KR100768700B1 - Fabrication method of alloy parts by metal injection molding and the alloy parts - Google Patents

Fabrication method of alloy parts by metal injection molding and the alloy parts Download PDF

Info

Publication number
KR100768700B1
KR100768700B1 KR1020060058373A KR20060058373A KR100768700B1 KR 100768700 B1 KR100768700 B1 KR 100768700B1 KR 1020060058373 A KR1020060058373 A KR 1020060058373A KR 20060058373 A KR20060058373 A KR 20060058373A KR 100768700 B1 KR100768700 B1 KR 100768700B1
Authority
KR
South Korea
Prior art keywords
weight
injection molding
alloy
binder
parts
Prior art date
Application number
KR1020060058373A
Other languages
Korean (ko)
Inventor
이성학
윤태식
김창규
손창영
하대진
김낙준
Original Assignee
학교법인 포항공과대학교
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교, 포항공과대학교 산학협력단 filed Critical 학교법인 포항공과대학교
Priority to KR1020060058373A priority Critical patent/KR100768700B1/en
Priority to EP12185488A priority patent/EP2564956A1/en
Priority to EP07708670A priority patent/EP2043801A4/en
Priority to US12/306,778 priority patent/US20090297396A1/en
Priority to PCT/KR2007/000514 priority patent/WO2008002001A1/en
Priority to JP2009517946A priority patent/JP2009542905A/en
Priority to CN200780024689XA priority patent/CN101479063B/en
Application granted granted Critical
Publication of KR100768700B1 publication Critical patent/KR100768700B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

A manufacturing method by metal injection molding and alloy parts manufactured by the same is provided to cut down manufacturing cost of high value-added precision parts having low sintering temperature and superior hardness and commercial production property. An alloy part manufacturing method comprising the following steps of: mixing a binder with an alloy powder having a composition comprising 40 to 75 wt.% of at least one component selected from the group consisting of Fe and a combination of Fe and Co, 20 wt.% or more of at least one component selected from the group consisting of W, Mo, Cr, Nb, V and Ni, 2 to 14 wt.% of at least one component selected from the group consisting of B, C, Cu, and Si, and the other inevitable impurities; injection molding the mixture to mold the mixture in the form of a part; separating the binder from the injection molded article; and sintering the binder-removed injection molded article, the alloy part is characterized in that the alloy powder has a composition comprising 20 to 35 wt.% of Cr, 1 to 2.5 wt.% of Si, 0.5 wt.% or less of C, 0.1 to 3 wt.% of Cu, 2 to 5 wt.% of B, 0.1 to 8 wt.% of Mo, 14 to 22 wt.% of Ni, and 4 to 15 wt.% of Co.

Description

금속사출성형법을 이용한 합금 부품의 제조방법 및 합금부품 {FABRICATION METHOD OF ALLOY PARTS BY METAL INJECTION MOLDING AND THE ALLOY PARTS}Manufacturing method and alloy part of alloy part using metal injection molding method {FABRICATION METHOD OF ALLOY PARTS BY METAL INJECTION MOLDING AND THE ALLOY PARTS}

도 1은 본 발명에 따른 제조공정을 도식적으로 나타낸 개략도이다.1 is a schematic view showing a manufacturing process according to the present invention.

도 2는 본 발명의 일 실시예에 따라 제조한 금속 부품의 치밀화 정도를 주사전자현미경으로 관찰한 사진이다.2 is a photograph observing the densification degree of the metal parts manufactured according to an embodiment of the present invention with a scanning electron microscope.

도 3은 본 발명의 다른 실시예에 따라 제조한 금속 부품의 치밀화 정도를 주사전자현미경으로 관찰한 사진이다.3 is a photograph observing the densification degree of the metal parts manufactured according to another embodiment of the present invention with a scanning electron microscope.

본 발명은 금속사출성형법(Metal Injection Molding)과 이 방법에 의해 제조된 부품에 관한 것으로, 보다 상세하게는 Fe-Cr계 합금 분말로 금속사출성형법(Metal Injection Molding)을 이용하여 부품을 제조하는 방법 및 그 부품에 관한 것으로, 부품의 크기에 제약이 적고 생산성이 향상되며 종래의 제조방법에 비해 저비용으로 우수한 물성을 갖는 부품을 제공할 수 있는 금속사출성형법 및 그 부품에 관한 것이다.The present invention relates to a metal injection molding (Metal Injection Molding) and a component manufactured by this method, and more particularly to a method of manufacturing a part using a metal injection molding method (Fe-Cr-based alloy powder) And it relates to the parts, and the metal injection molding method and the parts that can provide a part having a small physical properties of the constraints and the productivity is improved and excellent properties at a low cost compared to the conventional manufacturing method.

자동차, 컴퓨터, 전자부품, 산업부품, 의료기기, 내마모 부품 등에 사용되는 형상이 복잡한 정밀 부품을 제조하는 방법으로, 절삭가공, 다이캐스팅, 정밀 주조 및 분말야금 등을 들 수 있다. 그러나 이러한 방법들은 제조비용이 많이 들거나 양산성이 부족하거나, 사용할 수 있는 합금의 성분이 제한되어 원하는 물성을 얻지 못하게 되거나, 복잡한 3차원적 형상의 제조를 할 수 없다는 등의 이유로 적용하는데 많은 어려움이 있는 실정이다. As a method for manufacturing precision parts having complex shapes used in automobiles, computers, electronic parts, industrial parts, medical devices, wear-resistant parts, and the like, cutting, die casting, precision casting, and powder metallurgy may be mentioned. However, these methods are difficult to apply due to the high manufacturing cost, lack of mass production, limited use of alloys to obtain desired properties, or the inability to manufacture complex three-dimensional shapes. There is a situation.

