JP2922248B2 - Manufacturing method of sintered alloy with excellent corrosion resistance - Google Patents
Manufacturing method of sintered alloy with excellent corrosion resistanceInfo
- Publication number
- JP2922248B2 JP2922248B2 JP7113890A JP7113890A JP2922248B2 JP 2922248 B2 JP2922248 B2 JP 2922248B2 JP 7113890 A JP7113890 A JP 7113890A JP 7113890 A JP7113890 A JP 7113890A JP 2922248 B2 JP2922248 B2 JP 2922248B2
- Authority
- JP
- Japan
- Prior art keywords
- binder
- corrosion resistance
- sintering
- weight
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は、粉末冶金法による耐食性の優れた焼結合金
の製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for producing a sintered alloy having excellent corrosion resistance by powder metallurgy.
<従来の技術> 従来より、Ni、Cr、Mo等を多量に含む高耐食性合金の
成形品は、精密鋳造法によって製造されている。しか
し、鋳造法で製造された成形品(鋳造品)は、機械的特
性が悪く、高度な機械的特性をも要求される耐食部品へ
の適用は困難である。また、鋳造品の表面肌性状は悪い
ので、研磨やめっき、コーティング等の後加工が施され
て使用されるされる耐食部品への適用も困難である。<Conventional Technology> Conventionally, a molded article of a highly corrosion-resistant alloy containing a large amount of Ni, Cr, Mo, or the like has been manufactured by a precision casting method. However, a molded product (cast product) manufactured by a casting method has poor mechanical properties, and it is difficult to apply it to a corrosion-resistant part that also requires high mechanical properties. Further, since the surface texture of the cast product is poor, it is also difficult to apply it to corrosion-resistant parts used after being subjected to post-processing such as polishing, plating, and coating.
鋳造品は、上記の欠点を有するため、Ni、Cr、Mo等を
多量に含む合金の成形品の製造に際し、用途によっては
鍛造法や圧延法が用いられている。しかし、鍛造法や圧
延法では、最終の部品形状に仕上げることは不可能であ
り、多大の切削加工が余儀なくされ、しかも、Ni、Cr、
Mo等を多量に含む合金の被削性は劣悪であるため、切削
加工には著しくコストがかかる。Cast products have the above-mentioned drawbacks, and forging and rolling methods are used depending on the application when manufacturing molded products of alloys containing a large amount of Ni, Cr, Mo, and the like. However, it is impossible to finish to the final part shape by the forging method or the rolling method, so a large amount of cutting work is required, and Ni, Cr,
Since the machinability of an alloy containing a large amount of Mo or the like is inferior, cutting is extremely costly.
さらに、鋳造法や鍛造法においては、製法上、適用で
きる合金系が制限を受ける。Further, in the casting method and the forging method, applicable alloy systems are limited in the production method.
そこで、Ni、Cr、Mo等を多量に含む成形品の焼結法に
よる製造方法が提案された。Therefore, a method of manufacturing a molded product containing a large amount of Ni, Cr, Mo, or the like by a sintering method has been proposed.
例えば、特開昭57−198202号公報には、合金粉末と結
合剤として樹脂および滑剤を混合して粒状コンパウンド
を調製し、それを射出成形して成形体を得、その成形体
から樹脂を除去した後に焼結する方法が開示されてい
る。For example, Japanese Patent Application Laid-Open No. 57-198202 discloses that a granular compound is prepared by mixing a resin and a lubricant as a binder with an alloy powder, and a molding is obtained by injection molding to obtain a molded body, and the resin is removed from the molded body. And then sintering is disclosed.
この方法によると、特開昭57−198202号公報中にも記
述されているように、成形体から結合剤を除去した後、
炭素が残存する。この炭素は、最終製品の特性を損う。According to this method, as described in JP-A-57-198202, after removing the binder from the molded article,
Carbon remains. This carbon impairs the properties of the final product.
そこで、特開昭57−198202号公報では、この問題の解
決に、次の手段の提案している。すなわち、炭素の少
ない原料金属粉末を用いること、炭素をほとんど残さ
ない結合剤を用いること、成形体を焼結した後に、水
素雰囲気下での熱処理を施すこと、である。Therefore, Japanese Patent Laid-Open No. 57-198202 proposes the following means to solve this problem. That is, using a raw metal powder containing less carbon, using a binder that hardly leaves carbon, and performing a heat treatment in a hydrogen atmosphere after sintering the compact.
しかしながら、上記の解決手段の場合、原料金属粉末
や結合剤が制約を受けるが、特に結合剤の制約は、射出
成形工程に影響を及ぼすため、得策ではない。また、水
素雰囲気下での熱処理は、露点をコントロールすれば脱
炭、脱酸させることは可能であるが、困難を伴なうこと
は否めない。However, in the case of the above-mentioned solution, the raw metal powder and the binder are restricted. However, since the restriction of the binder particularly affects the injection molding process, it is not advantageous. Heat treatment in a hydrogen atmosphere can be decarburized and deoxidized by controlling the dew point, but it cannot be denied that it is difficult.
