JPH0892672A - Production of dispersion strengthened alloy - Google Patents

Production of dispersion strengthened alloy

Info

Publication number
JPH0892672A
JPH0892672A JP23083594A JP23083594A JPH0892672A JP H0892672 A JPH0892672 A JP H0892672A JP 23083594 A JP23083594 A JP 23083594A JP 23083594 A JP23083594 A JP 23083594A JP H0892672 A JPH0892672 A JP H0892672A
Authority
JP
Japan
Prior art keywords
metal
raw material
mixture
dispersion
dispersed particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23083594A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Matsumoto
辰彦 松本
Keizo Shimamura
慶三 島村
Kagetaka Amano
景隆 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23083594A priority Critical patent/JPH0892672A/en
Publication of JPH0892672A publication Critical patent/JPH0892672A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE: To produce a dispersion strengthened alloy good in all of electric conductivity, thermal conductivity and mechanical strength by selectively reducing a metal to form into a basal phase in a mixture and sintering the mixture. CONSTITUTION: As the raw material powder of a basal phase, cupric oxide particles having 1μm average particle size are used, and the raw material powder of dispersion particles is mixed thereto. This mixture are pulverized and mixed in a ball mill. After that, the mixture using hydride as the raw material powder of the dispersion particles is heated at 750 deg.C for 2hr in the air to convert the hydride into oxide. The obtd. mixture is held at 700 deg.C for 2hr in a mixed air flow of hydrogen and argon under one atmospheric pressure and is selectively reduced. After that, the mixture is sintered. Thus, the dispersion strengthened alloy in which fine dispersion particles are dispersed into the baser phase and having high strength can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、母相となる金属中に分
散粒子を均一に分散せしめてなる分散強化型合金の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a dispersion strengthened alloy in which dispersed particles are uniformly dispersed in a metal serving as a matrix phase.

【0002】[0002]

【従来の技術】近年、銅母相中に金属酸化物等の分散粒
子を均一に分散せしめてなる分散強化型銅合金は、スリ
ップリング、磁場発生用コイル、半導体用リードフレー
ム、溶接用電極等に幅広く用いられている。またこのよ
うな分散強化型銅合金の製造方法としては、銅合金粉末
中の添加金属元素を選択的に酸化して金属酸化物からな
る分散粒子を形成した後焼結する内部酸化法や、酸化銅
と分散粒子となる金属酸化物とを混合粉砕後銅を選択的
に還元して焼結する選択還元法が以前より知られてい
る。特にこれらのうち、選択還元法で製造された分散強
化型銅合金は、分散粒子となる金属酸化物の金属成分が
銅母相中へ混入することがほとんどなく、電気伝導や熱
伝導等については良好な特性が期待できる。
2. Description of the Related Art In recent years, dispersion-strengthened copper alloys in which dispersed particles such as metal oxides are uniformly dispersed in a copper matrix are known as slip rings, magnetic field generating coils, semiconductor lead frames, welding electrodes, etc. Widely used in. Further, as a method for producing such a dispersion-strengthened copper alloy, an internal oxidation method in which the additive metal element in the copper alloy powder is selectively oxidized to form dispersed particles of a metal oxide and then sintered, and an oxidation method A selective reduction method in which copper and a metal oxide to be dispersed particles are mixed and pulverized, and then copper is selectively reduced and sintered is known. In particular, among these, the dispersion-strengthened copper alloy produced by the selective reduction method rarely mixes the metal component of the metal oxide, which becomes the dispersed particles, into the copper mother phase. Good characteristics can be expected.