이러한 성형성, 가공성 및 양산성 등의 문제를 해결하고자 금속사출성형법(Metal Injection Molding), 즉 분말과 바인더를 혼합하는 공정, 혼합물을 사출성형하는 공정, 사출성형품에서 바인더를 제거하는 공정, 탈지된 사출성형품을 소결하여 성형하는 공정 등을 거쳐 후 가공이 거의 필요하지 않은 정형(Net Shape)으로 제품을 제조하는 방법이 알려져 있다. In order to solve such problems of formability, processability and mass production, metal injection molding, that is, a process of mixing powder and a binder, a process of injection molding a mixture, a process of removing a binder from an injection molded product, degreasing BACKGROUND ART There is known a method of manufacturing a product in a net shape that requires little post-processing through a process of sintering and molding an injection molded product.

한편 금속사출성형법으로 제조된 부품들은 내식성, 고강도 및 고경도의 고품질의 기계적 화학적 특성이 요구되는 내마모성 및 내구성이 요구되는 휴대폰 힌지 등의 고부가가치 정밀 부품에 주로 사용되고 있는데, 이들 부품은 종래 철, 니켈, 또는 스테인리스계 분말을 이용하여 제조되었다.Meanwhile, the parts manufactured by the metal injection molding method are mainly used for high value-added precision parts such as mobile phone hinges, which require corrosion resistance, high strength, high hardness, high quality mechanical and chemical properties, and require high durability. Or, it was prepared using a stainless steel powder.

그런데, 철, 니켈 또는 스테인리스계 분말의 경우, 최종 성형공정인 소결온도가 대략 1350℃ 정도로 매우 높아서, 소결공정에 소요되는 전력비용과 소결설비에 들어가는 설비비가 매우 높은 문제점이 있었다. 또한 종래의 분말 재료의 경우 어플리케이션에 따라서는 적용하기에 충분한 물성을 얻기 어려운 문제점도 있다.By the way, in the case of iron, nickel or stainless steel powder, the sintering temperature of the final molding process is very high, about 1350 ℃, there was a problem that the power cost required for the sintering process and the equipment cost to enter the sintering equipment is very high. In addition, in the case of a conventional powder material, there is a problem that it is difficult to obtain sufficient physical properties to be applied depending on the application.

이에 따라 소결온도를 낮추고 성형 정밀도를 높이기 위해 사용되는 분말의 크기를 매우 작게 하는 이른바 "마이크로-PIM법"이 시도되고 있으나, 이 방법의 경 우 분말의 크기를 작게 함으로써 소결온도는 종래에 비해 약 100℃ 정도 낮출 수 있으나, 분말가격이 종래에 비해 현저하게 상승하므로, 제조비용의 절감을 기대하기 어려운 문제점이 있다.Accordingly, the so-called "micro-PIM method" has been attempted to reduce the sintering temperature and to make the powder very small in order to increase the molding accuracy. However, in this case, the sintering temperature is lower than the conventional one by reducing the powder size. Although it may be lowered by about 100 ℃, since the powder price is significantly increased compared to the conventional, there is a problem that it is difficult to expect a reduction in the manufacturing cost.

분말사출성형법에는 금속, 세라믹, 초경 등 다양한 재료들이 사용되고 있는데 이중 스테인리스 등의 철계가 차지하는 비율은 전체 재료 중에 40% 이상을 차지하고 있다. 이 중에 STS316L의 응용이 가장 많으나 점차 분말사출성형 부품이 형상위주의 부품에서 항공기, 자동차, 의료기구 등 기계적 특성이 요구되는 구조재로서의 부품으로 전환됨에 따라 고강도의 STS630(17-4PH)이 점차 많이 사용되고 있다. STS630은 마르텐사이트계 석출경화형 합금으로 고강도 합금중 가장 내부식성이 뛰어난 재료중의 하나이다. 그러나 스테인리스의 경우, 소결온도가 높기 때문에 생산원가가 매우 높아지는 문제점이 있다. In powder injection molding, various materials such as metal, ceramic, cemented carbide, etc. are used, and the proportion of iron-based steel such as stainless steel accounts for more than 40% of all materials. Among them, STS316L has the most application, but as powder injection molding parts are gradually converted from shape-oriented parts to structural parts requiring mechanical properties such as aircraft, automobiles, medical devices, etc., STS630 (17-4PH) of high strength is increasingly used. have. STS630 is a martensitic precipitation hardening alloy and is one of the most corrosion resistant materials among high strength alloys. However, in the case of stainless steel, the production cost is very high because the sintering temperature is high.

본 발명은 전술한 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 소결온도가 낮고 우수한 경도를 가지며 저비용으로 양산성이 우수하여 고부가가치용 정밀부품에 적합한 제조방법을 제공하는 것을 과제로 한다.The present invention has been made to solve the above problems of the prior art, it is a problem to provide a manufacturing method suitable for high value-added precision parts having a low sintering temperature, excellent hardness and excellent mass production at low cost.