<発明が解決しようとする課題> 前述の如く、Ni、Cr、Mo等を多量に含む合金の成形品
の製造方法は、未だ確立されたとはいえない状況にあ
る。<Problems to be Solved by the Invention> As described above, a method for producing a molded article of an alloy containing a large amount of Ni, Cr, Mo, or the like has not yet been established.
本発明は、このような実情に鑑みてなされたものであ
り、Crと、NiまたはCoを多量に含む、すなわち耐食性の
すぐれた合金の成形品の製造方法であって、原料金属粉
末や結合剤中の炭素に関する制約のない焼結法による製
造方法の提供を目的とする。The present invention has been made in view of such circumstances, and is a method for producing a molded article of an alloy containing a large amount of Cr and Ni or Co, that is, an alloy having excellent corrosion resistance, comprising a raw metal powder and a binder. It is an object of the present invention to provide a production method by a sintering method without restriction on carbon in the inside.
<課題を解決するための手段> 本発明者らは、様々な検討を重ねた結果、原料金属粉
末の粒度の限定と、成形、脱ろう後の焼結条件の限定
(真空焼結と非酸化性雰囲気焼結との併用)により、耐
食性のすぐれた焼結合金が得られることを知見し、本発
明に到達したものである。<Means for Solving the Problems> As a result of various studies, the present inventors have limited the particle size of the raw metal powder and limited the sintering conditions after molding and dewaxing (vacuum sintering and non-oxidation). It has been found that a sintered alloy having excellent corrosion resistance can be obtained by the combined use with a neutral atmosphere sintering), and the present invention has been achieved.
すなわち本発明は、Crを10〜50重量%含む、ニッケル
ベース合金粉末、コバルトベース合金粉末、およびそれ
らの合金成分粉末の混合物のいずれかであって、平均粒
径が20μm以下のものに、結合剤を添加、混合し、成形
して所望形状の成形体を得た後、該成形体中の結合剤を
減圧下および/または非酸化性雰囲気中で加熱除去し、
成形体中のC/Oモル比を0.3〜3に調整し、続いて、温度
1350℃以下、圧力30Torr以下の減圧下で一次焼結を行な
い、さらに、非酸化性雰囲気下で二次焼結を行なうこと
を特徴とする耐食性のすぐれた焼結合金の製造方法を提
供するものである。That is, the present invention relates to any one of a nickel-based alloy powder, a cobalt-based alloy powder, and a mixture of these alloy component powders containing 10 to 50% by weight of Cr and having an average particle diameter of 20 μm or less. After adding and mixing the agent and molding to obtain a molded body having a desired shape, the binder in the molded body is removed by heating under reduced pressure and / or in a non-oxidizing atmosphere,
The C / O molar ratio in the compact was adjusted to 0.3-3,
A method for producing a sintered alloy having excellent corrosion resistance, characterized by performing primary sintering under a reduced pressure of 1350 ° C or less and a pressure of 30 Torr or less, and further performing secondary sintering in a non-oxidizing atmosphere. It is.
前記成形体中のC/Oモル比の調整は、湿潤水素中での
熱処理によって行なうのがよい。The C / O molar ratio in the compact is preferably adjusted by heat treatment in wet hydrogen.
また、前記成形体中のC/Oモル比の調整は、大気中で
の熱処理によって行なうのがよい。The C / O molar ratio in the compact is preferably adjusted by heat treatment in the air.
以下に、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明で用いる原料金属粉末には、Crが10〜50重量%
含有される。Crが多いほど、耐食性はすぐれたものとな
る。従って、Crが10重量%未満では、所望の耐食性が得
られず、一方、50重量%を越えると、シグマ相が多量に
発生し、靭性が著しく劣化するので好ましくない。The raw metal powder used in the present invention contains 10 to 50% by weight of Cr.
Contained. The more Cr, the better the corrosion resistance. Therefore, if Cr is less than 10% by weight, the desired corrosion resistance cannot be obtained, while if it exceeds 50% by weight, a large amount of sigma phase is generated and the toughness is remarkably deteriorated.
また、本発明で用いる原料金属粉末を、ニッケルベー
ス合金粉末、コバルトベース合金粉末、およびそれらの
合金成分粉末の混合物としたのは、耐食性のすぐれた焼
結合金を得るためである。The reason why the raw material metal powder used in the present invention is a nickel-based alloy powder, a cobalt-based alloy powder, and a mixture of these alloy component powders is to obtain a sintered alloy having excellent corrosion resistance.
