JPH06316744A - Production of fe-ni-co series alloy parts for sealing - Google Patents

Production of fe-ni-co series alloy parts for sealing

Info

Publication number
JPH06316744A
JPH06316744A JP12839993A JP12839993A JPH06316744A JP H06316744 A JPH06316744 A JP H06316744A JP 12839993 A JP12839993 A JP 12839993A JP 12839993 A JP12839993 A JP 12839993A JP H06316744 A JPH06316744 A JP H06316744A
Authority
JP
Japan
Prior art keywords
binder
sealing
agar
water
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12839993A
Other languages
Japanese (ja)
Inventor
Masahiro Asano
正宏 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP12839993A priority Critical patent/JPH06316744A/en
Publication of JPH06316744A publication Critical patent/JPH06316744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce Fe-Ni-Co series alloy parts for sealing having a complicated shape in a short time by adding alloy fine powder having specified compsn. constituted of Ni, Co and Fe with agar and water as a binder, kneading them, executing injection molding and sintering it. CONSTITUTION:Alloy powder with <=30mum average grain size constituted of, by weight, 27 to 34% Ni and 12 to 19% Co, and the balance Fe with inevitable impurities is added with agar and water showing a sol-gel reaction according to temp. as a binder, and they are kneaded and thereafter subjected to injection molding. This binder is constituted of 1 to 4% agar and 5 to 15% water and furthermore preferably contains, as a lubricant, 0.05 to 0.5% stearic acid and 0.01 to 0.5% sodium tetraborate according to necessary. The molded body obtd. by the same is subjected to heating to about 20 to 100 deg.C at about <=90 deg.C/hr temp. rising rate and dehydrating and is thereafter subjected to debindering and sintering in a vacuum or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、射出成形による封着
用Fe−Ni−Co系合金部品の製造方法に係り、バイ
ンダーとして寒天と水を加えて射出成形することによ
り、複雑形状部品が製造可能であり、また脱バインダー
工程に要する時間も大幅に短縮されて、製造工程時間の
短縮が可能な封着用Fe−Ni−Co系合金部品の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing Fe-Ni-Co alloy parts for sealing by injection molding, in which complex shaped parts can be manufactured by adding agar and water as a binder and injection molding. In addition, the present invention also relates to a method for manufacturing a Fe-Ni-Co based alloy component for sealing, which is capable of significantly shortening the time required for the debinding process and shortening the manufacturing process time.

【0002】[0002]

【従来の技術】ハーメチックシール部品の中でも近年、
急速に発展している光通信関連部品には小型かつ複雑形
状のものが多い。現在、これらの部品はFe−Ni−C
o系合金等の塊から切削加工により所定の形状にする
か、または種々形状の部材を作成後にロウ付などにより
所定形状に組みたて成形して製造しているため、多大の
製造工程を経る必要が有りかつ高価になっている。
2. Description of the Related Art Among hermetically sealed components,
Many of the rapidly developing optical communication-related parts are small and have complicated shapes. Currently, these parts are Fe-Ni-C
A large number of manufacturing steps are required because it is manufactured by cutting a mass of o-based alloy or the like into a predetermined shape, or after forming various shapes of members by assembling into a predetermined shape by brazing and molding. Needed and expensive.

【0003】従来、Fe−Ni系やFe−Ni−Co系
などの封着合金は、溶解、圧延、熱処理などの工程にて
製造されていたが、近年、従来の方法から、溶融合金を
アトマイズなど種々の方法により所定の粒度に粉砕し
て、粉体化した後、該粉体にバインダー例えば、ポリエ
チレン、ワックス等の熱可塑性樹脂を添加、混合して、
成形、脱脂、焼結するいわゆる粉末冶金的手法により、
焼結体を得る方法(特公昭61−48563号公報)が
試みられている。特に、成形時に射出成形装置を用いる
と、三次元的に複雑な形状等、あらゆる形状の焼結封着
材料がそのまま得られる利点があり有用である。
Conventionally, Fe-Ni-based and Fe-Ni-Co-based sealing alloys have been manufactured by processes such as melting, rolling and heat treatment. In recent years, however, molten alloys have been atomized by conventional methods. After being pulverized into powder having a predetermined particle size by various methods such as a powder, a binder, for example, a thermoplastic resin such as polyethylene or wax is added to the powder and mixed,
By the so-called powder metallurgical method of molding, degreasing and sintering,
A method of obtaining a sintered body (Japanese Patent Publication No. 61-48563) has been attempted. In particular, the use of an injection molding device during molding has the advantage that a sintered sealing material of any shape, such as a three-dimensionally complicated shape, can be obtained as it is, which is useful.