전술한 본 발명의 과제를 달성하기 위하여 본 발명은, Fe와 Fe 및 Co의 조합물로 이루어진 군에서 선택된 하나 이상의 성분의 합이 40~75중량%, W, Mo, Cr, Nb, V, 및 Ni의 군에서 선택된 하나 이상의 성분의 합이 20중량% 이상이며, B, C, Cu, 및 Si로 이루어진 군에서 선택된 하나 이상의 성분의 합이 2 ~ 14중량%이고 기 타 불가피한 불순물을 포함하는 조성을 갖는 합금 분말과 바인더를 혼합하는 단계와; 상기 혼합물을 사출성형하여 부품의 형상으로 성형하는 단계와; 상기 사출성형물에서 상기 바인더를 제거하는 단계; 및 상기 바인더가 제거된 사출성형물을 소결하는 단계를 포함하는 합금부품의 제조방법과 이 제조방법에 의해 제조된 합금 부품을 제공한다.In order to achieve the above object of the present invention, the present invention, the sum of one or more components selected from the group consisting of Fe, Fe and Co is 40 to 75% by weight, W, Mo, Cr, Nb, V, and The sum of one or more components selected from the group of Ni is 20% by weight or more, and the sum of one or more components selected from the group consisting of B, C, Cu, and Si is 2-14% by weight, and the composition includes other unavoidable impurities. Mixing the alloy powder and the binder; Injection molding the mixture into a shape of a part; Removing the binder from the injection molding; And it provides a method for producing an alloy component comprising the step of sintering the injection molding from which the binder is removed and the alloy component produced by the manufacturing method.

또한, 저경도 합금부품용으로는 상기 합금 분말의 조성에 있어서, Cr: 20~35중량%, Si: 1~2.5중량%, C: 0.5중량% 이하, Cu: 0.1~3중량%, B: 2~5중량%, Mo:0.1~8중량%, Ni: 14~22중량%, Co: 4~15중량%인 것이 바람직하다.Further, for low hardness alloy parts, Cr: 20 to 35% by weight, Si: 1 to 2.5% by weight, C: 0.5% by weight or less, Cu: 0.1 to 3% by weight, and B: in the composition of the alloy powder. It is preferable that they are 2 to 5 weight%, Mo: 0.1 to 8 weight%, Ni: 14 to 22 weight%, and Co: 4 to 15 weight%.

또한, 고경도 합금부품용으로는 상기 합금 분말의 조성에 있어서, Cr: 40~50중량%, Si: 1~2.5중량%, C: 0.5중량% 이하, B: 5.6~6.2중량%인 것이 바람직하다.In addition, for high hardness alloy parts, in the composition of the alloy powder, it is preferable that Cr: 40 to 50% by weight, Si: 1 to 2.5% by weight, C: 0.5% by weight or less, and B: 5.6 to 6.2% by weight. Do.

또한 상기 소결하는 단계는 진공, 환원성 가스 또는 불활성 가스 분위기하에서 1100℃ ~ 상기 합금의 용융점 미만의 온도로 실시하거나, 또는 1150℃ 이상에서, 또는 1200℃ 이상에서 실시할 수 있는데, 제조비용과 요구되는 물성에 따라 다르게 설정할 수 있다. 소결 분위기는 소결시 합금 분말의 표면에 존재하는 산화물 등을 제거할 수 있는 분위기이면 무방하나, 바람직하게는 고순도 수소분위기 하에서 실시하도록 한다.In addition, the step of sintering may be carried out in a vacuum, reducing gas or inert gas atmosphere at a temperature of 1100 ℃ ~ below the melting point of the alloy, or may be carried out at 1150 ℃ or more, or more than 1200 ℃, manufacturing costs and required Can be set differently depending on the physical properties. The sintering atmosphere may be any atmosphere that can remove oxides or the like present on the surface of the alloy powder during sintering, but is preferably performed under a high purity hydrogen atmosphere.

한편 소결온도는 1100℃에서 상기 합금분말의 용융점인 약 1250℃의 범위 내에서 소결을 수행하는 것으로 한다. 이에 따라 스테인리스계 분말의 소결온도인 1350℃에 비해 소결온도가 100 ~ 250℃ 정도 낮게 설정할 수 있으므로, 소결공정에 소요되는 전력비용 등 에너지 비용을 대폭적으로 줄일 수 있다.On the other hand, the sintering temperature is to perform the sintering in the range of about 1250 ℃ which is the melting point of the alloy powder at 1100 ℃. Accordingly, the sintering temperature may be set to about 100 to 250 ° C. lower than that of the sintering temperature of stainless steel powder, which is 1350 ° C., thereby significantly reducing energy costs such as power costs required for the sintering process.

또한, 상기 합금 분말의 평균 입자경은 0.01 ~ 100㎛인 것을 사용하도록 한다. 평균 입자경이 0.01㎛ 미만에서는 분말의 제조비용이 현저히 상승하여 제품의 단가를 높이는 원인이 되고, 100㎛ 초과에서는 충분한 정밀도와 물성을 얻기 어려우므로 상기 입자크기 범위 내의 분말을 사용한다.In addition, the average particle diameter of the alloy powder is to be used 0.01 to 100㎛. If the average particle size is less than 0.01 μm, the cost of manufacturing the powder is significantly increased, which increases the unit cost of the product. If the average particle size is more than 100 μm, it is difficult to obtain sufficient precision and physical properties. Therefore, powder within the particle size range is used.

또한, 상기 바인더를 제거하는 단계는 환원성 가스 분위기 하에서 300 ~ 700℃의 온도 범위로 가열하고 0.5 ~ 5시간 유지하여 수행한다.In addition, the step of removing the binder is performed by heating to a temperature range of 300 ~ 700 ℃ under a reducing gas atmosphere and maintained for 0.5 to 5 hours.

또한, 상기 제조방법에 의해 제조된 부품에 있어서, 기공률은 부피분율로 7% 이하인 것이 바람직하며, 보다 바람직하게는 5%이하이다. 기공률이 7%를 초과하면 경도 등 물성이 떨어져 부품에 적용하기가 어렵기 때문이다.In addition, in the parts produced by the above production method, the porosity is preferably 7% or less by volume fraction, more preferably 5% or less. This is because when the porosity exceeds 7%, it is difficult to apply to parts due to poor physical properties such as hardness.

