JP2002275600A - Raw material powder for sintered soft magnetic stainless steel and production method for the sintered soft magnetic stainless steel using the powder - Google Patents
Raw material powder for sintered soft magnetic stainless steel and production method for the sintered soft magnetic stainless steel using the powderInfo
- Publication number
- JP2002275600A JP2002275600A JP2001081300A JP2001081300A JP2002275600A JP 2002275600 A JP2002275600 A JP 2002275600A JP 2001081300 A JP2001081300 A JP 2001081300A JP 2001081300 A JP2001081300 A JP 2001081300A JP 2002275600 A JP2002275600 A JP 2002275600A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- stainless steel
- soft magnetic
- magnetic stainless
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車用電子燃料
噴射弁等の耐食性を有する電磁部品に用いられる軟磁性
ステンレス鋼用原料粉末及び該ステレンス鋼の製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material powder for soft magnetic stainless steel used for corrosion-resistant electromagnetic parts such as electronic fuel injection valves for automobiles and a method for producing the stainless steel.
【0002】[0002]
【従来の技術】近年、自動車の排ガス規制の強化や省燃
費などを背景として、自動車エンジンの電子制御による
燃料噴射弁等の装置が、旧来のキャブレターに替わっ
て、その装着率を伸ばしつつある。また、ABSセンサ
やトルクセンサ等の耐食性を必要とする磁気部品も需要
を伸ばしてきている。2. Description of the Related Art In recent years, due to the tightening of exhaust gas regulations and fuel economy of automobiles, devices such as fuel injection valves by electronic control of automobile engines have been replacing the conventional carburetors and are increasing their mounting rates. In addition, magnetic components requiring corrosion resistance, such as ABS sensors and torque sensors, are also increasing in demand.
【0003】前記した燃料噴射弁等の電磁部品として
は、耐食性や磁気特性が重要となり、特公平5−104
19号等に開示されている如く、クロム系の軟磁性ステ
ンレス鋼が主に用いられ、塑性加工や切削加工等の機械
成形方法により製造される。しかし、自動車用電子燃料
噴射弁等の電磁部品は、部品形状が複雑で、精度が厳し
いため、機械加工性と、耐食性や磁気特性の両立が困難
であるともに加工費が高くなるという問題がある。[0003] Corrosion resistance and magnetic properties are important for electromagnetic components such as the above-described fuel injection valve.
As disclosed in No. 19 and the like, chromium-based soft magnetic stainless steel is mainly used, and is manufactured by a mechanical forming method such as plastic working or cutting. However, electromagnetic components such as electronic fuel injection valves for automobiles have a problem that the shape of the components is complicated and the precision is severe, so that it is difficult to achieve both machinability, corrosion resistance and magnetic properties, and the processing cost is high. .
【0004】[0004]
【発明が解決しようとする課題】これらの問題を解決す
るため、特開平6−2077号等において、ステンレス
鋼粉末を用いた粉末冶金による製造方法が提案されてい
る。ただし、ステンレス鋼粉末は圧縮性が悪く、焼結密
度が低いため耐食性及び磁気特性が悪くなる。また、粉
末の焼結性は粉末の粒度が小さいほど良好であるが、流
動性が悪く、型充填時にブリッジングが起こりやすく、
特に、部品形状が複雑な場合、均一充填が難しいことも
重なり、焼結品の寸法精度が悪くなる問題や、粉末が金
型の隙間に入り込み金型を傷つけ金型寿命が短くなる問
題がある。In order to solve these problems, Japanese Patent Application Laid-Open No. 6-2077 proposes a production method by powder metallurgy using stainless steel powder. However, stainless steel powder has poor compressibility and low sintering density, and thus has poor corrosion resistance and magnetic properties. Also, the sinterability of the powder is better as the particle size of the powder is smaller, but the fluidity is poor, bridging tends to occur at the time of filling the mold,
In particular, when the component shape is complicated, uniform filling is difficult, and the dimensional accuracy of the sintered product is deteriorated. Also, there is a problem that the powder enters the gaps between the molds, damages the molds, and shortens the mold life. .
【0005】[0005]
【課題を解決するための手段】本発明者らは、上記した
課題を如何に解消するか検討を重ねてきた結果、焼結軟
磁性ステンレス鋼用原料粉末の組成構成及び造粒処理す
ることにより、上記課題を解消できるとの確証に達し本
発明を完成した。本発明の骨子は、磁気特性に優れた軟
磁性ステンレス鋼微粉末の組成として、耐食性が維持さ
れる限度でCr量を低減させ、Alの含有を廃止し、磁
気特性向上のためSi量を増量させた構成にし、更に造
粒粉末として用いることにある。Means for Solving the Problems The present inventors have repeatedly studied how to solve the above-mentioned problems, and as a result, by performing the composition and granulation of the raw material powder for sintered soft magnetic stainless steel, It has been confirmed that the above problems can be solved and the present invention has been completed. The essence of the present invention is that, as a composition of soft magnetic stainless steel fine powder having excellent magnetic properties, the amount of Cr is reduced to the extent that corrosion resistance is maintained, the content of Al is abolished, and the amount of Si is increased to improve magnetic properties. In this case, the powder is used as granulated powder.
【0006】請求項1と2の発明は焼結軟磁性ステンレ
ス鋼用原料粉末の基本構成を、請求項5の発明はそれを
用いた製造方法を特定している。即ち、請求項1の原料
粉末は、質量比で、Cr:7〜15%(好ましくはC
r:7〜11.5質量%)、Si:1〜4%を含有する
とともにAlを含有しない軟磁性ステンレス鋼微粉末を
造粒して、平均粒径が10〜150μmの造粒粉末にな
っていることを特徴としている。請求項2の原料粉末
は、前記軟磁性ステンレス鋼微粉末と、Si微粉末また
はSi含有量が質量比で10%以上のFe−Si微粉末
との混合粉末を造粒して、平均粒径が10〜150μm
の造粒粉末であるとともに前記造粒粉末のSi量が1質
量%を超え6.5質量%以下になっていることを特徴と
している。The inventions of claims 1 and 2 specify the basic constitution of the raw material powder for sintered soft magnetic stainless steel, and the invention of claim 5 specifies a production method using the same. That is, the raw material powder of claim 1 is, by mass ratio, Cr: 7 to 15% (preferably C:
r: 7 to 11.5% by mass), soft magnetic stainless steel fine powder containing 1 to 4% of Si and not containing Al is granulated to form a granulated powder having an average particle diameter of 10 to 150 µm. It is characterized by having. The raw material powder according to claim 2 is obtained by granulating a mixed powder of the soft magnetic stainless steel fine powder and a Si fine powder or a Fe—Si fine powder having a Si content of 10% or more by mass ratio, Is 10 to 150 μm
And the Si content of the granulated powder is more than 1% by mass and not more than 6.5% by mass.