【0003】しかしながら、選択還元法で製造した従来
の分散強化型銅合金においては、微細な分散粒子を銅母
相中に均一に分散させることが難しく、ひいては充分な
機械的強度が得られにくいという問題点がある。すなわ
ち選択還元法で分散強化型銅合金を製造する場合、上述
したような酸化銅と分散粒子となる金属酸化物との混合
粉砕の際、通常使用される低エネルギーの混合粉砕機で
は特に強度が高い金属酸化物の粉末がほとんど粉砕され
ず、結果としてかなり粗大な分散粒子が銅母相中に分散
されてしまう。一方、例えば特開昭62−93321号
に示されるように高エネルギーの混合粉砕機を使用する
と、酸化銅と分散粒子となる金属酸化物とを充分に混合
粉砕してある程度まで金属酸化物を微細化することが可
能となるが、逆に混合粉砕機の構成材料の混入による汚
染の影響で、分散強化型銅合金における電気伝導及び熱
伝導や加工性等の低下は避けられない。さらに、原料粉
末としてあらかじめ微細な金属酸化物の粒子と酸化銅の
粒子を用いたとしても、このような微細な粒子には結合
の強固な二次粒子が形成される傾向があるため、やはり
微細な分散粒子を銅母相中に均一に分散させることは困
難である。
However, in the conventional dispersion-strengthened copper alloy produced by the selective reduction method, it is difficult to uniformly disperse fine dispersed particles in the copper matrix phase, and it is difficult to obtain sufficient mechanical strength. There is a problem. That is, in the case of producing a dispersion-strengthened copper alloy by the selective reduction method, when mixing and pulverizing the copper oxide and the metal oxide to be dispersed particles as described above, the strength is particularly high in a commonly used low-energy mixing pulverizer. The powder of high metal oxide is scarcely ground, resulting in fairly coarse dispersed particles dispersed in the copper matrix. On the other hand, when a high-energy mixing and crushing machine is used as disclosed in, for example, JP-A-62-93321, the copper oxide and the metal oxide to be dispersed particles are sufficiently mixed and crushed to finely divide the metal oxide to a certain degree. However, conversely, due to the influence of contamination due to the mixing of the constituent materials of the mixing and crushing machine, the electrical and thermal conductivity of the dispersion-strengthened copper alloy and the deterioration of workability are unavoidable. Furthermore, even if fine metal oxide particles and copper oxide particles are used in advance as the raw material powder, secondary particles having strong bond tend to be formed in such fine particles. It is difficult to uniformly disperse such dispersed particles in the copper matrix.

【0004】また特開平2−118036号、特開平6
−145844号等には、直接酸化銅と分散粒子となる
金属酸化物とを混合粉砕せず、酸化銅の粒子の表面に金
属水酸化物または金属水和物からなる被覆層を形成した
後、被覆層を成す金属水酸化物または金属水和物を金属
酸化物に転換せしめ、得られた酸化銅と分散粒子となる
金属酸化物との混合物から選択還元法で分散強化型銅合
金を製造する技術が開示されている。然るに、このよう
な技術で製造された分散強化型合金においても、同様に
酸化銅または分散粒子となる金属酸化物を充分には微細
化できず、あるいは金属酸化物の粒子や酸化銅の粒子に
ついて結合の強固な二次粒子が形成されるため、粗大な
分散粒子が銅母相中に分散されてしまい、その機械的強
度はいまだ満足できるものではなかった。
Further, JP-A-2-118036 and JP-A-6-18036.
No. 145844 and the like do not directly mix and pulverize copper oxide and metal oxide to be dispersed particles, and after forming a coating layer made of metal hydroxide or metal hydrate on the surface of copper oxide particles, A metal hydroxide or metal hydrate forming the coating layer is converted into a metal oxide, and a dispersion-strengthened copper alloy is produced by a selective reduction method from a mixture of the obtained copper oxide and a metal oxide to be dispersed particles. The technology is disclosed. However, even in the dispersion-strengthened alloy produced by such a technique, it is not possible to sufficiently refine the metal oxide to be copper oxide or dispersed particles, or the metal oxide particles or the copper oxide particles Since the secondary particles having a strong bond are formed, the coarse dispersed particles are dispersed in the copper mother phase, and the mechanical strength thereof is still unsatisfactory.