本発明において、ニッケルベース合金粉末とは、Niを
40〜90重量%、Crを10〜50重量%含有し、残部は、Fe、
Co、Mo、Nb、Ti、Al等と不可避的不純物である合金の粉
末をいい、コバルトベース合金粉末とは、Coを40〜90重
量%、Crを10〜50重量%含有し、残部はFe、Ni、Mo、N
b、Ti、Al等と不可避的不純物である合金粉末をいう。
また、それらの合金成分粉末の混合物とは、金属粉末の
混合物であって、その混合物が融解して合金となった際
の合金組成が、前記ニッケルベース合金粉末あるいはコ
バルトベース合金粉末の合金組成となるような金属粉末
の混合物をいう。In the present invention, nickel-based alloy powder refers to Ni
40 to 90% by weight, 10 to 50% by weight of Cr, the balance being Fe,
Co, Mo, Nb, Ti, Al and other alloy powders that are unavoidable impurities. Cobalt-based alloy powder contains 40 to 90% by weight of Co and 10 to 50% by weight of Cr, with the balance being Fe. , Ni, Mo, N
b, Ti, Al and other alloy powders that are inevitable impurities.
Further, the mixture of these alloy component powders is a mixture of metal powders, and the alloy composition when the mixture is melted to form an alloy is the same as the alloy composition of the nickel-based alloy powder or the cobalt-based alloy powder. A mixture of such metal powders.
本発明で用いる原料金属粉末の平均粒径は20μm以
下、好ましくは15μm以下である。これは、耐食性に大
きな影響を与える焼結密度比と粉末の平均粒径との関係
から規定されたものである。すなわち、焼結密度比が低
い(92%未満)場合は、残留気孔が完全に閉塞化してい
ないため、材料内部も厳しい腐食環境にさらされ、耐食
性は著しく劣化する。そして、焼結密度比を92%以上と
するためには、原料金属粉末の平均粒径は20μm以下で
なければならないのである。The average particle size of the raw metal powder used in the present invention is 20 μm or less, preferably 15 μm or less. This is defined from the relationship between the sintering density ratio, which greatly affects corrosion resistance, and the average particle size of the powder. That is, when the sintered density ratio is low (less than 92%), since the residual pores are not completely closed, the inside of the material is also exposed to a severe corrosive environment, and the corrosion resistance is significantly deteriorated. In order to make the sintering density ratio 92% or more, the average particle size of the raw metal powder must be 20 μm or less.
本発明では、上述の原料金属粉末に結合剤を添加して
成形を行なう。これは、本発明で用いる原料粉末が平均
粒径20μm以下の微粉であるため、粉末だけでは成形時
にラミネーションや割れなどの欠陥を生じるためであ
る。In the present invention, molding is performed by adding a binder to the above-described raw metal powder. This is because the raw material powder used in the present invention is a fine powder having an average particle size of 20 μm or less, and thus, if the powder alone is used, defects such as lamination and cracks are generated during molding.
結合剤としては、ポリエチレン、ポリスチレン、アク
リル樹脂、ポリ酢酸ビニル等の熱可塑性樹脂や、パラフ
ィンワックス、カルナバルワックス等のワックスが例示
され、いずれかあるいは熱可塑性樹脂とワックスとを混
合して用いる。Examples of the binder include thermoplastic resins such as polyethylene, polystyrene, acrylic resin, and polyvinyl acetate, and waxes such as paraffin wax and carnaval wax. Any one of them or a mixture of a thermoplastic resin and wax is used.
原料金属粉末と結合剤との混合比は、特に限定されな
いが、粉末:結合剤=100:7〜100:12(重量比)程度が
好ましい。The mixing ratio between the raw metal powder and the binder is not particularly limited, but is preferably about powder: binder = 100: 7 to 100: 12 (weight ratio).
また、原料金属粉末と結合剤との混合混練は、加圧ニ
ーダー、バーバリーミキサー、連続式混練機等を用いる
公知の方法によればよい。The mixing and kneading of the raw metal powder and the binder may be performed by a known method using a pressure kneader, a Burberry mixer, a continuous kneader, or the like.
成形は、射出成形、圧縮成形、射出圧縮成形等、いず
れの手段で行なっても良いが、射出成形が好ましい。The molding may be performed by any means such as injection molding, compression molding and injection compression molding, but injection molding is preferred.
成形によって所望形状の成形体を得たら、結合剤を除
去するため、減圧下および/または非酸化性雰囲気下で
加熱する。すなわち、約50Torr以下の減圧下、またはAr
ガス中、N2ガス中、H2ガス中あるいはこれらの混合ガス
中等の非酸化性雰囲気中で、200〜650℃程度に加熱して
結合剤の除去を行なうか、結合剤除去工程の前半を減圧
下、後半を非酸化性雰囲気中で行なう。あるいは、減圧
下と非酸化性雰囲気中での結合剤の除去を交互にくり返
してもよい。When a molded article having a desired shape is obtained by molding, heating is performed under reduced pressure and / or a non-oxidizing atmosphere to remove the binder. That is, under reduced pressure of about 50 Torr or less, or Ar
Gas in N 2 gas, with H 2 gas or in a non-oxidizing atmosphere of a mixed gas secondary, or to remove the binder by heating to about 200-650 ° C., the first half of the binder removal step The latter half is performed in a non-oxidizing atmosphere under reduced pressure. Alternatively, the removal of the binder under reduced pressure and in a non-oxidizing atmosphere may be alternately repeated.
