JPH06128604A - Production of metallic material - Google Patents

Production of metallic material

Info

Publication number
JPH06128604A
JPH06128604A JP27907392A JP27907392A JPH06128604A JP H06128604 A JPH06128604 A JP H06128604A JP 27907392 A JP27907392 A JP 27907392A JP 27907392 A JP27907392 A JP 27907392A JP H06128604 A JPH06128604 A JP H06128604A
Authority
JP
Japan
Prior art keywords
metal
powder
oxide
sintering
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27907392A
Other languages
Japanese (ja)
Inventor
Yutaka Ishiwatari
裕 石渡
Yoshiyasu Ito
義康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27907392A priority Critical patent/JPH06128604A/en
Publication of JPH06128604A publication Critical patent/JPH06128604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a dense, high-strength and high-corrosion resistance sintered metallic member at low cost without any plastic working or HIP. CONSTITUTION:A fine oxide grain having a lower standard free energy in the formation of the oxide than a metal powder and having a lower oxygen content than stoichiometry is uniformly dispersed in the metal powder and then sintered, and the high-strength sintered compact having a density close to its true density is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、常圧焼結で高密度、高
強度の焼結部材である金属材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metallic material which is a high-density and high-strength sintered member by pressureless sintering.

【0002】[0002]

【従来の技術】タングステン(W)、モリブデン(M
o)、レニウム(Re)およびそれらの合金は2000℃以
上の融点を有し、主に電子部品、電極材、フィラメント
材として従来用いられてきたが、近年、その優れた高温
強度、耐食性に着目され構造用材料としての用途が期待
されている。しかし、W,Mo,Reは融点が非常に高
く、かつ、加工性が悪いため、通常の溶解+加工(塑性
加工、機械加工)といった方法で製品を作ることは困難
であった。したがって、一般には粉末焼結法により各種
部材を製造しているのが現状である。
2. Description of the Related Art Tungsten (W), molybdenum (M
o), rhenium (Re) and their alloys have a melting point of 2000 ° C. or higher and have been conventionally used mainly as electronic parts, electrode materials, and filament materials. In recent years, attention has been paid to their excellent high temperature strength and corrosion resistance It is expected to be used as a structural material. However, since W, Mo, and Re have extremely high melting points and poor workability, it is difficult to produce a product by a usual method such as melting + working (plastic working, mechanical working). Therefore, in general, various members are currently manufactured by the powder sintering method.

【0003】図7に一般的な粉末焼結法による金属部材
の製造工程を示す。まず、第1工程(a)において、金
属粉末をラバ―6の中に充填し加圧成形により金属粉末
1を固める。その後、第2工程(b)においてこの加圧
成形体7を電気炉8内で10〜20時間程度加熱、焼結を行
い、第3工程(c)にて焼結体9を得る。
FIG. 7 shows a manufacturing process of a metal member by a general powder sintering method. First, in the first step (a), a metal powder is filled in a rubber 6 and the metal powder 1 is solidified by pressure molding. Then, in the second step (b), the pressure molded body 7 is heated and sintered in the electric furnace 8 for about 10 to 20 hours, and the sintered body 9 is obtained in the third step (c).

【0004】しかし、このような方法で得られる焼結体
の相対密度はせいぜい90%程度しかなく、その内部には
多数の気孔が残留している。これら金属焼結体の強度や
耐食性等の特性は密度に大きく依存することが知られて
おり、焼結体内部の気孔は強度を著しく低下させたり、
内部の気孔に腐食性溶液やガスが浸透し耐食性を著しく
害することが多々ある。従って焼結体本来の特性を十分
引出すためには緻密な焼結体を得ることが不可欠であ
る。一般に緻密な焼結体はより高い温度で焼結すること
により得られるが、焼結温度が高すぎると結晶粒が粗大
化し強度が低下し脆くなるという問題がある。したがっ
て、通常は熱間圧延、熱間鍛造といった塑性加工により
高密度化を計っているのが現状であるが、このような方
法では棒材,板材等の単純な形状しか製造することがで
きないという欠点もある。
However, the relative density of the sintered body obtained by such a method is only about 90% at most, and a large number of pores remain inside. It is known that properties such as strength and corrosion resistance of these metal sintered bodies are largely dependent on the density, and the pores inside the sintered body significantly reduce the strength,
In many cases, the corrosive solution or gas penetrates into the internal pores, which significantly impairs the corrosion resistance. Therefore, it is essential to obtain a dense sintered body in order to bring out the original characteristics of the sintered body. In general, a dense sintered body can be obtained by sintering at a higher temperature, but if the sintering temperature is too high, there is a problem that the crystal grains become coarse and the strength decreases and becomes brittle. Therefore, it is the current situation that the densification is usually done by plastic working such as hot rolling and hot forging, but such a method can produce only a simple shape such as a bar or plate. There are also drawbacks.