【0007】請求項3と4は、前記した軟磁性ステンレ
ス鋼微粉末の細部を特定したものである。請求項3は、
軟磁性ステンレス鋼微粉末が更に質量比で、Mo:2.
0%以下、S:0.1%以下、Ti:0.5%以下、N
b:0.5%以下のうち少なくとも1種以上を含む構成
である。請求項4は、前記軟磁性ステンレス鋼微粉末の
Cr量が、質量比で、7.0〜11.5%からなる構成
である。Claims 3 and 4 specify the details of the above soft magnetic stainless steel fine powder. Claim 3
Soft magnetic stainless steel fine powder was further added at a mass ratio of Mo: 2.
0% or less, S: 0.1% or less, Ti: 0.5% or less, N
b: A structure containing at least one kind among 0.5% or less. Claim 4 is a configuration in which the Cr content of the soft magnetic stainless steel fine powder is 7.0 to 11.5% by mass ratio.
【0008】請求項5は、原料粉末に成形潤滑剤を混合
し、該混合物を金型内に投入し、上下パンチで圧粉成形
して得られた圧粉体を焼結する焼結軟磁性ステンレス鋼
の製造方法において、前記原料粉末として、請求項1か
ら4の何れかに記載の焼結軟磁性ステンレス鋼用原料粉
末を用い、還元雰囲気中または真空中で焼結して密度比
を90%以上にすることを特徴としている。[0008] A fifth aspect of the present invention is a sintered soft magnetic material in which a molding lubricant is mixed with the raw material powder, the mixture is charged into a mold, and a green compact obtained by compacting with a vertical punch is sintered. In the method for producing stainless steel, the raw material powder is the raw material powder for sintered soft magnetic stainless steel according to any one of claims 1 to 4, and sintered in a reducing atmosphere or vacuum to have a density ratio of 90. % Or more.
【0009】(構成説明)次に、以上の本発明の焼結軟
磁性ステンレス鋼用原料粉末構成を数値限定の根拠を含
めて詳細に説明する。(Description of Structure) Next, the structure of the raw material powder for the sintered soft magnetic stainless steel of the present invention will be described in detail, including the grounds for limiting the numerical values.
【0010】原料粉末中のCr(クロム)は、耐食性を
付与するため必須であるが、含有量の特定が重要とな
る。通常はCr量が増加すると耐食性の点では有効であ
るが、磁気特性の点からは、Fe量が相対的に減少して
磁束密度の低下要因となるためCrの含有量をできるだ
け低減させた方が好ましい。即ち、焼結軟磁性ステンレ
ス鋼用原料粉末としては、Cr量は耐食性を維持できる
最小限度の添加に止めて磁気特性を向上させることが有
効である。本発明において、Cr量を7質量%〜15質
量%とした。この理由は、試験検討から、Crの含有量
が7質量%を下回ると耐食性が低下するため、下限を少
なくとも7質量%以上とした。同時に、上限は上記した
基地中のFe分の減少により磁束密度が低下するためそ
の磁気特性との関係で最適となる15質量%以下とし
た。Cr量が15質量%を超えると、磁束密度の低下が
著しく磁気特性の悪化が避けられないからである。ま
た、Cr含有量の上限は特に磁気特性から11.5質量
%以下が好ましい。[0010] Cr (chromium) in the raw material powder is essential for imparting corrosion resistance, but it is important to specify the content. Normally, increasing the amount of Cr is effective in terms of corrosion resistance, but from the viewpoint of magnetic properties, the amount of Fe is relatively reduced to cause a reduction in magnetic flux density. Is preferred. That is, as the raw material powder for the sintered soft magnetic stainless steel, it is effective to improve the magnetic properties by limiting the amount of Cr to the minimum addition that can maintain the corrosion resistance. In the present invention, the amount of Cr is set to 7% by mass to 15% by mass. The reason for this is that the corrosion resistance is reduced when the Cr content is less than 7% by mass from the examination and examination, so the lower limit is set to at least 7% by mass or more. At the same time, the upper limit is set to 15% by mass or less, which is optimum in relation to the magnetic properties because the magnetic flux density is reduced due to the decrease in Fe content in the matrix. If the amount of Cr exceeds 15% by mass, the magnetic flux density is significantly reduced, and the deterioration of magnetic properties is inevitable. Further, the upper limit of the Cr content is particularly preferably 11.5% by mass or less from the viewpoint of magnetic properties.