【0005】[0005]

【発明が解決しようとする課題】上述したように選択還
元法で分散強化型合金を製造する場合、これまで微細な
分散粒子を母相中に均一に分散させることが難しく、分
散強化型合金の電気伝導、熱伝導等については良好な特
性が期待できるものの、充分な機械的強度が得られにく
いという問題があった。
When a dispersion-strengthening alloy is produced by the selective reduction method as described above, it has been difficult to disperse finely dispersed particles uniformly in the matrix phase. Although good characteristics can be expected in terms of electrical conduction, thermal conduction, etc., there is a problem that it is difficult to obtain sufficient mechanical strength.

【0006】本発明はこのような問題に鑑み、電気伝導
及び熱伝導、機械的強度とも良好な分散強化型合金を製
造することができる分散強化型合金の製造方法を提供す
ることを目的としている。
In view of the above problems, it is an object of the present invention to provide a dispersion-strengthened alloy production method capable of producing a dispersion-strengthened alloy having good electrical conductivity, heat conduction, and mechanical strength. .

【0007】[0007]

【課題を解決するための手段及び作用】前記目的を達成
するために、本発明では第1に、母相となる金属中に分
散粒子が均一に分散されてなる分散強化型合金の製造方
法であって、少なくとも一方は水素を含有する母相の原
料粉末と分散粒子の原料粉末とを混合粉砕する工程と、
得られた混合物を酸素、窒素及び炭素の少なくとも1種
を含有する雰囲気中で加熱する工程と、前記加熱の後混
合物中の母相となる金属を還元性雰囲気中で選択的に還
元する工程と、混合物を焼結する工程とを具備する分散
強化型合金の製造方法(以下、第1の製造方法という)
を提供する。すなわちこの分散強化型合金の製造方法
は、水素を含有する例えば水素化物等の形態で原料粉末
を混合粉砕し、得られた混合物を酸化、窒化または炭化
した後、母相となる金属を選択的に還元するというもの
である。
In order to achieve the above object, the present invention firstly provides a method for producing a dispersion-strengthened alloy in which dispersed particles are uniformly dispersed in a metal serving as a matrix phase. There, at least one of the steps of mixing and pulverizing the raw material powder of the mother phase containing hydrogen and the raw material powder of the dispersed particles,
Heating the resulting mixture in an atmosphere containing at least one of oxygen, nitrogen and carbon; and selectively reducing the metal to be the parent phase in the mixture in the reducing atmosphere after the heating. And a step of sintering the mixture, a method for producing a dispersion-strengthening alloy (hereinafter referred to as a first production method).
I will provide a. That is, the method for producing the dispersion strengthened alloy is such that the raw material powder containing hydrogen is mixed and pulverized in the form of, for example, a hydride, and the resulting mixture is oxidized, nitrided, or carbonized, and then the metal serving as the matrix phase is selectively It is to return to.

【0008】上述したような第1の製造方法において
は、水素を含有する水素化物等を原料粉末として混合粉
砕することにより、一般的に強度の低い水素化物等の水
素を含有する原料粉末が容易に粉砕されて粒子が充分に
微細化される。従って、得られた混合物を酸化、窒化ま
たは炭化した後、母相となる金属を選択的に還元して焼
結すれば、微細な分散粒子が母相中に均一に分散してな
る高強度の分散強化型合金が製造される。
In the first manufacturing method as described above, a raw material powder containing hydrogen such as a hydride having a generally low strength is easily prepared by mixing and pulverizing a hydride containing hydrogen as a raw material powder. The particles are pulverized into fine particles. Therefore, by oxidizing, nitriding or carbonizing the obtained mixture and then selectively reducing and sintering the metal serving as the mother phase, fine dispersed particles having a high strength formed by being uniformly dispersed in the mother phase. A dispersion strengthened alloy is produced.