【0005】さらに、鉄(Fe)、ニッケル(Ni)、
銅(Cu)といった汎用性の金属材料においても、粉末
焼結により実製品に近い形状(near-net shape)で製品
を製造する技術が進歩しているが、上記W,Mo,Re
などの高融点金属の場合と同じように、焼結のみでは緻
密で強度の高い焼結体を得ることができず、構造材料と
して使用するには至ってはいない。
Further, iron (Fe), nickel (Ni),
Even for general-purpose metal materials such as copper (Cu), the technology of manufacturing products with a near-net shape close to the actual product by powder sintering has advanced, but the above W, Mo, Re
As in the case of refractory metals such as the above, it is not possible to obtain a dense and high-strength sintered body only by sintering, and it has not been used as a structural material.

【0006】近年、このような焼結部材の緻密化方法と
して、焼結後に高温・高圧のHIP処理(Hot Isostati
c Pressing)を施すことが有効であると報告されてい
る。しかし、HIP処理により焼結体を緻密化するため
には焼結体を金属またはガラス製の容器に真空封入する
“キャニング”という作業が必要であり製造コストの著
しい上昇を招く。さらに、大形・重量部材の製造につい
ては装置の容量的な制約があり、必ずしも全ての焼結部
材に適用することは困難である。
In recent years, as a method for densifying such a sintered member, high temperature and high pressure HIP treatment (Hot Isostati) after sintering is performed.
c Pressing) is reported to be effective. However, in order to densify the sintered body by the HIP process, a work called "canning", in which the sintered body is vacuum-sealed in a container made of metal or glass, is required, which causes a significant increase in manufacturing cost. Further, the production of large-sized and heavy-weight members is limited in capacity of the apparatus, and it is difficult to apply it to all sintered members.

【0007】[0007]

【発明が解決しようとする課題】以上のように焼結金属
部材の強度、耐食性等を向上させるためには焼結時にで
きるだけ真密度近くまで緻密化させることが必要である
が、単に焼結温度を上げても90%程度の相対密度が限界
であった。
As described above, in order to improve the strength, corrosion resistance, etc. of the sintered metal member, it is necessary to densify the sintered metal member as close to the true density as possible during sintering. Even if it was raised, the relative density of about 90% was the limit.

【0008】発明者らはこの焼結時に真密度近くまで緻
密化しない原因は金属粉末表面の酸化皮膜によるもので
あることが分かった。すなわち、焼結時の金属粉末の緻
密化は粉末表面での金属原子の拡散によるものであり、
金属粉末表面に安定な酸化皮膜が存在している部分では
この表面拡散が阻害され、焼結が進行していくためであ
る。一般に、このような金属粉末表面の酸化皮膜の除去
方法としては焼結前の金属粉末の還元処理や真空または
水素雰囲気のような還元性雰囲気で金属粉末を焼結する
方法が用いられている。しかし、この方法では焼結体表
面付近の酸化皮膜は還元できるが、焼結体内部の酸化皮
膜を完全に還元することはできず、焼結体内部には多量
の酸化物が残留していることが確認されている。したが
って、焼結体内部の酸化物を完全に還元、除去すること
ができれば、従来よりも低い焼結温度で緻密な焼結部材
が得られる。さらに、焼結温度の低温化により焼結過程
における金属結晶粒の粗大化も抑制されるので微細な組
織が得られ、耐食性の向上と共に著しい向上が期待でき
る。
The inventors have found that the cause of not densifying to near the true density during sintering is due to the oxide film on the surface of the metal powder. That is, the densification of the metal powder during sintering is due to the diffusion of metal atoms on the powder surface,
This is because the surface diffusion is hindered at the portion where the stable oxide film is present on the surface of the metal powder, and the sintering proceeds. Generally, as a method of removing the oxide film on the surface of the metal powder, a reduction treatment of the metal powder before sintering or a method of sintering the metal powder in a reducing atmosphere such as vacuum or hydrogen atmosphere is used. However, with this method, the oxide film near the surface of the sintered body can be reduced, but the oxide film inside the sintered body cannot be completely reduced, and a large amount of oxide remains inside the sintered body. It has been confirmed. Therefore, if the oxides inside the sintered body can be completely reduced and removed, a dense sintered member can be obtained at a lower sintering temperature than before. Furthermore, since the coarsening of the metal crystal grains is suppressed by the lowering of the sintering temperature during the sintering process, a fine structure can be obtained, and it is expected that the corrosion resistance is improved as well as the remarkable improvement.