【0011】原料粉末中のSi(珪素)は耐食性に対し
有効で、かつ電気抵抗を増加させて電磁弁の応答性を改
善するとともに、鉄損を減少させ固有抵抗、透磁率を高
くする作用がある。但し、多量のSiを原料粉末に固溶
して与えると粉末を硬くして圧縮性を損なう。このこと
から、本発明において、軟磁性ステンレス鋼微粉末のS
i量は上記Crの低減による耐食性を補うとともに、固
有抵抗、透磁率を高くするため1.0質量%以上含有さ
せることとした。上限は、粉末の圧縮性を確保するため
含有量を4質量%に止める。上記した作用をより一層発
揮させるには、SiをSi微粉末として軟磁性ステンレ
ス鋼微粉末の外部より与えることで軟磁性ステンレス鋼
微粉末の圧縮性を損なわずより多量にSiを添加するこ
ともできる。しかし、全体組成中のSi量が6.5質量
%を超えると、Fe分の減少による磁束密度の低下が大
きく磁気特性が悪くなり、かつ焼結品の靭性を損なう。
このため、Si含有量の上限は造粒粉末中のSi量で
6.5質量%までとする。[0011] Si (silicon) in the raw material powder is effective for corrosion resistance and has the effect of increasing the electrical resistance to improve the responsiveness of the solenoid valve, reducing iron loss and increasing the specific resistance and the magnetic permeability. is there. However, if a large amount of Si is provided as a solid solution in the raw material powder, the powder is hardened and the compressibility is impaired. From this, in the present invention, the soft magnetic stainless steel fine powder S
The i amount is set to be 1.0% by mass or more in order to supplement the corrosion resistance due to the reduction of Cr and increase the specific resistance and the magnetic permeability. As for the upper limit, the content is limited to 4% by mass in order to secure the compressibility of the powder. In order to further exert the above-mentioned action, it is also possible to add Si in a larger amount without impairing the compressibility of the soft magnetic stainless steel fine powder by giving Si from the outside of the soft magnetic stainless steel fine powder as Si fine powder. it can. However, if the Si content in the overall composition exceeds 6.5% by mass, the magnetic flux density is greatly reduced due to the decrease in Fe content, and the magnetic properties are deteriorated, and the toughness of the sintered product is impaired.
For this reason, the upper limit of the Si content is limited to 6.5% by mass in terms of the amount of Si in the granulated powder.
【0012】上記Si粉末に替えてFe−Si微粉末を
用いることも可能である。Fe−Si微粉末はSi粉末
よりも硬さが低いため圧縮性が改善されるが、Si含有
量が10質量%未満のFe−Si微粉末を用いると、必
要なSi量を確保するため添加するFe−Si量が多く
なり、基地の耐食性を低下させるとともに、磁気特性も
低下するため好ましくない。従って、Fe−Si微粉末
としては、少なくともSi含有量が10質量%以上のも
のに特定される。It is also possible to use Fe-Si fine powder instead of the above Si powder. Fe-Si fine powder has a lower hardness than Si powder, so that compressibility is improved. However, when Fe-Si fine powder having a Si content of less than 10% by mass is used, a necessary amount of Si is added to secure the necessary Si content. This is not preferable because the amount of Fe-Si increases to lower the corrosion resistance of the matrix and the magnetic properties. Therefore, the Fe-Si fine powder is specified to have a Si content of at least 10% by mass or more.
【0013】なお、Alは耐食性の向上、及び固有抵抗
の増加による磁気特性の向上、更に靭性の改善による冷
間加工性の付与の目的で、特に溶製の軟磁性ステンレス
鋼においては一般に原料粉末中に含有されている。しか
し、Alは酸化しやすい元素であり、粉末中に固溶して
与えた場合、粉末表面に強固な酸化被膜を形成しやす
く、焼結の進行を阻害する要因となり、酸化被膜の除去
のためには高真空での加熱が必要となる。本発明におい
ては、ニアネットシェイプに製品を製造する粉末冶金法
を採用していることから加工に必要な靭性の向上の効果
よりも、焼結の進行を阻害する要因排除による効果の方
が大きく、かつ、耐食性については上記Crにより確保
され、また固有抵抗についても上記Siにより確保され
ることからも、Fe分の減少による磁束密度の低下を避
けるためにも、Alの含有を省くことが性能向上重視か
ら必須とした。但し、本発明は、Alが粉末作製時に溶
湯中に脱酸剤として添加されることもあり、不可避不純
物として粉末中に残留する程度のAlの含有については
焼結性に影響しないため当然許容される。Al is used for the purpose of improving corrosion resistance, improving magnetic properties by increasing specific resistance, and providing cold workability by improving toughness. It is contained in. However, Al is an element that is easily oxidized, and when given as a solid solution in powder, a strong oxide film is easily formed on the powder surface, which is a factor that hinders the progress of sintering. Requires heating in a high vacuum. In the present invention, the effect of eliminating factors that hinder the progress of sintering is greater than the effect of improving the toughness required for processing because powder metallurgy is used to manufacture products in the near net shape. In addition, since the corrosion resistance is ensured by the above-mentioned Cr and the specific resistance is also ensured by the above-mentioned Si, it is necessary to omit Al content in order to avoid a decrease in magnetic flux density due to a decrease in Fe content. Mandatory from the perspective of improvement. However, in the present invention, Al is sometimes added as a deoxidizing agent in the molten metal during powder production, and the content of Al that remains in the powder as an unavoidable impurity does not affect the sinterability and is naturally acceptable. You.
【0014】以上のような粉末構成では、上記成分を含
有する軟磁性ステンレス鋼微粉末、もしくは軟磁性ステ
ンレス鋼微粉末とSi微粉末またはFe−Si微粉末を
用意し、それらの微粉末を造粒して造粒粉末とすること
により、ブリッジングの発生を防止するとともに金型へ
傷を付けることもなく、焼結性を向上させて焼結密度比
90%以上の製品を製造容易となる。焼結密度比は、9
0%を下回ると磁束密度等の磁気特性の低下が生じ、ま
た気孔が増加することによる孔食腐蝕により耐食性も低
下するため90%以上にすることを必須とした。In the above powder composition, soft magnetic stainless steel fine powder containing the above-mentioned components, or soft magnetic stainless steel fine powder and Si fine powder or Fe-Si fine powder are prepared, and these fine powders are produced. By granulating into a granulated powder, bridging is prevented from occurring, the sinterability is improved without damaging the mold, and a product having a sintered density ratio of 90% or more can be easily manufactured. . The sintered density ratio is 9
If it is less than 0%, the magnetic properties such as the magnetic flux density are reduced, and the corrosion resistance is also reduced due to the pitting corrosion due to the increase in pores.