이하, 본 발명의 실시예를 기초로 하여 본 발명을 보다 상세히 설명한다. 그러나 하기 실시예는 단지 예시적인 것으로 본 발명을 한정하는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail based on the embodiments of the present invention. However, the following examples are merely illustrative and should not be construed as limiting the invention.

[실시예]EXAMPLE

본 실시예에 사용된 합금 분말의 화학조성은 다음과 같다The chemical composition of the alloy powder used in this example is as follows.

합금 분말의 화학조성Chemical Composition of Alloy Powders 원소element CrCr SiSi CC CuCu SS BB NiNi MoMo CoCo FeFe CC 30-3230-32 1.0-1.81.0-1.8 -- 2.2-2.82.2-2.8 -- 3.5-4.53.5-4.5 17-1917-19 3.5-4.53.5-4.5 8.8-118.8-11 Bal.Bal. MM 43-4643-46 1.7-2.21.7-2.2 0.170.17 -- 0.20.2 5.6-6.25.6-6.2 -- -- -- Bal.Bal.

상기 표 1에 나타나 있는 바와 같이, 본 발명에 따른 금속사출성형법에서는 Fe에 Cr, Ni, Co 등이 주요 성분으로 포함되는 "C"로 표시되는 합금 조성과, Fe에 Cr, B를 주요 성분으로 포함하는 "M"으로 표시되는 합금 조성의 분말을 사용하였다. 이와 같이 Fe에 Cr을 20~50중량% 이상 함유시킴으로써, 소결온도를 대폭적으로 낮출 수 있게 되었으며, 하기 시험결과로부터 알 수 있듯이 기계적 물성도 종래의 스테인리스 분말사출성형품에 비해 동등하거나 현저하게 우수한 부품을 제조할 수 있게 된다.As shown in Table 1, in the metal injection molding method according to the present invention, an alloy composition represented by "C", in which Cr, Ni, Co, and the like is included in Fe, and Cr, B in Fe The powder of the alloy composition represented by "M" containing was used. By containing 20 to 50% by weight or more of Cr in Fe as described above, the sintering temperature can be drastically lowered. As can be seen from the following test results, mechanical properties are equally or significantly superior to those of conventional stainless steel powder injection molded products. It becomes possible to manufacture.

도 1은 본 발명의 실시예에 따른 금속사출성형법의 제조과정을 도시하고 있다. 도시된 바와 같이 금속사출성형은 분말과 바인더의 혼합공정, 혼합물의 사출성형공정, 사출된 성형물에서 바인더를 열분해를 통해 제거하는 탈지공정, 탈지된 성형물을 소결하는 공정을 통해 정형(Net Shape) 부품을 제조한다.Figure 1 shows the manufacturing process of the metal injection molding method according to an embodiment of the present invention. As shown, metal injection molding is a net shape component through a process of mixing a powder and a binder, an injection molding process of a mixture, a degreasing process of removing the binder from the injected molding by pyrolysis, and a process of sintering the degreased molding. To prepare.

상기 혼합공정에서, 합금 분말의 형상은 구상에 가까울수록 바람직하며, 높은 소결밀도와 수치 정밀도를 위해서는 분말의 평균 입경은 100㎛ 이하인 것이 바람직하며, 본 발명의 실시예에서는 40㎛ 이하의 입자를 사용하였다.In the mixing process, the shape of the alloy powder is preferably closer to the spherical shape, the average particle diameter of the powder is preferably 100㎛ or less for high sintered density and numerical accuracy, in the embodiment of the present invention using particles of 40㎛ or less It was.

또한 혼합공정에서 가장 중요한 작업 중 하나가 적절한 바인더의 선택인데, 혼합과 사출성형이 용이하고 사출성형 후 사용된 바인더를 제거했을 때 원하는 물성의 재료를 얻을 수 있는 것이라야 한다. 바인더는 결합(보형)제, 윤활제, 가소제 및 계면활성제 등에서 2 내지 5종류 정도를 조합하여 사용하는데, 사출성형시의 성형성이 확보되면 탈지소결시의 변형 방지 면에서 전체 바인더 양은 적은 편이 바람직하며, 체적비를 50 ~ 30%의 범위가 적절하다. In addition, one of the most important operations in the mixing process is the selection of a suitable binder, which should be easy to mix and injection molding, and to obtain a material of desired physical properties when the binder used after injection molding is removed. Binders are used in combination of about 2 to 5 types of binders (lubricants), lubricants, plasticizers, and surfactants. If the moldability during injection molding is ensured, the total binder amount is preferably small in terms of preventing deformation during degreasing. For example, a volume ratio of 50-30% is appropriate.

본 발명의 실시예에서는 사용된 바인더는 20중량%의 에틸렌비닐아세테이트와 80중량%의 파라핀 왁스의 혼합물을 사용하였다. 합금 분말과 바인더의 혼합공정은 합금 분말을 바인더와 함께 일정비로 칭량 후에 시그마 블레이드형 혼합기에서 온도 130 ~ 160℃의 범위에서 2시간 혼합하였다.In the embodiment of the present invention, the binder used was a mixture of 20 wt% ethylene vinyl acetate and 80 wt% paraffin wax. In the mixing process of the alloy powder and the binder, the alloy powder was mixed with the binder at a predetermined ratio and then mixed in a sigma blade type mixer in a temperature range of 130 to 160 ° C. for 2 hours.

혼합물의 사출공정은 분말 혼합체를 27톤 용량의 금속사출성형기에 장입한 후, 450 bar의 압력과 120℃의 온도에서 소정 형상을 갖는 금속제 몰드(mold)에 사출하여 수행하였다.The injection process of the mixture was carried out by charging the powder mixture into a 27 ton metal injection molding machine, and then injecting the powder mixture into a metal mold having a predetermined shape at a pressure of 450 bar and a temperature of 120 ° C.

