結体の相対密度は、理想的には100%であるが、少なくとも96%以上の相対密度を有することが望ましく、従来と同等もしくはそれ以上の磁気特性を有することができる。なお、相対密度が96%未満のフェライトステンレス系軟磁性材は良好な磁気特性や好適な表面硬さが得られないことがある。   In the present invention, the relative density of the sintered metal body is ideally 100%, but desirably has a relative density of at least 96% or more, and can have a magnetic property equivalent to or higher than that of the prior art. A ferrite stainless soft magnetic material having a relative density of less than 96% may not have good magnetic properties and suitable surface hardness.

ここで、上述した金属焼結体でなるフェライトステンレス系軟磁性材の相対密度について説明する。本発明でいう相対密度とは、焼結によって金属焼結体となる金属粉の空孔を含まない固体そのものの理論密度に相当する真密度ρと、該金属粉が焼結された金属焼結体そのものの質量をそのかさ体積で除した値であるかさ密度ρとで定義できる比率ρ/ρをパーセント(%)で示した値をいう。金属粉の真密度ρは、JIS−Z9301に規定されるピクノメーター法などを適用した市販の真密度測定装置によって求めることができる。また、金属焼結体のかさ密度ρは、例えば湿式アルキメデス法などの測定法によって求めることができる。 Here, the relative density of the ferrite stainless steel soft magnetic material made of the above-described sintered metal will be described. The relative density as used in the present invention means a true density ρ 0 corresponding to the theoretical density of a solid itself that does not contain pores of a metal powder that becomes a sintered metal body by sintering, and a metal powder obtained by sintering the metal powder. The ratio ρ 1 / ρ 0 that can be defined by the bulk density ρ 1 , which is a value obtained by dividing the mass of the bonded body by its bulk volume, refers to a value expressed in percent (%). The true density ρ 0 of the metal powder can be obtained by a commercially available true density measuring apparatus to which a pycnometer method or the like defined in JIS-Z9301 is applied. Moreover, the bulk density ρ 1 of the metal sintered body can be obtained by a measuring method such as a wet Archimedes method.

また、本発明において第二に重要なことは、金属焼結体でなるフェライトステンレス系軟磁性材に不可避的に含有される不純物のうち、Cを0.07%以下に抑制することである。本発明においては、Cは、0.07%を超えると、表面硬さは若干高くなり、保磁力は低下するような傾向を呈するものの、最大透磁率や磁束密度を損なってしまうことがある。よって、不純物Cの許容範囲は0.07%以下であるが、望ましくは0.05%以下、より望ましくは0.03%以下である。なお、Cは磁気特性の劣化を招く不純物ではあるものの、Cを0.01%以上含有することで生成された炭化物の分散によって表面硬さの向上効果が期待でき、より表面硬さを期待する場合は0.02%以上含有させても構わない。   In the present invention, the second important thing is to suppress C to 0.07% or less among impurities inevitably contained in the ferritic stainless steel soft magnetic material made of a sintered metal. In the present invention, when C exceeds 0.07%, the surface hardness becomes slightly high and the coercive force tends to decrease, but the maximum magnetic permeability and magnetic flux density may be impaired. Therefore, the allowable range of the impurity C is 0.07% or less, preferably 0.05% or less, and more preferably 0.03% or less. In addition, although C is an impurity that causes deterioration of magnetic properties, the effect of improving the surface hardness can be expected by dispersing the generated carbide by containing C or more by 0.01% or more, and more surface hardness is expected. In that case, it may be contained by 0.02% or more.

上述したように、OおよびCは本発明においては焼結性や磁気特性を劣化させやすい不純物であり、その含有は理想的には0%である。しかしながら、本発明においては、Oを0.30%以下、Cを0.07%以下の含有に制御しながら含有比C/Oを0.5〜1.4の範囲に制御することにより、得られる軟磁性材の磁気特性や表面硬さを上述した用途により好適なものにできる。具体的には、相対密度96%以上を有して、最大透磁率4000以上、磁束密度(B10)1.1T以上、保磁力100A/m以下、表面硬さ230〜260HVといったものである。   As described above, O and C are impurities that easily deteriorate sinterability and magnetic characteristics in the present invention, and their content is ideally 0%. However, in the present invention, it is obtained by controlling the content ratio C / O in the range of 0.5 to 1.4 while controlling O to be 0.30% or less and C to be 0.07% or less. The magnetic properties and surface hardness of the obtained soft magnetic material can be made more suitable for the above-described use. Specifically, it has a relative density of 96% or more, a maximum magnetic permeability of 4000 or more, a magnetic flux density (B10) of 1.1 T or more, a coercive force of 100 A / m or less, and a surface hardness of 230 to 260 HV.

また、本発明において第三に重要なことは、金属焼結体でなるフェライトステンレス系軟磁性材に、Siを3.0〜5.0%の範囲で含有することである。これにより、金属焼結体の焼結組織中にSi化合物が好適に分散生成されることとなって、表面硬さを高めることができ、上述した用途に好適な表面硬さ200〜300HVを有することができる。なお、Siが3.0%未満では上述した用途で所望される200HV以上の表面硬さが得られ難く、Siが5.0%を超えると相対密度の向上には寄与できるものの、表面硬さが大きくなりすぎて表面脆化による耐摩耗性の劣化を招きやすくなる。それ故に、Siを3.0〜5.0%に制御することで好適な耐摩耗性を有しながらも脆化し難いフェライトステンレス系軟磁性材を得ることができる。そして、好適な表面硬さ200〜300HVを有するフェライトステンレス系軟磁性材は、例えば電流の入り切りによって駆動される磁性部材のように、駆動によって酷い損耗の発生が予測される環境下で使用される磁性部材や磁性部品の用途への適用が好適となる。なお、上述した用途においては、表面硬さが200HV未満では耐摩耗性が不十分であり、300HVを超えると脆くなりやすくなるため耐衝撃性が不十分である。   The third important point in the present invention is that Si is contained in the range of 3.0 to 5.0% in the ferritic stainless steel soft magnetic material made of a metal sintered body. As a result, the Si compound is suitably dispersed and generated in the sintered structure of the metal sintered body, the surface hardness can be increased, and the surface hardness suitable for the above-described use is 200 to 300 HV. be able to. When Si is less than 3.0%, it is difficult to obtain a surface hardness of 200 HV or higher, which is desired for the above-mentioned applications. When Si exceeds 5.0%, the surface hardness can be improved. Becomes too large, and wear resistance is deteriorated due to surface embrittlement. Therefore, by controlling Si to 3.0 to 5.0%, it is possible to obtain a ferritic stainless steel soft magnetic material that has suitable wear resistance but is difficult to become brittle. And the ferritic stainless steel soft magnetic material which has suitable surface hardness 200-300HV is used in the environment where generation | occurrence | production of severe wear is estimated by a drive like the magnetic member driven by the on / off of an electric current, for example. Application to applications of magnetic members and magnetic parts is preferable. In the above-described applications, the wear resistance is insufficient when the surface hardness is less than 200 HV, and the impact resistance is insufficient because it tends to become brittle when the surface hardness exceeds 300 HV.