【0015】更に詳述すると、上記軟磁性ステンレス鋼
微粉末、もしくは上記軟磁性ステンレス鋼微粉末とSi
微粉末またはFe−Si微粉末は、粒度(平均粒径)4
0μmより小さな微粉末であることが好ましく、造粒処
理して平均粒径が10〜150μmの造粒粉末の形態で
用いられる。ステンレス鋼微粉末とSi微粉末またはF
e−Si微粉末は、粒度40μmを超える大きさである
と基地中への均一分散性に欠け、造粒加工時の流動性等
も悪くなる。また、造粒粉末としては、平均粒径10μ
m以下であると造粒の効果が乏しく、圧粉成形型への充
填性も悪くなる。造粒粉末が平均粒径150μmを超え
ると、粉末成形時の充填密度が低下するため、焼結密度
比が90%を下回ることとなり、磁気特性及び耐食性が
低下するとともに寸法精度も悪くなる。More specifically, the soft magnetic stainless steel fine powder, or the soft magnetic stainless steel fine powder and Si
Fine powder or Fe-Si fine powder has a particle size (average particle size) of 4
It is preferably a fine powder smaller than 0 μm, and is used in the form of a granulated powder having an average particle size of 10 to 150 μm after granulation. Stainless steel fine powder and Si fine powder or F
When the particle size of the e-Si fine powder exceeds 40 μm, the e-Si fine powder lacks uniform dispersibility in the matrix, and the fluidity at the time of granulation becomes poor. The granulated powder has an average particle size of 10 μm.
If it is less than m, the effect of granulation is poor, and the filling property into the compacting mold becomes poor. If the average particle diameter of the granulated powder exceeds 150 μm, the packing density at the time of powder molding is reduced, so that the sintering density ratio is lower than 90%, so that the magnetic properties and corrosion resistance are reduced and the dimensional accuracy is deteriorated.
【0016】上記した造粒は一般の造粒法が適用され
る。即ち、上記したステンレス鋼微粉末、また、ステン
レス鋼微粉末とSi微粉末またはFe−Si微粉末との
混合粉末は、バインダーとしてポリビニルアルコール、
ポリビニルピロリドン、ワックス等の有機物や前記有機
物の水またはアルコール溶液を用いて、転動造粒機や混
合撹拌造粒機等の造粒装置により造粒される。装置的に
は、ロータリープレスのような高速成形機でも差し支え
ない。また、前記バインダー中には適宜可塑剤や分散剤
を添加してもよい。For the above granulation, a general granulation method is applied. That is, the stainless steel fine powder described above, or a mixed powder of stainless steel fine powder and Si fine powder or Fe-Si fine powder, polyvinyl alcohol as a binder,
Using an organic substance such as polyvinylpyrrolidone or wax, or a water or alcohol solution of the organic substance, granulation is performed by a granulating device such as a tumbling granulator or a mixing stirring granulator. In terms of equipment, a high-speed molding machine such as a rotary press may be used. Further, a plasticizer or a dispersant may be appropriately added to the binder.
【0017】なお、焼結軟磁性ステンレス鋼用原料粉末
としては、上記した平均粒径が10〜150μmに造粒
した造粒粉末において、Si量が1.0〜6.5質量%
にすると、焼結性が改善され密度比90%以上の製品が
確実に得られるとともにSiの分散が均一で磁気特性を
より良好にでき、かつ、原料粉末の流動性が改善される
とともに、充填時のブリッジングの発生を防止して、均
一充填を容易にし更に原料粉末が金型の隙間に入り込む
虞を防いで金型寿命を延長可能となる。As the raw material powder for sintered soft magnetic stainless steel, the above-mentioned granulated powder having an average particle diameter of 10 to 150 μm has a Si content of 1.0 to 6.5 mass%.
In this case, the sinterability is improved, a product having a density ratio of 90% or more can be reliably obtained, the distribution of Si is uniform, the magnetic properties can be improved, the fluidity of the raw material powder is improved, and This prevents the occurrence of bridging at the time, facilitates uniform filling, prevents the possibility that the raw material powder enters the gaps between the molds, and extends the life of the mold.
【0018】本発明の焼結軟磁性ステンレス鋼用原料粉
末に用いられる、上記のCr、Si、Al以外の成分に
ついては特に限定されるものではなく、焼結の進行を阻
害するものでなければ、従来知られている範囲で他の元
素を含有しても差し支えない。次に、その例として、本
発明の焼結軟磁性ステンレス鋼用原料粉末に推奨される
組成範囲を概説する。The components other than Cr, Si and Al used in the raw material powder for sintered soft magnetic stainless steel of the present invention are not particularly limited, as long as they do not hinder the progress of sintering. However, other elements may be contained within a conventionally known range. Next, as an example, the composition range recommended for the raw material powder for sintered soft magnetic stainless steel of the present invention will be outlined.
【0019】Moは、耐食性を改善する元素であるが、
多量の添加は磁気特性の悪化を招く。このため、含有さ
せる際は上限を2.0質量%以下とする。Sは、耐食性
を低下させるが、溶鋼の表面張力を下げ、アトマイズ法
による粉末の微粉末化に効果があり、製品の被削性改善
にも有効である。このため、含有させる場合は多くても
0.1質量%以下に止めることが好ましい。Mo is an element which improves corrosion resistance.
Addition of a large amount causes deterioration of magnetic properties. For this reason, when it is contained, the upper limit is set to 2.0% by mass or less. S lowers the corrosion resistance, but lowers the surface tension of the molten steel, is effective in atomizing the powder by the atomizing method, and is also effective in improving the machinability of the product. For this reason, when it is contained, it is preferable to keep it at most 0.1 mass% or less.