사출성형물에서 바인더를 제거하기 위한 탈지공정은, 성형물을 관상로(tube furnace)에 장입하고, 고순도 수소 분위기 속에서 2℃/min의 속도로 300℃까지 승온한 후 1시간 유지하고, 3℃/min의 속도로 500℃까지 승온한 후 1시간 유지하여, 3℃/min의 속도로 700℃까지 승온 후 1시간 유지하는 방법을 통해 수행하였으며, 이러한 공정을 통해 완전한 바인더의 제거가 가능하였다.In the degreasing process for removing the binder from the injection molding, the molding is charged into a tube furnace, heated to 300 ° C. at a rate of 2 ° C./min in a high-purity hydrogen atmosphere, and maintained for 1 hour, and held at 3 ° C. / After the temperature was raised to 500 ° C. at a rate of min and maintained for 1 hour, the temperature was increased to 700 ° C. at a rate of 3 ° C./min and maintained for 1 hour. Through such a process, complete binder removal was possible.

상기 표 1에 도시된 조성을 갖는 각각의 합금 분말에 대한 시차열분석(DTA)을 통해 액상 전이온도를 측정한 후, 상기 소결공정은 1150℃ ~ 액상 전이온도 범위 미만의 온도범위에서 하기 표 2와 같은 조건으로 소결을 실시하였다.After measuring the liquid phase transition temperature through differential thermal analysis (DTA) for each alloy powder having the composition shown in Table 1, the sintering process is a temperature range of 1150 ℃ ~ less than the liquid phase transition temperature range in Table 2 Sintering was performed under the same conditions.

소결 조건Sintering Condition 시험 조건Exam conditions 시편 종류Specimen Type 소결온도 및 유지시간Sintering temperature and holding time 1One C1C1 1100℃/30mim1100 ℃ / 30mim 22 C2, M2C2, M2 1150℃/30mim1150 ℃ / 30mim 33 C3, M3C3, M3 1200℃/30mim1200 ℃ / 30mim 44 M4M4 1250℃/30mim1250 ℃ / 30mim

표 2에 표시된 시편종류 C1, C2, C3는 동일조성에 소결온도만 다른 것이며, M1, M2, M3도 동일하다. 소결은 상기 표 2에 나타낸 1100°C, 1150°C, 1200°C, 1250°C의 목표 온도까지 5°C/min의 속도로 승온한 후 30분 동안 고순도 수소 분위기하에 유지하는 방법을 사용하였다. 이와 같이 환원성 가스 분위기 하에서 소결을 실시함으로써, 합금 분말의 표면에 형성된 산화물층이 제거되고 확산에 의해 입자간의 결합이 진행되게 된다.Specimen types C1, C2 and C3 shown in Table 2 differ only in sintering temperature in the same composition, and M1, M2 and M3 are also the same. Sintering was used to maintain the temperature in a high purity hydrogen atmosphere for 30 minutes after heating up at a rate of 5 ° C / min to the target temperature of 1100 ° C, 1150 ° C, 1200 ° C, 1250 ° C shown in Table 2 above . By sintering in a reducing gas atmosphere in this manner, the oxide layer formed on the surface of the alloy powder is removed, and the interparticle bonding progresses by diffusion.

도 2 및 3은 주사전자현미경(SEM)을 통해 상기 소결 온도에 따라 제조된 금속 부품의 미세조직을 관찰한 사진이다. 도시된 바와 같이, 소결 온도가 증가할수록 결정립계에 형성된 기공들의 부피 분율도 크게 감소하고 그 크기도 작아지는 경향을 보인다. 또한 부품의 기공률과 상대밀도 즉 치밀도를 측정한 결과 하기 표 3과 같았다.2 and 3 are photographs of the microstructure of the metal parts manufactured according to the sintering temperature through a scanning electron microscope (SEM). As shown, as the sintering temperature increases, the volume fraction of the pores formed in the grain boundary also decreases and the size tends to decrease. In addition, as a result of measuring the porosity and relative density, that is, the density of the parts were as shown in Table 3.

부품의 기공률 및 상대밀도 평가결과Evaluation of porosity and relative density of parts 시편 종류Specimen Type 기공도(%)Porosity (%) 상대밀도(%)Relative Density (%) C1C1 4.34.3 95.6895.68 C2C2 3.53.5 96.4796.47 C3C3 0.010.01 99.9999.99 M2M2 0.610.61 99.3999.39 M3M3 0.210.21 99.7999.79 M4M4 0.050.05 99.9599.95

표 3에 나타난 바와 같이, 1100℃에서 소결한 C1의 경우, 치밀도가 95.68%로 비교적 높게 나오며, 소결온도의 증가에 따라 대부분 99% 이상의 높은 치밀도를 나타낸다. As shown in Table 3, in the case of C1 sintered at 1100 ° C., the density was relatively high as 95.68%, and as the sintering temperature was increased, the density was higher than 99%.

상기 실시예에 따른 부품의 경도를 측정한 결과, 하기 표 4와 같은 결과를 얻었다.As a result of measuring the hardness of the component according to the embodiment, the results shown in Table 4 were obtained.