本発明のフェライトステンレス系軟磁性材は、上述したO、C、Siの各元素の含有範囲を適正化させる他、磁性を有することのできるフェライト相の生成のため、また、ステンレス材として所望される耐食性を得るため、Feに対してCrを8.0〜13.5%の範囲で含有させている。但し、Cr含有量が、8.0%未満ではステンレス材としての耐食性が不足することがあり、13.5%を超えると上述した用途に所望される磁気特性を損なうことがある。また、Crを含有するにおいて、より良好な磁気特性を所望する場合は上限を11.0%とすることが望ましく、より良好な耐食性を所望する場合は下限を9.0%とすることが望ましい。   The ferritic stainless steel soft magnetic material of the present invention is desired as a stainless steel material in order to optimize the content range of each element of O, C, and Si described above, and to generate a ferrite phase having magnetism. In order to obtain high corrosion resistance, Cr is contained in the range of 8.0 to 13.5% with respect to Fe. However, if the Cr content is less than 8.0%, the corrosion resistance as a stainless steel material may be insufficient, and if it exceeds 13.5%, the magnetic properties desired for the above-described applications may be impaired. In addition, in the case of containing Cr, the upper limit is desirably set to 11.0% when better magnetic properties are desired, and the lower limit is desirably set to 9.0% when better corrosion resistance is desired. .

Feに対する上述のO、C、Si、Cr以外の元素につき、本発明の作用効果を阻害することがないと考える不純物許容範囲について説明する。本発明においては、もし、多量のNi(ニッケル)を含有するとフェライト相の生成が妨げられ、非磁性であるオーステナイト相を生成してしまうので、Niは0.60%以下に抑えることが望ましい。また、Mn(マンガン)やP(燐)やS(硫黄)などの元素は、金属焼結体の焼結性や機械的強度、磁気特性に影響を及ぼすことがあるので、Mnは1.0%以下、Pは0.04%以下、Sは0.03%以下に抑えることが望ましく、理想的には全く含有しない0%である。   The permissible impurity range for elements other than the above-described O, C, Si and Cr with respect to Fe will be described as not impairing the effects of the present invention. In the present invention, if a large amount of Ni (nickel) is contained, the formation of a ferrite phase is hindered and a non-magnetic austenite phase is formed. Therefore, it is desirable to keep Ni to 0.60% or less. Further, since elements such as Mn (manganese), P (phosphorus), and S (sulfur) may affect the sinterability, mechanical strength, and magnetic properties of the sintered metal, Mn is 1.0. % Or less, P is preferably 0.04% or less, and S is preferably 0.03% or less, and ideally 0% which is not contained at all.

以上述べたように、本発明のフェライトステンレス系軟磁性材は、磁性を有することのできるフェライト系のステンレス材に属する軟質磁性材であって金属焼結体でなる。そして、本発明においては、実質的には金属焼結体に不可避的に含有することのある不純物Oを0.30%以下に抑制することによって相対密度を高め、同時に、不純物Cを0.07%以下に抑制することによって磁気特性の劣化を防止し、さらに、Siを3.0〜5.0%の範囲で積極的に含有させて表面硬さを好適な範囲にまで高めている。   As described above, the ferritic stainless steel soft magnetic material of the present invention is a soft magnetic material belonging to a ferritic stainless material capable of having magnetism, and is made of a sintered metal. In the present invention, the relative density is increased by suppressing the impurity O, which may be inevitably contained in the sintered metal body, to 0.30% or less, and at the same time, the impurity C is 0.07%. By suppressing to less than or equal to%, the magnetic characteristics are prevented from deteriorating, and Si is positively contained in the range of 3.0 to 5.0% to increase the surface hardness to a suitable range.

次に、本発明における金属焼結体について説明する。該金属焼結体は、例えば上述したMIM法などの金属焼結法を適用して形成される金属焼結体であってよく、所望する製品形状に近似する形状(ニアネットシェイプ)を有することができる。このように所望形状に対して近似形状を有する金属焼結体であれば、従来の削り出しなど機械加工によっては形成できなかった複雑な部材や部品の形状を容易に有することができる。また、所望形状に近似する形状の金属焼結体に対し、溝や穴の加工や外周研磨などの仕上げ加工を施すことやコーティングなどの後処理を施すことも容易にできる。よって、複雑な形状を有するフェライトステンレス系軟磁性材であっても、金属焼結体でなるフェライトステンレス系軟磁性材は、その形状を従来のように粗加工から仕上げ加工までのすべてを機械加工に拠って得ることがないため、生産効率や製造コストが格段に改善される。   Next, the metal sintered body in the present invention will be described. The metal sintered body may be a metal sintered body formed by applying a metal sintering method such as the MIM method described above, and has a shape (near net shape) that approximates a desired product shape. Can do. Thus, if it is a metal sintered compact which has an approximate shape with respect to a desired shape, it can have easily the shape of the complicated member and component which could not be formed by machining, such as the conventional cutting. In addition, it is possible to easily perform finish processing such as processing of grooves and holes, peripheral polishing, and post-processing such as coating on a sintered metal body having a shape approximate to a desired shape. Therefore, even if it is a ferritic stainless steel soft magnetic material having a complicated shape, the ferritic stainless steel soft magnetic material made of a sintered metal is machined from roughing to finishing as before. Therefore, production efficiency and manufacturing cost are remarkably improved.