【0009】本発明の目的は、緻密かつ高強度、高耐食
性の焼結金属部材を塑性加工やHIP処理といった後処
理を施さず、低コストで得られる金属材料の製造方法を
提供することにある。
An object of the present invention is to provide a method for producing a metal material which can be obtained at a low cost without subjecting a dense, high-strength, highly corrosion-resistant sintered metal member to post-processing such as plastic working or HIP processing. .

【0010】[0010]

【課題を解決するための手段】本発明は、金属粉末中に
これら金属粉末よりも酸化物生成標準自由エネルギ―が
低い酸化物微粒子をその化学量論組成よりも酸素濃度が
低い状態で均一に分散させた後、焼結させることにより
真密度に近い緻密で、高強度の焼結体を得ることを特徴
としている。
Means for Solving the Problems The present invention is to uniformly disperse oxide fine particles having a standard free energy of oxide formation lower than those of metal powders in a state where the oxygen concentration is lower than the stoichiometric composition. It is characterized by obtaining a dense and high-strength sintered body close to the true density by dispersing and then sintering.

【0011】[0011]

【作用】したがって、焼結過程で焼結体内部の酸化物を
完全に還元、除去するので、従来よりも低い焼結温度で
緻密な焼結部材が得られる。また、焼結温度の低温化に
より焼結過程における金属結晶粒の粗大化も抑制される
ので微細な組織が得られる。
Therefore, since the oxide inside the sintered body is completely reduced and removed during the sintering process, a dense sintered member can be obtained at a lower sintering temperature than the conventional one. In addition, since the coarsening of the metal crystal grains during the sintering process is suppressed by lowering the sintering temperature, a fine structure can be obtained.

【0012】[0012]

【実施例】以下、本発明の一実施例を説明する。まず、
真密度に近い緻密で、高強度の焼結体を得るためには、
焼結体中に残留する酸化物を除去する必要がある。すな
わち、焼結過程において金属粉末表面に形成されている
酸化皮膜を完全に除去する必要がある。一方、金属及び
その酸化物の間には温度の関数として標準生成自由エネ
ルギ―が存在する。図1は代表的な金属酸化物標準生成
自由エネルギ―曲線を示している。同図において直線の
上部領域では金属が安定で、下部領域では酸化物が安定
であることを示している。したがって、酸化物標準生成
自由エネルギ―の高い金属Aと酸化物標準生成自由エネ
ルギ―の低い金属Bが存在している場合には金属Bの酸
化物の方が熱力学的に安定であり、金属Aの酸化物と金
属Bが共存している状態で加熱した場合には、金属Aの
酸化物が金属Bにより還元され、金属Aと金属Bの酸化
物に置き代わることが予想される。しかし、金属Bを金
属の状態で混入した場合には完全に酸化されず、不純物
としてマトリクス金属中に固溶または在留し焼結体の特
性を低下させる可能性があるため、金属Aの粉末中に直
接金属Bの粉末を添加することは必ずしも好ましくな
い。
EXAMPLE An example of the present invention will be described below. First,
To obtain a dense and high-strength sintered body close to the true density,
It is necessary to remove the oxide remaining in the sintered body. That is, it is necessary to completely remove the oxide film formed on the surface of the metal powder during the sintering process. On the other hand, there is a standard free energy of formation between the metal and its oxide as a function of temperature. Figure 1 shows a typical metal oxide standard free energy of formation curve. The figure shows that the metal is stable in the upper region of the straight line and the oxide is stable in the lower region. Therefore, when a metal A having a high standard free energy of oxide standard formation and a metal B having a low standard free energy of oxide standard existence are present, the oxide of the metal B is more thermodynamically stable. When heated in the state where the oxide of A and the metal B coexist, it is expected that the oxide of the metal A is reduced by the metal B and replaces the oxide of the metal A and the metal B. However, when the metal B is mixed in the metal state, it is not completely oxidized and may be dissolved or remain in the matrix metal as an impurity to deteriorate the characteristics of the sintered body. It is not always preferable to directly add the powder of the metal B to.

【0013】一方、金属酸化物を還元性雰囲気中で加熱
した場合には酸化物中の酸素が一部還元され、例えばア
ルミ酸化物の場合にはAl2 3 からAl2 3-x とい
うように化学量論組成から酸素原子が欠乏した状態にな
る。このような酸素原子が欠乏した状態の金属酸化物は
熱力学的に不安定であり、大気中で加熱することにより
大気中の酸素と容易に結合し、化学量論組成に戻ること
が確認されている。また、金属酸化物は金属粉末と異な
り、たとえ化学量論組成からずれていても概して金属粉
末とは反応せず安定であり、マトリクス金属中に分散さ
せることにより逆に結晶粒の粗大化を抑制し、機械的特
性を向上させることが期待できる。
On the other hand, when the metal oxide is heated in a reducing atmosphere, oxygen in the oxide is partially reduced. For example, in the case of aluminum oxide, Al 2 O 3 to Al 2 O 3-x is called. As described above, the oxygen atom is deficient due to the stoichiometric composition. It has been confirmed that such a metal oxide in a state in which oxygen atoms are deficient is thermodynamically unstable, and when heated in the atmosphere, it easily binds to oxygen in the atmosphere and returns to the stoichiometric composition. ing. Also, unlike metal powders, metal oxides are generally stable and do not react with metal powders even if they deviate from the stoichiometric composition, and when dispersed in a matrix metal, conversely suppress coarsening of crystal grains. However, it can be expected to improve the mechanical properties.

【0014】この現象を利用して、図2に示すように表
面が酸化皮膜1で覆われた金属粉末2の中に金属粉末2
よりも酸化物標準生成自由エネルギ―の低い金属酸化物
粒子3を化学量論組成から酸素原子が欠乏した状態で微
細に分散させた後焼結させることにより、金属酸化物粒
子3が化学量論組成に戻る過程で周囲の金属粉末表面の
酸化皮膜を還元し、金属粉末の焼結を促進することがで
きる。その結果、図3に示すように、金属粉末は容易に
拡散、焼結し緻密化すると共に、その結晶粒界には微細
な金属酸化物粒子3が存在した組織を有する焼結体が得
られる。また、効率よく酸化皮膜を還元し、かつ、機械
的特性を向上させるという観点から、金属酸化物粒子3
は出来るだけ酸化物標準生成自由エネルギ―が低く、か
つ、その形状及び分布は微細かつ均一であることが必要
である。
Utilizing this phenomenon, as shown in FIG. 2, the metal powder 2 is contained in the metal powder 2 whose surface is covered with the oxide film 1.
The metal oxide particles 3 having a lower standard free energy of formation of oxide than the stoichiometric composition are finely dispersed in a state where oxygen atoms are deficient, and then sintered, so that the metal oxide particles 3 have a stoichiometric composition. In the process of returning to the composition, the oxide film on the surface of the surrounding metal powder can be reduced and the sintering of the metal powder can be promoted. As a result, as shown in FIG. 3, the metal powder is easily diffused, sintered and densified, and a sintered body having a structure in which fine metal oxide particles 3 are present in the crystal grain boundaries is obtained. . Further, from the viewpoint of efficiently reducing the oxide film and improving the mechanical properties, the metal oxide particles 3
It is necessary that the standard free energy of oxide standard formation is as low as possible, and that the shape and distribution thereof are fine and uniform.

【0015】図4に示すように真空中で加熱することに
より化学量論組成から酸素原子が欠乏した状態の酸化イ
ットリウム粉末3とタングステン粉末1をセラミック製
ボ―ル4と共に容器5の中に入れ、容器5を回転させる
(a)。その結果、容器5内のセラミック製ボ―ル4の
自由落下運動により脆い酸化イットリウム粉末3はセラ
ック製ボ―ル4の衝突による衝撃により粉砕されると共
に金属タングステン粉末1中に分散される。その際、上
述のように酸化イットリウム粉末3は出来るだけ細かい
方がよく、直径 0.1μm以下まで粉砕させることが好ま
しい。その後、酸化イットリウム3と金属タングステン
粉末1の混合粉末をゴム製容器内に充填し、約2000気圧
の圧力で加圧成形し(b)、この加圧成形体7を真空炉
8中で焼結する(c)。このようにして、ほぼ真密度に
近い緻密な焼結体9を得る(d)。
As shown in FIG. 4, by heating in a vacuum, yttrium oxide powder 3 and tungsten powder 1 in which oxygen atoms are deficient in stoichiometric composition are put in a container 5 together with a ceramic ball 4. Then, the container 5 is rotated (a). As a result, the brittle yttrium oxide powder 3 due to the free falling motion of the ceramic ball 4 in the container 5 is crushed by the impact of the collision of the shellac ball 4 and is dispersed in the metal tungsten powder 1. At this time, as described above, the yttrium oxide powder 3 is preferably as fine as possible and is preferably pulverized to a diameter of 0.1 μm or less. After that, a mixed powder of yttrium oxide 3 and metallic tungsten powder 1 is filled in a rubber container and pressure-molded at a pressure of about 2000 atm (b), and the pressure-molded body 7 is sintered in a vacuum furnace 8. (C). In this way, a dense sintered body 9 having a substantially true density is obtained (d).

【0016】なお、タングステンのように焼結温度が高
い金属粉末の場合には、化学量論組成の酸化イットリウ
ム粉末とタングステン粉末を粉砕・混合後加圧成形し、
タングステン粉末があまり焼結しないような低温で加熱
することにより酸化イットリウム粉末の還元処理を施し
た後、再度、タングステン粉末が焼結するような高温で
焼結する製造工程でも同じような効果が得られる。
In the case of a metal powder having a high sintering temperature such as tungsten, yttrium oxide powder having a stoichiometric composition and tungsten powder are crushed and mixed, and then pressure-molded,
The same effect can be obtained in the manufacturing process in which the yttrium oxide powder is reduced by heating at a low temperature so that the tungsten powder does not sinter too much and then sintered again at a high temperature such that the tungsten powder is sintered again. To be

【0017】このような方法で製作した微細な酸化イッ
トリウムを分散させたタングステンはその焼結過程にお
いて金属タングステン粉末中に微細に分散された、化学
量論組成から酸素原子が欠乏した状態の酸化イットリウ
ム粉末の還元作用により、金属タングテン粉末表面のタ
ングステン酸化物が還元される。その結果、酸化イット
リウム粉末を添加しない場合に比べてタングステン粉末
の焼結性が著しく向上し、常圧焼結のみでほぼ真密度の
タングステン焼結体を得ることができる。また、従来方
法に比べて焼結温度の低温化が可能であり、結晶粒界に
配した酸化イットリウム粉末のピン止め効果と重畳さ
れ、微細結晶粒の焼結体が得られる。
The fine yttrium oxide-dispersed tungsten produced by the above method is finely dispersed in the metallic tungsten powder during the sintering process. The yttrium oxide is in a state in which oxygen atoms are deficient due to the stoichiometric composition. Due to the reducing action of the powder, the tungsten oxide on the surface of the metal tangten powder is reduced. As a result, the sinterability of the tungsten powder is remarkably improved as compared with the case where the yttrium oxide powder is not added, and a tungsten sintered body of substantially true density can be obtained only by pressureless sintering. Further, the sintering temperature can be lowered as compared with the conventional method, and it is superposed with the pinning effect of the yttrium oxide powder arranged at the crystal grain boundaries to obtain a sintered body of fine crystal grains.

【0018】このような方法によりタングステン粉末中
に酸化イットリウム粉末を5Vol.%添加した場合(実
施例I)と、10Vol.%添加した場合(実施例II)との
焼結後の相対密度を焼結温度に対してプロットした結果
を図5に示す。また、同図には比較材として酸化イット
リウム粉末を添加しなかった場合(従来方法)も併せて
示す。
By such a method, yttrium oxide powder was added in an amount of 5 Vol. % (Example I) and 10 Vol. FIG. 5 shows the result of plotting the relative density after sintering with respect to the case of adding (%) (Example II) with respect to the sintering temperature. The figure also shows a case where yttrium oxide powder was not added (conventional method) as a comparative material.

【0019】図5からいずれの場合も焼結温度が高くな
るにつれ焼結体の相対密度は上昇する傾向にあるが、酸
化イットリウム粉末を添加しない従来方法では2200℃と
いう高温で焼結してもせいぜい93%の相対密度しか得ら
れなかったが、本発明によれば従来方法よりも 400℃も
低い焼結温度で相対密度が99%を超える焼結体が得られ
る。また、実施例Iと実施例IIの比較では、酸化イット
リウム粉末の添加量が多い実施例IIの方が同じ焼結温度
でも高い相対密度が得られている。焼結後の相対密度に
及ぼす酸化イットリウム粉末の添加量についてはタング
ステン粉末の粒径や酸化の程度また材料の組合せにより
変化するが、このような化学量論組成からずれたセラミ
ック粉末の焼結性向上効果は 0.5体積%の添加でも確認
されている。また、逆に酸化イットリウム粉末の大量添
加は確かに金属粉末の焼結性を向上させるが、強度が低
下するので30体積%以下に抑えることが好ましい。
In both cases, as shown in FIG. 5, the relative density of the sintered body tends to increase as the sintering temperature rises. However, in the conventional method in which no yttrium oxide powder is added, sintering is performed at a high temperature of 2200 ° C. Although only a relative density of 93% was obtained at most, according to the present invention, a sintered body having a relative density of more than 99% can be obtained at a sintering temperature lower than that of the conventional method by 400 ° C. Further, in the comparison between Example I and Example II, Example II in which the amount of yttrium oxide powder added was large exhibited a higher relative density even at the same sintering temperature. The amount of yttrium oxide powder added, which affects the relative density after sintering, varies depending on the particle size of tungsten powder, the degree of oxidation, and the combination of materials. The improvement effect was confirmed even with the addition of 0.5% by volume. On the contrary, adding a large amount of yttrium oxide powder surely improves the sinterability of the metal powder, but since the strength decreases, it is preferable to suppress it to 30% by volume or less.

【0020】図6には5体積%の酸化イットリウム粉末
を添加したタングステン焼結体(実施例I)と酸化イッ
トリウム粉末を添加しないタングステン焼結体(実施例
II)の室温における4点曲げ強さを示す。同図より、本
発明により酸化イットリウム粉末を添加したタングステ
ン焼結体の4点曲げ強さは50〜60kgf/mm2 と酸化イット
リウム粉末を添加しない従来方法により製作したタング
ステン焼結体の2〜3倍の値を示しており、これは主と
して緻密化と焼結温度の低温化及び酸化イットリウム粒
子のピン止め効果による結晶粒の微細化によるものであ
る。
FIG. 6 shows a tungsten sintered body added with 5% by volume of yttrium oxide powder (Example I) and a tungsten sintered body not added with yttrium oxide powder (Example).
The 4-point bending strength of room temperature of II) is shown. From the figure, the four-point bending strength of the tungsten sintered body to which the yttrium oxide powder was added according to the present invention is 50 to 60 kgf / mm 2. And a value of 2 to 3 times that of a tungsten sintered body produced by a conventional method without adding yttrium oxide powder, which is mainly due to densification and lowering of sintering temperature and crystallized by pinning effect of yttrium oxide particles. This is due to the miniaturization of grains.

【0021】[0021]

【発明の効果】以上のように本発明によれば、緻密かつ
高強度、高耐食性の高融点金属部材を塑性加工やHIP
処理といった後処理を施さず、near-net shapeの状態
で、かつ、低コストで得られる製造方法を提供すること
ができる。
As described above, according to the present invention, a dense, high-strength, high-corrosion-resistant refractory metal member is subjected to plastic working or HIP.
It is possible to provide a manufacturing method that can be obtained in a near-net shape state and at low cost without performing post-treatment such as treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】代表的な金属の酸化物標準自由エネルギ―を示
す特性図
FIG. 1 is a characteristic diagram showing standard free energies of oxides of typical metals.

【図2】酸化皮膜で覆われた金属粉末に金属酸化物粒子
を分散させた状態を示す説明図
FIG. 2 is an explanatory view showing a state in which metal oxide particles are dispersed in a metal powder covered with an oxide film.

【図3】図2のものを焼結させた状態を示す説明図FIG. 3 is an explanatory view showing a state where the thing of FIG. 2 is sintered.

【図4】本発明の一実施例を示す工程図FIG. 4 is a process chart showing an embodiment of the present invention.

【図5】本発明の相対密度特性を示す特性図FIG. 5 is a characteristic diagram showing relative density characteristics of the present invention.

【図6】本発明の4点曲げ特性を示す特性図FIG. 6 is a characteristic diagram showing the 4-point bending characteristic of the present invention.

【図7】従来例を示す工程図FIG. 7 is a process diagram showing a conventional example

【符号の説明】[Explanation of symbols]

1…金属粉末 2…酸化皮膜 3…金属酸化物粒子 1 ... Metal powder 2 ... Oxide film 3 ... Metal oxide particles

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粉末焼結により金属部材を製造する方法
において、マトリクスとなるマトリクス金属粉末と前記
マトリクス金属粉末よりも酸化物生成自由エネルギ―が
小さい金属酸化物粉末を化学量論組成よりも酸素量が低
い状態で混合後、焼結することを特徴とする金属材料の
製造方法。
1. A method for producing a metal member by powder sintering, wherein a matrix metal powder serving as a matrix and a metal oxide powder having a smaller free energy for forming an oxide than the matrix metal powder are more oxygen than a stoichiometric composition. A method for producing a metal material, which comprises mixing in a low amount and then sintering.
【請求項2】 前記マトリクス金属粉末と前記金属酸化
物粉末を混合後、前記金属酸化物粉末が化学量論組成よ
りも酸素量が低くなるような温度で加熱後、再度、前記
金属酸化物粉末が焼結する温度で加熱することを特徴と
する請求項1記載の金属材料の製造方法。
2. The mixture of the matrix metal powder and the metal oxide powder is heated at a temperature such that the metal oxide powder has a lower oxygen content than the stoichiometric composition, and then the metal oxide powder is added again. The method for producing a metal material according to claim 1, wherein the heating is performed at a temperature at which the metal is sintered.
【請求項3】 前記マトリクス金属粉末として粒径が10
μm以下のW、Mo、Ta、Nb、Cr、Co、Re、
Fe、Ni、Cu及びこれらを主成分とする合金である
ことを特徴とする請求項1又は請求項2記載の金属材料
の製造方法。
3. The particle size of the matrix metal powder is 10
W, Mo, Ta, Nb, Cr, Co, Re of less than μm
The method for producing a metal material according to claim 1 or 2, which is Fe, Ni, Cu or an alloy containing these as main components.
【請求項4】 前記金属酸化物粉末として粒径が2μm
以下のY、Sc、Nd、Gd、Th、Dy、Er、C
e、Lu、Ho、Al、Tm、Zr、Hf、Ca、Mg
を主成分とする酸化物であることを特徴とする請求項1
又は請求項2記載の金属材料の製造方法。
4. The particle size of the metal oxide powder is 2 μm.
The following Y, Sc, Nd, Gd, Th, Dy, Er, C
e, Lu, Ho, Al, Tm, Zr, Hf, Ca, Mg
An oxide containing as a main component.
Alternatively, the method for manufacturing the metal material according to claim 2.
【請求項5】 前記金属酸化物粉末の添加量が 0.5〜30
体積%であることを特徴とする請求項1又は請求項2記
載の金属材料の製造方法。
5. The amount of the metal oxide powder added is 0.5 to 30.
It is volume%, The manufacturing method of the metal material of Claim 1 or Claim 2 characterized by the above-mentioned.
JP27907392A 1992-10-19 1992-10-19 Production of metallic material Pending JPH06128604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27907392A JPH06128604A (en) 1992-10-19 1992-10-19 Production of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27907392A JPH06128604A (en) 1992-10-19 1992-10-19 Production of metallic material

Publications (1)

Publication Number Publication Date
JPH06128604A true JPH06128604A (en) 1994-05-10

Family

ID=17606041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27907392A Pending JPH06128604A (en) 1992-10-19 1992-10-19 Production of metallic material

Country Status (1)

Country Link
JP (1) JPH06128604A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085486A1 (en) * 2004-03-05 2005-09-15 Mitsubishi Materials C.M.I. Corporation Tungsten based sintered material having high strength and high hardness and mold for hot press molding of optical glass lens
US7713466B2 (en) 2003-04-28 2010-05-11 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
JP2011027382A (en) * 2009-07-29 2011-02-10 Denso Corp Heat storage structure and method of manufacturing the same
DE102010022888A1 (en) * 2010-06-07 2011-12-08 Kennametal Inc. Alloy for a penetrator and method of making a penetrator of such an alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713466B2 (en) 2003-04-28 2010-05-11 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
WO2005085486A1 (en) * 2004-03-05 2005-09-15 Mitsubishi Materials C.M.I. Corporation Tungsten based sintered material having high strength and high hardness and mold for hot press molding of optical glass lens
US7615094B2 (en) 2004-03-05 2009-11-10 Mitsubishi Materials C.M.I. Corporation Tungsten-based sintered material having high strength and high hardness, and hot press mold used for optical glass lenses
JP2011027382A (en) * 2009-07-29 2011-02-10 Denso Corp Heat storage structure and method of manufacturing the same
DE102010022888A1 (en) * 2010-06-07 2011-12-08 Kennametal Inc. Alloy for a penetrator and method of making a penetrator of such an alloy
DE102010022888B4 (en) * 2010-06-07 2012-05-03 Kennametal Inc. Alloy for a penetrator and method of making a penetrator of such an alloy

Similar Documents

Publication Publication Date Title
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
US20140077426A1 (en) Method of manufacturing powder injection-molded body
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
JPH06128604A (en) Production of metallic material
JPH07233434A (en) Corrosion resistant material and its production
JP2531701B2 (en) Manufacturing method of dispersion strengthened copper alloy
JPS6033335A (en) Heat resistant molybdenum material
JPH0499146A (en) Powder sintered material and its manufacture
US3361599A (en) Method of producing high temperature alloys
CN114892064A (en) FeCrCuVCo high-entropy alloy and preparation method thereof
JP3121400B2 (en) Manufacturing method of tungsten sintered body
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
US3723076A (en) Sintered tungsten-boron alloy
JPH0762467A (en) Dispersion-strengthening type copper alloy and its production
JPH0790432A (en) Ultralow-chlorine alpha+beta type sintered titanium alloy made of isometric structure
US3753703A (en) Sintered molybdenum boron alloy
WO2003062482A2 (en) Stabilized grain size refractory metal powder metallurgy mill products
JP2894661B2 (en) Tantalum material and method for producing the same
JP3300420B2 (en) Alloy for sintered sealing material
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
EP4386101A1 (en) Lightweight steel and preparation method therefor, steel structural member and electronic device
JP2716886B2 (en) Method for producing Ti-Al intermetallic compound
JPH08134563A (en) Sintered member and its production
JP3582061B2 (en) Sintered material and manufacturing method thereof
JP3499142B2 (en) Manufacturing method of iron-based structural materials