【0009】ここでは、母相の原料粉末及び分散粒子の
原料粉末の少なくとも一方が水素を含有する例えば水素
化物であればよく、他方については酸化物等であっても
よく特に限定されない。しかしながら、通常分散強化型
合金の分散粒子としては強度の高い物質が用いられるの
で、少なくとも分散粒子については原料粉末において充
分に微細化されるまで粉砕する観点から、強度の低い水
素化物等水素を含有する原料粉末を用いることが好まし
い。さらに、母相及び分散粒子の一方について水素を含
有する原料粉末の調製が困難でない限り、母相、分散粒
子ともに強度の低い水素を含有する原料粉末を用いるこ
とが、混合粉砕時に均一な混合物が得られやすくしかも
安全性に優れる点からもより好ましい。また原料粉末の
混合粉砕に当って、混合物を適宜低温に冷却して粒子の
微細化を促進させることも可能であり、特に分散粒子に
ついて水素を含有する原料粉末を用いる一方、母相の原
料粉末としては銅や銀の酸化物を用いて、母相となる金
属が銅、銀またはこれらの合金である分散強化型合金を
製造する場合に、上述したような混合物の冷却は有効で
ある。
Here, at least one of the raw material powder of the mother phase and the raw material powder of the dispersed particles may be, for example, a hydride containing hydrogen, and the other may be an oxide or the like and is not particularly limited. However, since a substance having high strength is usually used as the dispersed particles of the dispersion strengthening alloy, at least the dispersed particles contain hydrogen such as a hydride having low strength from the viewpoint of pulverizing until the material powder is sufficiently refined. It is preferable to use a raw material powder that Furthermore, unless it is difficult to prepare a raw material powder containing hydrogen for one of the mother phase and the dispersed particles, it is preferable to use a raw material powder containing hydrogen with low strength for both the mother phase and the dispersed particles, because a uniform mixture can be obtained during mixing and pulverization. It is more preferable because it can be easily obtained and is excellent in safety. Further, in the mixing and pulverization of the raw material powder, it is also possible to appropriately cool the mixture to a low temperature to promote the atomization of the particles, and in particular, while using the raw material powder containing hydrogen for the dispersed particles, the raw material powder of the mother phase As an example, when a copper or silver oxide is used to produce a dispersion-strengthened alloy in which the metal serving as the mother phase is copper, silver, or an alloy thereof, cooling of the mixture as described above is effective.

【0010】なおこのとき、水素を含有する原料粉末中
の水素の含有形態は特に限定されないが、水素の含有量
は10原子%以上であることが好ましい。これは、水素
を含有する原料粉末中の水素の含有量が少なすぎると原
料粉末の延性が高く、混合粉砕の際に粒子が充分に微細
化されるまで原料粉末を粉砕することが困難となるから
である。具体的にこのような水素を含有する原料粉末を
調製するには、例えば分散強化型合金の母相となる金属
あるいは分散粒子中の金属成分を含有する粉末を、水素
を含有する雰囲気中水素が取り込まれる温度以上で保持
すればよい。ただし、水素を含有する雰囲気中に保持さ
れた粉末が酸化されない程度に、水素を含有する雰囲気
中における酸素、水蒸気等の酸化性成分の分圧を抑える
ことが必要である。また水素を含有する原料粉末の好ま
しい粒径は、通常母相及び分散粒子でそれぞれ強度が相
違することからいずれの原料粉末であるかによっても異
なるが、母相中に分散粒子を均一に分散させる観点から
5μm以下程度である。
At this time, the hydrogen content in the raw material powder containing hydrogen is not particularly limited, but the hydrogen content is preferably 10 atomic% or more. This is because if the content of hydrogen in the raw material powder containing hydrogen is too small, the ductility of the raw material powder is high, and it becomes difficult to pulverize the raw material powder until the particles are sufficiently miniaturized during mixed pulverization. Because. Specifically, in order to prepare such a raw material powder containing hydrogen, for example, a powder containing a metal serving as a mother phase of a dispersion-strengthened alloy or a metal component in dispersed particles is replaced with hydrogen in an atmosphere containing hydrogen. It suffices to maintain the temperature at or above the temperature at which it is taken. However, it is necessary to suppress the partial pressure of oxidizing components such as oxygen and water vapor in the hydrogen-containing atmosphere so that the powder held in the hydrogen-containing atmosphere is not oxidized. Further, the preferable particle size of the raw material powder containing hydrogen is different depending on which raw material powder the strength is usually different between the mother phase and the dispersed particles, but the dispersed particles are uniformly dispersed in the mother phase. From the viewpoint, it is about 5 μm or less.