本発明のフェライトステンレス系軟磁性材は、例えば、金属粉末射出成形法(MIM法)によって形成した金属粉末成形体を脱脂後に焼結し、質量%で、Crを8.0〜13.5%、Siを3.0〜5.0%、残部Feおよび不可避的不純物を含有し、該不可避的不純物のうちOが0.30%以下およびCが0.07%以下の含有に抑制された金属焼結体を、適正条件下で磁性焼鈍した金属焼結体であってよい。   The ferritic stainless steel soft magnetic material of the present invention is sintered after degreasing a metal powder molded body formed by, for example, a metal powder injection molding method (MIM method), and Cr is 8.0 to 13.5% by mass%. Further, a metal containing Si in an amount of 3.0 to 5.0%, the balance Fe and unavoidable impurities, in which O is suppressed to be 0.30% or less and C is 0.07% or less. The sintered body may be a metal sintered body obtained by magnetic annealing under appropriate conditions.

本発明において、上述した金属焼結体は、例えば次のようなMIM法を適用した製造方法で形成することができる。まず、粉末原料として、例えば、SUS410Lに近似する化学成分を有してなる金属粉にSi粉を概ね3〜5%加える、あるいはSUS430Lに近似する化学成分を有してなる金属粉にSi粉を概ね12〜14%加えるなどして所望の化学成分となるように調整して準備する。そして、該粉末原料に対してバインダとなるパラフィンワックスやポリプロピレンを混合し混練して射出成形用素材とする。次いで、該射出成形用素材を所望形状に対応するキャビティを有する金型内に射出して金属粉末成形体を形成する。そして、該金属粉末形成体を溶媒に浸漬してパラフィンワックスを除去した後に加熱することでポリプロピレンを除去し、この後に例えば1240〜1250度の温度で3〜5時間保持することによって金属粉を焼結させる、といった製造工程による製造方法である。このような製造方法によれば、金属焼結体は、例えば、相対密度96%以上、表面硬さ200〜300HVを有することができる。なお、上述した金属粉を焼結する条件は、化学成分や所望する表面硬さなどに合わせて適宜調整することができる。 In the present invention, the metal sintered body described above can be formed by a manufacturing method to which the following MIM method is applied, for example. First, as a powder raw material, for example, Si powder is added to metal powder having a chemical component approximate to SUS410L, or Si powder is added to metal powder having a chemical component approximate to SUS430L. Prepare to adjust to a desired chemical component by adding approximately 12 to 14%. Then, the powder raw material is mixed and kneaded with paraffin wax or polypropylene serving as a binder to obtain an injection molding material. Next, the injection molding material is injected into a mold having a cavity corresponding to a desired shape to form a metal powder molded body. Then, the metal powder formed body is immersed in a solvent to remove paraffin wax, and then heated to remove polypropylene, and thereafter, for example, held at a temperature of 1240 to 1250 ° C. for 3 to 5 hours to burn the metal powder. It is a manufacturing method by a manufacturing process such as binding. According to such a manufacturing method, the metal sintered body can have, for example, a relative density of 96% or more and a surface hardness of 200 to 300 HV. In addition, the conditions for sintering the above-described metal powder can be appropriately adjusted according to chemical components, desired surface hardness, and the like.

また、本発明においては、粉末原料としては、上述のSi粉やSUS410L金属粉あるいはSUS430L金属粉を平均粒径7〜13μm程度とし、一般にカルボニル鉄粉と呼ばれ、1%以下でCを含み、平均粒径3〜8μm程度に形成された微鉄粉を10〜20質量%混合して用いることが望ましい。基材となる金属粉よりも平均粒径の小さなカルボニル鉄粉を適量加えると金属粉の焼結性が向上されるため、得られる金属焼結体の相対密度を高める効果が期待できる。また、カルボニル鉄粉に含まれるCは、射出成形用素材の製造工程における混錬処理などにより過剰に含まれやすいOとの間でCO反応を引き起こす。このCO反応により、金属焼結体に過剰に含まれやすく磁気特性を劣化しやすいOやCの含有低減効果が得られるため、金属焼結体から得た軟磁性材の特に最大透磁率や保磁力についてさらなる好適化が期待できる。   In the present invention, as the powder raw material, the above-mentioned Si powder, SUS410L metal powder or SUS430L metal powder has an average particle size of about 7 to 13 μm, generally called carbonyl iron powder, and containing C at 1% or less, It is desirable to mix and use 10 to 20% by mass of fine iron powder having an average particle size of about 3 to 8 μm. When an appropriate amount of carbonyl iron powder having an average particle size smaller than that of the metal powder serving as the base material is added, the sinterability of the metal powder is improved, so that an effect of increasing the relative density of the obtained metal sintered body can be expected. Further, C contained in the carbonyl iron powder causes a CO reaction with O which is easily contained excessively due to kneading treatment in the manufacturing process of the material for injection molding. This CO reaction has the effect of reducing the content of O and C which are easily contained excessively in the metal sintered body and tend to deteriorate the magnetic properties. Therefore, particularly the maximum magnetic permeability and the retention of the soft magnetic material obtained from the metal sintered body are obtained. Further optimization of the magnetic force can be expected.

また、本発明においては、上述したようにSiを含有することで軟磁性材の表面硬さを高めて好適な範囲にしている。しかしながら、SiはOと結び付くことでSiOを生成し、SiOが過剰に生成された場合には磁気特性が劣化してしまうことがある。よって、本発明においては、上述したようにカルボニル鉄粉を混合してCO反応を引き起こし、これによりOを消費して生成されるSiOの微細化や分散化を誘引することが望ましい。 In the present invention, as described above, the surface hardness of the soft magnetic material is increased to a suitable range by containing Si. However, Si combines with O to generate SiO 2 , and when SiO 2 is excessively generated, the magnetic characteristics may be deteriorated. Therefore, in the present invention, as described above, it is desirable that the carbonyl iron powder is mixed to cause the CO reaction, thereby inducing the refinement and dispersion of SiO 2 produced by consuming O.