【0020】TiやNbは磁気特性及び耐食性に有害な
Cと、磁気特性に有害なNの影響を抑制するため、添加
することも有用である。即ち、TiやNbは、C及びN
と炭化物または窒化物を形成し無害化させて耐食性及び
磁気特性の改善に寄与する。しかし、Ti含有量が多く
なるとアトマイズ法による溶湯のノズルの絞りや閉塞の
問題が発生し、Nb含有量が多くなると粉末の硬さが増
加して圧縮性が低下する問題が発生する。また、Tiや
Nbの多量の含有は結晶粒を微細化させて、磁気特性を
かえって低下させる。このため、含有させる場合は上限
を0.5質量%とすることが好ましい。It is also useful to add Ti or Nb to suppress the influence of C harmful to magnetic properties and corrosion resistance and N harmful to magnetic properties. That is, Ti and Nb are C and N
And carbides or nitrides are formed and rendered harmless, thereby contributing to the improvement of corrosion resistance and magnetic properties. However, when the Ti content is increased, the problem of narrowing or clogging of the nozzle of the molten metal by the atomizing method occurs, and when the Nb content is increased, the hardness of the powder increases and the compressibility decreases. In addition, a large amount of Ti or Nb causes crystal grains to be refined, thereby deteriorating magnetic properties. Therefore, when it is contained, the upper limit is preferably set to 0.5% by mass.
【0021】本発明は、以上の元素(Mo、S、Ti、
Nb)を組成に含む軟磁性ステンレス鋼原料粉末を使用
することにより、上記した耐食性及び磁気特性等により
優れた焼結軟磁性ステンレス鋼を得ることができる。According to the present invention, the above elements (Mo, S, Ti,
By using the soft magnetic stainless steel raw material powder containing Nb) in the composition, a sintered soft magnetic stainless steel excellent in the above-described corrosion resistance and magnetic properties can be obtained.
【0022】[0022]
【実施例】以下、本発明の焼結軟磁性ステンレス鋼用原
料粉末を用いた焼結軟磁性ステンレス鋼の特性について
実施例により明らかにする。EXAMPLES The characteristics of sintered soft magnetic stainless steel using the raw material powder for sintered soft magnetic stainless steel of the present invention will be clarified by examples.
【0023】[実施例1]この実施例は本発明の請求項
1、3、4に対応しており、ステンレス鋼用原料粉末の
組成及び造粒粉末、それを用いたステンレス鋼性能を調
べた試験例である。試験では、まず、表1に示す組成
(各成分は平均粒径40μm以下の微粉末を用いた)の
ステンレス鋼粉末(ステンレス鋼微粉末)を用い、バイ
ンダーとしてメチルアルコールを溶媒とするポリビニル
ピロリドン5%溶液を転動流動造粒装置に連続的供給し
ながら造粒して、表1の左欄に記した平均粒径の造粒粉
末を得た。次いで、得られた各造粒粉末に成形潤滑剤と
してステアリン酸亜鉛0.8質量%を添加して混合した
混合粉末について、成形圧力5t/cm2で、φ50m
m×φ30mm×t5mmのリング形状に成形し、水素
ガス雰囲気中で1350℃で3時間焼結した後、真空中
で850℃×2時間の焼鈍してリング形状試験片(本発
明1〜5と比較例1〜4)を作成した。Example 1 This example corresponds to claims 1, 3, and 4 of the present invention. The composition of the raw material powder for stainless steel, the granulated powder, and the performance of stainless steel using the same were examined. This is a test example. In the test, first, a stainless steel powder (stainless steel fine powder) having a composition shown in Table 1 (each component was a fine powder having an average particle diameter of 40 μm or less) was used, and polyvinylpyrrolidone 5 containing methyl alcohol as a solvent as a binder was used. % Solution was continuously supplied to a tumbling fluidized-bed granulator to obtain granulated powder having an average particle diameter shown in the left column of Table 1. Next, with respect to the mixed powder obtained by adding 0.8% by mass of zinc stearate as a molding lubricant to each of the obtained granulated powders and mixing them, a molding pressure of 5 t / cm 2 and a diameter of 50 m
After forming into a ring shape of m × φ30 mm × t5 mm, sintering at 1350 ° C. for 3 hours in a hydrogen gas atmosphere, annealing at 850 ° C. × 2 hours in a vacuum, a ring shape test piece (with the present invention 1-5) Comparative Examples 1 to 4) were prepared.
【0024】[0024]
【表1】 [Table 1]
【0025】評価は、上記各試験片について、1次側1
00回、2次側50回巻線し、直流と交流のB−H曲線
を測定して行った。表2において、直流磁気特性として
は各試験片の磁界強さ2000(A/m)における磁束
密度をB2000、保磁力をHc、透磁率をμmで示し
ている。交流磁気特性としては周波数50Hzで励磁磁
束密度1T(1テスラ)の鉄損値をW(1T/50Hz)
とし、周波数10kHzで励磁磁束密度50mTの鉄損
値をW(50mT/10kHz)として示している。ま
た、表2には焼結密度比%と耐食性を併記した。耐蝕性
は、5%食塩水溶液の塩水噴霧試験を行い、35℃×3
0時間で発錆状況を目視により判断した。目視結果は、
錆の発生が認められないものについては○印、ほぼ全面
に錆が発生したものについては×印、全面ではないがあ
る程度の錆が発生したものについては△印を付けた。The evaluation was performed on the primary side 1 for each of the above test pieces.
Winding was performed 00 times and the secondary side was wound 50 times, and the DC and AC BH curves were measured. In Table 2, as DC magnetic characteristics, the magnetic flux density at a magnetic field strength of 2000 (A / m) of each test piece is represented by B2000, the coercive force is represented by Hc, and the magnetic permeability is represented by μm. As the AC magnetic characteristics, the iron loss value at an excitation magnetic flux density of 1 T (1 Tesla) at a frequency of 50 Hz is represented by W (1 T / 50 Hz).
And an iron loss value at a frequency of 10 kHz and an excitation magnetic flux density of 50 mT is shown as W (50 mT / 10 kHz). Table 2 also shows the sintering density ratio% and the corrosion resistance. Corrosion resistance was measured by a salt spray test of 5% saline solution at 35 ° C x 3
At 0 hour, the rusting condition was visually judged. The visual result is
When no rust was observed, a circle was given, when almost all of the rust occurred, a cross was given, and when some but not all the rust occurred, a triangle was given.