【0004】[0004]

【発明が解決しようとする課題】上述の封着用Fe−N
i−Co合金部品の製造に際して、熱可塑性樹脂をバイ
ンダーに用いて射出成形する製造方法では、脱バインダ
ー工程に長時間を要し、また、成形体厚みが6mm以下
と比較的薄物でしか製造できないという問題点がある。
Fe-N for sealing as described above
When manufacturing an i-Co alloy part, the manufacturing method in which a thermoplastic resin is used as a binder for injection molding requires a long time for the debinding step, and the molded body can be manufactured only with a relatively thin material of 6 mm or less. There is a problem.

【0005】この発明は、射出成形による封着用Fe−
Ni−Co系合金部品の製造方法において、バインダー
に熱可塑性樹脂を用いることなく厚物部品が製造可能
で、製造工程時間の短縮が可能な封着用Fe−Ni−C
o系合金部品の製造方法の提供を目的としている。
This invention is intended for sealing Fe- by injection molding.
In a method for manufacturing a Ni-Co based alloy part, a thick part can be manufactured without using a thermoplastic resin as a binder, and Fe-Ni-C for sealing which can shorten the manufacturing process time.
It is intended to provide a method for manufacturing an o-based alloy component.

【0006】[0006]

【課題を解決するための手段】発明者は、複雑形状部品
が製造可能で、製造工程時間の短縮が可能な封着用Fe
−Ni−Co系合金部品の射出成形方法を目的に、熱可
塑性樹脂に代わるバインダーについて種々検討した結
果、温度によりゾル・ゲル反応を示す寒天と水を用いる
ことにより、厚物部品が製造可能で、製造工程時間の短
縮が可能になることを知見し、この発明を完成した。
The inventor of the present invention has made it possible to manufacture a complex-shaped part and to shorten the manufacturing process time.
As a result of various studies on binders instead of thermoplastic resins for the purpose of injection molding method of -Ni-Co alloy parts, thick parts can be manufactured by using agar and water which show sol-gel reaction depending on temperature. The inventors have completed the present invention by finding that the manufacturing process time can be shortened.

【0007】すなわち、この発明は、射出成形による封
着用Fe−Ni−Co系合金部品の製造方法において、
Ni27〜34wt%、Co12〜19wt%、残部F
e及び不可避的不純物からなり、かつ平均粒径30μm
以下となした合金粉末に、バインダーとして寒天と水を
加えて混練後、射出成形により所定の形状にした後、該
成形体を焼結することを特徴とする封着用Fe−Ni−
Co系合金部品の製造方法である。またこの発明は、上
記の構成において、バインダーが寒天1〜4wt%、水
5〜15wt%からなり、潤滑剤としてステアリン酸
0.05〜0.5wt%、四ホウ酸ナトリウム0.01
〜0.5wt%を含有することを特徴とする封着用Fe
−Ni−Co系合金部品の製造方法である。
That is, the present invention relates to a method of manufacturing a Fe-Ni-Co alloy part for sealing by injection molding,
Ni 27-34 wt%, Co 12-19 wt%, balance F
e and unavoidable impurities, and an average particle size of 30 μm
Fe-Ni- for sealing, characterized in that the alloy powder as described below is mixed with agar and water as a binder, kneaded, and then molded into a predetermined shape by injection molding, and then the molded body is sintered.
It is a method for manufacturing a Co-based alloy component. Further, in the invention, in the above-mentioned constitution, the binder is composed of 1 to 4% by weight of agar and 5 to 15% by weight of water, and 0.05 to 0.5% by weight of stearic acid and 0.01% of sodium tetraborate as a lubricant.
Fe for sealing, containing ~ 0.5 wt%
A method for manufacturing a Ni-Co based alloy component.