また、本発明において、上述した金属焼結体を得るための金属焼結法は、上述したMIM法に限らず、プレス焼結法やプラズマ焼結法等が適用可能である。一般にMIM法は、複雑な形状を寸法精度よく形成可能な粉末焼結法として知られており、例えば機器の作動特性を向上させるために好適な形状を有する磁性部品であっても容易に形成できるので、金属焼結体を形成するには好適である。   In the present invention, the metal sintering method for obtaining the above-described metal sintered body is not limited to the above-described MIM method, and a press sintering method, a plasma sintering method, and the like are applicable. In general, the MIM method is known as a powder sintering method capable of forming a complicated shape with high dimensional accuracy. For example, even a magnetic component having a suitable shape can be easily formed to improve the operation characteristics of the device. Therefore, it is suitable for forming a metal sintered body.

上述した本発明のフェライトステンレス系軟磁性材の製造方法においては、金属焼結体を適正条件下で焼結することによって、相対密度96%以上、表面硬さ200〜300HVを有することができる。また、該金属焼結体を適正条件下で磁性焼鈍することによって、最大透磁率2500以上、磁束密度(B10)1.0T以上、保磁力150A/m以下の磁気特性を有することができる。   In the above-described method for producing a ferritic stainless steel soft magnetic material of the present invention, the sintered metal can be sintered under appropriate conditions to have a relative density of 96% or more and a surface hardness of 200 to 300 HV. Moreover, by magnetically annealing the metal sintered body under appropriate conditions, it is possible to have magnetic characteristics with a maximum magnetic permeability of 2500 or more, a magnetic flux density (B10) of 1.0 T or more, and a coercive force of 150 A / m or less.

例えば、上述した金属焼結体に施す磁性焼鈍は、外部磁界を加えた熱処理炉を用い、920〜980度の炉内温度で2〜4時間保持した後に130〜170度/時間で降温するような条件を適用することができる。このような条件下での磁性焼鈍を金属焼結体に施すことによって、例えば、磁気特性が、最大透磁率2500以上、磁束密度(B10)1.0T以上、保磁力150A/m以下となる金属焼結体、すなわち本発明のフェライトステンレス系軟磁性材を得ることができる。なお、磁性焼鈍の条件は、所望する磁気特性に合わせて適宜調整することができる。   For example, the above-described magnetic annealing applied to the sintered metal body uses a heat treatment furnace to which an external magnetic field is applied, and is held at a furnace temperature of 920 to 980 degrees for 2 to 4 hours, and then the temperature is lowered at 130 to 170 degrees / hour. Conditions can be applied. By subjecting a sintered metal body to magnetic annealing under such conditions, for example, a metal whose magnetic properties are a maximum permeability of 2500 or more, a magnetic flux density (B10) of 1.0 T or more, and a coercive force of 150 A / m or less. A sintered body, that is, the ferritic stainless steel soft magnetic material of the present invention can be obtained. The conditions for magnetic annealing can be appropriately adjusted according to the desired magnetic properties.

また、本発明の製造方法においては、金属焼結体に含まれるOとCの含有比C/Oを0.5〜1.4の範囲に制御し、該金属焼結体に対して上述と同様の磁性焼鈍を施すことによって、例えば、磁気特性が、最大透磁率4000以上、磁束密度(B10)1.1T以上、保磁力100A/m以下となる金属焼結体、すなわち本発明のフェライトステンレス系軟磁性材を得ることができる。   Further, in the production method of the present invention, the content ratio C / O of O and C contained in the metal sintered body is controlled in the range of 0.5 to 1.4, and By performing the same magnetic annealing, for example, the metal sintered body having a maximum magnetic permeability of 4000 or more, a magnetic flux density (B10) of 1.1 T or more, and a coercive force of 100 A / m or less, that is, the ferrite stainless steel of the present invention. -Based soft magnetic material can be obtained.

本発明のフェライトステンレス系軟磁性材における表面硬さと磁気特性を評価するために、表1に示す化学成分を有するフェライトステンレス系軟磁性材である、外径20mm、内径12mm、厚さ2mmのリング形状を有する試験体(本発明の実施例:A〜H、比較例:a〜f)を製造した。これらの試験体(A〜H、a〜f)を製造するにあたっては、MIM法で形成した金属焼結体を用いた。なお、それぞれの試験体は、実際には表1中に示していないNi、Mn、S、Pなどの他元素を含有しており、Feの欄に示す残部に含んでいる。   In order to evaluate the surface hardness and magnetic properties of the ferrite stainless steel soft magnetic material of the present invention, a ferrite stainless steel soft magnetic material having the chemical components shown in Table 1 and having an outer diameter of 20 mm, an inner diameter of 12 mm, and a thickness of 2 mm. Test specimens having a shape (Examples of the present invention: A to H, Comparative examples: a to f) were produced. In manufacturing these test bodies (A to H, a to f), a metal sintered body formed by the MIM method was used. Each test specimen actually contains other elements such as Ni, Mn, S, and P, which are not shown in Table 1, and is included in the balance shown in the column of Fe.

Figure 0005196668
Figure 0005196668

具体的に、金属焼結体は次の手順で製造した。まず、SUS410Lに近似する化学成分を有してなる平均粒径9.2μmの金属粉、あるいはSUS430Lに近似する化学成分を有してなる平均粒径8.9μmの金属粉に、表1中の所望する試験体の化学成分に対応させて同程度の平均粒径を有してなる適量のSi粉を加えて、さらに試験体によっては平均粒径4.3μmのカルボニル鉄粉を適量加えて調整した粉末原料を準備した。この粉末原料に対し、バインダとなるパラフィンワックスやポリプロピレンを混合し混練して射出成形用素材とした。そして、この射出成形素材を所望形状に対応するキャビティを有する金型内に射出して金属粉末成形体を形成した。得られた金属粉末形成体からパラフィンワックスを除去するために溶媒に浸漬し、この後に加熱してポリプロピレンを除去し、引き続き所望する試験体の化学成分に応じて1240〜1250度に温度制御した炉内で4時間保持することで金属粉を焼結させて、上述したリング形状に実質的に相当し、表1に示すそれぞれの化学成分を実質的に有する金属焼結体を得た。   Specifically, the metal sintered body was manufactured by the following procedure. First, a metal powder having an average particle size of 9.2 μm having a chemical component approximate to SUS410L, or a metal powder having an average particle size of 8.9 μm having a chemical component approximate to SUS430L is used. Add an appropriate amount of Si powder having the same average particle size according to the chemical composition of the desired test specimen, and add an appropriate amount of carbonyl iron powder with an average particle size of 4.3 μm depending on the test specimen. A powder raw material was prepared. The powder raw material was mixed and kneaded with paraffin wax or polypropylene serving as a binder to obtain a material for injection molding. And this injection molding raw material was inject | poured in the metal mold | die which has a cavity corresponding to a desired shape, and formed the metal powder molded object. A furnace immersed in a solvent to remove paraffin wax from the resulting metal powder former, and then heated to remove the polypropylene, and subsequently temperature controlled to 1240-1250 degrees depending on the desired chemical composition of the specimen. The metal powder was sintered by holding for 4 hours, and a metal sintered body substantially corresponding to the ring shape described above and having substantially the respective chemical components shown in Table 1 was obtained.