부품의 경도 평가 결과Hardness evaluation result of parts 시편 종류Specimen Type 경도 (VHN)Hardness (VHN) 비고Remarks C1C1 9494 실시예Example C2C2 115115 실시예Example C3C3 319319 실시예Example M2M2 353353 실시예Example M3M3 747747 실시예Example M4M4 10591059 실시예Example STS316LSTS316L 9797 비교예Comparative example STS630STS630 275275 비교예Comparative example STS440CSTS440C 543543 비교예Comparative example

표 4에 나타나 있는 바와 같이, 본 발명의 실시예에 따른 C1의 경우, STS316L에 비해 매우 낮은 소결온도에서 소결하면서도 경도는 거의 유사하게 나오며, C2는 다소 우수하게 그리고 C3 및 M2는 STS316L에 비해 3배 가량 높고 STS630에 비해서는 동등 이상의 경도를 나타냄을 알 수 있다.
즉 스테인리스 분말사출성형품에 비해 저비용으로 높은 물성을 갖는 부품을 제조할 수 있으므로, 본 발명의 상기 실시예들은 종래의 STS316L 및 STS630을 대체할 수 있다.
As shown in Table 4, in the case of C1 according to the embodiment of the present invention, the sintering at a very low sintering temperature compared to STS316L, the hardness is almost similar, C2 is somewhat superior and C3 and M2 is 3 compared to STS316L It can be seen that it is about twice as high and exhibits hardness equal to or higher than that of STS630.
That is, since parts having high physical properties can be manufactured at low cost compared to stainless steel powder injection molded articles, the embodiments of the present invention can replace the conventional STS316L and STS630.

또한 본 발명의 M3 및 M4는 스테인리스 분말에 비해 소결온도가 낮으면서도, 그 비커스 경도가 747 및 1059로 스테인리스 분말사출성형품에 비해 월등하게 우수함을 알 수 있다. In addition, M3 and M4 of the present invention, while the sintering temperature is lower than that of the stainless steel powder, the Vickers hardness of 747 and 1059 can be seen to be superior to the stainless steel powder injection molded article.

이상에서 설명한 바와 같이 본 발명에 따른 금속사출성형법에 의해 제조된 금속 부품은 제조방법의 특성상 그 크기에 제약이 적고 연속생산이 가능하며, 특히 종래의 스테인리스계 합금 분말을 이용한 금속사출성형품에 비해 동등 이상의 경도를 나타내면서도, 소결온도를 현저하게 낮출 수 있다. 즉, 고품질, 고부가가치의 부품을 가격 경쟁력 있게 제조할 수 있으므로 자동차, 컴퓨터, 전자부품, 산업부품, 의료기기, 내마모 부품 등 전 산업에 걸쳐 유용하게 사용될 수 있다.As described above, the metal parts manufactured by the metal injection molding method according to the present invention are less constrained in size due to the characteristics of the manufacturing method and are capable of continuous production, and in particular, equivalent to those of metal injection molded products using conventional stainless alloy powder While showing the above hardness, the sintering temperature can be significantly lowered. That is, since high-quality, high value-added parts can be manufactured at a competitive price, they can be usefully used in all industries such as automobiles, computers, electronic parts, industrial parts, medical devices, and wear-resistant parts.

또한, 본 발명에 따른 금속사출성형법에 의하면, 기공을 최소화하여 치밀도가 우수한 정형(net shape) 제품을 제조할 수 있다. In addition, according to the metal injection molding method according to the present invention, it is possible to manufacture a net shape product having excellent density by minimizing pores.