【0026】[0026]
【表2】 [Table 2]
【0027】表1,2より、本願発明に対応する軟磁性
ステンレス鋼微粉末を造粒した造粒粉末を用いた試験片
(本発明1〜5)は、耐食性が良好で磁気特性も優れて
いることが判る。比較例のうち、通常の大きさの粉末を
用いた試験片(比較例4)では、焼結密度比が上がらず
耐食性の低下、磁束密度の低下が認められる。微粉末を
用いても造粒を行わない試験片(比較例1)でも、同様
に焼結密度比が上がらず耐食性の低下、磁束密度の低下
が認められる。Cr量が少ない試験片(比較例2)では
耐食性が悪く錆が発生してしまう。また、Si量が多す
ぎる試験片(比較例3)では粉末の圧縮性が悪くなり、
焼結密度比が低下するとともに、磁束密度の低下、高周
波側での交流磁気特性の低下が認められる。即ち、この
実施例1からは、本願発明の軟磁性ステンレス鋼微粉末
を造粒した造粒粉末を用いること、組成成分のうちCr
とSiの質量%を特定することの優位性が明らかであ
る。Tables 1 and 2 show that the test pieces (inventions 1 to 5) using the granulated powder obtained by granulating the soft magnetic stainless steel fine powder corresponding to the present invention have good corrosion resistance and excellent magnetic properties. It turns out that there is. Among the comparative examples, in the test piece using a powder having a normal size (Comparative Example 4), the sintering density ratio did not increase, and a decrease in corrosion resistance and a decrease in magnetic flux density were observed. Similarly, in the test piece (Comparative Example 1) in which granulation was not performed even when the fine powder was used, the sintering density ratio did not increase, and a decrease in corrosion resistance and a decrease in magnetic flux density were observed. The test piece with a small Cr content (Comparative Example 2) has poor corrosion resistance and generates rust. On the other hand, the test piece with too much Si (Comparative Example 3) had poor powder compressibility,
As the sintering density ratio decreases, a decrease in magnetic flux density and a decrease in AC magnetic characteristics on the high frequency side are observed. That is, from Example 1, the granulated powder obtained by granulating the soft magnetic stainless steel fine powder of the present invention was used.
The advantage of specifying the mass% of Si and Si is apparent.
【0028】[実施例2]この実施例は本発明の請求項
2に対応しており、前記と同様にステンレス鋼用原料粉
末の組成及び造粒粉末、それを用いたステンレス鋼性能
を調べた試験例である。即ち、ここでは、実施例1で用
いた本発明の試験片4の軟磁性ステンレス鋼微粉末を用
いて、表3に示すSi粉末(比較例6は平均粒径76
で、それ以外は平均粒径40μm以下の微粉末)または
Fe−Si粉末(平均粒径40μm以下の微粉末)を添
加し、実施例1と同じ条件で造粒粉末を作成し、また、
各試験片の作成及び評価も実施例1と同様に行ったもの
である。その結果は表4に示した。なお、表4には比較
のため上記実施例1の本発明試験片4の値を併記してあ
る。Example 2 This example corresponds to claim 2 of the present invention. In the same manner as above, the composition of the raw material powder for stainless steel, the granulated powder, and the performance of the stainless steel using the same were examined. This is a test example. That is, here, using the soft magnetic stainless steel fine powder of the test piece 4 of the present invention used in Example 1, the Si powder shown in Table 3 (Comparative Example 6 has an average particle diameter of 76
Other than that, a fine powder having an average particle size of 40 μm or less) or Fe—Si powder (a fine powder having an average particle size of 40 μm or less) was added, and a granulated powder was prepared under the same conditions as in Example 1.
Preparation and evaluation of each test piece were performed in the same manner as in Example 1. The results are shown in Table 4. Table 4 also shows the values of the test piece 4 of the present invention of Example 1 for comparison.
【0029】[0029]
【表3】 [Table 3]
【0030】[0030]
【表4】 [Table 4]
【0031】表3,4において、本発明の試験片4と試
験片6,7を比較すると、Siの添加により磁束密度及
び透磁率は増加し、保磁力及び鉄損は減少が認められ、
磁気特性向上の効果が認められる。また、Si粉末に替
えてFe−10Siを用いた本発明試験片8は磁束密度
が同じであるが、保磁力及び透磁率の増加、鉄損の減少
が認められ磁気特性を向上できることが判る。しかし、
Siが平均粒径76μmと大きい粉末を用いた試験片
(比較例6)では焼結密度比が向上せず、耐食性が低下
して錆の発生も認められ、鉄損が低下する。また、Si
に変えてFe−5Siを用いた試験片(比較例5)で
は、全体組成中のSi量を等しくするためには多量のF
e−5Siが必要となり、その結果、耐食性に劣る部分
が多くなりすぎて耐食性が劣化し錆が発生している。ま
た、焼結密度比,磁気特性も全て低下している。以上よ
り本発明軟磁性ステンレス鋼微粉末にSi粉末微粉を添
加して共に造粒することにより、磁気特性をより向上さ
せることができることが確認できる。また、Si微粉末
に替えてSi量が10質量%以上のFe−Si微粉末を
用いても同様の効果が得られることも確認できる。更
に、全体組成中のSi量が6.5%の本発明試験片9は
本発明試験片4,6に比べて透磁率が最大で鉄損が低下
し優れた磁気特性を示すが、Siの増加につれて磁束密
度が低下するため全体組成中のSi量が6.9%の試験
片(比較例7)では磁束密度の低下が著しく、また透磁
率もSi量が6.5%を越えると著しく低下することが
確認できる。In Tables 3 and 4, when the test piece 4 of the present invention is compared with the test pieces 6 and 7, the addition of Si increases the magnetic flux density and magnetic permeability, and decreases the coercive force and iron loss.