【0008】限定理由 この発明の対象となるFe−Ni−Co系合金粉末にお
いて、Niは本系合金の基本成分であり、最終的に得ら
れる焼結封着材料において、Niが34wt%を越える
と熱膨張性が大きくなりすぎ、また27wt%未満では
合金内にα相が生成されることにより、熱膨張が大きく
なりすぎるので好ましくなく、この発明の対象とする封
着合金対象から外れてしまうことになる。また、Coは
Niと同様、本系合金の基本成分であるが、最終的に得
られる焼結封着材料において、Coが19wt%を越え
ると熱膨張性が大きくなりすぎると共にコスト的にも好
ましくなく、また12wt%未満では磁気変態点が低く
なりすぎて、温度が約450℃までの熱膨張係数が大き
くなるので好ましくない。なお、合金粉末組成は、所要
組成合金の粉末の他、各元素、合金組成の粉末を複合し
て目的組成にとなしたものも使用できる。
Reason for limitation In the Fe-Ni-Co based alloy powder which is the subject of the present invention, Ni is a basic component of the present alloy, and in the finally obtained sintered sealing material, Ni exceeds 34 wt%. And the thermal expansion property becomes too large, and if it is less than 27 wt%, the α phase is generated in the alloy, so that the thermal expansion becomes too large, which is not preferable, and it is out of the scope of the sealing alloy object of the present invention. It will be. Further, although Co is a basic component of the present alloy, like Ni, in the finally obtained sintered sealing material, when Co exceeds 19 wt%, the thermal expansion property becomes too large and the cost is preferable. If it is less than 12 wt%, the magnetic transformation point becomes too low, and the coefficient of thermal expansion up to about 450 ° C. becomes large, which is not preferable. As the alloy powder composition, in addition to the powder of the required composition alloy, a composite of powders of each element and alloy composition to obtain the target composition can be used.

【0009】この発明の対象となるFe−Ni−Co系
合金粉末の平均粒径を30μm以下と限定した理由は、
30μmを超えると焼結性が悪くなり、焼結密度が低下
するためであり、より好ましくは5〜15μmである。
The reason why the average particle size of the Fe-Ni-Co alloy powder to which the present invention is applied is limited to 30 μm or less is as follows.
This is because if it exceeds 30 μm, the sinterability is deteriorated and the sintered density is lowered, and it is more preferably 5 to 15 μm.

【0010】この発明の特徴であるバインダーとしての
寒天は、その添加量が1wt%未満では成形体の強度低
下となり好ましくなく4wt%を超えるとバインダー量
が多くなり、残留炭素による密度低下の恐れがあり好ま
しくない。また、水の量が5wt%未満では成形時の流
動性が悪くなり、15wt%を超えると成形体の強度低
下、乾燥による変形、バラツキの原因となり好ましくな
い。
Agar as a binder, which is a feature of the present invention, undesirably lowers the strength of the molded product when the amount added is less than 1 wt%, and undesirably increases the amount of binder when it exceeds 4 wt%, and there is a risk of density decrease due to residual carbon. There is not preferable. Further, if the amount of water is less than 5 wt%, the fluidity at the time of molding will be poor, and if it exceeds 15 wt%, the strength of the molded body will decrease, and deformation and variation due to drying will be unfavorable.

【0011】この発明において、バインダーにさらに潤
滑剤を加えることができ、特にステアリン酸、四ホウ酸
ナトリウムが好ましい。ステアリン酸は、金属粉末とバ
インダーの濡れ性向上及び混合時の粘性低下を起こすの
で、0.05wt%未満では混合が不均一となり、0.
5wt%を超えると成形体強度が低下し好ましくなく、
0.05〜0.5wt%が望ましい。但し、金属粉末の
形状、粒度等により適宜調整する必要がある。四ホウ酸
ナトリウムは、0.01wt%未満では寒天強度が低下
し、0.5wt%を超えると内部に残留して密度低下と
なり好ましくなく、0.01〜0.5wt%が望まし
い。この発明において、潤滑剤やバインダー量は成形装
置や成形圧力、粉体の組成等に応じて前記範囲内で適宜
選定することができる。
In the present invention, a lubricant can be added to the binder, and stearic acid and sodium tetraborate are particularly preferable. Stearic acid improves the wettability of the metal powder and the binder and reduces the viscosity at the time of mixing.
If it exceeds 5% by weight, the strength of the molded body decreases, which is not preferable.
0.05 to 0.5 wt% is desirable. However, it is necessary to appropriately adjust the shape and particle size of the metal powder. If the sodium tetraborate is less than 0.01 wt%, the agar strength will decrease, and if it exceeds 0.5 wt%, it will remain inside and the density will decrease, which is not preferable, and 0.01 to 0.5 wt% is desirable. In the present invention, the amounts of lubricant and binder can be appropriately selected within the above range depending on the molding apparatus, molding pressure, powder composition, and the like.