Claims (11)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete Fe와 Fe 및 Co의 조합물로 이루어진 군에서 선택된 하나 이상의 성분의 합이 40~75중량%, W, Mo, Cr, Nb, V, 및 Ni의 군에서 선택된 하나 이상의 성분의 합이 20중량% 이상이며, B, C, Cu, 및 Si로 이루어진 군에서 선택된 하나 이상의 성분의 합이 2 ~ 14중량%이고 기타 불가피한 불순물을 포함하는 조성을 갖는 합금 분말과 바인더를 혼합하는 단계와; 상기 혼합물을 사출성형하여 부품의 형상으로 성형하는 단계와; 상기 사출성형물에서 상기 바인더를 제거하는 단계; 및 상기 바인더가 제거된 사출성형물을 소결하는 단계로 제조된 합금부품으로서, 40 to 75% by weight of one or more components selected from the group consisting of a combination of Fe, Fe and Co, and 20% by weight of one or more components selected from the group of W, Mo, Cr, Nb, V, and Ni Mixing the binder and the alloy powder having a composition of 2 to 14% by weight and comprising other unavoidable impurities, wherein the sum of at least one component selected from the group consisting of B, C, Cu, and Si; Injection molding the mixture into a shape of a part; Removing the binder from the injection molding; And an alloy part manufactured by sintering the injection molding from which the binder is removed. 상기 합금 분말의 조성에 있어서, Cr: 20~35중량%, Si: 1~2.5중량%, C: 0.5중량% 이하, Cu: 0.1~3중량%, B: 2~5중량%, Mo:0.1~8중량%, Ni: 14~22중량%, 및 Co: 4~15중량%인 것을 특징으로 하는 합금부품.In the composition of the alloy powder, Cr: 20 to 35% by weight, Si: 1 to 2.5% by weight, C: 0.5% by weight or less, Cu: 0.1 to 3% by weight, B: 2 to 5% by weight, Mo: 0.1 Alloy parts, characterized in that ~ 8% by weight, Ni: 14-22% by weight, and Co: 4-15% by weight. Fe와 Fe 및 Co의 조합물로 이루어진 군에서 선택된 하나 이상의 성분의 합이 40~75중량%, W, Mo, Cr, Nb, V, 및 Ni의 군에서 선택된 하나 이상의 성분의 합이 20중량% 이상이며, B, C, Cu, 및 Si로 이루어진 군에서 선택된 하나 이상의 성분의 합이 2 ~ 14중량%이고 기타 불가피한 불순물을 포함하는 조성을 갖는 합금 분말과 바인더를 혼합하는 단계와; 상기 혼합물을 사출성형하여 부품의 형상으로 성형하는 단계와; 상기 사출성형물에서 상기 바인더를 제거하는 단계; 및 상기 바인더가 제거된 사출성형물을 소결하는 단계로 제조된 합금부품으로서, 40 to 75% by weight of one or more components selected from the group consisting of a combination of Fe, Fe and Co, and 20% by weight of one or more components selected from the group of W, Mo, Cr, Nb, V, and Ni Mixing the binder and the alloy powder having a composition of 2 to 14% by weight and comprising other unavoidable impurities, wherein the sum of at least one component selected from the group consisting of B, C, Cu, and Si; Injection molding the mixture into a shape of a part; Removing the binder from the injection molding; And an alloy part manufactured by sintering the injection molding from which the binder is removed. 상기 합금 분말의 조성에 있어서, Cr: 40~50중량%, Si: 1~2.5중량%, C: 0.5중량% 이하, 및 B: 5.6~6.2중량%인 것을 특징으로 하는 합금부품.In the composition of the alloy powder, Cr: 40-50% by weight, Si: 1-2.5% by weight, C: 0.5% by weight or less, and B: 5.6-6.2% by weight. 제 9 항 또는 제 10 항에 있어서, 상기 합금부품의 기공률이 부피분율로 7% 이하인 것을 특징으로 하는 합금부품.The alloy part according to claim 9 or 10, wherein the porosity of the alloy part is 7% or less by volume fraction.
KR1020060058373A 2006-06-28 2006-06-28 Fabrication method of alloy parts by metal injection molding and the alloy parts KR100768700B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020060058373A KR100768700B1 (en) 2006-06-28 2006-06-28 Fabrication method of alloy parts by metal injection molding and the alloy parts
EP12185488A EP2564956A1 (en) 2006-06-28 2007-01-30 Fabrication method of alloy parts by metal injection molding
EP07708670A EP2043801A4 (en) 2006-06-28 2007-01-30 Fabrication method of alloy parts by metal injection molding and the alloy parts
US12/306,778 US20090297396A1 (en) 2006-06-28 2007-01-30 Fabrication method of alloy parts by metal injection molding and the alloy parts
PCT/KR2007/000514 WO2008002001A1 (en) 2006-06-28 2007-01-30 Fabrication method of alloy parts by metal injection molding and the alloy parts
JP2009517946A JP2009542905A (en) 2006-06-28 2007-01-30 Manufacturing method of alloy parts by metal injection molding and alloy parts thereof
CN200780024689XA CN101479063B (en) 2006-06-28 2007-01-30 Fabrication method of alloy parts by metal injection molding and the alloy parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060058373A KR100768700B1 (en) 2006-06-28 2006-06-28 Fabrication method of alloy parts by metal injection molding and the alloy parts

Publications (1)

Publication Number Publication Date
KR100768700B1 true KR100768700B1 (en) 2007-10-19

Family

ID=38815316

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060058373A KR100768700B1 (en) 2006-06-28 2006-06-28 Fabrication method of alloy parts by metal injection molding and the alloy parts

Country Status (6)

Country Link
US (1) US20090297396A1 (en)
EP (2) EP2043801A4 (en)
JP (1) JP2009542905A (en)
KR (1) KR100768700B1 (en)
CN (1) CN101479063B (en)
WO (1) WO2008002001A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058453A1 (en) * 2011-10-21 2013-04-25 포항공과대학교 산학협력단 Iron-based alloy for powder injection molding
KR20160023365A (en) 2014-08-22 2016-03-03 박상준 Method for Producing Articles Using Injection Molding of Alloy

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579160B (en) * 2009-06-05 2014-08-06 刘世华 Stainless steel zipper manufactured by metal injection molding and preparation method thereof
RU2593064C2 (en) * 2010-12-30 2016-07-27 Хеганес Аб (Пабл) Iron-based powder for injection moulding of powder
KR20150056640A (en) * 2012-09-21 2015-05-26 회가내스 아베 (피유비엘) New powder, powder composition, method for use thereof and use of the powder and powder composition
KR20140048428A (en) * 2012-10-15 2014-04-24 현대자동차주식회사 Method for manufacturing of control finger using with metal powder injection molding
KR20160106554A (en) * 2013-10-25 2016-09-12 골든 인텔렉추얼 프로퍼티, 엘엘씨 Amorphous alloy containing feedstock for powder injection molding
CN103990803B (en) * 2014-05-28 2017-01-11 厦门市超日精密模具有限公司 Tungsten-molybdenum alloy powder injection mould and technology thereof
CN106119662B (en) * 2016-07-28 2018-01-02 洛阳轴研科技股份有限公司 A kind of cobalt-chromium-tungsten alloy material, cobalt-chromium-tungsten alloy ball for ball-screw bearing and preparation method thereof, ball-screw bearing
CN106498261A (en) * 2016-11-21 2017-03-15 常熟市张桥华丰铸造五金厂 A kind of multiduty high-performance foundry goods
CN108746630A (en) * 2018-06-25 2018-11-06 长春中科昊融新材料研究有限公司 Reduce the method that sintering temperature prepares metal injection moulding feeding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976860A (en) 1982-10-25 1984-05-02 Hitachi Metals Ltd Permanent magnet material
JPS60155650A (en) 1984-04-03 1985-08-15 Nippon Piston Ring Co Ltd Sliding member for power machine
KR20050072827A (en) * 2003-02-13 2005-07-12 미쓰비시 세이코 가부시키가이샤 Alloy steel powder for metal injection molding improved in sintering characteristics and sintered article
KR20060068807A (en) * 2004-12-17 2006-06-21 박영석 Manufacturing method of complex-shaped workpiece using powder injection molding and workpiece therefrom

