JPH02290901A - Metal fine powder for compacting and manufacture of sintered body thereof - Google Patents

Metal fine powder for compacting and manufacture of sintered body thereof

Info

Publication number
JPH02290901A
JPH02290901A JP1109209A JP10920989A JPH02290901A JP H02290901 A JPH02290901 A JP H02290901A JP 1109209 A JP1109209 A JP 1109209A JP 10920989 A JP10920989 A JP 10920989A JP H02290901 A JPH02290901 A JP H02290901A
Authority
JP
Japan
Prior art keywords
fine powder
sintered
compacting
stainless steel
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1109209A
Other languages
Japanese (ja)
Inventor
Junichi Ota
純一 太田
Sadakimi Kiyota
禎公 清田
Kazuo Sakurada
桜田 一男
Hiroshi Otsubo
宏 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1109209A priority Critical patent/JPH02290901A/en
Publication of JPH02290901A publication Critical patent/JPH02290901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide fine powder for compacting which can manufacture a sintered stainless steel having a little impurity and good corrosion resistance by specifying particle diameter and specific surface area of the metal fine powder for manufacturing the sintered stainless steel. CONSTITUTION:This fine powder for compacting is the metal fine particles which are used to manufacture the sintered stainless steel and have 10+ or -5mu average practicle diameter and <=0.7m<2>/g specific surface area. After compacting by adding and mixing binder to the fine powder for compacting, by heating this green compact under non- oxidizing atmosphere, the binder is removed and C/O mol ratio is regulated to 0.5-3.0. After that, this green compact is sintered at 1000-1350 deg.C and <=0.1Torr pressure and successively, by sintering at 1200-1350 deg.C under non-oxidizing atmosphere, the sintered stainless steel having excellent corrosion resistance and sufficient mechanical characteristic is obtd. When the average particle diameter of the above fine powder is less than 5mu, packing property and degreasing property are reduced and further, the corrosion resistance and mechanical characteristic are reduced, and when this is more than 15mu, the sinterability and compatibility are reduced and dimensional accuracy in the sintered body is deteriorated. When the specific surface area is more than 0.7m<2>/g, the degreasing property is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐食性に優れた焼結ステンレス鋼の製造に使
用する成形用金属微粉、およびこの成形用金属微粉を使
用する焼結体の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a molding metal fine powder used in the production of sintered stainless steel with excellent corrosion resistance, and a sintered body using the molding metal fine powder. It is about the method.

[従来の技術] 近年,粉末冶金法による焼結部品の製造は著しい伸びを
示し、焼結部品の適用範囲が広がりつつある。なかでも
、ステンレス鋼を用いた自動車部品、電子・電気部品、
事務用部品は形状の複雑化にともない製造方法も切削加
工法から粉末冶金法に置き換えられつつある。
[Prior Art] In recent years, the production of sintered parts using powder metallurgy has shown remarkable growth, and the scope of application of sintered parts is expanding. Among these, automobile parts, electronic/electrical parts, etc. using stainless steel,
As the shapes of office parts become more complex, the manufacturing method is also replacing the cutting method with the powder metallurgy method.

しかし、粉末冶金法で製造された焼結合金には気孔が存
在し、この気孔が耐食性や機械的特性を損ねる欠点があ
った。このため、焼結合金の密度はできるだけ高いこと
が必要で、密度比(がさ密度の真密度に対する比)92
%以上が望まれている。
However, sintered alloys manufactured by powder metallurgy have pores, and these pores have the disadvantage of impairing corrosion resistance and mechanical properties. Therefore, the density of the sintered alloy must be as high as possible, and the density ratio (ratio of bulk density to true density) is 92
% or more is desired.