この時、あるいは結合剤除去後、成形体中のC/Oモル
比を0.3〜3.0に調整する。この工程もまた、得られる焼
結体の耐食性をすぐれたものとするために重要である。At this time or after removing the binder, the C / O molar ratio in the molded body is adjusted to 0.3 to 3.0. This step is also important for improving the corrosion resistance of the obtained sintered body.
すなわち、焼結体中のC、Oの低減は、焼結時に C+ O→CO C+2O→CO2 の反応が進行することにより達成される。そして、焼結
体中のC、O量がそれぞれ0.2重量%、1重量%を越え
ると、良好な耐食性が得られない。そこで、焼結前の
(結合剤除去後の)成形体中のC/Oモル比を0.3〜3.0に
調整しておけば、焼結体中のC量0.2重量%以下、O量
1重量%以下が容易に達成されるのである。焼結前の成
形体中のC/Oモル比が0.3未満の場合、焼結体中のO量は
1重量%を越え、一方、C/Oモル比が3.0を越えた場合に
は、焼結体中のC量が0.2重量%を越えるため、いずれ
も耐食性が劣化する。That is, the reduction of C and O in the sintered body is achieved by the reaction of C + O → CO C + 2O → CO 2 during sintering. If the amounts of C and O in the sintered body exceed 0.2% by weight and 1% by weight, respectively, good corrosion resistance cannot be obtained. Therefore, if the C / O molar ratio in the molded body before sintering (after removing the binder) is adjusted to 0.3 to 3.0, the C amount in the sintered body is 0.2% by weight or less, and the O amount is 1% by weight. The following is easily accomplished: If the C / O molar ratio in the compact before sintering is less than 0.3, the amount of O in the sintered body exceeds 1% by weight, while if the C / O molar ratio exceeds 3.0, the Since the amount of C in the aggregate exceeds 0.2% by weight, the corrosion resistance deteriorates in any case.
ところで、結合剤除去後の成形体中のC/Oモル比を0.3
〜3.0の範囲内におさめる方法は特に限定されないが、
用いる原料金属粉末中のC、O量を限定する方法、結合
剤の除去条件を限定する方法、結合剤除去後に湿潤水素
中あるいは大気中で熱処理を行なう方法等があり、いず
れかの方法、あるいはいくつかの方法を組み合せて行な
えばよい。By the way, the C / O molar ratio in the compact after removing the binder is 0.3
There is no particular limitation on the method of keeping the value within the range of ~ 3.0,
There is a method of limiting the amounts of C and O in the raw metal powder to be used, a method of limiting the conditions for removing the binder, a method of performing a heat treatment in wet hydrogen or in the air after the removal of the binder, and the like. What is necessary is just to carry out combining some methods.
上記の成形体中のC/Oモル比の調整方法のうち、結合
剤除去後に湿潤水素中あるいは大気中での熱処理を行な
い、C/Oモル比を調整する方法は、原料金属粉末の組成
や結合剤の除去条件にかかわらずに行なえるので、特に
好ましい方法である。Among the methods for adjusting the C / O molar ratio in the above compact, the method of adjusting the C / O molar ratio by performing heat treatment in wet hydrogen or in the air after removing the binder, and adjusting the C / O molar ratio are as follows: This is a particularly preferred method because it can be carried out regardless of the binder removal conditions.
より具体的に述べると、結合剤除去後の成形体を湿潤
水素中で400〜650℃、または、大気中で250〜450℃で加
熱して処理すればよい。これらの熱処理は、結合剤を除
去後、連続的に行なうことができるし、また、成形体が
一旦冷却した後、再加熱して行なうこともできる。な
お、成形体中のC/Oモル比は、通常のC、Oの分析法に
よって測定し、算出すればよい。More specifically, the compact after removal of the binder may be treated by heating at 400 to 650 ° C in wet hydrogen or at 250 to 450 ° C in the atmosphere. These heat treatments can be performed continuously after removing the binder, or can be performed by reheating after the molded body has been cooled once. The C / O molar ratio in the molded article may be measured and calculated by a usual C and O analysis method.
成形体中のC/Oモル比が調整されたら、焼結を行な
う。After the C / O molar ratio in the compact is adjusted, sintering is performed.