次いで、得られた金属焼結体を磁性焼鈍した。磁性焼鈍は、常温から概ね3時間で950度まで昇温されるように温度制御した炉内でそれぞれの金属焼結体を3時間保持した後に、150度/時間で200度まで降温するように温度制御し、この後にそれぞれの金属焼結体を炉外に取り出して常温(概ね20度)まで冷却した。   Next, the obtained metal sintered body was magnetically annealed. In the magnetic annealing, each metal sintered body is held for 3 hours in a temperature-controlled furnace so that the temperature is raised to 950 degrees in about 3 hours from room temperature, and then lowered to 200 degrees at 150 degrees / hour. The temperature was controlled, and then each metal sintered body was taken out of the furnace and cooled to room temperature (approximately 20 degrees).

上述した磁性焼鈍を経て、表1に示す化学成分を有するリング形状の金属焼結体でなるフェライトステンレス系軟磁性材であって、本発明の実施例となる試験体(A〜H)および比較例となる試験体(a〜f)を得た。そして、得られたそれぞれのリング形状の試験体(A〜H、a〜f)について、相対密度、表面硬さ(ビッカース硬さ)、および磁気特性として最大透磁率、磁束密度(B10)、保磁力を測定した。測定結果を表2に示す。なお、相対密度は、金属粉の真密度をピクノメーター法が適用された市販の真密度測定装置で測定し、金属焼結体でなる試験体のかさ密度を湿式アルキメデス法が適用された測定装置で求めた。   A ferritic stainless steel soft magnetic material which is a ring-shaped metal sintered body having the chemical components shown in Table 1 after the magnetic annealing described above, and is a test body (A to H) which is an example of the present invention and a comparison Example specimens (af) were obtained. For each of the obtained ring-shaped specimens (A to H, a to f), the relative magnetic density, surface hardness (Vickers hardness), and magnetic properties such as maximum permeability, magnetic flux density (B10), The magnetic force was measured. The measurement results are shown in Table 2. The relative density is measured with a commercially available true density measuring device to which the pycnometer method is applied, and the bulk density of a specimen made of a sintered metal is measured with a wet Archimedes method. I asked for it.

Figure 0005196668
Figure 0005196668

[相対密度]
表2に示すそれぞれの試験体の相対密度は、95.3%であった試験体fを除いて96.0%に達し、特に試験体aは高く98.8%に達していた。これは、表1に示す化学成分に照らせば、試験体fの相対密度が最も低くなったのは、O含有量が0.30%を超えていたためと推測される。一方、試験体aの相対密度が最も高くなったのは、O含有量が0.133%と比較的少なかった上に、C含有量が0,004%と試験体のうちで最も少なかったためと推測することができた。また、この他の試験体についてもO含有量を比べてみると、試験体A〜Dのように、O含有量が少ないほど試験体の相対密度が高くなる傾向があることが判った。
[Relative density]
The relative density of each specimen shown in Table 2 reached 96.0% except for specimen f, which was 95.3%, and in particular, specimen a was high and reached 98.8%. In light of the chemical components shown in Table 1, this is presumed that the relative density of the specimen f was the lowest because the O content exceeded 0.30%. On the other hand, the relative density of the specimen a was the highest because the O content was relatively low at 0.133% and the C content was 0.004%, which was the smallest among the specimens. I was able to guess. Moreover, when O content was compared also about this other test body, it turned out that there exists a tendency for the relative density of a test body to become high, so that there is little O content like test body AD.

よって、本発明においては、金属焼結体のO含有量を0.30%以下に抑制することにより、金属焼結体でなるフェライトステンレス系軟磁性材の相対密度を96%以上に調整できることが判った。   Therefore, in the present invention, the relative density of the ferrite stainless steel soft magnetic material made of the metal sintered body can be adjusted to 96% or more by suppressing the O content of the metal sintered body to 0.30% or less. understood.

[表面硬さ]
表2に示すそれぞれの試験体の表面硬さは、試験体A〜Hおよび試験体b、e、fは200HVを超え、一方、試験体a、c、dは200HVに達しなかった。これは、表1に示す化学成分に照らせば、試験体E、b、eのようにSiを多く含有する試験体ほど明らかに表面硬さが硬くなっており、Siを3.0%以上含有する試験体に限って200HV以上の表面硬さを有していることが判る。一方、表面硬さが300HVを超えて硬くなりすぎてしまった場合は、上述したように軟磁性材が脆化しやすくなって摩耗や損壊などの不具合を招くことがある。表2に示す試験体bは、脆化を招くことのある表面硬さ300HVを超えており、化学成分のうちSiを5.0%を超えて含有している。
[Surface hardness]
The surface hardness of each specimen shown in Table 2 exceeded 200 HV for specimens A to H and specimens b, e, and f, while specimens a, c, and d did not reach 200 HV. In light of the chemical components shown in Table 1, the surface hardness of the specimens containing a large amount of Si, such as specimens E, b, and e, is clearly harder and contains 3.0% or more of Si. It turns out that it has surface hardness of 200HV or more only for the test body to do. On the other hand, when the surface hardness exceeds 300 HV and becomes too hard, as described above, the soft magnetic material tends to become brittle and may cause problems such as wear and damage. The test body b shown in Table 2 exceeds 300 HV, which can cause embrittlement, and contains more than 5.0% of Si among chemical components.