【0012】射出条件はバインダーの添加量に応じて変
動するが、金型温度は10〜30℃が好ましく、10℃
未満では流動性が悪くなり、ショートショットが発生し
易くなり、また30℃を超えると成形後の成形体の固化
が不十分になり、焼結体が変形することがある。射出温
度は75〜95℃が好ましく、75℃未満では流動性が
不十分となりショートショットが発生し易くなり、また
95℃を超えると成形体中に水の蒸発による気泡が発生
し、焼結後の焼結体中にボイドが発生する原因となり、
また、水の蒸発により、混練物の流動性が低下し、該混
練物が成形機内で詰まってしまう可能性があるため好ま
しくない。射出成形圧力は、30kg/cm2未満では
ウエルドが発生し成形密度が不均一になり、焼結後に曲
がりやうねりが発生し、また70kg/cm2を超える
とばりが発生して好ましくないため、圧力は30〜70
kg/cm2が好ましい。
The injection conditions vary depending on the amount of binder added, but the mold temperature is preferably 10 to 30 ° C, and 10 ° C.
If it is less than 60 ° C, the fluidity is deteriorated and short shots are likely to occur. If it exceeds 30 ° C, solidification of the molded product after molding becomes insufficient and the sintered product may be deformed. The injection temperature is preferably 75 to 95 ° C. If it is less than 75 ° C, the fluidity is insufficient and short shots are likely to occur. If it exceeds 95 ° C, bubbles are generated due to water evaporation in the molded body, and after sintering, Cause the occurrence of voids in the sintered body,
Further, the evaporation of water lowers the fluidity of the kneaded product, and the kneaded product may be clogged in the molding machine, which is not preferable. If the injection molding pressure is less than 30 kg / cm 2 , weld will occur and the molding density will be non-uniform, and bending and waviness will occur after sintering, and if it exceeds 70 kg / cm 2 , burrs will be generated, which is not preferable. Pressure is 30-70
kg / cm 2 is preferred.

【0013】この発明において、射出成形した成形体
は、脱水処理を行なった後脱バインダー処理を行ない、
次いで焼結する。脱水処理は、水の添加量により変動す
るが少なくとも20〜100℃までの昇温速度を90℃
/hr以下にすることが好ましい。昇温速度が90℃/
hrを超えると水の急激な気化蒸発のため、処理品にひ
び、割れを生じるためことがある。なお、水は、100
℃までの昇温中にほとんどが蒸発してしまう
In the present invention, the injection-molded molded article is dehydrated and then debindered,
Then, it is sintered. The dehydration treatment varies depending on the amount of water added, but the temperature rising rate up to at least 20 to 100 ° C is 90 ° C.
/ Hr or less is preferable. Temperature rising rate is 90 ° C /
If it exceeds hr, the treated product may crack or crack due to rapid vaporization of water. The water is 100
Most of it evaporates during heating up to ℃

【0014】脱バインダー処理は基本的に不要である
が、バインダーの寒天添加量、潤滑剤の有無などに応じ
て公知の方法を用いて行なうことができ、通常は100
〜200℃/時間の速度で昇温すれば脱バインダー処理
ができ、また、従来の有機バインダーを用いた場合に比
べ、脱バインダーに要する時間を大幅に短縮することが
できる。また、脱バインダーは焼結と同様じ炉内で加熱
することにより行なうことができ、脱バインダーに引き
続きそのまま昇温すれば焼結することができるため、製
造工程時間の短縮並びに設備の小型化などが可能にな
る。
The binder removal treatment is basically unnecessary, but it can be carried out by a known method depending on the amount of agar added to the binder, the presence or absence of a lubricant, etc.
If the temperature is raised at a rate of up to 200 ° C./hour, debinding processing can be performed, and the time required for debinding can be significantly shortened as compared with the case of using a conventional organic binder. In addition, debinding can be performed by heating in the same furnace as in sintering, and sintering can be performed by directly raising the temperature of the debinding, thus shortening the manufacturing process time and downsizing equipment. Will be possible.

【0015】焼結は、脱バインダー処理に引き続いて行
なうことができ、焼結温度、焼結時間、昇温速度、焼結
後の冷却条件などは、合金組成などに応じて適宜選定
し、最良の方法で行なうことが好ましい。焼結雰囲気は
脱バインダー、焼結を共に真空雰囲気で行なうことが最
も好ましいが、還元性ガスや不活性ガス等で流気するこ
となども好ましい。焼結時の昇温速度は200〜400
℃/hrが好ましい。又、焼結温度は成形体を緻密化さ
せるためには1200℃以上が好ましく、約1300℃
が最も好ましい。
Sintering can be carried out subsequent to the binder removal treatment, and the sintering temperature, sintering time, temperature rising rate, cooling conditions after sintering, etc. are appropriately selected according to the alloy composition and the like. It is preferable to carry out the above method. It is most preferable to perform the binder removal and the sintering both in a vacuum atmosphere, but it is also preferable to use a reducing gas or an inert gas as the sintering atmosphere. Temperature rising rate during sintering is 200-400
C / hr is preferred. Also, the sintering temperature is preferably 1200 ° C or higher in order to make the compact compact, and is approximately 1300 ° C.
Is most preferred.

【0016】[0016]

【作用】この発明は、Fe−Ni−Co系合金粉末を射
出成形して種々形状の部品を成形するが、バインダーと
してゾル・ゲル変態を起こす寒天と水とを混練すること
により、該混練物のゲル状態でのゲル強度を増強させ、
成形後の成形体の生強度を大幅向上させることができ、
厚物を含めて複雑形状部品が製造可能であり、また基本
的に脱バインダー工程が不要で有るため、製造工程時間
の短縮が可能となり、さらに焼結後の焼結体のポアー、
ボイドの低減を実現することができる。さらに、この発
明による射出成形方法は、バインダー中に水を多く含有
するため、相対的にバインダー中の炭素量を低減するこ
とができる。
According to the present invention, Fe-Ni-Co alloy powder is injection-molded to mold various shaped parts. The kneaded product is prepared by kneading agar which causes sol-gel transformation as a binder and water. The gel strength in the gel state of
It is possible to greatly improve the green strength of the molded body after molding,
Since it is possible to manufacture complicated shaped parts including thick materials, and basically no debinding process is required, it is possible to shorten the manufacturing process time, and further, the pores of the sintered body after sintering,
Reduction of voids can be realized. Furthermore, since the injection molding method according to the present invention contains a large amount of water in the binder, it is possible to relatively reduce the amount of carbon in the binder.

【0017】[0017]

【実施例】【Example】

実施例 平均結晶粒径10.2μmの29Ni−17Co−Fe
系合金粉末と、平均結晶粒径9.8μmの30Ni−1
6Co−Fe系合金粉末の2種の合金粉末を用いて、1
0wt%相当の水に2wt%の寒天、0.2wt%のス
テアリン酸を混合後、撹拌しながら90℃まで加熱した
後、60℃まで自然冷却しそのまま保温した中に、0.
08wt%の四ホウ酸ナトリウム添加したのち、前記合
金粉末を添加して、さらに混練した。次に該混練物を、
射出温度95℃、金型温度20℃(室温)で、20mm
×20mm×5mmと20mm×20mm×15mmの
板に成形した。得られた成形体を水素雰囲気中で図1に
示す昇温パターンにて、脱水、脱脂、焼結を行った。射
出成形後、焼結完了まではいずれも10時間であった。
得られた焼結体の相対密度及び板厚みを表1(試料番号
1〜4)に示す。
Example 29Ni-17Co-Fe having an average crystal grain size of 10.2 μm
-Based alloy powder and 30Ni-1 having an average crystal grain size of 9.8 μm
Using two alloy powders of 6Co-Fe alloy powder, 1
After mixing 2% by weight of agar and 0.2% by weight of stearic acid in 0% by weight of water, heating to 90 ° C. with stirring, naturally cooling to 60 ° C., and keeping the temperature as it is.
After adding 08 wt% of sodium tetraborate, the alloy powder was added and further kneaded. Next, the kneaded product is
20 mm at injection temperature 95 ° C and mold temperature 20 ° C (room temperature)
It was molded into a plate of × 20 mm × 5 mm and 20 mm × 20 mm × 15 mm. The obtained molded body was dehydrated, degreased and sintered in a hydrogen atmosphere according to the temperature rising pattern shown in FIG. After injection molding, it took 10 hours to complete the sintering.
The relative density and plate thickness of the obtained sintered body are shown in Table 1 (Sample Nos. 1 to 4).

【0018】比較例 上述の実施例の合金粉末を用いて、バインダーとして5
wt%のアクリル樹脂、3wt%のエチレン酢酸ビニル
共重合体、2wt%のワックスを用いて、射出温度15
0℃、金型温度20℃(室温)で実施例と同寸法の板に
射出成形を行った後、成形体を大気中、昇温速度8℃/
hr、温度320℃、保持時間3時間、脱バインダー
後、水素雰囲気昇温速度300℃/hr、温度1300
℃、保持時間2時間で焼結を行った。射出成形後、焼結
完了まではいずれも50時間であった。得られた焼結体
の相対密度及び板厚みを表1(試料番号5〜8)に示
す。
Comparative Example Using the alloy powder of the above-mentioned example, 5 as a binder
Using an acrylic resin of 3 wt%, an ethylene vinyl acetate copolymer of 3 wt% and a wax of 2 wt%, an injection temperature of 15
After injection molding was performed on a plate having the same dimensions as in the example at 0 ° C. and a mold temperature of 20 ° C. (room temperature), the molded body was heated in the atmosphere at a temperature rising rate of 8 ° C. /
hr, temperature 320 ° C., holding time 3 hours, after debinding, hydrogen atmosphere temperature rising rate 300 ° C./hr, temperature 1300
Sintering was carried out at a temperature of 2 hours for 2 hours. After injection molding, it took 50 hours to complete the sintering. The relative density and plate thickness of the obtained sintered body are shown in Table 1 (Sample Nos. 5 to 8).

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】この発明は、射出成形による封着用Fe
−Ni−Co系合金部品の製造方法において、バインダ
ーとして寒天と水を加えて射出成形することにより、実
施例に明らかなように、ほぼ同一焼結密度で成形体の厚
みが12mmのものにまで可能になり、また脱脂時間も
従来バインダーの43時間から3.5時間に大幅に減少
でき、約10分の1に短縮可能となり、厚物を含めて複
雑形状部品が製造可能であり、基本的に脱バインダー工
程が不要のため、製造時間を大幅に短縮することが可能
である。
INDUSTRIAL APPLICABILITY According to the present invention, Fe for sealing by injection molding is used.
In the method of manufacturing a Ni-Co alloy part, by adding agar and water as a binder and performing injection molding, as is apparent from the examples, even a molded body having a sintered density of approximately 12 mm can be obtained. In addition, the degreasing time can be greatly reduced from 43 hours of the conventional binder to 3.5 hours, it can be shortened to about 1/10, and complex shaped parts including thick materials can be manufactured. Since the debinding process is unnecessary, it is possible to significantly reduce the manufacturing time.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における成形体の昇温パターンを示すグ
ラフである。
FIG. 1 is a graph showing a temperature rise pattern of a molded body in an example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 射出成形による封着用Fe−Ni−Co
系合金部品の製造方法において、Ni27〜34wt
%、Co12〜19wt%、残部Fe及び不可避的不純
物からなり、かつ平均粒径30μm以下となした合金粉
末に、バインダーとして寒天と水を加えて混練後、射出
成形により所定の形状にした後、該成形体を焼結するこ
とを特徴とする封着用Fe−Ni−Co系合金部品の製
造方法。
1. Fe-Ni-Co for sealing by injection molding
Ni-27 to 34 wt.
%, Co12 to 19 wt%, the balance Fe and unavoidable impurities, and agar and water as binders to an alloy powder having an average particle size of 30 μm or less, kneaded, and then injection-molded into a predetermined shape, A method for producing a Fe-Ni-Co based alloy component for sealing, which comprises sintering the compact.
【請求項2】 バインダーが寒天1〜4wt%、水5〜
15wt%からなり、潤滑剤としてステアリン酸0.0
5〜0.5wt%、四ホウ酸ナトリウム0.01〜0.
5wt%を含有することを特徴とする請求項1記載の封
着用Fe−Ni−Co系合金部品の製造方法。
2. The binder is 1 to 4 wt% agar and 5 to water.
Consists of 15 wt% and stearic acid 0.0 as lubricant
5-0.5 wt%, sodium tetraborate 0.01-0.
The method for producing an Fe-Ni-Co based alloy component for sealing according to claim 1, wherein the Fe-Ni-Co based sealing alloy component contains 5 wt%.
JP12839993A 1993-04-30 1993-04-30 Production of fe-ni-co series alloy parts for sealing Pending JPH06316744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12839993A JPH06316744A (en) 1993-04-30 1993-04-30 Production of fe-ni-co series alloy parts for sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12839993A JPH06316744A (en) 1993-04-30 1993-04-30 Production of fe-ni-co series alloy parts for sealing

Publications (1)

Publication Number Publication Date
JPH06316744A true JPH06316744A (en) 1994-11-15

Family

ID=14983841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12839993A Pending JPH06316744A (en) 1993-04-30 1993-04-30 Production of fe-ni-co series alloy parts for sealing

Country Status (1)

Country Link
JP (1) JPH06316744A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067431A1 (en) * 1998-06-22 1999-12-29 Rosario Muto Composition for removing oxides in alloys of precious metals or similar
JP2003521580A (en) * 1999-07-15 2003-07-15 アライドシグナル インコーポレイテッド Continuous compounding of aqueous injection molding feedstock
CN115537632A (en) * 2022-09-27 2022-12-30 河源粤奥硬质合金有限公司 Titanium-nickel-iron-based alloy material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067431A1 (en) * 1998-06-22 1999-12-29 Rosario Muto Composition for removing oxides in alloys of precious metals or similar
JP2003521580A (en) * 1999-07-15 2003-07-15 アライドシグナル インコーポレイテッド Continuous compounding of aqueous injection molding feedstock
CN115537632A (en) * 2022-09-27 2022-12-30 河源粤奥硬质合金有限公司 Titanium-nickel-iron-based alloy material and preparation method thereof
CN115537632B (en) * 2022-09-27 2023-06-02 河源粤奥硬质合金有限公司 Titanium-nickel-iron-based alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100768700B1 (en) Fabrication method of alloy parts by metal injection molding and the alloy parts
US6761852B2 (en) Forming complex-shaped aluminum components
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JPH0254733A (en) Manufacture of ti sintered material
JPH06316744A (en) Production of fe-ni-co series alloy parts for sealing
CN107034375A (en) A kind of method that utilization hydride powder prepares high-compactness titanium article
JPS6033335A (en) Heat resistant molybdenum material
JP4206476B2 (en) Method for producing aluminum sintered material
JPH01246342A (en) Supermagnetostrictive material and its manufacture
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JPH08183661A (en) Production of silicon carbide sintered compact
JP2552264B2 (en) Method for producing W-based alloy sintered body having high toughness
JPH04131304A (en) Manufacture of al-si alloy sintered forging member
JPH1192845A (en) Magnetic alloy high in initial magnetic permiability and its production
JP3839632B2 (en) Method for producing Ni-Al intermetallic compound
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPH06306513A (en) Production of high fatigue strength sintered titanium alloy
JPH06279124A (en) Production of silicon nitride sintered compact
JPH0436428A (en) Manufacture of high toughness tungsten sintered alloy
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JPS624804A (en) Production of titanium alloy by element powder mixing method
JPS6026621A (en) Manufacture of heat resistant molybdenum material
KR970008044B1 (en) Method of oscillation weight
JPH06128604A (en) Production of metallic material