一次焼結の条件は、温度1350℃以下、圧力30Torr以下
である。The conditions for the primary sintering are a temperature of 1350 ° C. or less and a pressure of 30 Torr or less.
焼結温度を1350℃以下としたのは、焼結体中、特に焼
結体表面に一定量以上のCrを残存させるためである。こ
の温度を越える温度で焼結させると、Cr蒸発量が多くな
り、焼結体表面のCr量が不足し、次の非酸化性雰囲気下
での二次焼結によっても、脱Cr層の修復が困難となり、
焼結体に十分な耐食性が付与されなくなるからである。The reason for setting the sintering temperature to 1350 ° C. or lower is to allow a certain amount or more of Cr to remain in the sintered body, particularly on the surface of the sintered body. If sintering is performed at a temperature exceeding this temperature, the amount of Cr evaporation will increase, the amount of Cr on the surface of the sintered body will be insufficient, and the secondary sintering in a non-oxidizing atmosphere will also repair the de-Cr layer. Becomes difficult,
This is because sufficient corrosion resistance is not given to the sintered body.
また、焼結時の圧力を30Torr以下とするのは、Crを容
易に還元するためである。The pressure during sintering is set to 30 Torr or less in order to easily reduce Cr.
本発明では、原料金属粉末中に、難還元性であるCrが
10〜50重量%含有されているが、減圧下で焼結を行なえ
ば、原料金属粉末中の含有炭素の作用により、水素雰囲
気下よりも容易にCrが還元される。そして、その結果、
高密度の焼結体が得られるのである。雰囲気圧力が30To
rrを越えると、Crの還元反応が進みにくい。そこで、雰
囲気圧力の上限を30Torrとした。In the present invention, in the raw metal powder, Cr which is hardly reducible
Although it is contained in an amount of 10 to 50% by weight, if sintering is performed under reduced pressure, the effect of carbon contained in the raw metal powder reduces the Cr more easily than in a hydrogen atmosphere. And as a result,
A high density sintered body can be obtained. Atmospheric pressure is 30To
If it exceeds rr, the reduction reaction of Cr is difficult to proceed. Therefore, the upper limit of the atmospheric pressure is set to 30 Torr.
一次焼結を減圧下で行なうことにより、脱炭、脱酸が
進行するが、表面からのCrの蒸発も進行する。そして、
焼結体表面のCr量が少なくなると、良好な耐食性が得ら
れなくなる。そこで、本発明では、減圧下での一次焼結
の後、非酸化性雰囲気下でさらに二次焼結を行なう。By performing the primary sintering under reduced pressure, decarburization and deoxidation progress, but evaporation of Cr from the surface also progresses. And
If the amount of Cr on the surface of the sintered body is small, good corrosion resistance cannot be obtained. Therefore, in the present invention, after primary sintering under reduced pressure, secondary sintering is further performed in a non-oxidizing atmosphere.
二次焼結は、焼結温度は限定されないが、1000℃以
上、1400℃以下が適切である。1000℃未満では、脱炭、
脱酸反応が不十分となり、一方、1400℃を越えると、液
相が出現し、形状がくずれる恐れがあるため好ましくな
い。また、非酸化性雰囲気下とは、先に説明したよう
に、Arガス中、N2ガス中、H2ガス中またはこれらの混合
ガス中のことである。In the secondary sintering, the sintering temperature is not limited, but a temperature of 1000 ° C. or more and 1400 ° C. or less is appropriate. Decarburization below 1000 ℃
If the deoxidation reaction is insufficient, on the other hand, if it exceeds 1400 ° C., a liquid phase appears and the shape may be lost, which is not preferable. The non-oxidizing atmosphere is, as described above, Ar gas, N 2 gas, H 2 gas, or a mixed gas thereof.
<実施例> 以下に、実施例により、本発明を具体的に説明する。<Example> Hereinafter, the present invention will be specifically described with reference to examples.
(実施例I) Cr:5.0〜60.5重量%、Mo:1.5〜15.5重量%、Fe:4.5重
量%以下、C:0.02〜0.1重量%、O:0.5〜0.7重量%を含
有し、残部はNiおよび/またはCoと不純物元素である金
属粉末混合物を各種準備し、その平均粒径を10μm、15
μmまたは22μmに調整した。(Example I) Cr: 5.0 to 60.5% by weight, Mo: 1.5 to 15.5% by weight, Fe: 4.5% by weight or less, C: 0.02 to 0.1% by weight, O: 0.5 to 0.7% by weight, the balance being Ni And / or various kinds of metal powder mixtures of Co and impurity elements are prepared, and the average particle size thereof is 10 μm,
It was adjusted to μm or 22 μm.