よって、本発明においては、金属焼結体のSi含有量を3.0%以上とすることによって金属焼結体でなるフェライトステンレス系軟磁性材の表面硬さを200HV以上に調整でき、Si含有量を5.0%以下とすることによって300HV以下に調整できることが判った。また、C含有量が0.01%未満の試験体a、cの表面硬さが150HV以下であったことに比べ、Cを0.01%以上含有する他の試験体では表面硬さが150HVを越えていた。よって、Cは不純物ではあるものの、若干のC含有で表面硬さが向上されることが確認された。また、試験体A〜Fが230HV以上の表面硬さを有していたことから、0.02%以上のCの含有により表面硬さがさらに向上されることが確認された。   Therefore, in the present invention, by setting the Si content of the metal sintered body to 3.0% or more, the surface hardness of the ferrite stainless steel soft magnetic material made of the metal sintered body can be adjusted to 200 HV or more. It was found that the amount can be adjusted to 300 HV or less by adjusting the amount to 5.0% or less. Further, the surface hardness of the specimens a and c having a C content of less than 0.01% was 150 HV or less, and the surface hardness of other specimens containing 0.01% or more of C was 150 HV. It was over. Therefore, although C is an impurity, it was confirmed that the surface hardness is improved by the slight C content. Moreover, since the test bodies A to F had a surface hardness of 230 HV or higher, it was confirmed that the surface hardness was further improved by containing 0.02% or more of C.

[最大透磁率]
表2に示すそれぞれの試験体の磁気特性のうち最大透磁率は、試験体e、fを除いて2500以上を有していた。また、試験体A〜Cは、好適な表面硬さ200〜300HVを有してなお、最大透磁率が4000に達していた。これは、表1に示す化学成分に照らせば、最大透磁率の小さい試験体eではC含有量が0.07%を超えていたこと、同様に、試験体fではO含有量が0.30%を超えていたことに起因すると推測することができた。一方、最大透磁率が2500以上の試験体については、いずれの試験体においてもO含有量が0.30%以下かつC含有量が0.07%以下を満足している。
[Maximum permeability]
Among the magnetic properties of the respective test specimens shown in Table 2, the maximum magnetic permeability was 2500 or more excluding the test specimens e and f. Moreover, the test bodies A to C had a suitable surface hardness of 200 to 300 HV, and the maximum magnetic permeability had reached 4000. This is because, in light of the chemical components shown in Table 1, the C content exceeded 0.07% in the specimen e having a small maximum magnetic permeability, and similarly, the O content in the specimen f was 0.30. It was possible to guess that it was caused by the fact that the percentage exceeded. On the other hand, for the specimens having a maximum magnetic permeability of 2500 or more, the O content is 0.30% or less and the C content is 0.07% or less in any specimen.

よって、本発明においては、金属焼結体でなるフェライトステンレス系軟磁性材において、不可避的に含有される不純物Oを0.30%以下かつ不純物Cを0.07%以下の含有に抑制することにより、金属焼結体でなるフェライトステンレス系軟磁性材の最大透磁率を2500以上に調整できることが判った。   Therefore, in the present invention, in the ferritic stainless steel soft magnetic material made of a metal sintered body, inevitably contained impurities O are suppressed to 0.30% or less and impurities C to 0.07% or less. Thus, it was found that the maximum permeability of the ferrite stainless steel soft magnetic material made of a metal sintered body can be adjusted to 2500 or more.

[磁束密度(B10)]
表2に示すそれぞれの試験体の磁気特性のうち磁束密度(B10)は、すべての試験体において軟磁性材として望ましいとされる程度の1.0T以上を有していた。よって、Crを8.0〜13.5%、Siを3.0〜5.0%、残部Feおよび不可避的不純物を含有し、該不可避的不純物のうちOを0.30%以下およびCを0.07%以下の含有に抑制された、本発明の金属焼結体でなるフェライトステンレス系軟磁性材は、1.0T以上の磁束密度(B10)を得ることができることが判った。
[Magnetic flux density (B10)]
The magnetic flux density (B10) among the magnetic properties of the respective test bodies shown in Table 2 was 1.0 T or more, which is desirable as a soft magnetic material in all the test bodies. Therefore, it contains 8.0 to 13.5% of Cr, 3.0 to 5.0% of Si, the balance Fe and unavoidable impurities. Of the unavoidable impurities, O is 0.30% or less and C is contained. It was found that the ferritic stainless steel soft magnetic material made of the metal sintered body of the present invention, suppressed to contain 0.07% or less, can obtain a magnetic flux density (B10) of 1.0 T or more.

[保磁力]
表2に示すそれぞれの試験体の磁気特性のうち保磁力は、いずれの試験体においても150A/mを超えることがなく、軟磁性材として望ましいとされる程度の小さな保磁力を有していた。特に、試験体A〜Eは、好適な表面硬さ200〜300HVを有してなお、100A/m以下と小さな保磁力となっていた。
[Coercivity]
Of the magnetic properties of each specimen shown in Table 2, the coercive force did not exceed 150 A / m in any specimen, and had a small coercive force that was desirable as a soft magnetic material. . In particular, the test bodies A to E had a suitable surface hardness of 200 to 300 HV and still had a small coercive force of 100 A / m or less.