The effect of improving the magnetic properties is recognized. In addition, although the test piece 8 of the present invention using Fe-10Si instead of Si powder has the same magnetic flux density, an increase in coercive force and magnetic permeability and a decrease in iron loss are recognized, and it can be seen that magnetic properties can be improved. But,
In the test piece (Comparative Example 6) using a powder having a large average particle diameter of Si of 76 μm, the sintered density ratio was not improved, corrosion resistance was reduced, rust was generated, and iron loss was reduced. In addition, Si
In the test piece using Fe-5Si (Comparative Example 5) instead of the above, a large amount of F was used in order to equalize the amount of Si in the entire composition.
e-5Si is required, and as a result, there are too many portions having poor corrosion resistance, and the corrosion resistance is deteriorated and rust is generated. Also, the sintered density ratio and the magnetic properties are all reduced. From the above, it can be confirmed that the magnetic properties can be further improved by adding the Si powder fine powder to the soft magnetic stainless steel fine powder of the present invention and granulating them together. Also, it can be confirmed that the same effect can be obtained by using Fe—Si fine powder having a Si content of 10% by mass or more instead of Si fine powder. Further, the test piece 9 of the present invention having an Si content of 6.5% in the whole composition has a maximum magnetic permeability and lower iron loss and exhibits excellent magnetic properties as compared with the test pieces 4 and 6 of the present invention. Since the magnetic flux density decreases as the amount increases, the test piece with 6.9% Si in the overall composition (Comparative Example 7) shows a remarkable decrease in magnetic flux density, and the magnetic permeability also significantly increases when the Si content exceeds 6.5%. It can be confirmed that it decreases.
【0032】[0032]
【発明の効果】以上のように、本発明の焼結軟磁性ステ
ンレス鋼用原料粉末及びそれを用いた製造方法では、特
に、Cr量及びSi量を最適化したことで、耐食性を維
持したまま磁束密度の低下を防止し、更に、ステンレス
鋼微粉末を造粒したことや、請求項2の如く圧縮性を損
なうSiを外部添加として与えて造粒したことで粉末の
流動性等の粉末特性を良好に維持するとともに成形性を
改善し、高密度で、固有抵抗値及び磁束密度が高く、鉄
損の低い軟磁性ステンレス鋼を製造できる。As described above, in the raw material powder for sintered soft magnetic stainless steel and the production method using the same according to the present invention, in particular, by optimizing the amounts of Cr and Si, the corrosion resistance is maintained. The powder characteristics such as fluidity of the powder are obtained by preventing a decrease in magnetic flux density and further granulating stainless steel fine powder, and granulating by adding Si which impairs compressibility as external addition as in claim 2. And good formability are improved, and a soft magnetic stainless steel with high density, high specific resistance and high magnetic flux density and low iron loss can be manufactured.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/18 C22C 38/18 38/28 38/28 H01F 1/20 H01F 1/20 1/22 1/22 (72)発明者 加藤 欽之 青森県八戸市河原木海岸4−44 株式会社 アトミックス内 (72)発明者 中林 興栄 青森県八戸市河原木海岸4−44 株式会社 アトミックス内 (72)発明者 渡邉 篤 青森県八戸市河原木海岸4−44 株式会社 アトミックス内 Fターム(参考) 4K018 AA33 BA17 BB04 BC11 CA12 DA31 5E041 AA11 AA19 BD01 CA10 HB03 HB05 HB19 NN01 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C22C 38/18 C22C 38/18 38/28 38/28 H01F 1/20 H01F 1/20 1/22 1/22 (72 ) Inventor Yoshiyuki Kato 4-44 Kawaragi Beach, Hachinohe City, Aomori Prefecture Inside Atmix Co., Ltd. 4-44 Kawaragi Kaigan, Hachinohe City, Aomori Prefecture F-term in Atmix Co., Ltd. (Reference) 4K018 AA33 BA17 BB04 BC11 CA12 DA31 5E041 AA11 AA19 BD01 CA10 HB03 HB05 HB19 NN01
Claims (5)
〜4%を含有するとともにAlを含有しない軟磁性ステ
ンレス鋼微粉末を造粒して、平均粒径が10〜150μ
mの造粒粉末になっている、ことを特徴とする焼結軟磁
性ステンレス鋼用原料粉末。1. A mass ratio of Cr: 7 to 15%, Si: 1
Granulated soft magnetic stainless steel fine powder containing 44% and containing no Al and having an average particle size of 10-150 μm.
A raw material powder for sintered soft magnetic stainless steel, which is a granulated powder of m.
粉末と、Si微粉末またはSi含有量が質量比で10%
以上のFe−Si微粉末との混合粉末を造粒して、平均
粒径が10〜150μmの造粒粉末であるとともに前記
造粒粉末のSi量が1質量%を超え6.5質量%以下に
なっている、ことを特徴とする焼結軟磁性ステンレス鋼
用原料粉末。2. The soft magnetic stainless steel fine powder according to claim 1 and a Si fine powder or a Si content of 10% by mass.
The mixed powder with the above-mentioned Fe-Si fine powder is granulated to obtain a granulated powder having an average particle size of 10 to 150 µm, and the Si content of the granulated powder is more than 1% by mass and 6.5% by mass or less. A raw material powder for sintered soft magnetic stainless steel, characterized in that:
質量比で、Mo:2.0%以下、S:0.1%以下、T
i:0.5%以下、Nb:0.5%以下のうち少なくと
も1種以上を含む請求項1又は2に記載の軟磁性ステン
レス鋼用原料粉末。3. The soft magnetic stainless steel fine powder further comprises Mo: 2.0% or less, S: 0.1% or less, and T:
The raw material powder for soft magnetic stainless steel according to claim 1, comprising at least one of i: 0.5% or less and Nb: 0.5% or less.
が、質量比で、7.0〜11.5%である請求項1から
3の何れかに記載の焼結軟磁性ステンレス鋼用原料粉
末。4. The raw material for a sintered soft magnetic stainless steel according to claim 1, wherein the Cr content of the soft magnetic stainless steel fine powder is 7.0 to 11.5% by mass ratio. Powder.