これに、結合剤である熱可塑性樹脂(ポリエチレン)
とワックス(パラフィンワックス)とを添加、混合し、
加圧ニーダーを用いて混練した。なお、この時の混合比
は、重量比で金属粉末:結合剤=9:1とした。In addition, a thermoplastic resin (polyethylene) as a binder
And wax (paraffin wax) are added and mixed,
The mixture was kneaded using a pressure kneader. The mixing ratio at this time was metal powder: binder = 9: 1 by weight.
次に、この原料を成形した。成形体の試料寸法および
形状は、 長 さ : 40mm 幅 : 20mm 厚 さ : 2mm の直方体とし、射出成形機を用いて成形した。Next, this raw material was molded. The sample size and shape of the molded body were a rectangular parallelepiped having a length of 40 mm, a width of 20 mm and a thickness of 2 mm, and were molded using an injection molding machine.
これらの成形体につき、N2雰囲気中又は減圧下+N2雰
囲気中で加熱を行ない、結合剤を除去した。なお、結合
剤除去条件は、具体的には、前者はN2雰囲気中で5〜20
℃/hの昇温速度で600℃まで昇温するという条件であ
り、後者は、250℃までは減圧下(0.05Torr)、昇温速
度30℃/hで昇温し、その後、N2雰囲気中で100℃/hの昇
温速度で600℃まで昇温するというものである。These compacts were heated in an N 2 atmosphere or in a + N 2 atmosphere under reduced pressure to remove the binder. Incidentally, the binder removal conditions, specifically, the former in an N 2 atmosphere 5-20
The condition is that the temperature is raised to 600 ° C at a temperature rising rate of ° C / h. In the latter case, the temperature is raised to 250 ° C under reduced pressure (0.05 Torr) at a temperature rising rate of 30 ° C / h, and then N 2 atmosphere The temperature is raised to 600 ° C at a rate of 100 ° C / h.
結合剤除去後、通常のC、Oの分析法によりC、O量
を測定し、成形体中のC/Oモル比を算出したところ、0.5
〜1.0であった。After removing the binder, the C and O contents were measured by a usual C and O analysis method, and the C / O molar ratio in the molded product was calculated.
~ 1.0.
これらの成形体を、減圧(<1Torr)下で加熱、昇温
し、1150℃に1時間保持(一次焼結)後、つづいて、1a
tmのArガス中、1330℃に1時間保持(二次焼結)した。These compacts were heated and heated under reduced pressure (<1 Torr), kept at 1150 ° C. for 1 hour (primary sintering), and then 1a
It was maintained at 1330 ° C. for 1 hour in tm Ar gas (secondary sintering).
このようにして作製したサンプルについて、密度比を
測定した。また、サンプルを50℃の5%NaCl水溶液(pH
4に調整)中に24時間放置し、発錆の有無を観察した。
さらに、これらのサンプルにつき、半径15mmのポンチを
用い、曲げ試験を行った。The density ratio of the sample thus manufactured was measured. In addition, the sample was treated with a 5% NaCl aqueous solution (pH
(Adjusted to 4) for 24 hours and observed for rust.
Further, a bending test was performed on these samples using a punch having a radius of 15 mm.
その結果をまとめて表1に示した。 The results are summarized in Table 1.
表1から明らかなように、本発明の方法で製造された
合金のみが良好な特性を示した。As is clear from Table 1, only the alloy produced by the method of the present invention showed good properties.
(実施例II) Cr:20重量%、Mo:8.5重量%、Fe:5重量%、C:0.02重
量%、O:0.5重量%を含有し、残部はNiと不純物元素で
ある合金粉末であって、平均粒径が10μmに調整された
ものを用いた以外は、実施例Iと同様の方法で成形体を
得た。 (Example II) Cr: 20% by weight, Mo: 8.5% by weight, Fe: 5% by weight, C: 0.02% by weight, O: 0.5% by weight, the balance being Ni and alloy powder which is an impurity element. A molded product was obtained in the same manner as in Example I, except that the average particle size was adjusted to 10 µm.
これらの成形体を、N2雰囲気中で昇温速度20℃/hで60
0℃まで昇温して結合剤を除去し、C/Oモル比を測定、算
出したところ、0.7であった。なお、C/Oモル比の測定、
算出は、実施例Iと同様の方法で行なった。These molded bodies, in an N 2 atmosphere at a heating rate of 20 ° C. / h 60
The temperature was raised to 0 ° C. to remove the binder, and the C / O molar ratio was measured and calculated to be 0.7. The measurement of the C / O molar ratio,
The calculation was performed in the same manner as in Example I.
結合剤除去後、表2に示す各条件にて焼結を行ない、
焼結体を得た。After removing the binder, sintering was performed under the conditions shown in Table 2,
A sintered body was obtained.
これらにつき、C量およびO量を測定すると共に、実
施例Iと同様の方法で発錆試験を行ない、結果を表2に
示した。For these, the C and O contents were measured, and a rust test was carried out in the same manner as in Example I. The results are shown in Table 2.