[含有比C/O]
本発明の実施例に相当する試験体A〜Cは、より好適な表面硬さ230〜260HVを有しながら、上述したフェライトステンレス系軟磁性材の用途において、より良好な磁気特性、すなわち4000以上の最大透磁率、1.1T以上の磁束密度(B10)、100A/m以下の保磁力を有することができた。これについて、表1に示す化学成分に照らせば、試験体A〜Cに限ってOとCの含有比C/Oが0.5〜1.4の範囲にあることが確認できる。よって、素材に用いる金属焼結体を形成するにおいて、不純物OとCの含有比C/Oを0.5〜1.4の範囲に制御することにより、上述したように、より好適な範囲の表面硬さを有し、かつ、より良好な磁気特性を有する、金属焼結体でなるフェライトステンレス系軟磁性材を得ることができることが判った。
[Content ratio C / O]
Specimens A to C corresponding to the examples of the present invention have better surface properties of 230 to 260 HV, and better magnetic properties, that is, 4000 or more in the above-described use of the ferrite stainless steel soft magnetic material. The maximum magnetic permeability, magnetic flux density (B10) of 1.1 T or more, and coercive force of 100 A / m or less could be obtained. In this regard, in light of the chemical components shown in Table 1, it can be confirmed that the content ratio C / O of O and C is in the range of 0.5 to 1.4 only in the test bodies A to C. Therefore, in forming a metal sintered body used as a raw material, by controlling the content ratio C / O of impurities O and C to a range of 0.5 to 1.4, as described above, a more suitable range. It was found that a ferritic stainless steel soft magnetic material made of a sintered metal having a surface hardness and better magnetic properties can be obtained.

[Cr含有量]
本発明において、SiやOおよびCの含有量が適正な範囲に制御されている試験体A〜Hでは、Cr含有量が8.52〜13.36%の範囲で変化している。しかしながら、本発明の金属焼結体でなるフェライトステンレス系軟磁性材は、いずれの試験体A〜Hにおいても、表面硬さ200〜300HV、最大透磁率2500以上、磁束密度(B10)1.0T以上、保磁力150A/m以下を有しており、Cr含有量の多少に影響され難いことが判った。よって、軟磁性材に耐食性を付与できるCrの含有量は、より良好な磁気特性を所望する場合は試験体A〜Dのような化学成分を選定し、より良好な耐食性を所望する場合は試験体E〜Hのような化学成分を選定することが望ましいと推測することができた。
[Cr content]
In the present invention, in the test bodies A to H in which the contents of Si, O, and C are controlled in an appropriate range, the Cr content is changed in the range of 8.52 to 13.36%. However, the ferritic stainless steel soft magnetic material comprising the sintered metal body of the present invention has a surface hardness of 200 to 300 HV, a maximum magnetic permeability of 2500 or more, and a magnetic flux density (B10) of 1.0 T in any of the test bodies A to H. As described above, it has been found that it has a coercive force of 150 A / m or less and is hardly affected by the Cr content. Therefore, the Cr content capable of imparting corrosion resistance to the soft magnetic material is selected when a chemical component such as the test specimens A to D is selected when better magnetic properties are desired, and is tested when better corrosion resistance is desired. It could be assumed that it is desirable to select chemical components such as the bodies E to H.

以上述べた通り、質量%で、Crを8.0〜13.5%、Siを3.0〜5.0%、残部Feおよび不可避的不純物を含有し、該不可避的不純物のうちOを0.30%以下およびCを0.07%以下の含有に抑制された金属焼結体でなる本発明のフェライトステンレス系軟磁性材を、所望のリング形状に近似する形状を有する金属焼結体から得ることができた。また、相対密度96%以上、表面硬さ200〜300HVを有する金属焼結体でなる本発明のフェライトステンレス系軟磁性材を得ることができた。また、金属焼結体を適正条件下で磁性焼鈍することで、最大透磁率2500以上、磁束密度(B10)1.0T以上、保磁力150A/m以下となる磁気特性を有する本発明のフェライトステンレス系軟磁性材を得ることができた。   As described above, Cr contains 8.0 to 13.5% Cr, 3.0 to 5.0% Si, the balance Fe and unavoidable impurities, and O of the unavoidable impurities is 0. From the sintered metal body having a shape approximating a desired ring shape, the ferrite stainless-based soft magnetic material of the present invention, which is a sintered metal body containing 30% or less and C containing 0.07% or less. I was able to get it. Moreover, the ferritic stainless steel soft magnetic material of the present invention made of a metal sintered body having a relative density of 96% or more and a surface hardness of 200 to 300 HV could be obtained. Moreover, the ferritic stainless steel of the present invention has magnetic characteristics that the maximum magnetic permeability is 2500 or more, the magnetic flux density (B10) is 1.0 T or more, and the coercive force is 150 A / m or less by magnetic annealing of the sintered metal under appropriate conditions. -Based soft magnetic material could be obtained.

また、金属焼結体を形成するにおいて、C/O含有比を0.5〜1.4の範囲に制御することにより、相対密度96%以上、表面硬さ230〜260HVを有し、最大透磁率4000以上、磁束密度(B10)1.1T以上、保磁力100A/m以下となる磁気特性を有する、より優れたフェライトステンレス系軟磁性材を得ることができた。   Further, in forming a sintered metal body, by controlling the C / O content ratio in the range of 0.5 to 1.4, the metal has a relative density of 96% or more, a surface hardness of 230 to 260 HV, and a maximum permeability. It was possible to obtain a more excellent ferritic stainless steel soft magnetic material having magnetic properties of a magnetic permeability of 4000 or more, a magnetic flux density (B10) of 1.1 T or more, and a coercive force of 100 A / m or less.

Claims (6)