従来の金型ブレ又成形では原料扮が数10〜150um
と大きいので成形・焼結だけでは密度比80〜90%と
なり、十分な高密度が得られなかった。特に原料が粗扮
であるため粒子間の隙間が大きく50μm以上の気孔径
が存在する。これは隙間が焼結によっても収縮して消滅
されずに焼結体組織に残留し、これに起因した耐食性の
劣化が顕著である. そこで、耐食性を改善するためにステンレス鋼扮に他の
合金元素を添加し、液相を出現させて高密度化した焼結
合金が開発されている.例えば,特開昭58−2 1 
3859号で示されているように、CoやBを添加する
ことによって焼結中にCoやBを含む液相が生じてこれ
が気孔を埋めるように基地中に分散した焼結材料がある
。しかし、COは高価な粉末で製品のコスト高を招き,
粉末冶金の長所である経済性が損なわれる。
In conventional mold molding, the raw material thickness is several tens to 150 um.
Because of the large size, the density ratio was 80 to 90% only by molding and sintering, and a sufficiently high density could not be obtained. In particular, since the raw material is coarse, there are large gaps between particles and pores with a diameter of 50 μm or more. This is because the gaps do not shrink and disappear even during sintering, but remain in the sintered structure, resulting in a noticeable deterioration in corrosion resistance. Therefore, in order to improve corrosion resistance, sintered alloys have been developed in which other alloying elements are added to stainless steel to create a liquid phase and increase the density. For example, JP-A-58-2 1
As shown in No. 3859, there is a sintered material in which by adding Co or B, a liquid phase containing Co or B is generated during sintering, and this liquid phase is dispersed in the base so as to fill the pores. However, CO is an expensive powder that increases the cost of the product.
The economical advantage of powder metallurgy is lost.

また、特開昭61−253349号に示されるように、
Pを添加し同様に液相を出現させ高密度化した焼結ステ
ンレス鋼も提案されている.しかし、Pの固溶した液相
部が冷却後に脆弱な相として残るために機械的特性を劣
化させる.従って,このような合金元素を添加し液相焼
結することによって高密度化する手法は回避されなけれ
ばならない。さらに、耐食性に直接影響を及ぼす残留気
孔をできるだけ減らすために焼結材料を再圧縮または再
焼結したり,あるいは熱間鍛造や熱間静水圧処理するな
どの方法がある。この場合、工程が複雑になったり、特
別な装置を必要としたり、作業が繁雑になるなどの問題
を有していた. さらに、最近、金属微粉を用いた焼結体の焼結方法が提
案されている.これは焼結性が優れている反面,金型成
形ができない欠点がある.なぜならば、成形体に割れや
ラミネーションの欠陥を有し、さらに金型のクリアラン
スに入り込み、金型を損ずるからである. このため、結合剤を用いた射出成形は複雑形状の部品の
製造が可能で大量生産に適した加工法として有利である
.しかし、結合剤に用いられる樹脂およびワックスが脱
結合剤処理によって完全には除去されずに残るため、最
終焼結体の不純物が増し,耐食性を劣化させる原因とな
っていた。
Also, as shown in Japanese Patent Application Laid-Open No. 61-253349,
Sintered stainless steel has also been proposed, which is made densified by adding P and causing the appearance of a liquid phase. However, the liquid phase in which P is dissolved remains as a brittle phase after cooling, which deteriorates the mechanical properties. Therefore, methods of increasing density by adding such alloying elements and performing liquid phase sintering must be avoided. Furthermore, there are methods such as recompacting or resintering the sintered material, or hot forging or hot isostatically treating the sintered material to reduce residual porosity that directly affects corrosion resistance as much as possible. In this case, there were problems such as the process became complicated, special equipment was required, and the work became complicated. Furthermore, recently, a method for sintering sintered bodies using fine metal powder has been proposed. Although this material has excellent sinterability, it has the disadvantage that it cannot be formed into molds. This is because the molded product has cracks and lamination defects, and it also gets into the mold clearance and damages the mold. For this reason, injection molding using a binder is advantageous as a processing method suitable for mass production as it is possible to manufacture parts with complex shapes. However, since the resin and wax used as the binder are not completely removed by the debinding agent treatment and remain, impurities in the final sintered body increase, causing deterioration in corrosion resistance.