【0011】さらにこの第1の製造方法においては、母
相の原料粉末と分散粒子の原料粉末とを機械的に混合粉
砕した後、得られた混合物を、大気やH2 O,CH4
NH3 等の酸素、窒素及び炭素の少なくとも1種を含有
する雰囲気中で加熱することにより、上述したような水
素を含有する原料粉末が容易に酸化、窒化または炭化さ
れる。続いて、例えば母相となる金属は金属単体まで還
元されるが分散粒子中の金属成分は金属単体までは還元
されない還元ポテンシャルを有する還元性雰囲気中で、
得られた酸化物、窒化物あるいは炭化物からなる混合物
を加熱する。このとき、母相となる金属が選択的に還元
されるのでこれを焼結すれば、母相となる金属中に酸化
物、窒化物あるいは炭化物からなる分散粒子が均一に分
散されてなる分散強化型合金が製造される。
Further, in the first manufacturing method, the raw material powder of the mother phase and the raw material powder of the dispersed particles are mechanically mixed and pulverized, and then the obtained mixture is mixed with the atmosphere, H 2 O, CH 4 ,
By heating in an atmosphere containing at least one of oxygen such as NH 3 and nitrogen and carbon, the raw material powder containing hydrogen as described above is easily oxidized, nitrided or carbonized. Subsequently, for example, the metal serving as the mother phase is reduced to the metal simple substance, but the metal component in the dispersed particles is not reduced to the metal simple substance in a reducing atmosphere having a reduction potential,
The resulting mixture of oxides, nitrides or carbides is heated. At this time, since the mother phase metal is selectively reduced, if this is sintered, dispersion strengthening is achieved by uniformly dispersing dispersed particles of oxide, nitride or carbide in the mother phase metal. A mold alloy is produced.

【0012】上述したような第1の製造方法は、母相と
なる金属が銅、銀、鉄、ニッケル、コバルト、クロム、
亜鉛、モリブデン、タングステン等である場合に広く適
用され得るが、母相となる金属が銅、銀またはこれらの
合金である分散強化型合金に対しては特に好ましく適用
される。何となればこの場合、銅、銀またはこれらの合
金が本来有する高い電気伝導度と分散粒子が均一に分散
されたことに起因する充分な機械的強度とを兼ね備え、
極めて特性の優れた分散強化型合金を製造することが可
能となるからである。また、母相となる金属として鉄、
ニッケル、コバルトは、水素化物等水素を含有する原料
粉末を容易に調製できる点で好ましい。
In the first manufacturing method as described above, the metal serving as the mother phase is copper, silver, iron, nickel, cobalt, chromium,
Although it can be widely applied to the case of zinc, molybdenum, tungsten, etc., it is particularly preferably applied to a dispersion strengthening type alloy in which a metal serving as a matrix phase is copper, silver or an alloy thereof. In this case, what is necessary is to combine copper, silver, or an alloy originally having a high electric conductivity and a sufficient mechanical strength due to the dispersed particles being uniformly dispersed,
This is because it becomes possible to produce a dispersion strengthened alloy having extremely excellent characteristics. Further, iron is used as a metal serving as a matrix phase,
Nickel and cobalt are preferable in that a raw material powder containing hydrogen such as hydride can be easily prepared.

【0013】一方、このような母相となる金属中に均一
に分散される分散粒子としては、還元性雰囲気中で母相
となる金属の酸化物、窒化物あるいは炭化物等よりも安
定な例えば金属化合物を用いることができ、具体的には
アルミニウム、ジルコニウム、ベリリウム、ハフニウ
ム、トリウム、マグネシウム、チタンやイットリウム、
ランタン、セリウム、ネオジウム等の希土類元素の酸化
物、窒化物、炭化物が好適である。なおこれらのうち、
ジルコニウム、ハフニウム、トリウム、マグネシウム、
チタン、イットリウム、ランタン、セリウム等の金属成
分では、分散粒子の原料粉末として水素を含有する例え
ば水素化物の合成が容易である。
On the other hand, the dispersed particles which are uniformly dispersed in the metal serving as the mother phase are, for example, metals which are more stable than oxides, nitrides or carbides of the metal serving as the mother phase in a reducing atmosphere. A compound can be used, and specifically, aluminum, zirconium, beryllium, hafnium, thorium, magnesium, titanium or yttrium,
Oxides, nitrides and carbides of rare earth elements such as lanthanum, cerium and neodymium are suitable. Of these,
Zirconium, hafnium, thorium, magnesium,
With metal components such as titanium, yttrium, lanthanum, and cerium, it is easy to synthesize, for example, a hydride containing hydrogen as a raw material powder of dispersed particles.