表2から明らかなように、本発明の方法のみが良好な
耐食性を得られる方法である。As is clear from Table 2, only the method of the present invention is a method capable of obtaining good corrosion resistance.
(実施例III) Cr:15重量%、Mo:15重量%、Fe:3重量%、C:0.01重量
%、O:0.15重量%を含有し、残部はNiと不純物元素であ
る合金粉末であって、平均粒径が10μmに調整されたも
のを用いた以外は、実施例Iと同様の方法で成形体を得
た。 (Example III) Cr: 15% by weight, Mo: 15% by weight, Fe: 3% by weight, C: 0.01% by weight, O: 0.15% by weight, the balance being Ni and alloy powder which is an impurity element. A molded product was obtained in the same manner as in Example I, except that the average particle size was adjusted to 10 µm.
これらの成形体につき、N2中で10℃/hの昇温速度で60
0℃まで昇温し、結合剤を除去した。These moldings per, at a heating rate of 10 ° C. / h in N 2 60
The temperature was raised to 0 ° C. to remove the binder.
結合剤除去後、表3に示す各条件にて成形体中のC/O
モル比の調整を行ない、実施例Iと同様の方法でC/Oモ
ル比を測定、算出した。After removal of the binder, the C / O
The molar ratio was adjusted, and the C / O molar ratio was measured and calculated in the same manner as in Example I.
これらの成形体を、減圧(<0.5Torr)下で加熱、昇
温し、1150℃に1時間保持(一次焼結)後、つづいて、
1atmのArガス中、1330℃に1時間保持(二次焼結)し
た。These compacts were heated and heated under reduced pressure (<0.5 Torr), kept at 1150 ° C. for 1 hour (primary sintering),
It was kept at 1330 ° C. for 1 hour in Ar gas of 1 atm (secondary sintering).
これらにつき、C量およびO量を測定すると共に、実
施例Iと同様の方法で発錆試験を行ない、結果を表3に
示した。For these, the C amount and the O amount were measured, and a rusting test was performed in the same manner as in Example I. The results are shown in Table 3.
表3から明らかなように、焼結前の成形体中のC/Oモ
ル比の調整が、焼結体の耐食性に影響を与える。As is clear from Table 3, adjustment of the C / O molar ratio in the compact before sintering affects the corrosion resistance of the sintered compact.
<発明の効果> 本発明により、Crと、NiまたはCoを多量に含む、すな
わち耐食性のすぐれた合金の成形品の製造方法であっ
て、原料金属粉末や結合剤中の炭素に関する制約のない
焼結法による製造方法が提供される。 <Effects of the Invention> According to the present invention, there is provided a method for producing a molded article of an alloy containing a large amount of Cr and Ni or Co, that is, an alloy having excellent corrosion resistance, wherein there is no restriction on the carbon in the raw metal powder or the binder. A manufacturing method is provided by the sintering method.
本発明法は、前記の如く、原料金属粉末組成や結合剤
の種類を限定しない方法であるので、非常に有利であ
る。As described above, the method of the present invention is very advantageous because it is a method that does not limit the composition of the raw metal powder and the type of the binder.
また、本発明法は、ニッケルベース、コバルトベース
の焼結合金であって、密度が高く、Cr濃度分布の均一な
焼結合金を提供するものであるが、ニッケルベースやコ
バルトベースの合金は、被削性が悪く、従来は複雑な形
状の部品を安価に製造するのが困難であったので、本発
明により、初めて、高度な耐食性を有するニッケルベー
スやコバルトベースの合金製の部品が、形状にかかわら
ず、低コストで供給されるようになる。In addition, the method of the present invention is a nickel-based, cobalt-based sintered alloy, which provides a sintered alloy having a high density and a uniform Cr concentration distribution, but nickel-based and cobalt-based alloys are: Since the machinability was poor and it was difficult to manufacture parts with complicated shapes at low cost in the past, according to the present invention, nickel-based or cobalt-based alloy parts having high corrosion resistance were first formed. Regardless, it will be supplied at low cost.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−54733(JP,A) 特開 昭57−198202(JP,A) 特開 昭61−253349(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22F 3/00 - 7/08 C22C 1/04,33/02 ────────────────────────────────────────────────── (5) References JP-A-2-54733 (JP, A) JP-A-57-198202 (JP, A) JP-A-61-253349 (JP, A) (58) Investigation Field (Int.Cl. 6 , DB name) B22F 3/00-7/08 C22C 1 / 04,33 / 02
Claims (3)
金粉末、コバルトベース合金粉末、およびそれらの合金
成分粉末の混合物のいずれかであって、平均粒径が20μ
m以下のものに、結合剤を添加、混合し、成形して所望
形状の成形体を得た後、該成形体中の結合剤を減圧下お
よび/または非酸化性雰囲気中で加熱除去し、成形体中
のC/Oモル比を0.3〜3に調整し、続いて、温度1350℃以
下、圧力30Torr以下の減圧下で一次焼結を行ない、さら
に、非酸化性雰囲気下で二次焼結を行なうことを特徴と
する耐食性のすぐれた焼結合金の製造方法。1. A nickel-based alloy powder, a cobalt-based alloy powder, or a mixture of alloy component powders containing 10 to 50% by weight of Cr and having an average particle size of 20 μm.