物を金型内に投入し、上下パンチで圧粉成形して得られ
た圧粉体を焼結する焼結軟磁性ステンレス鋼の製造方法
において、 前記原料粉末として、請求項1から4の何れかに記載の
焼結軟磁性ステンレス鋼用原料粉末を用い、還元雰囲気
中または真空中で焼結して密度比を90%以上にするこ
とを特徴とする焼結軟磁性ステンレス鋼の製造方法。5. A sintered soft magnetic stainless steel obtained by mixing a molding lubricant into a raw material powder, charging the mixture into a mold, and sintering a green compact obtained by compacting with a vertical punch. In the manufacturing method, using the raw material powder for sintered soft magnetic stainless steel according to any one of claims 1 to 4 as the raw material powder, sintering in a reducing atmosphere or in a vacuum to obtain a density ratio of 90% or more. A method for producing a sintered soft magnetic stainless steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001081300A JP4070069B2 (en) | 2001-03-21 | 2001-03-21 | Method for producing sintered soft magnetic stainless steel with excellent corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001081300A JP4070069B2 (en) | 2001-03-21 | 2001-03-21 | Method for producing sintered soft magnetic stainless steel with excellent corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002275600A true JP2002275600A (en) | 2002-09-25 |
JP4070069B2 JP4070069B2 (en) | 2008-04-02 |
Family
ID=18937432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001081300A Expired - Lifetime JP4070069B2 (en) | 2001-03-21 | 2001-03-21 | Method for producing sintered soft magnetic stainless steel with excellent corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4070069B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1306528C (en) * | 2004-01-14 | 2007-03-21 | 施立新 | Uneasily-sintered magnetic powder |
JP2008214664A (en) * | 2007-02-28 | 2008-09-18 | Seiko Epson Corp | Method for manufacturing sintered body, and sintered body |
US7470332B2 (en) | 2004-03-29 | 2008-12-30 | Hitachi Powdered Metals Co., Ltd. | Production method for soft magnetic sintered member |
JP2009019264A (en) * | 2007-06-11 | 2009-01-29 | Nippon Piston Ring Co Ltd | Soft magnetic iron-based sintered member |
JP2010133023A (en) * | 2008-11-07 | 2010-06-17 | Hitachi Metal Precision:Kk | Ferritic stainless steel-based soft magnetic material and method for production thereof |
JP2017092481A (en) * | 2015-05-14 | 2017-05-25 | Tdk株式会社 | Soft magnetic metal powder and soft magnetic metal powder core |
CN115394512A (en) * | 2022-09-07 | 2022-11-25 | 湖南纳金新材料技术有限公司 | Soft magnetic composite powder and preparation method thereof |
-
2001
- 2001-03-21 JP JP2001081300A patent/JP4070069B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1306528C (en) * | 2004-01-14 | 2007-03-21 | 施立新 | Uneasily-sintered magnetic powder |
US7470332B2 (en) | 2004-03-29 | 2008-12-30 | Hitachi Powdered Metals Co., Ltd. | Production method for soft magnetic sintered member |
JP2008214664A (en) * | 2007-02-28 | 2008-09-18 | Seiko Epson Corp | Method for manufacturing sintered body, and sintered body |
JP2009019264A (en) * | 2007-06-11 | 2009-01-29 | Nippon Piston Ring Co Ltd | Soft magnetic iron-based sintered member |
JP2013174015A (en) * | 2007-06-11 | 2013-09-05 | Nippon Piston Ring Co Ltd | Soft-magnetic iron-based sintered member |
JP2010133023A (en) * | 2008-11-07 | 2010-06-17 | Hitachi Metal Precision:Kk | Ferritic stainless steel-based soft magnetic material and method for production thereof |
JP2017092481A (en) * | 2015-05-14 | 2017-05-25 | Tdk株式会社 | Soft magnetic metal powder and soft magnetic metal powder core |
CN115394512A (en) * | 2022-09-07 | 2022-11-25 | 湖南纳金新材料技术有限公司 | Soft magnetic composite powder and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4070069B2 (en) | 2008-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6476640B2 (en) | R-T-B sintered magnet | |
EP2863400B1 (en) | Sintered soft magnetic powder molded body | |
EP1734141B1 (en) | Production method for soft magnetic sintered member | |
CN113674984B (en) | Preparation method of FeSiAlZrScSr magnetic powder core | |
JP2002275600A (en) | Raw material powder for sintered soft magnetic stainless steel and production method for the sintered soft magnetic stainless steel using the powder | |
JP5196668B2 (en) | Ferritic stainless steel soft magnetic material and manufacturing method thereof | |
US5026419A (en) | Magnetically anisotropic hotworked magnet and method of producing same | |
JP3432905B2 (en) | Method for producing sendust-based sintered alloy | |
CA3138161A1 (en) | Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy | |
KR20210008732A (en) | Non-magnetic austenitic stainless steel | |
JP2000087194A (en) | Alloy for electromagnet and its manufacture | |
JP4398639B2 (en) | Soft magnetic steel materials with excellent machinability and magnetic properties, soft magnetic steel components with excellent magnetic properties, and methods for producing soft magnetic steel components | |
JP3184303B2 (en) | Electromagnetic stainless steel | |
JP2922248B2 (en) | Manufacturing method of sintered alloy with excellent corrosion resistance | |
JPH0547537A (en) | Sintered soft magnetic material | |
GB2051622A (en) | Method for manufacturing components for magnetic heads | |
JPH07238352A (en) | Sintered compact of highly corrosion resistant silicon stainless steel | |
JPS5823462B2 (en) | Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density | |
JPH0123923B2 (en) | ||
JP2000119792A (en) | Production of soft magnetic alloy sheet | |
KR20210107289A (en) | Stainless steel powder, powder composition for powder metallurgy containing the same and method of manufacturing the same | |
JPH04298006A (en) | Manufacture of fe-si-al alloy sintered soft magnetic substance | |
EP4177912A1 (en) | Soft magnetic iron-based powder and preparation method therefor, and soft magnetic component | |
JPS61147846A (en) | High permeability 'pb permalloy(r)' | |
JPS5854486B2 (en) | permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040304 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080110 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4070069 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110125 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110125 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120125 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130125 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140125 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |