JPH0762467A - Dispersion-strengthening type copper alloy and its production - Google Patents

Dispersion-strengthening type copper alloy and its production

Info

Publication number
JPH0762467A
JPH0762467A JP5210030A JP21003093A JPH0762467A JP H0762467 A JPH0762467 A JP H0762467A JP 5210030 A JP5210030 A JP 5210030A JP 21003093 A JP21003093 A JP 21003093A JP H0762467 A JPH0762467 A JP H0762467A
Authority
JP
Japan
Prior art keywords
powder
dispersion
copper alloy
copper
strengthened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5210030A
Other languages
Japanese (ja)
Inventor
Keizo Shimamura
慶三 島村
Tatsuhiko Matsumoto
辰彦 松本
Kagetaka Amano
景隆 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5210030A priority Critical patent/JPH0762467A/en
Publication of JPH0762467A publication Critical patent/JPH0762467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To produce dispersion-strengthening type copper alloy which does not so much lower degree of the vacuum even if used at high vacuum and good in electrical conductivity and mechanical strength. CONSTITUTION:Copper oxide powder, aluminum oxide powder and carbon powder or boron powder are mixed, and after reducing selectively the copper oxide powder in a reductive atmosphere of <=400 deg.C, the powder is formed and a sintered, and the alloy in which the dispersed particles consisting of 1.5-6vol.% aluminum oxide are dispersed uniformly in a copper mother phase, and an oxygen content is solid solution is <=5ppm and at least one kind between carbon and boron is dispersed in >=10ppm and less than 100ppm is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高真空でも好適に使用
できる分散強化型銅合金及び分散強化型銅合金の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersion-strengthened copper alloy which can be preferably used even in a high vacuum and a method for producing a dispersion-strengthened copper alloy.

【0002】[0002]

【従来の技術】近年、銅母相中に金属酸化物等の分散粒
子を均一に分散せしめてなる分散強化型銅合金は、磁場
発生用コイル、半導体用リードフレーム、溶接用電極等
に幅広く用いられている。またこのような分散強化型銅
合金の製造方法としては、銅合金粉末中の添加金属元素
を選択的に酸化して金属酸化物からなる分散粒子を形成
した後焼結する内部酸化法や、酸化銅と分散粒子となる
金属酸化物とを混合後酸化銅を選択的に還元して焼結す
る選択還元法が以前より知られている。特にこれらのう
ち、例えば特開平2−213433号に開示された選択
還元法で得られる分散強化型銅合金では、分散粒子とな
る金属酸化物から銅母相中への金属元素等の混入がほと
んどなく、また金属酸化物の分散性も良好で、電気伝導
度や機械的強度についてはすでに充分な特性が得られて
いる。
2. Description of the Related Art In recent years, dispersion-strengthened copper alloys in which dispersed particles such as metal oxides are uniformly dispersed in a copper matrix are widely used in magnetic field generating coils, semiconductor lead frames, welding electrodes, etc. Has been. Further, as a method for producing such a dispersion-strengthened copper alloy, an internal oxidation method in which the additive metal element in the copper alloy powder is selectively oxidized to form dispersed particles of a metal oxide and then sintered, and an oxidation method A selective reduction method in which copper and a metal oxide to be dispersed particles are mixed and then copper oxide is selectively reduced and sintered has been known. In particular, among these, for example, in the dispersion-strengthened copper alloy obtained by the selective reduction method disclosed in JP-A-2-213433, mixing of a metal element or the like into the copper matrix from the metal oxide to be dispersed particles is almost impossible. In addition, the dispersibility of the metal oxide is good, and sufficient properties have already been obtained in terms of electrical conductivity and mechanical strength.

【0003】このような分散強化型銅合金に対し、最近
では高真空で使用されるジャイロトロン発振管用部材、
核融合装置用高熱流束部材、高エネルギー加速器用構造
部材等への応用も期待されている。しかしながら従来の
分散強化型銅合金は、高真空下加熱や高エネルギー粒子
の照射等によりガスを放出し、系の真空度を低下せしめ
て機器の作動に悪影響を及ぼすことがあった。
In contrast to such dispersion-strengthened copper alloys, recently, members for gyrotron oscillator tubes used in high vacuum,
It is also expected to be applied to high heat flux members for fusion devices and structural members for high energy accelerators. However, the conventional dispersion-strengthened copper alloy may release gas due to heating under high vacuum, irradiation with high-energy particles, and the like, thereby lowering the vacuum degree of the system and adversely affecting the operation of the equipment.

【0004】[0004]

【発明が解決しようとする課題】上述したように従来の
分散強化型銅合金においては、加熱や高エネルギー粒子
の照射等でガスを放出することがあるため、高真空での
使用には適さないという問題があった。
As described above, the conventional dispersion-strengthened copper alloy may release gas due to heating, irradiation of high-energy particles, etc., and is not suitable for use in high vacuum. There was a problem.

【0005】本発明はこのような問題に鑑み、高真空で
使用しても真空度をさほど低下させることがなく、しか
も電気伝導度や機械的強度も良好な分散強化型銅合金及
び分散強化型銅合金の製造方法を提供することを目的と
している。
In view of the above problems, the present invention does not significantly lower the degree of vacuum even when used in a high vacuum, and has good electrical conductivity and mechanical strength. It is an object of the present invention to provide a method for producing a copper alloy.

【0006】[0006]

【課題を解決するための手段及び作用】本発明は、銅母
相中に0.5〜6体積%の分散粒子が均一に分散されて
なる分散強化型銅合金において、前記銅母相中の酸素固
溶量が5ppm以下であって、かつ炭素及び硼素の少な
くとも1種が10ppm以上100ppm未満分散され
た分散強化型銅合金である。すなわち本発明の分散強化
型銅合金は、銅母相中の酸素固溶量を極めて微量とした
ことを特徴とするものである。
DISCLOSURE OF THE INVENTION The present invention provides a dispersion-strengthened copper alloy in which 0.5 to 6% by volume of dispersed particles are uniformly dispersed in a copper mother phase. A dispersion-strengthened copper alloy having an oxygen solid solution amount of 5 ppm or less and at least one of carbon and boron dispersed in an amount of 10 ppm or more and less than 100 ppm. That is, the dispersion-strengthened copper alloy of the present invention is characterized in that the amount of oxygen solid solution in the copper matrix is extremely small.

【0007】上述したように分散強化型銅合金では、以
前より電気伝導度や機械的強度の向上を目的として、金
属元素等の銅母相中への固溶を抑えつつ分散粒子の分散
性を高めることが試みられており、このような観点から
分散強化型銅合金粉末を内部酸化法や選択還元法により
生成する際の酸化あるいは還元の最適条件も報告されて
いる。しかしながら本発明者らが研究を進めた結果、銅
母相中の固溶元素の全体量が少なく、分散粒子の分散性
も良好な分散強化型銅合金粉末をいかに生成しても、こ
れを焼結するまでの間に大気中の酸素による汚染を受け
ると、焼結後の分散強化型銅合金においては銅母相中に
酸素がある程度固溶してしまうという知見を得た。この
ような知見に基づき本発明者らは、従来の分散強化型銅
合金から高真空下で放出されるガスが、主として分散強
化型銅合金粉末を生成した後に銅母相中に固溶した酸素
であることを見出し、具体的に銅母相中の酸素固溶量を
5ppm以下としたとき高真空下でのガスの放出が抑制
されることを確認して本発明を完成するに至った。
As described above, in the dispersion-strengthened copper alloy, the dispersibility of dispersed particles is suppressed while suppressing the solid solution of metal elements and the like in the copper matrix for the purpose of improving electrical conductivity and mechanical strength. Attempts have been made to raise it, and from such a viewpoint, optimum conditions of oxidation or reduction when dispersion-strengthened copper alloy powder is produced by an internal oxidation method or a selective reduction method have also been reported. However, as a result of the present inventors' research, even if the total amount of solid solution elements in the copper matrix phase is small and the dispersibility of the dispersed particles is good, no matter how the dispersion-strengthened copper alloy powder is produced, it is burned. It was found that oxygen is dissolved in the copper matrix phase to some extent in the dispersion-strengthened copper alloy after sintering if it is contaminated with oxygen in the atmosphere before the formation. Based on such knowledge, the present inventors have found that the gas released from a conventional dispersion-strengthened copper alloy under high vacuum is oxygen dissolved in the copper matrix after producing mainly the dispersion-strengthened copper alloy powder. Therefore, the present invention has been completed by confirming that the release of gas under high vacuum is specifically suppressed when the oxygen solid solution amount in the copper matrix is set to 5 ppm or less.

【0008】なお本発明では、銅母相中の酸素以外の元
素の固溶量も少ない方が好ましい。具体的には、銅母相
において純銅からの電気伝導度の低下量が5%IACS
以内(電気抵抗率の絶対値が1.77μΩcm以上)と
なるように、固溶元素の全体量を制御することが望まれ
る。
In the present invention, it is preferable that the solid solution amount of elements other than oxygen in the copper matrix is small. Specifically, in the copper matrix, the amount of decrease in electrical conductivity from pure copper is 5% IACS.
It is desirable to control the total amount of solid solution elements so that the total value is within (absolute value of electric resistivity is 1.77 μΩcm or more).

【0009】さらに本発明の分散強化型銅合金において
は、強い脱酸能を有する炭素及び硼素の少なくとも1種
を分散させることにより、銅母相中に固溶する極めて微
量の酸素の高真空下での放出が抑えられる。ここで炭素
及び硼素の少なくとも1種の分散量を10ppm以上1
00ppm未満としたのは、その分散量が10ppm未
満だと高真空下でのガスの放出量が増加し、分散量が1
00ppm以上だと得られる分散強化型銅合金の機械的
強度や加工性が低下するからである。なおこのとき、炭
素及び硼素は1種のみが含有されても2種がともに含有
されてもよく、炭素及び硼素の2種が含有される場合は
炭化硼素として分散強化型銅合金中に分散されていても
構わない。
Further, in the dispersion-strengthened copper alloy of the present invention, by dispersing at least one of carbon and boron having a strong deoxidizing ability, an extremely small amount of oxygen which forms a solid solution in the copper matrix can be dissolved under high vacuum. Emission is suppressed. Here, the dispersion amount of at least one of carbon and boron is 10 ppm or more 1
The amount of less than 00 ppm is because when the amount of dispersion is less than 10 ppm, the amount of gas released under high vacuum increases and the amount of dispersion is 1 ppm.
This is because the mechanical strength and workability of the dispersion-strengthened copper alloy obtained when the content is 00 ppm or more decreases. At this time, carbon and boron may be contained alone or in combination with each other. When two kinds of carbon and boron are contained, they are dispersed in the dispersion strengthened copper alloy as boron carbide. It doesn't matter.

【0010】本発明において前記分散粒子としては、酸
化アルミニウム、酸化ジルコニウム、酸化チタン、酸化
珪素、酸化マグネシウム、酸化イットリウム、酸化クロ
ム、窒化アルミニウム、窒化珪素、窒化チタン、窒化硼
素、炭化チタン、炭化硼素、硼化チタン等還元性雰囲気
中で酸化銅より化学的に安定な化合物が例示される。特
に好ましくは酸化アルミニウムであり、このとき上述し
たような理由から、銅母相中のアルミニウムの固溶量は
0.04重量%以下であることが好ましい。本発明で分
散粒子の分散量を0.5〜6体積%としたのは、0.5
体積%未満だと充分な機械的強度が得られず、6体積%
を越えると電気伝導度が低下するうえ二次加工も困難と
なるからである。
In the present invention, the dispersed particles include aluminum oxide, zirconium oxide, titanium oxide, silicon oxide, magnesium oxide, yttrium oxide, chromium oxide, aluminum nitride, silicon nitride, titanium nitride, boron nitride, titanium carbide, boron carbide. Examples include compounds that are more chemically stable than copper oxide in a reducing atmosphere such as titanium boride. Aluminum oxide is particularly preferable, and for this reason, the solid solution amount of aluminum in the copper matrix is preferably 0.04% by weight or less. In the present invention, the dispersion amount of the dispersed particles is 0.5 to 6% by volume is 0.5
If it is less than 6% by volume, sufficient mechanical strength cannot be obtained.
This is because if it exceeds, the electrical conductivity will be reduced and the secondary processing will be difficult.

【0011】また分散粒子の粒径は、分散強化型銅合金
の機械的強度、延性、加工性等の観点から好ましくは
0.1μm以下、より好ましくは0.005μm以上
0.05μm以下とする。さらに本発明では、分散粒子
の存在しない銅母相の領域の平均径が0.3μm以下で
あることが好ましい。これは、この平均径が0.3μm
を越えると、得られる分散強化型銅合金の機械的強度が
不充分となるおそれがあるからである。なおここで、分
散粒子の存在しない銅母相の領域の平均径の算出方法に
ついて説明する。まず、分散強化型銅合金のサンプルか
ら薄膜試料を作成し、透過型電子顕微鏡で得られた薄膜
試料の100000倍の写真を写す。このときの顕微鏡
写真を図1に模式的に示す。次いで、図1に示されるよ
うに写真上で分散粒子1以外の位置の任意の10点を選
び、各点を含み分散粒子1を含まないで描ける最大の円
を10個描き(ただし各点がこの円の中心になるとは限
らない)、これらの円の直径の平均値を分散粒子1の存
在しない銅母相2の領域の平均径とする。
The particle size of the dispersed particles is preferably 0.1 μm or less, more preferably 0.005 μm or more and 0.05 μm or less from the viewpoint of mechanical strength, ductility, workability, etc. of the dispersion strengthened copper alloy. Further, in the present invention, it is preferable that the area of the copper matrix phase in which dispersed particles do not exist has an average diameter of 0.3 μm or less. This has an average diameter of 0.3 μm.
If it exceeds, the mechanical strength of the obtained dispersion-strengthened copper alloy may be insufficient. Here, a method of calculating the average diameter of the copper matrix phase region in which dispersed particles do not exist will be described. First, a thin-film sample is prepared from a dispersion-strengthened copper alloy sample, and a 100,000-fold photograph of the thin-film sample obtained by a transmission electron microscope is taken. A micrograph at this time is schematically shown in FIG. Next, as shown in FIG. 1, 10 arbitrary points on the photograph other than the dispersed particles 1 are selected, and 10 maximum circles including each point and not including the dispersed particles 1 are drawn (provided that each point is It is not always the center of the circle), but the average value of the diameters of these circles is the average diameter of the region of the copper matrix 2 in which the dispersed particles 1 do not exist.

【0012】次に、本発明の分散強化型銅合金の製造方
法を詳細に説明する。まず、酸化銅粉末と還元性雰囲気
中で酸化銅よりも化学的に安定な分散粒子の原料粉末と
炭素及び硼素のいずれかを主成分とする脱酸剤粉末とを
用意する。このとき酸化銅粉末としては、酸化第一銅
(Cu2 O)、酸化第二銅(CuO)、非化学量論的な
酸化銅(CuOx )のいずれであってもよいが、分散粒
子を均一に分散させる観点から、粒径が5μm以下、さ
らには1μm以下であることが好ましい。
Next, the method for producing the dispersion strengthened copper alloy of the present invention will be described in detail. First, a copper oxide powder, a raw material powder of dispersed particles that is more chemically stable than copper oxide in a reducing atmosphere, and a deoxidizer powder containing carbon or boron as a main component are prepared. At this time, the copper oxide powder may be any of cuprous oxide (Cu 2 O), cupric oxide (CuO), and non-stoichiometric copper oxide (CuO x ). From the viewpoint of uniform dispersion, the particle size is preferably 5 μm or less, and more preferably 1 μm or less.

【0013】また分散粒子の原料粉末としては、上述し
たような還元性雰囲気中で酸化銅より化学的に安定な化
合物が1種または2種以上混合して用いられる。この分
散粒子の原料粉末の粒径は、銅母相中に均一に分散させ
る観点から好ましくは1μm以下、より好ましくは0.
05μm以下である。
As the raw material powder of the dispersed particles, one or more kinds of compounds that are more chemically stable than copper oxide in the reducing atmosphere as described above are used. The particle size of the raw material powder of the dispersed particles is preferably 1 μm or less, more preferably 0.1 μm or less from the viewpoint of uniformly dispersing in the copper mother phase.
It is at most 05 μm.

【0014】さらに前記脱酸剤粉末としては、加熱によ
り容易に炭素や硼素とガスに分解し、かつ焼結後に不純
物として分散強化型銅合金中に残留して特性を低下させ
ることのない化合物であれば特に限定されないが、好ま
しくは炭素粉末、硼素粉末、炭化硼素粉末が用いられ
る。この脱酸剤粉末の粒径は1μm以下であることが好
ましい。これは脱酸剤粉末の粒径が大きすぎると、得ら
れる分散強化型銅合金において銅母相中の酸素含有量を
5ppm以下とすることが困難となり、また大粒径の未
反応粒子が残留して機械的強度が低下するおそれがある
からである。
Further, the deoxidizing agent powder is a compound which is easily decomposed into carbon or boron and a gas by heating and remains as an impurity in the dispersion strengthened copper alloy after sintering without deteriorating the characteristics. It is not particularly limited as long as it is present, but carbon powder, boron powder, and boron carbide powder are preferably used. The particle size of the deoxidizer powder is preferably 1 μm or less. This is because if the particle size of the deoxidizer powder is too large, it becomes difficult to reduce the oxygen content in the copper matrix to 5 ppm or less in the obtained dispersion-strengthened copper alloy, and large unreacted particles remain. This is because the mechanical strength may decrease.

【0015】続いて、これら酸化銅粉末、分散粒子の原
料粉末及び脱酸剤粉末を配合した後、機械的に粉砕・混
合して混合粉末を調製する。このとき、酸化銅粉末、分
散粒子の原料粉末及び脱酸剤粉末は一度に配合しても、
また酸化銅粉末、分散粒子の原料粉末をまず配合して粉
砕・混合した後脱酸剤粉末を配合してさらに粉砕・混合
を行なってもよい。さらに、酸化銅粉末、分散粒子の原
料粉末を配合して粉砕・混合を行なった後、脱酸剤粉末
を水あるいはアルコール、アセトン等の有機溶媒の溶液
として加えることもできる。
Subsequently, the copper oxide powder, the raw material powder for the dispersed particles, and the deoxidizer powder are blended, and then mechanically ground and mixed to prepare a mixed powder. At this time, even if the copper oxide powder, the raw material powder of the dispersed particles and the deoxidizer powder are blended at once,
Further, the copper oxide powder and the raw material powder of the dispersed particles may be first blended and pulverized and mixed, and then the deoxidizer powder may be blended and further pulverized and mixed. Further, after the copper oxide powder and the raw material powder of the dispersed particles are mixed and pulverized and mixed, the deoxidizer powder can be added as a solution of water or an organic solvent such as alcohol or acetone.

【0016】ここでは、分散粒子の原料粉末は酸化銅粉
末の還元後の銅母相中に0.5〜6体積%の分散粒子が
分散されるような配合量で配合する。さらに脱酸剤粉末
の配合量としては、同一の製造プロセスで脱酸剤粉末を
配合しない場合に銅母相中に混入する酸素量に対する当
量比が、1.2〜1.5となるように設定されればよ
い。この理由は、脱酸剤粉末の配合量が少なすぎると、
得られる分散強化型銅合金において銅母相中の酸素固溶
量を5ppm以下とすることが困難となり、また脱酸剤
粉末の配合量が多すぎると、未反応の炭素や硼素が10
0ppm以上残留し、分散強化型銅合金の機械的強度、
加工性が低下するおそれがあるからである。具体的に
は、本発明の分散強化型銅合金を製造する前にあらかじ
め脱酸剤粉末を配合しないで分散強化型銅合金を製造
し、得られた分散強化型銅合金について銅母相中に固溶
した酸素と析出した酸化銅の酸素との合計量を測定し
て、測定された酸素量に対する1.2〜1.5当量を脱
酸剤粉末の配合量とする。
Here, the raw material powder of the dispersed particles is mixed in such an amount that 0.5 to 6% by volume of the dispersed particles are dispersed in the reduced copper matrix of the copper oxide powder. Further, the amount of the deoxidizer powder blended should be such that the equivalent ratio to the amount of oxygen mixed in the copper matrix when the deoxidizer powder is not blended in the same manufacturing process is 1.2 to 1.5. It should be set. The reason for this is that if the compounding amount of the deoxidizer powder is too small,
In the obtained dispersion-strengthened copper alloy, it becomes difficult to set the oxygen solid solution amount in the copper matrix to 5 ppm or less, and when the amount of the deoxidizer powder is too large, the amount of unreacted carbon or boron is 10%.
The mechanical strength of the dispersion-strengthened copper alloy, which remains at 0 ppm or more,
This is because the workability may decrease. Specifically, before producing the dispersion-strengthened copper alloy of the present invention to produce a dispersion-strengthened copper alloy without previously blending a deoxidizer powder, the obtained dispersion-strengthened copper alloy in the copper matrix The total amount of solid-solved oxygen and oxygen of precipitated copper oxide is measured, and 1.2 to 1.5 equivalents relative to the measured oxygen amount are used as the compounding amount of the deoxidizer powder.

【0017】なお上述したような粉砕・混合は、ボール
ミル、アトライター等公知の混合装置を使用して行なう
ことができる。この際に、容器及びボールは非金属製で
あることが好ましい。これは、金属製の容器やボールを
用いて粉砕・混合を行なうと、混合粉末中に鉄等の金属
が混入して、得られる分散強化型銅合金の電気伝導度が
著しく低下するおそれがあるからである。また混合粉末
は、酸化銅粉末及び分散粒子の原料粉末の粒径が0.0
5μm以下、脱酸剤粉末の粒径が0.5μm以下となる
ように調製することが好ましい。
The crushing and mixing as described above can be carried out by using a known mixing device such as a ball mill or an attritor. At this time, it is preferable that the container and the ball are made of non-metal. This is because when pulverizing and mixing using a metal container or balls, a metal such as iron is mixed in the mixed powder, and the electric conductivity of the obtained dispersion-strengthened copper alloy may be significantly reduced. Because. In addition, the mixed powder has a particle diameter of the raw material powder of copper oxide powder and dispersed particles of 0.0
It is preferable that the powder is prepared so that the particle size of the deoxidizer powder is 5 μm or less and the particle size of the deoxidizer powder is 0.5 μm or less.

【0018】次いで、前記混合粉末を400℃以下の還
元性雰囲気に保持された還元炉に装入して、水素等の還
元性ガスにより混合粉末中の酸化銅粉末を選択的に還元
する。ここで混合粉末が400℃を越えて加熱される
と、脱酸剤粉末が酸化銅の還元に消費され、この後大気
からの酸素汚染により銅母相中に固溶する酸素を充分に
除去できなくなるので、混合粉末は400℃以下の温度
で保持される必要がある。さらには、混合粉末を150
℃以上400℃以下の温度で保持することがより好まし
い。
Then, the mixed powder is charged into a reducing furnace kept in a reducing atmosphere at 400 ° C. or lower, and the copper oxide powder in the mixed powder is selectively reduced by a reducing gas such as hydrogen. If the mixed powder is heated above 400 ° C, the deoxidizer powder is consumed for the reduction of copper oxide, and then oxygen dissolved in the copper matrix phase due to oxygen contamination from the atmosphere can be sufficiently removed. Therefore, the mixed powder needs to be maintained at a temperature of 400 ° C. or lower. Furthermore, mix powder to 150
It is more preferable to hold at a temperature of not lower than 400C and not higher than 400C.

【0019】なおこの還元は、酸化銅粉末を金属銅の状
態まで還元でき、かつ分散粒子の原料粉末は完全には還
元されないような還元ポテンシャルを有する還元性雰囲
気で行なわれる。ただし、分散粒子の原料粉末が全く還
元されない還元ポテンシャルを有する還元性雰囲気にす
る必要はない。例えば、分散粒子の原料粉末がTiO2
からなる場合、TiOまでであれば還元されても何ら問
題はない。
This reduction is carried out in a reducing atmosphere having a reduction potential such that the copper oxide powder can be reduced to the state of metallic copper and the raw material powder of the dispersed particles is not completely reduced. However, it is not necessary to create a reducing atmosphere having a reduction potential such that the raw material powder of the dispersed particles is not reduced at all. For example, the raw material powder of dispersed particles is TiO 2
In the case of (1), there is no problem even if it is reduced up to TiO.

【0020】次に、前記還元により生成した分散強化型
銅合金粉末をプレス等により所定の形状に成形して成形
体を作成する。この後、得られた成形体を還元性雰囲気
または不活性雰囲気中で焼結することにより、本発明の
分散強化型銅合金が製造される。ここで、前記還元の後
例えば成形体の作成時等に大気中から銅母相中に混入し
た酸素は、分散強化型銅合金粉末中の脱酸剤粉末と反応
してほとんどが銅母相外部に除去される。すなわち、前
記脱酸剤粉末が炭素を主成分とする場合は、銅母相中の
酸素は焼結中一酸化炭素または二酸化炭素となって放出
され、一方前記脱酸剤粉末が硼素を主成分とする場合
は、銅母相中の酸素は酸化硼素となって得られる分散強
化型銅合金中に微量が分散されるが、その特性にはほと
んど影響を及ぼさない。しかも、脱酸剤粉末中の炭素や
硼素は上述したような酸素との反応にすべて消費される
ことはなく、結果的に炭素及び硼素の少なくとも1種を
10ppm以上100ppm未満含有する分散強化型銅
合金を得ることができる。
Next, the dispersion-strengthened copper alloy powder generated by the reduction is molded into a predetermined shape by a press or the like to form a molded body. Then, the obtained compact is sintered in a reducing atmosphere or an inert atmosphere to produce the dispersion-strengthened copper alloy of the present invention. Here, after the reduction, for example, oxygen mixed in the copper matrix from the atmosphere at the time of forming a molded body reacts with the deoxidizer powder in the dispersion-strengthened copper alloy powder, and most of it is outside the copper matrix. Will be removed. That is, when the deoxidizer powder contains carbon as a main component, oxygen in the copper matrix is released as carbon monoxide or carbon dioxide during sintering, while the deoxidizer powder contains boron as a main component. In such a case, a small amount of oxygen in the copper matrix is dispersed in the dispersion-strengthened copper alloy obtained as boron oxide, but it has almost no effect on its characteristics. Moreover, the carbon and boron in the deoxidizer powder are not consumed in the reaction with oxygen as described above, and as a result, the dispersion-strengthened copper containing at least one of carbon and boron in an amount of 10 ppm or more and less than 100 ppm. An alloy can be obtained.

【0021】なおこのとき、ホットプレス、高温静水圧
プレス(HIP)により分散強化型銅合金粉末の成形、
焼結を同時に行なってもよく、特に硼素を主成分とする
脱酸剤粉末を用いたときは、低温焼結が可能で得られる
分散強化型銅合金の機械的強度に優れるホットプレス、
HIPは好ましい。ただし、炭素を主成分とする脱酸剤
粉末を用いたときは、焼結中に放出される一酸化炭素や
二酸化炭素を系外に逃す必要があり、金属製カン等に密
封されるHIPはあまり好ましくない。またHIP以外
の方法で焼結を行なう場合も、一酸化炭素や二酸化炭素
を系外に逃すために焼結時の雰囲気を一度は真空とする
ことが好ましい。さらに本発明の分散強化型銅合金は、
そのまま使用することもできるし、必要に応じ二次加工
を行なってから使用してもよい。
At this time, the dispersion-strengthened copper alloy powder is molded by hot pressing or hot isostatic pressing (HIP).
Sintering may be performed at the same time, particularly when using a deoxidizer powder containing boron as a main component, hot pressing excellent in mechanical strength of the dispersion-strengthened copper alloy obtained by low temperature sintering,
HIP is preferred. However, when a deoxidizer powder containing carbon as a main component is used, it is necessary to release carbon monoxide or carbon dioxide released during sintering to the outside of the system, and HIP sealed in a metal can or the like Not very good. Also, when sintering is performed by a method other than HIP, it is preferable that the atmosphere at the time of sintering is once a vacuum in order to release carbon monoxide and carbon dioxide to the outside of the system. Further dispersion strengthened copper alloy of the present invention,
It may be used as it is, or may be used after being subjected to secondary processing if necessary.

【0022】上述したような本発明の分散強化型銅合金
の製造方法は、分散強化型銅合金粉末の生成に当って選
択還元法を用いているので、混合粉末を調製する工程か
ら脱酸剤粉末を酸化銅粉末及び分散粒子の原料粉末とと
もに配合して、得られる分散強化型銅合金における銅母
相中の酸素固溶量を極めて微量とすることができる。す
なわち、分散強化型銅合金粉末を内部酸化法により生成
する場合は、酸化による分散粒子の形成を阻害する脱酸
剤粉末を分散強化型銅合金粉末を生成する前に配合でき
ず、たとえ分散強化型銅合金粉末の生成後に脱酸剤粉末
を配合しても、脱酸剤粉末を均一かつ緻密に混合するこ
とは困難でこの後の酸素の固溶防止の効果は小さい。こ
れに対し、選択還元法を用いた本発明の分散強化型銅合
金の製造方法においては、分散強化型銅合金粉末を生成
する前の混合粉末中に脱酸剤粉末を配合して均一かつ緻
密に混合することができるため、結果として大気からの
酸素汚染により銅母相中に固溶する酸素を充分に除去す
ることが可能となる。しかも、酸素の除去に供されなか
った脱酸剤粉末に由来する炭素や硼素は、そのまま分散
強化型銅合金中に分散されるので、銅母相中にわずかに
残留する固溶酸素の高真空下での放出をも抑えることが
できる。
In the method for producing the dispersion-strengthened copper alloy according to the present invention as described above, the selective reduction method is used for producing the dispersion-strengthened copper alloy powder. Therefore, the deoxidizing agent can be removed from the step of preparing the mixed powder. By blending the powder with the copper oxide powder and the raw material powder of the dispersed particles, the amount of solid solution of oxygen in the copper matrix in the obtained dispersion strengthened copper alloy can be made extremely small. That is, when the dispersion-strengthened copper alloy powder is produced by the internal oxidation method, the deoxidizer powder that inhibits the formation of dispersed particles due to oxidation cannot be blended before the dispersion-strengthened copper alloy powder is produced, and Even if the deoxidizer powder is blended after the type copper alloy powder is produced, it is difficult to mix the deoxidizer powder uniformly and densely, and the effect of preventing solid solution of oxygen after that is small. On the other hand, in the method for producing the dispersion-strengthened copper alloy of the present invention using the selective reduction method, the deoxidizer powder is blended in the mixed powder before the dispersion-strengthened copper alloy powder is generated to make it uniform and dense. As a result, it is possible to sufficiently remove oxygen dissolved in the copper mother phase due to oxygen contamination from the atmosphere. Moreover, the carbon and boron derived from the deoxidizer powder that was not used to remove oxygen are dispersed in the dispersion-strengthened copper alloy as they are, so the high vacuum of solid solution oxygen slightly remaining in the copper matrix phase. It is possible to suppress the emission below.

【0023】[0023]

【実施例】まず、酸化銅粉末として粒径1μmの酸化第
二銅粉末を用い、これに分散粒子の原料粉末として粒径
0.02μmの酸化アルミニウム粉末を前記酸化銅粉末
の還元後の銅母相中に2体積%の分散粒子が分散される
ような配合量で配合し、さらに脱酸剤粉末として粒径
0.5μmの炭素粉末または硼素粉末を表1に示す配合
量でそれぞれ配合して、9種類の試料を用意した。続い
て、これらの混合粉末を酸化アルミニウム製の容器及び
ボールからなるボールミル中4日間乾式で粉砕・混合し
た。次いで、得られた混合粉末を酸化アルミニウムから
なるボート中に入れ、全圧1気圧のアルゴンと水素との
混合ガス気流中で200℃から還元を開始し400℃に
到達後アルゴンの供給を停止して純水素気流中3時間保
持した。冷却後、生成した分散強化型銅合金粉末をカー
ボン型中に充填し、真空中900℃の温度にて400k
g/cm2 の圧力でホットプレス成形を行ない分散強化
型銅合金を製造した。
EXAMPLES First, cupric oxide powder having a particle diameter of 1 μm was used as the copper oxide powder, and aluminum oxide powder having a particle diameter of 0.02 μm was used as a raw material powder for the dispersed particles. The compounding amount was such that 2% by volume of dispersed particles were dispersed in the phase, and further carbon powder or boron powder having a particle size of 0.5 μm was added as the deoxidizing agent powder in the compounding amounts shown in Table 1. , 9 kinds of samples were prepared. Subsequently, these mixed powders were dry-pulverized and mixed for 4 days in a ball mill including a container made of aluminum oxide and balls. Then, the obtained mixed powder is put into a boat made of aluminum oxide, reduction is started from 200 ° C. in a mixed gas flow of argon and hydrogen at a total pressure of 1 atm, and the supply of argon is stopped after reaching 400 ° C. And kept in a pure hydrogen stream for 3 hours. After cooling, the generated dispersion-strengthened copper alloy powder is filled in a carbon mold and 400 k at a temperature of 900 ° C. in vacuum.
Hot-press molding was performed at a pressure of g / cm 2 to produce a dispersion-strengthened copper alloy.

【0024】次に、得られた9種類の分散強化型銅合金
からそれぞれ試験片を切り出し、銅母相中の酸素固溶
量、炭素または硼素の分散量を測定するとともに、電気
伝導度、機械的強度として室温での0.2%耐力、加工
性として99%まで冷間圧延加工したときのクラック発
生の有無及びガス放出特性について評価試験を行なっ
た。なお前記酸素固溶量の測定に当っては、直径6m
m、長さ6mmの試験片を流動ヘリウム雰囲気中銅の融
点(1083℃)よりも250℃高い温度で炭素るつぼ
を用いて加熱・溶解し、ヘリウム中に抽出される一酸化
炭素量をガスクロマトグラフにて定量して酸素量に換算
した。ただし表1中の試料1,2,6では、銅母相中の
酸素固溶量が5ppmを越えてはるかに多いため、銅母
相中に固溶した酸素とともに析出した酸化銅の酸素があ
わせて分析されている。またガス放出特性は、直径20
mm、厚さ4mmの試験片をガス放出特性評価試験装置
内に設置した後、試験片をその周囲に設けた高周波コイ
ルにより2分間で500℃まで加熱し、この間に放出さ
れるガス量を質量分析計にて測定して評価した。結果を
表1に併記する。さらに表1中では、各試料の炭素粉末
または硼素粉末の配合量について、脱酸剤粉末を配合し
なかった試料1の分散強化型銅合金における銅母相中に
固溶した酸素及び析出した酸化銅の酸素との合計量に対
する当量比を算出した。表1に示されるように、銅母相
中の酸素固溶量が5ppm以下で、炭素または硼素の分
散量が10ppm以上100ppm未満である試料3,
4,7,8の分散強化型銅合金は、ガス放出量が極めて
微量で、電気伝導度及び機械的強度も良好であることが
確認された。
Next, test pieces were cut out from each of the 9 types of dispersion-strengthened copper alloys obtained, and the amount of oxygen solid solution and the amount of carbon or boron dispersed in the copper matrix were measured, and the electrical conductivity and mechanical properties were measured. An evaluation test was carried out on the presence or absence of cracks and the gas release characteristics when cold rolling was performed to 0.2% proof stress at room temperature as mechanical strength, and as workability to 99%. When measuring the oxygen solid solution amount, the diameter is 6 m.
m and 6 mm long test pieces were heated and melted in a flowing helium atmosphere at a temperature 250 ° C higher than the melting point of copper (1083 ° C) using a carbon crucible, and the amount of carbon monoxide extracted in helium was measured by gas chromatography. Was quantified and converted into oxygen content. However, in Samples 1, 2 and 6 in Table 1, since the amount of oxygen solid solution in the copper matrix is much higher than 5 ppm, the oxygen of the copper oxide precipitated together with the oxygen dissolved in the copper matrix is combined. Have been analyzed. In addition, the gas release characteristics have a diameter of
mm, 4 mm thick test piece is installed in the gas emission characteristic evaluation tester, and the test piece is heated to 500 ° C. for 2 minutes by the high frequency coil provided around the test piece, and the amount of gas released during this period is measured by mass. It was measured and evaluated with an analyzer. The results are also shown in Table 1. Further, in Table 1, regarding the blending amount of the carbon powder or the boron powder of each sample, the oxygen dissolved in the copper matrix and the precipitated oxidation in the dispersion strengthened copper alloy of Sample 1 in which the deoxidizer powder was not blended The equivalent ratio to the total amount of copper and oxygen was calculated. As shown in Table 1, Sample 3, in which the oxygen solid solution amount in the copper matrix is 5 ppm or less and the carbon or boron dispersion amount is 10 ppm or more and less than 100 ppm.
It was confirmed that the dispersion-strengthened copper alloys 4, 7, and 8 had an extremely small amount of gas released, and had good electrical conductivity and mechanical strength.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上詳述したように本発明によれば、高
真空で使用しても真空度をさほど低下させることがな
く、しかも電気伝導度や機械的強度も良好な分散強化型
銅合金を実現でき、その工業的価値は大なるものがあ
る。
As described in detail above, according to the present invention, the dispersion-strengthened copper alloy does not significantly lower the vacuum degree even when used in a high vacuum and has good electric conductivity and mechanical strength. Can be realized and its industrial value is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】 銅母相領域の平均径の算出方法を説明するた
めの模式図である。
FIG. 1 is a schematic diagram for explaining a method of calculating an average diameter of a copper matrix region.

【符号の説明】[Explanation of symbols]

1…分散粒子、2…銅母相。 1 ... Dispersed particles, 2 ... Copper mother phase.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 銅母相中に0.5〜6体積%の分散粒子
が均一に分散されてなる分散強化型銅合金において、前
記銅母相中の酸素固溶量が5ppm以下であって、かつ
炭素及び硼素の少なくとも1種が10ppm以上100
ppm未満分散されたことを特徴とする分散強化型銅合
金。
1. A dispersion-strengthened copper alloy in which 0.5 to 6% by volume of dispersed particles are uniformly dispersed in a copper matrix, wherein an oxygen solid solution amount in the copper matrix is 5 ppm or less. And at least one of carbon and boron is 10 ppm or more 100
Dispersion strengthened copper alloy characterized by being dispersed in less than ppm.
【請求項2】 分散粒子が酸化アルミニウムからなり、
銅母相中に固溶したアルミニウムが0.04重量%以下
であることを特徴とする請求項1記載の分散強化型銅合
金。
2. The dispersed particles are composed of aluminum oxide,
The dispersion-strengthened copper alloy according to claim 1, wherein the solid solution of aluminum in the copper matrix is 0.04% by weight or less.
【請求項3】 酸化銅粉末と還元性雰囲気中で酸化銅よ
りも化学的に安定な分散粒子の原料粉末と炭素及び硼素
のいずれかを主成分とする脱酸剤粉末とを混合して混合
粉末を調製する工程と、前記混合粉末中の酸化銅粉末を
400℃以下の還元性雰囲気中で選択的に還元して分散
強化型銅合金粉末を生成する工程と、前記分散強化型銅
合金粉末を焼結して分散強化型銅合金を得る工程とを具
備することを特徴とする請求項1記載の分散強化型銅合
金の製造方法。
3. A copper oxide powder, a raw material powder of dispersed particles that are more chemically stable than copper oxide in a reducing atmosphere, and a deoxidizer powder containing carbon or boron as a main component are mixed and mixed. A step of preparing a powder, a step of selectively reducing the copper oxide powder in the mixed powder in a reducing atmosphere of 400 ° C. or less to generate a dispersion strengthened copper alloy powder, and the dispersion strengthened copper alloy powder The method for producing a dispersion-strengthened copper alloy according to claim 1, further comprising a step of sintering to obtain a dispersion-strengthened copper alloy.
JP5210030A 1993-08-25 1993-08-25 Dispersion-strengthening type copper alloy and its production Pending JPH0762467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5210030A JPH0762467A (en) 1993-08-25 1993-08-25 Dispersion-strengthening type copper alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5210030A JPH0762467A (en) 1993-08-25 1993-08-25 Dispersion-strengthening type copper alloy and its production

Publications (1)

Publication Number Publication Date
JPH0762467A true JPH0762467A (en) 1995-03-07

Family

ID=16582654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5210030A Pending JPH0762467A (en) 1993-08-25 1993-08-25 Dispersion-strengthening type copper alloy and its production

Country Status (1)

Country Link
JP (1) JPH0762467A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436634C (en) * 2005-09-30 2008-11-26 中南大学 Zero-sintering and hydrogen-expansion nano-diffusion reinforced Cu-Al2O3 alloy and its production
CN102528023A (en) * 2012-01-12 2012-07-04 广东新劲刚超硬材料有限公司 Method for preparing alumina dispersion strengthened copper powder by means of high-energy ball milling
WO2015137015A1 (en) * 2014-03-10 2015-09-17 三井金属鉱業株式会社 Copper powder
CN106764576A (en) * 2016-11-28 2017-05-31 宁波市柯玛士太阳能科技有限公司 A kind of electric torch for illumination
CN108251672A (en) * 2018-01-25 2018-07-06 北京科技大学 A kind of method for improving copper/graphite composite material interface bond strength
CN110787800A (en) * 2019-09-10 2020-02-14 安徽德诠新材料科技有限公司 Method for preparing superfine ternary copper catalyst at low cost

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436634C (en) * 2005-09-30 2008-11-26 中南大学 Zero-sintering and hydrogen-expansion nano-diffusion reinforced Cu-Al2O3 alloy and its production
CN102528023A (en) * 2012-01-12 2012-07-04 广东新劲刚超硬材料有限公司 Method for preparing alumina dispersion strengthened copper powder by means of high-energy ball milling
WO2015137015A1 (en) * 2014-03-10 2015-09-17 三井金属鉱業株式会社 Copper powder
JP5969118B2 (en) * 2014-03-10 2016-08-17 三井金属鉱業株式会社 Copper powder
TWI648414B (en) * 2014-03-10 2019-01-21 日商三井金屬鑛業股份有限公司 Copper powder
CN106764576A (en) * 2016-11-28 2017-05-31 宁波市柯玛士太阳能科技有限公司 A kind of electric torch for illumination
CN108251672A (en) * 2018-01-25 2018-07-06 北京科技大学 A kind of method for improving copper/graphite composite material interface bond strength
CN110787800A (en) * 2019-09-10 2020-02-14 安徽德诠新材料科技有限公司 Method for preparing superfine ternary copper catalyst at low cost
CN110787800B (en) * 2019-09-10 2022-10-21 安徽德诠新材料科技有限公司 Method for preparing superfine ternary copper catalyst at low cost

Similar Documents

Publication Publication Date Title
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
US5004498A (en) Dispersion strengthened copper alloy and a method of manufacturing the same
JP6717230B2 (en) Method for manufacturing sintered RTB magnet
CN114592138B (en) Nano alumina particle reinforced copper-based composite material and preparation method thereof
EP0101498B1 (en) Oxygen-free dispersion-strengthened copper and process for making same
US4752333A (en) Alloys having high electrical and mechanical characteristics, the production thereof and the uses thereof in particular in the electrical, electronic and connection arts
JP7057692B2 (en) Fe-Pt-Oxide-BN-based sintered body for sputtering target
JPH0762467A (en) Dispersion-strengthening type copper alloy and its production
Takahashi et al. Preparation of dispersion-strengthened coppers with NbC and TaC by mechanical alloying
JP2005520055A (en) Capacitor-grade lead wires with increased tensile strength and hardness
US3488183A (en) Method for internal oxidation of metal powder from an alloy,a metal-powder mixture of various alloys or a partially alloyed metal-powder mixture
JP2531701B2 (en) Manufacturing method of dispersion strengthened copper alloy
EP0043576A1 (en) Molybdenum-based alloy
JPH1161294A (en) Copper alloy reinforced by dispersion of alumina and its production
JPH0892672A (en) Production of dispersion strengthened alloy
US3895942A (en) Strong, high purity nickel
US3753703A (en) Sintered molybdenum boron alloy
Taylor et al. The solid-solubility of oxygen in Nb and Nb-rich Nb-Hf, Nb-Mo and Nb-W alloys: Part III: The ternary systems Nb-Mo-O and Nb-WO
US3723076A (en) Sintered tungsten-boron alloy
WO2018101249A1 (en) Electroconductive support member and method for manufacturing same
JPH06128604A (en) Production of metallic material
CN114480910B (en) Workable copper-based composite material with zero expansion and high thermal conductivity at wide temperature zone at room temperature and preparation method thereof
JP2637192B2 (en) Manufacturing method of dispersion strengthened copper alloy
JP3370467B2 (en) Ceramic deposited copper alloy and method for producing the same
Benesovsky Sintered tungsten--boron alloy