[発明が解決しようとする課題】 本発明は上記従来技術の問題点を解決し、不純物が少な
く耐食性が良好な焼結ステンレス鋼を製造し得る成形用
金属微粉、およびこの金属微粉を用いる焼結体の製造方
法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems of the prior art, and provides a molding metal fine powder that can produce sintered stainless steel with few impurities and good corrosion resistance, and a sintering method using this metal fine powder. The aim is to provide a method for manufacturing the body.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記課題を解決するために種々検討を重
ねた結果、本発明に到達したもので,本発明は、焼結ス
テンレス鋼の製造に用いる金属微粉であって、平均粒径
がlO±5μm、かつ比表面積が0.7rn’/g以下
であることを特徴とする成形用金属微粉、および上記金
属微粉に結合剤を添加混合して成形した後、該成形体を
非酸化性雰囲気中で加熱することにより結合剤を除去し
てC/0モル比を0. 5〜3. 0に調整し、その後
1000〜1350℃の温度、圧力0. 1Torr以
下で焼結し、続いて非酸化性雰囲気下で1200〜13
50℃で焼結することを特徴とする焼結体の製造方法を
提供するものである。
The present inventors have arrived at the present invention as a result of various studies to solve the above-mentioned problems. 1O±5μm and a specific surface area of 0.7rn'/g or less, and after adding and mixing a binder to the metal fines and molding, the molded body is made into a non-oxidizing material. The binder is removed by heating in an atmosphere and the C/0 molar ratio is reduced to 0. 5-3. After that, the temperature was adjusted to 1000 to 1350°C and the pressure was adjusted to 0. Sintering below 1 Torr, followed by sintering at 1200 to 13 Torr in a non-oxidizing atmosphere.
The present invention provides a method for producing a sintered body characterized by sintering at 50°C.

〔作用〕[Effect]

本発明では、金属微粉の平均粒径をlO±5gmに限定
した.その理由を以下に示す。
In the present invention, the average particle size of the metal fine powder is limited to lO±5 gm. The reason is shown below.

平均粒径が5μm未満になると、粒径が過小となり充填
性が低下するため、結合剤の添加量が多《なる.その結
果、脱脂性が低下することにより,成形体中の残留炭素
量が多《なるばかりでなく,不均一な炭素分布をもつこ
とになり,耐食性および機械的性質を損ねる。従って、
下限を5μmと限定した. 平均粒径が15μmを越えると、粒径が過大となり焼結
性が低下する.さらに、結合剤の混練性が悪《なり不均
一な混合状態となり,成形性が劣り成形体中の密度分布
が不均一となる.その結果,最終焼結体は変形やそりな
ど寸法精度の劣ったものとなる.従って、上限を15μ
mとした。
If the average particle size is less than 5 μm, the particle size becomes too small and the filling properties deteriorate, so the amount of binder added becomes large. As a result, the degreasing performance is reduced, which not only increases the amount of residual carbon in the molded product but also causes it to have an uneven carbon distribution, impairing its corrosion resistance and mechanical properties. Therefore,
The lower limit was set at 5 μm. If the average particle size exceeds 15 μm, the particle size becomes too large and sinterability deteriorates. Furthermore, the kneading properties of the binder are poor, resulting in an unevenly mixed state, resulting in poor moldability and uneven density distribution in the molded product. As a result, the final sintered body has poor dimensional accuracy, such as deformation and warpage. Therefore, the upper limit is 15μ
It was set as m.

金属微粉は、平均粒径を上記のごとく限定しても,比表
面積(BET法)が0. 7 r11″/gを越えると
,焼結性は向上するが金属微粉の表面を覆う結合剤が増
加する.その結果、脱脂性が低下し,最終焼結体におけ
る機械的・化学的性質に悪影響を及ぼす。従って、比表
面積の上限を0.7rn2/gと限定した。
Even if the average particle size of fine metal powder is limited as described above, the specific surface area (BET method) is 0. 7 If r11"/g is exceeded, the sinterability improves, but the amount of binder covering the surface of the metal fine powder increases. As a result, the degreasing performance decreases and the mechanical and chemical properties of the final sintered body are adversely affected. Therefore, the upper limit of the specific surface area was set to 0.7rn2/g.

本発明においては金属微粉として、焼結してステンレス
鋼を得るために才一ステナイト組成(SUS316)の
水アトマイズ扮等のCrを含有するものが使用される. 本発明は平均粒径lO±5μmの微粉を用いるため、こ
の微粉だけでは成形時にラミネーションや割れなどの欠
陥が生じる。そこで、これらの欠陥が生じないように結
合剤を添加混合して成形する。結合剤は熱可塑性樹脂、
ワックス、あるいは両方混合して用いても成形可能であ
る.もちろん本発明はこれらの結合剤に限定されるもの
ではない。結合剤の宣は成形法によって異なる.成形機
は従来の金型ブレス機の他に押出成形機や粉末圧延機、
射出成形機などが使用される.結合剤は通常の金型ブレ
スでは0.5〜3.0重量%ほどであるが、複雑形状の
製品を成形できる射出成形法では10重量%程の結合剤
を要する. 成形後,結合剤を除去するために非酸化性雰囲気中で一
定速度で昇温、保持する.この時の昇温速度を速《し過
ぎると製品に割れや膨れが生じるため5℃/h〜20℃
/hで界温する.結合剤は完全には除去されずに残って
いるが,この残留結合剤の炭素と金属微粉の表面に存在
する酸化被膜の酸素の反応を促進させることによって、
最終焼結体の不純物である0.0量を極力減少させるた
めに、C/Oモル比を最適値に調節する。
In the present invention, Cr-containing powder such as water atomized powder having a stenite composition (SUS316) is used as the metal fine powder to obtain stainless steel by sintering. Since the present invention uses fine powder with an average particle size of lO±5 μm, defects such as lamination and cracking occur during molding if only this fine powder is used. Therefore, in order to prevent these defects from occurring, a binder is added and mixed before molding. The binder is thermoplastic resin,
It can be molded using wax or a mixture of both. Of course, the present invention is not limited to these binders. The amount of binder used varies depending on the molding method. In addition to conventional mold press machines, molding machines include extrusion molding machines, powder rolling machines,
Injection molding machines are used. The amount of binder used in ordinary mold presses is approximately 0.5 to 3.0% by weight, but the injection molding method, which allows products with complex shapes to be molded, requires approximately 10% by weight of binder. After molding, the temperature is raised and maintained at a constant rate in a non-oxidizing atmosphere to remove the binder. If the temperature increase rate is too fast, the product will crack or swell, so it should be 5℃/h to 20℃.
/h to reach ambient temperature. The binder remains without being completely removed, but by promoting the reaction between the carbon in this residual binder and the oxygen in the oxide film on the surface of the fine metal powder,
In order to reduce as much as possible the amount of 0.0 impurities in the final sintered body, the C/O molar ratio is adjusted to an optimal value.

本発明における金属微粉は、難還元性元素であるCrを
含有する微粉である。本発明では通常の焼結工程で用い
られている水素雰囲気における還元に比べて、減圧焼結
によって含有Cの作用により容易に還元を促進させるこ
とができ、その結果、高密度の焼結体を得ることができ
る。焼結作用は粒子同士の接触点から始まり、原子の固
体拡散によって進行するが、粉末表面が酸化物で覆われ
ている場合は原子の拡散が遮られて緻密化が進まず、焼
結体の高烹度が達成されない.つまり、高密度を得るた
めにはCr系酸化物を還元する必要があり,そのために
,圧力0. I T o r r以下で焼結する.0、
1Torrを越えるとCr系酸化物の還元反応が進みに
くいため上限を0. I T o r rとした。
The metal fine powder in the present invention is a fine powder containing Cr, which is a hardly reducible element. In the present invention, compared to reduction in a hydrogen atmosphere used in a normal sintering process, reduced pressure sintering allows reduction to be easily promoted by the action of contained C, and as a result, a high-density sintered body can be produced. Obtainable. The sintering action begins at the point of contact between particles and proceeds by the solid-state diffusion of atoms. However, if the powder surface is covered with oxides, the diffusion of atoms is blocked and densification does not proceed, resulting in the formation of a sintered body. High heat level is not achieved. In other words, in order to obtain high density, it is necessary to reduce the Cr-based oxide, and for that purpose, the pressure of 0. Sinter at less than I T o r r. 0,
If the pressure exceeds 1 Torr, the reduction reaction of Cr-based oxides will be difficult to proceed, so the upper limit should be set at 0. I T o r r.