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052802A (en) * 1976-02-23 1977-10-11 Caterpillar Tractor Co. Ground-engaging tool with wear-resistant insert
US4194900A (en) * 1978-10-05 1980-03-25 Toyo Kohan Co., Ltd. Hard alloyed powder and method of making the same
US4721599A (en) * 1985-04-26 1988-01-26 Hitachi Metals, Ltd. Method for producing metal or alloy articles
US5338508A (en) * 1988-07-13 1994-08-16 Kawasaki Steel Corporation Alloy steel powders for injection molding use, their compounds and a method for making sintered parts from the same
US5030519A (en) * 1990-04-24 1991-07-09 Amorphous Metals Technologies, Inc. Tungsten carbide-containing hard alloy that may be processed by melting
JP3049294B2 (en) * 1993-06-11 2000-06-05 大同特殊鋼株式会社 Decorative parts
US6171657B1 (en) * 1995-12-18 2001-01-09 Bender Machine, Inc. Method of coating yankee dryers against wear
JPH1161360A (en) * 1997-08-13 1999-03-05 Hatsuto:Kk Stainless steel sintered body and its production
JPH11100633A (en) * 1997-09-29 1999-04-13 Toshiba Mach Co Ltd Heat-insulating member and its production
JPH11222605A (en) * 1998-02-04 1999-08-17 Mitsubishi Electric Corp Production of sliding part and swirling flow generating body of injection valve produced thereby
JP3931447B2 (en) * 1998-09-18 2007-06-13 セイコーエプソン株式会社 Metal sintered body and method for producing the same
FR2785559B1 (en) * 1998-11-10 2001-03-02 Metals Process Systems METHOD FOR THE MANUFACTURE BY METALLURGY OF POWDERS OF AUTOBRASANT SHAPED PARTS
US6309592B1 (en) * 2000-04-05 2001-10-30 Lite-On It Corporation Method for manufacturing roller carrier of vibration balance device
JP3856294B2 (en) * 2001-11-30 2006-12-13 セイコーエプソン株式会社 Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
CN1180908C (en) * 2003-09-30 2004-12-22 北京科技大学 Method for preparing Kovar alloy electronic package box
US20050163645A1 (en) * 2004-01-28 2005-07-28 Borgwarner Inc. Method to make sinter-hardened powder metal parts with complex shapes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976860A (en) 1982-10-25 1984-05-02 Hitachi Metals Ltd Permanent magnet material
JPS60155650A (en) 1984-04-03 1985-08-15 Nippon Piston Ring Co Ltd Sliding member for power machine
KR20050072827A (en) * 2003-02-13 2005-07-12 미쓰비시 세이코 가부시키가이샤 Alloy steel powder for metal injection molding improved in sintering characteristics and sintered article
KR20060068807A (en) * 2004-12-17 2006-06-21 박영석 Manufacturing method of complex-shaped workpiece using powder injection molding and workpiece therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058453A1 (en) * 2011-10-21 2013-04-25 포항공과대학교 산학협력단 Iron-based alloy for powder injection molding
KR101350944B1 (en) 2011-10-21 2014-01-16 포항공과대학교 산학협력단 Ferrous-alloys for powder injection molding
KR20160023365A (en) 2014-08-22 2016-03-03 박상준 Method for Producing Articles Using Injection Molding of Alloy

Also Published As

Publication number Publication date
EP2043801A4 (en) 2011-04-13
JP2009542905A (en) 2009-12-03
EP2043801A1 (en) 2009-04-08
CN101479063A (en) 2009-07-08
WO2008002001A1 (en) 2008-01-03
CN101479063B (en) 2011-12-07
US20090297396A1 (en) 2009-12-03
EP2564956A1 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
KR100768700B1 (en) Fabrication method of alloy parts by metal injection molding and the alloy parts
KR101076785B1 (en) Injection molding method using powder
US11247268B2 (en) Methods of making metal matrix composite and alloy articles
CN104946914B (en) A kind of forming method of Metal Substrate functional gradient composite materials
CN104874797B (en) A kind of forming method of hard alloy FGM
CN108642361B (en) High-strength high-hardness ceramic material and production process thereof
JP2003500544A (en) Austenitic steel with low nickel content
US20200346365A1 (en) Cemented carbide powders for additive manufacturing
JP2009544841A (en) Iron-based powder
CN105063394A (en) Titanium or titanium alloy material preparing method
CN110499442B (en) High-strength corrosion-resistant Cr3C2Light metal ceramic alloy and preparation method thereof
US20090142219A1 (en) Sinter-hardening powder and their sintered compacts
KR20150025196A (en) Manufacturing method of composit materials using injection molding powder
CN116855810A (en) Additive manufacturing method of high specific gravity tungsten alloy complex structure
KR101410490B1 (en) Injection molding method using powder
US20120107170A1 (en) Alloy steel powder and their sintered body
KR101076784B1 (en) Injection molding method using powder
KR101525095B1 (en) Injection molding method using powder
KR101577328B1 (en) Micro-sized control parts and manufacturing method thereof
JP6875682B2 (en) Machine parts
KR101789230B1 (en) POWDER INJECTION MOLDING METHOD FOR FEBRICATING WC-Co STRUCTURE AND SYSTEM THEREOF
JP2016084534A (en) High density iron-based sintered body and manufacturing method therefor
JP2022049161A (en) Mechanical component
KR101230286B1 (en) Method of controlling carbon content in sintered body made by metal injection molding
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180716

Year of fee payment: 11

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20180903

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191015

Year of fee payment: 13