質量%で、Crを8.0〜13.5%、Siを3.0〜5.0%、残部Feおよび不可避的不純物を含有し、該不可避的不純物のうちOを0.30%以下およびCを0.07%以下の含有に抑制され、前記Cと前記Oの含有比C/Oが0.5〜1.4とされた金属焼結体でなることを特徴とするフェライトステンレス系軟磁性材。 In mass%, Cr contains 8.0 to 13.5%, Si contains 3.0 to 5.0%, the balance Fe and unavoidable impurities, and among the unavoidable impurities, O is 0.30% or less and Ferrite stainless steel soft, characterized in that it is made of a metal sintered body in which C is suppressed to 0.07% or less and the C / O content ratio C / O is 0.5 to 1.4. Magnetic material. 相対密度96%以上、表面硬さ200〜300HVを有することを特徴とする請求項に記載のフェライトステンレス系軟磁性材。 2. The ferritic stainless steel soft magnetic material according to claim 1 , having a relative density of 96% or more and a surface hardness of 200 to 300 HV. 最大透磁率2500以上、磁束密度(B10)1.0T以上、保磁力150A/m以下を有することを特徴とする請求項に記載のフェライトステンレス系軟磁性材。 The ferritic stainless steel soft magnetic material according to claim 2 , having a maximum magnetic permeability of 2500 or more, a magnetic flux density (B10) of 1.0 T or more, and a coercive force of 150 A / m or less. 金属粉末射出成形体が焼結された金属焼結体でなることを特徴とする請求項1乃至のいずれかに記載のフェライトステンレス系軟磁性材。 The ferrite stainless steel soft magnetic material according to any one of claims 1 to 3 , wherein the metal powder injection molded body is a sintered metal sintered body. 金属粉末射出成形法によって形成した金属粉末成形体を脱脂後に焼結し、質量%で、Crを8.0〜13.5%、Siを3.0〜5.0%、残部Feおよび不可避的不純物を含有し、該不可避的不純物のうちOが0.30%以下およびCが0.07%以下の含有に抑制され、前記Cと前記Oの含有比C/Oが0.5〜1.4とされた金属焼結体を形成し、該金属焼結体を磁性焼鈍して得ることを特徴とするフェライトステンレス系軟磁性材の製造方法。 A metal powder molded body formed by a metal powder injection molding method is sintered after degreasing, and by mass%, Cr is 8.0 to 13.5%, Si is 3.0 to 5.0%, the remainder Fe and unavoidable Impurities are contained, and among the inevitable impurities, O is suppressed to 0.30% or less and C is suppressed to 0.07% or less, and the content ratio C / O of C to O is 0.5 to 1. A method for producing a ferritic stainless steel soft magnetic material, comprising forming a sintered metal body 4 and magnetically annealing the sintered metal body. 相対密度96%以上、表面硬さ200〜300HVに調整して焼結した前記金属焼結体を、磁性焼鈍することによって最大透磁率2500以上、磁束密度(B10)1.0T以上、保磁力150A/m以下に調整して得ることを特徴とする請求項に記載のフェライトステンレス系軟磁性材の製造方法。 The metal sintered body adjusted to a relative density of 96% or more, surface hardness of 200 to 300 HV and sintered is subjected to magnetic annealing to obtain a maximum magnetic permeability of 2500 or more, a magnetic flux density (B10) of 1.0 T or more, and a coercive force of 150 A. The method for producing a ferritic stainless steel soft magnetic material according to claim 5 , wherein the ferritic stainless steel soft magnetic material is obtained by adjusting to / m or less.
JP2009254175A 2008-11-07 2009-11-05 Ferritic stainless steel soft magnetic material and manufacturing method thereof Active JP5196668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009254175A JP5196668B2 (en) 2008-11-07 2009-11-05 Ferritic stainless steel soft magnetic material and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008286903 2008-11-07
JP2008286903 2008-11-07
JP2009254175A JP5196668B2 (en) 2008-11-07 2009-11-05 Ferritic stainless steel soft magnetic material and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2010133023A JP2010133023A (en) 2010-06-17
JP2010133023A5 JP2010133023A5 (en) 2011-08-04
JP5196668B2 true JP5196668B2 (en) 2013-05-15

Family

ID=42344565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254175A Active JP5196668B2 (en) 2008-11-07 2009-11-05 Ferritic stainless steel soft magnetic material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5196668B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216818A (en) * 2015-05-14 2016-12-22 Tdk株式会社 Soft magnetic metal powder, and, soft magnetic metal dust core
CN107012401A (en) * 2017-04-07 2017-08-04 邢台钢铁有限责任公司 A kind of low-carbon ferrite soft-magnetic stainless steel and its production method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176802A (en) * 1990-11-13 1992-06-24 Sumitomo Cement Co Ltd Production of high density sintered body
JP3708562B2 (en) * 1993-10-20 2005-10-19 東北特殊鋼株式会社 Powder sintered electromagnetic stainless steel
JPH07157838A (en) * 1993-12-06 1995-06-20 Daido Steel Co Ltd Production of sintered magnetic alloy and powder for sintered magnetic alloy
JP4070069B2 (en) * 2001-03-21 2008-04-02 日立粉末冶金株式会社 Method for producing sintered soft magnetic stainless steel with excellent corrosion resistance
JP5289807B2 (en) * 2007-06-11 2013-09-11 日本ピストンリング株式会社 Soft magnetic iron-based sintered material

Also Published As

Publication number Publication date
JP2010133023A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP6040163B2 (en) Iron powder for powder injection molding
JP5585237B2 (en) Metal powder for powder metallurgy and sintered body
JP6037415B2 (en) Magnetic material sputtering target and manufacturing method thereof
JP7251917B2 (en) RTB system permanent magnet
JP5630430B2 (en) Metal powder for powder metallurgy and sintered body
CN108154987B (en) R-T-B permanent magnet
KR101213856B1 (en) Sintered soft magnetic powder molded body
JP5960251B2 (en) Sputtering target
JP6476640B2 (en) R-T-B sintered magnet
EP1734141B1 (en) Production method for soft magnetic sintered member
CN105665715B (en) Iron-silicon series soft magnetic alloy prepared by powder metallurgy process and method
JP5196668B2 (en) Ferritic stainless steel soft magnetic material and manufacturing method thereof
JP4646834B2 (en) Soft magnetic steel materials with excellent magnetic properties and stability and cold forgeability, soft magnetic steel parts with excellent magnetic properties and stability, and methods for producing the same
JP4712443B2 (en) Manufacturing method of high magnetic flux density material with excellent machinability
JP2013049918A (en) Electromagnetic stainless steel and method of manufacturing the same
JP2019157168A (en) Metal power for powder metallurgy, compound, granulated powder, and sintered body
JP2009019264A (en) Soft magnetic iron-based sintered member
JP6732159B1 (en) MnCoZn ferrite and method for producing the same
JP2018059197A (en) R-tm-b-based sintered magnet
JP5585572B2 (en) Metal powder for powder metallurgy and sintered body
JP2010222661A (en) Metal powder and sintered compact
JP2002275600A (en) Raw material powder for sintered soft magnetic stainless steel and production method for the sintered soft magnetic stainless steel using the powder
KR101375986B1 (en) Method for manufacturing fe??si magnetic core by metal injection molding
JP2022070698A (en) Method for producing sintered product
JP2007182593A (en) Method for manufacturing high-nitrogen sintered alloy steel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350