前述のようにCr系酸化物の還元反応を含有Cにより容
易に促進させることができるが、その際,減圧焼結前の
成形体中のC/Oモル比を適当に調整することが必要で
ある.なぜならば、焼結体中の0.0の低減は、 C+0→CO C+20一CO2 の反応が進行することによって達成される.従って、還
元反応で低減されるCとOとのモル比は0.5〜lとな
る.そこで,焼結前の成形体中のC,0量については,
上記、低11tc、0量と最終焼結体C、0量を加えた
量となっていなければならない.また,焼結炉内の汚染
状況などの操業上のC、0変動要因も考慮したC/Oモ
ル比でなければ、CあるいはOを過剰に残した焼結体と
なり、 C≦0,06重量% 0≦0.3重量% が得られない。本発明者らは、C/Oモル比の適正な範
囲を経験的に知った.C/0モル比の下限が0.5%未
満の場合、焼結体中のCは0.06重徽%を越え,焼結
密度の上昇が見られない。一方、C/Oモル比が3.0
を越えた場合、焼結体のOが0.3重量%を越えるため
液相の出現によって気孔が粗大化して耐食性が劣化した
り、形状が崩れる.そこで、減圧焼結前の成形体中のC
/Oモル比を0.5〜3.0の範囲に規定した。
As mentioned above, the reduction reaction of Cr-based oxides can be easily promoted by containing C, but in this case, it is necessary to appropriately adjust the C/O molar ratio in the compact before vacuum sintering. be. This is because the reduction of 0.0 in the sintered body is achieved by the progress of the reaction C+0→CO C+20−CO2. Therefore, the molar ratio of C and O reduced by the reduction reaction is 0.5 to 1. Therefore, regarding the amount of C,0 in the compact before sintering,
The amount must be the sum of the above low 11tc, 0 amount and the final sintered body C, 0 amount. In addition, if the C/O molar ratio does not take into account operational C and 0 fluctuation factors such as the contamination status in the sintering furnace, the sintered body will have an excess of C or O, and C≦0.06 weight. % 0≦0.3% by weight cannot be obtained. The present inventors have learned from experience the appropriate range of the C/O molar ratio. When the lower limit of the C/0 molar ratio is less than 0.5%, the C content in the sintered body exceeds 0.06% by weight, and no increase in sintered density is observed. On the other hand, the C/O molar ratio is 3.0
If the content exceeds 0.3% by weight, the sintered body will contain more than 0.3% by weight, and the pores will become coarser due to the appearance of a liquid phase, resulting in poor corrosion resistance and loss of shape. Therefore, C in the compact before vacuum sintering
/O molar ratio was defined in the range of 0.5 to 3.0.

減圧焼結の温度範囲を1000−1350℃としたのは
、1000℃より低い温度ではCr系酸化物の還元が十
分なされないため,酸化物が残留し,その後の焼結を阻
害する。従って,下限を1000℃とした.一方、13
50℃を越えて焼結した場合、Crの表面からの蒸発量
が大きくなり濃度分布が不均一になるばかりでなく、液
相か出現して形状を崩すなどの欠陥が見られる.よって
上限を1350℃とした。
The reason why the temperature range for vacuum sintering is set to 1000-1350°C is that at temperatures lower than 1000°C, the Cr-based oxide is not sufficiently reduced, so the oxide remains and inhibits subsequent sintering. Therefore, the lower limit was set at 1000°C. On the other hand, 13
When sintered at temperatures exceeding 50°C, not only does the amount of Cr evaporate from the surface increase and the concentration distribution becomes non-uniform, but defects such as the appearance of a liquid phase and loss of shape are observed. Therefore, the upper limit was set at 1350°C.