m or less, a binder is added, mixed, and molded to obtain a molded body having a desired shape. Then, the binder in the molded body is removed by heating under reduced pressure and / or in a non-oxidizing atmosphere. The C / O molar ratio in the compact was adjusted to 0.3 to 3, followed by primary sintering at a temperature of 1350 ° C. or less and a pressure of 30 Torr or less, and a secondary sintering in a non-oxidizing atmosphere. A method for producing a sintered alloy having excellent corrosion resistance.
水素中での熱処理によって行なう請求項1に記載の耐食
性のすぐれた焼結合金の製造方法。2. The method for producing a sintered alloy having excellent corrosion resistance according to claim 1, wherein the C / O molar ratio in the compact is adjusted by heat treatment in wet hydrogen.
中での熱処理によって行なう請求項1に記載の耐食性の
すぐれた焼結合金の製造方法。3. The method for producing a sintered alloy having excellent corrosion resistance according to claim 1, wherein the C / O molar ratio in the compact is adjusted by heat treatment in the air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7113890A JP2922248B2 (en) | 1990-03-20 | 1990-03-20 | Manufacturing method of sintered alloy with excellent corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7113890A JP2922248B2 (en) | 1990-03-20 | 1990-03-20 | Manufacturing method of sintered alloy with excellent corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03271334A JPH03271334A (en) | 1991-12-03 |
JP2922248B2 true JP2922248B2 (en) | 1999-07-19 |
Family
ID=13451927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7113890A Expired - Fee Related JP2922248B2 (en) | 1990-03-20 | 1990-03-20 | Manufacturing method of sintered alloy with excellent corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2922248B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6838046B2 (en) | 2001-05-14 | 2005-01-04 | Honeywell International Inc. | Sintering process and tools for use in metal injection molding of large parts |
JP2004536967A (en) * | 2001-05-14 | 2004-12-09 | ハネウェル・インターナショナル・インコーポレーテッド | Sintering methods and tools used for metal injection molding of large parts |
-
1990
- 1990-03-20 JP JP7113890A patent/JP2922248B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03271334A (en) | 1991-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0378702B1 (en) | Sintered alloy steel with excellent corrosion resistance and process for its production | |
MX2013007653A (en) | Iron based powders for powder injection molding. | |
JPH11501700A (en) | Stainless steel powder and products manufactured by powder metallurgy from the powder | |
JP2003166003A (en) | Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel | |
JP2922248B2 (en) | Manufacturing method of sintered alloy with excellent corrosion resistance | |
JP4060092B2 (en) | Alloy steel powder for powder metallurgy and sintered body thereof | |
GB2298869A (en) | Stainless steel powders and articles produced therefrom by powder metallurgy | |
JP2786303B2 (en) | Method for producing sintered alloy with excellent corrosion resistance and machinability | |
WO2020069795A1 (en) | Composition comprising high melting iron alloy powder and modified high speed steel powder, sintered part and manufacturing method thereof, use of the high speed steel powder as additive for sintering | |
JPH11181541A (en) | Production of stainless steel sintered body | |
JPH0225501A (en) | Stainless steel powder for injection forming and production of compound for injection forming and stainless steel sintered body | |
JPH10317009A (en) | Production of stainless sintered body | |
JPH0692604B2 (en) | Method for producing iron-based metal sintered body by metal powder injection molding | |
JPH02290901A (en) | Metal fine powder for compacting and manufacture of sintered body thereof | |
JP2001089824A (en) | Manufacture of sintered compact of chromium- molybdenum steel | |
JPH0257613A (en) | Production of sintered metallic material and its raw powder | |
JPH03247743A (en) | Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture | |
JPH0436428A (en) | Manufacture of high toughness tungsten sintered alloy | |
JP2022032348A (en) | Method for producing metal product | |
JPH10287901A (en) | Production of stainless sintered body | |
JPH0257666A (en) | Sintered alloy having excellent mirror-finishing characteristics and its manufacture | |
JP2001294971A (en) | Method for producing stainless steel sintered body | |
JPH11158567A (en) | Manufacture of sintered body of copper-nickel-iron -chromium alloy | |
JPH04147950A (en) | Sintered alloy steel excellent in machinability and corrosion resistance and its manufacture | |
JP2000129309A (en) | Production of austenitic stainless sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080430 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20090430 |
|
LAPS | Cancellation because of no payment of annual fees |