【0014】ここで具体的に、母相となる金属が銅で分
散粒子が水素化物の合成が容易な金属成分の酸化物であ
る場合、第1の製造方法ではまず、例えば母相の原料粉
末としての酸化銅と前記金属成分の水素化物からなる分
散粒子の原料粉末とを用意し、最終的に得られる分散強
化型銅合金の母相中に0.5〜6体積%の分散粒子が分
散されるような配合量でこれらを配合する。前記酸化銅
としては、酸化第一銅(Cu2 O)、酸化第二銅(Cu
O)、非化学量論的な酸化銅(CuOx )のいずれであ
ってもよい。また分散粒子を均一に分散させる観点か
ら、母相の原料粉末は粒径が5μm以下、さらには1μ
m以下、分散粒子の原料粉末は粒径が5μm以下である
ことが好ましい。
Here, specifically, in the case where the metal serving as the mother phase is copper and the dispersed particles are oxides of a metal component that facilitates the synthesis of the hydride, in the first manufacturing method, first, for example, the raw material powder of the mother phase is used. As a raw material powder of dispersed particles composed of copper oxide and hydride of the metal component as described above, 0.5 to 6% by volume of dispersed particles are dispersed in the matrix phase of the finally obtained dispersion strengthened copper alloy. These are compounded in such an amount as described above. As the copper oxide, cuprous oxide (Cu 2 O), cupric oxide (Cu
O) or non-stoichiometric copper oxide (CuO x ). From the viewpoint of uniformly dispersing the dispersed particles, the raw material powder of the mother phase has a particle size of 5 μm or less, further 1 μm.
It is preferable that the raw material powder of the dispersed particles has a particle diameter of 5 μm or less.

【0015】続いて上述したような混合粉砕は、ボール
ミル、アトライター等公知の混合装置を使用して行なう
ことができる。この際に、容器及びボールは非金属製で
あることが好ましい。これは、金属製の容器やボールを
用いて粉砕・混合を行なうと、混合物中に鉄等の金属が
混入して、分散強化型合金の電気伝導度が著しく低下す
るおそれがあるからである。またこの場合のように、母
相となる金属が銅である分散強化型銅合金を製造する場
合は、容器やボールの少なくとも原料粉末と接する表面
を分散強化型銅合金やベリリウム銅合金等の強力銅合金
で形成することも、汚染の防止のうえで有効である。こ
こで混合物は、母相の原料粉末及び分散粒子の原料粉末
の粒径が0.05μm以下程度となるまで、充分に混合
粉砕することが好ましい。なお母相の原料粉末と分散粒
子の原料粉末を配合する前にも、それぞれ所望の粒径と
なるまで単独で粉砕してもよい。
Subsequently, the above-mentioned mixing and pulverization can be carried out by using a known mixing device such as a ball mill or an attritor. At this time, it is preferable that the container and the ball are made of non-metal. This is because when crushing and mixing is performed using a metal container or balls, a metal such as iron may be mixed in the mixture, and the electric conductivity of the dispersion-strengthened alloy may be significantly reduced. Further, as in this case, when producing a dispersion-strengthened copper alloy in which the metal serving as the mother phase is copper, the surface of the container or the ball in contact with at least the raw material powder should have a strong strength such as a dispersion-strengthened copper alloy or beryllium copper alloy. Forming a copper alloy is also effective in preventing contamination. Here, it is preferable that the mixture is sufficiently mixed and pulverized until the particle size of the raw material powder of the mother phase and the raw material powder of the dispersed particles becomes about 0.05 μm or less. Before the raw material powder of the mother phase and the raw material powder of the dispersed particles are blended, they may be pulverized individually until they have desired particle diameters.

【0016】次に、得られた混合物を大気等の酸化性雰
囲気中で加熱する。ここでは混合物中の水素化物が完全
に酸化物に転換されるまで、充分長時間混合物を加熱す
る。このとき、加熱の温度は400℃以上900℃以下
程度であることが好ましい。何となれば、400℃未満
では混合物中の水素化物が酸化物に転換されるまでにか
なりの長時間を要するからであり、900℃を越えると
分散粒子となる酸化物の凝集が発生し、ひいては微細な
分散粒子が均一に分散した高強度の分散強化型合金を製
造することが困難となるためである。次いで、前記混合
物を還元性雰囲気に保持された還元炉に装入して、水
素、一酸化炭素等の還元性ガスにより混合物中の銅を酸
化銅から金属銅へ選択的に還元する。このとき、銅の還
元が終了するまでは混合物の全ての部分を銅と酸化銅の
共晶温度である1065℃を越えない温度に保持するこ
とが好ましい。これは混合物の一部でも1065℃を越
えて加熱されると、分散粒子の著しい凝集や粗大化が発
生し、ひいては微細な分散粒子が均一に分散した高強度
の分散強化型合金を製造することが困難となるためであ
る。さらには、さほどの長時間を要することなく銅を酸
化銅から金属銅へ完全に還元させる観点から、混合物を
150℃以上1065℃以下の温度で保持することがよ
り好ましい。
Next, the obtained mixture is heated in an oxidizing atmosphere such as air. Here, the mixture is heated for a sufficiently long time until the hydride in the mixture is completely converted to the oxide. At this time, the heating temperature is preferably 400 ° C. or higher and 900 ° C. or lower. This is because if the temperature is lower than 400 ° C, it takes a considerably long time before the hydride in the mixture is converted into the oxide. This is because it becomes difficult to manufacture a high-strength dispersion-strengthening alloy in which fine dispersed particles are uniformly dispersed. Next, the mixture is charged into a reducing furnace kept in a reducing atmosphere, and the copper in the mixture is selectively reduced from copper oxide to metallic copper by a reducing gas such as hydrogen or carbon monoxide. At this time, it is preferable to keep all of the mixture at a temperature not exceeding 1065 ° C., which is the eutectic temperature of copper and copper oxide, until the reduction of copper is completed. This is because even if a part of the mixture is heated to more than 1065 ° C, the dispersed particles undergo remarkable aggregation and coarsening, and thus, a high strength dispersion strengthened alloy in which fine dispersed particles are uniformly dispersed is produced. Because it will be difficult. Further, from the viewpoint of completely reducing copper from copper oxide to metallic copper without requiring a long time, it is more preferable to hold the mixture at a temperature of 150 ° C. or higher and 1065 ° C. or lower.

【0017】ここで、上述したように混合物の全ての部
分を1065℃を越えない温度に保持するには、具体的
には銅の還元反応で発生する多量の熱を考慮して加熱炉
の温度をより低温側に設定し、また還元性ガスの分圧や
流量を調整して急激な還元反応が生じないように制御す
ればよい。ただし銅の還元がほぼ終了した時点では、銅
の還元反応に伴う熱はもはや発生しないので、加熱炉の
温度を例えば1065℃近傍まで高めても混合物が10
65℃を越えて加熱されることはない。
Here, as described above, in order to keep all the parts of the mixture at a temperature not exceeding 1065 ° C., specifically, the temperature of the heating furnace is taken into consideration in consideration of a large amount of heat generated by the reduction reaction of copper. May be set to a lower temperature side, and the partial pressure and flow rate of the reducing gas may be adjusted so as to prevent a rapid reduction reaction. However, at the time when the reduction of copper is almost completed, the heat accompanying the reduction reaction of copper is no longer generated, so even if the temperature of the heating furnace is raised to, for example, about 1065 ° C.
It is never heated above 65 ° C.