続いて、高密度化および拡散による合金元素の均一化を
達成するために非酸化性雰囲気中、1200−1350
℃で焼結する。前段階の減圧焼結で粒子同士の接触点が
でき、焼結が始まるが、さらに高温にすることによって
拡散を促進させて焼結を進め、残留気孔の微細化と球状
化を図る。雰囲気を非酸化性としたのは1 200℃以
上の高温でのCr蒸発を防止するためである。
1200-1350 in a non-oxidizing atmosphere to achieve densification and homogenization of alloying elements by diffusion.
Sinter at °C. The previous step of vacuum sintering creates contact points between the particles and sintering begins, but by raising the temperature even higher, diffusion is promoted and sintering progresses, making the remaining pores smaller and more spheroidal. The reason why the atmosphere was non-oxidizing was to prevent Cr evaporation at high temperatures of 1200° C. or higher.

なお、ここで非酸化性雰囲気に用いるガスはAr%He
%N2等の不活性ガス、H2、Co,CH4 .C3 
H.等の還元ガス、または燃焼排ガス等である。
Note that the gas used for the non-oxidizing atmosphere here is Ar%He.
% Inert gas such as N2, H2, Co, CH4 . C3
H. or combustion exhaust gas.

1200−1350℃の範囲で焼結するのは1 200
℃より低い温度では元素の拡散が遅いので密度上昇と焼
結体の合金組成の均一化が達成できない。1350℃を
越えると液相が出現し、形状が崩れたり、脆化相を残す
ことによる強度の低下を招くことになる。このため、下
限を1200℃、上限を1350℃と定めた. 【実施例] 金属微粉として、才−ステナイト系ステンレス組成(S
US3 1 6)の水アトマイズ扮を用い,これを分級
によって平均粒径3.8、8.5,■3.0、19.2
μmの微粉に調整した.これらの微粉の比表面積をBE
T法により測定したところ,それぞれ0.8、0.6、
0.4、0.3rn2/gであった。
Sintering in the range of 1200-1350℃ is 1200
At temperatures lower than °C, the diffusion of elements is slow, making it impossible to increase the density and make the alloy composition of the sintered body uniform. If the temperature exceeds 1350°C, a liquid phase will appear, causing the shape to collapse and a brittle phase to remain, resulting in a decrease in strength. For this reason, the lower limit was set at 1200°C and the upper limit was set at 1350°C. [Example] As fine metal powder, stainless steel composition (S
Using US316) water atomized material, it was classified to have an average particle size of 3.8, 8.5, ■3.0, and 19.2.
It was adjusted to a micron-sized powder. The specific surface area of these fine powders is BE
When measured by T method, they were 0.8, 0.6, respectively.
They were 0.4 and 0.3rn2/g.

これらの微粉に熱可塑性樹脂とワックスを混合し、加圧
二一ダを用いて混練した. 混練物を冷却後,顆粒状に粉砕しペレットとし,ベレッ
トを射出成形機を用いて長さ40mm.中20mm.厚
さ3mmの直方体に成形した. 成形体を窒素雰囲気中で昇温速度lO℃/hで600℃
まで加熱して,成形体中のC/0モル比が1.0〜2.
0になるように結合剤を除去した。これらを減圧下(<
1 0−3Torr)1 1 50”Cで1時間焼結し
,続いて常圧のArガス雰囲気中,1300℃で3時間
保持した. 冷却後、アルキメデス法による密度および真密度から密
度比を求め、また、焼結体のC.0量を分析した.他に
耐食性を評価するために、人工汗中に24時間放置し、
その後,発錆があるかどうかを実体顕微鏡で確認した.
錆が全く見られない場合を良好、少しでも錆が見られた
り変色した場合を発錆とした. 金属微粉の平均粒径と焼結体のC.O量および密度比と
の関係を第1図に示す. 平均粒径5μm未満では,脱脂性が悪く、さらに微粉程
、焼結性がよくなるため気孔の閉塞化が進み,焼結体内
部のガスが気孔に閉じ込められる結果、脱C、脱0が停
滞すると考えられ、そのため人工汗試験による腐食試験
で発錆した.一方、15μmを越えると,流動性が低下
するために成形性がよくなかった.さらに粗扮であるた
めに焼結性が悪く残留気孔も大きく,その結果、耐食性
が劣化した. 平均粒径および比表面積が本発明の限定範囲内にある金
属微粉においては、脱C,脱0反応も十分進行し、かつ
,焼結密度も人工汗試験による腐食試験で全く錆が見ら
れない密度で、耐食性に優れたステンレス鋼が得られた
Thermoplastic resin and wax were mixed with these fine powders and kneaded using a pressurizer. After cooling the kneaded material, it is crushed into granules to form pellets, and the pellets are molded into a length of 40 mm using an injection molding machine. Medium 20mm. It was molded into a rectangular parallelepiped with a thickness of 3 mm. The molded body was heated to 600°C at a heating rate of 10°C/h in a nitrogen atmosphere.
heating until the C/0 molar ratio in the molded body is 1.0 to 2.
The binder was removed so that it became 0. These were prepared under reduced pressure (<
1 0-3 Torr) 1 1 50"C for 1 hour, and then held at 1300°C for 3 hours in an Ar gas atmosphere at normal pressure. After cooling, the density ratio was determined from the density and true density using the Archimedes method. In addition, the C.0 content of the sintered body was analyzed.In addition, in order to evaluate the corrosion resistance, the sintered body was left in artificial sweat for 24 hours,
Afterwards, we checked using a stereomicroscope to see if there was any rust.
If there is no rust at all, it is considered good, and if there is even a little rust or discoloration, it is considered rusted. Average particle size of metal fine powder and C.I. of sintered body Figure 1 shows the relationship between O content and density ratio. If the average particle size is less than 5 μm, the degreasing performance is poor, and the finer the powder, the better the sinterability, which leads to more pore clogging, and the gas inside the sintered body is trapped in the pores, resulting in stagnation of carbon removal and zero removal. Therefore, rust occurred in the corrosion test using artificial sweat test. On the other hand, when the thickness exceeds 15 μm, the moldability is poor due to decreased fluidity. Furthermore, the roughness of the material resulted in poor sinterability and large residual pores, resulting in poor corrosion resistance. In metal fine powder whose average particle size and specific surface area are within the limited range of the present invention, decarbonization and de0ization reactions proceed sufficiently, and the sintered density shows no rust at all in a corrosion test using an artificial sweat test. A stainless steel with excellent density and corrosion resistance was obtained.

[発明の効果] 本発明の金属微粉およびその焼結体の製造方法によって
製造された焼結ステンレス鋼は、耐食性に優れ、機械的
特性も十分な値が得られ,苛酷な条件下における材料と
して広《使用することができる。
[Effects of the Invention] The sintered stainless steel produced by the method for producing metal fine powder and sintered body of the present invention has excellent corrosion resistance and sufficient mechanical properties, and can be used as a material under severe conditions. Can be used widely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例における金属微粉の平均粒径と最終焼結
体の密度比,C量,0量との関係を示す図である.
FIG. 1 is a diagram showing the relationship between the average particle size of fine metal powder and the density ratio, C content, and 0 content of the final sintered body in Examples.

Claims (1)

【特許請求の範囲】 1 焼結ステンレス鋼の製造に用いる金属微粉であって
、平均粒径が10±5μm、かつ比表面積が0.7m^
2/g以下であることを特徴とする成形用金属微粉。 2 請求項1記載の金属微粉に結合剤を添加混合して成
形した後、該成形体を非酸化性雰囲気中で加熱すること
により結合剤を除去してC/Oモル比を0.5〜3.0
に調整し、その後1000〜1350℃の温度、圧力0
.1Torr以下で焼結し、続いて非酸化性雰囲気下で
1200〜1350℃で焼結することを特徴とする焼結
体の製造方法。
[Claims] 1. Fine metal powder used for manufacturing sintered stainless steel, with an average particle size of 10±5 μm and a specific surface area of 0.7 m^
2/g or less. 2. After adding and mixing a binder to the fine metal powder according to claim 1 and molding, the molded body is heated in a non-oxidizing atmosphere to remove the binder and adjust the C/O molar ratio to 0.5 to 0.5. 3.0
After that, the temperature is 1000-1350℃ and the pressure is 0.
.. A method for producing a sintered body, comprising sintering at 1 Torr or less, and then sintering at 1200 to 1350°C in a non-oxidizing atmosphere.
JP1109209A 1989-05-01 1989-05-01 Metal fine powder for compacting and manufacture of sintered body thereof Pending JPH02290901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1109209A JPH02290901A (en) 1989-05-01 1989-05-01 Metal fine powder for compacting and manufacture of sintered body thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1109209A JPH02290901A (en) 1989-05-01 1989-05-01 Metal fine powder for compacting and manufacture of sintered body thereof

Publications (1)

Publication Number Publication Date
JPH02290901A true JPH02290901A (en) 1990-11-30

Family

ID=14504364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1109209A Pending JPH02290901A (en) 1989-05-01 1989-05-01 Metal fine powder for compacting and manufacture of sintered body thereof

Country Status (1)

Country Link
JP (1) JPH02290901A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172810A (en) * 1992-10-08 1994-06-21 Kawasaki Steel Corp Production of tungsten alloy sintered compact
JPH07138606A (en) * 1993-11-17 1995-05-30 Tomoegawa Paper Co Ltd Production of metallic fiber sintered sheet
JP2007217742A (en) * 2006-02-15 2007-08-30 Seiko Epson Corp Sintered compact and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172810A (en) * 1992-10-08 1994-06-21 Kawasaki Steel Corp Production of tungsten alloy sintered compact
JPH07138606A (en) * 1993-11-17 1995-05-30 Tomoegawa Paper Co Ltd Production of metallic fiber sintered sheet
JP2007217742A (en) * 2006-02-15 2007-08-30 Seiko Epson Corp Sintered compact and manufacturing method therefor

Similar Documents

Publication Publication Date Title
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
EP0379583B1 (en) SINTERED MAGNETIC Fe-Co MATERIAL AND PROCESS FOR ITS PRODUCTION
EP3084029B1 (en) A method for producing a sintered component and a sintered component
KR101649584B1 (en) Method of heat-resistant parts manufacturing using metal granule powder
US6761852B2 (en) Forming complex-shaped aluminum components
JP2004517215A (en) Powder metallurgy for producing high density molded parts.
JPH01142002A (en) Alloy steel powder for powder metallurgy
JPH0254733A (en) Manufacture of ti sintered material
JPH02164008A (en) Manufacture of soft magnetic sintered body of fe-si alloy
CN107034375A (en) A kind of method that utilization hydride powder prepares high-compactness titanium article
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JP2001294905A (en) Method for producing micromodule gear
JP2006299364A (en) Fe-BASED SINTERED ALLOY
JPH02259029A (en) Manufacture of aluminide
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JP2793938B2 (en) Manufacturing method of sintered metal parts by metal powder injection molding method
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPH07238302A (en) Sintered titanium filter and production thereof
JPH03229832A (en) Manufacture of nb-al intermetallic compound
KR930006442B1 (en) Sintered fe-co type magnetic materials
JPH0257666A (en) Sintered alloy having excellent mirror-finishing characteristics and its manufacture
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH0257661A (en) Manufacture of high-nitrogen stainless steel sintered body
JPH06316744A (en) Production of fe-ni-co series alloy parts for sealing
JPH0257605A (en) Production of sintered alloy having excellent dimensional precision