【0018】なおこの還元は、酸化銅を金属銅の状態ま
で還元でき、かつ分散粒子中の金属成分は完全には還元
されないような還元ポテンシャルを有する還元性雰囲気
で行なわれる。ただし、分散粒子の金属成分が全く還元
されない還元ポテンシャルを有する還元性雰囲気にする
必要はない。例えば、前記混合物が酸化銅とTiO2
らなる場合、TiOまでであればTiが還元されても何
ら問題はない。
This reduction is carried out in a reducing atmosphere having a reduction potential such that copper oxide can be reduced to the state of metallic copper and the metal component in the dispersed particles is not completely reduced. However, it is not necessary to create a reducing atmosphere having a reduction potential in which the metal component of the dispersed particles is not reduced at all. For example, when the mixture is composed of copper oxide and TiO 2, there is no problem even if Ti is reduced up to TiO.

【0019】次に、前記還元後の混合物をプレス等によ
り所定の形状に成形して成形体を作成する。この後、得
られた成形体を還元性雰囲気または不活性雰囲気(真空
も含む)中で焼結することにより、分散強化型合金が製
造される。なおここで、ホットプレス、高温静水圧プレ
ス(HIP)により分散強化型合金の成形、焼結を同時
に行なってもよく、特に低温焼結が可能でしかも機械的
強度に優れた分散強化型合金を製造することができるホ
ットプレス、HIPは好ましい。また還元前の混合物に
ついて、上述したような銅が選択的に還元される還元性
雰囲気中でホットプレスを施し、還元、成形、焼結を同
時に行なって分散強化型銅合金を製造することも可能で
ある。
Next, the mixture after the reduction is molded into a predetermined shape by a press or the like to form a molded body. Then, the obtained compact is sintered in a reducing atmosphere or an inert atmosphere (including a vacuum) to produce a dispersion strengthened alloy. The dispersion-strengthened alloy may be molded and sintered at the same time by hot pressing or hot isostatic pressing (HIP). In particular, it is possible to obtain a dispersion-strengthened alloy that can be sintered at low temperature and has excellent mechanical strength. Hot press and HIP which can be produced are preferred. It is also possible to manufacture a dispersion-strengthened copper alloy by subjecting the mixture before reduction to hot pressing in the reducing atmosphere in which copper is selectively reduced as described above, and simultaneously performing reduction, molding and sintering. Is.

【0020】さらに本発明では第2に、母相となる金属
中に分散粒子が均一に分散されてなり、母相となる金属
は銅、銀及びこれらの合金から選ばれたいずれか1種で
ある分散強化型合金の製造方法であって、分散粒子の原
料としての金属成分を含有する25℃での粘度が5cp
以下の流体を母相の原料である母相となる金属の酸化物
に含浸させて母相の原料と分散粒子の原料との混合物を
得る工程と、前記金属成分が対応する金属酸化物、金属
窒化物及び金属炭化物の少なくとも1種に転換し得る雰
囲気に前記混合物を晒す工程と、混合物中の母相となる
金属を還元性雰囲気中で選択的に還元する工程と、混合
物を焼結する工程とを具備する分散強化型合金の製造方
法(以下、第2の製造方法という)を提供する。すなわ
ちこの分散強化型合金の製造方法は、銅、銀またはこれ
らの合金の酸化物に例えば分散粒子の原料の溶液を含浸
させ、得られた混合物を例えば焙焼して分散粒子として
の酸化物を生成せしめる一方、銅、銀またはこれらの合
金を酸化物から金属単体へ選択的に還元するというもの
である。
Secondly, in the present invention, dispersed particles are uniformly dispersed in a metal serving as a mother phase, and the metal serving as a mother phase is any one selected from copper, silver and alloys thereof. A method for producing a dispersion-strengthened alloy, comprising a metal component as a raw material for dispersed particles and having a viscosity of 5 cp at 25 ° C.
A step of obtaining a mixture of the raw material of the mother phase and the raw material of the dispersed particles by impregnating the following fluid with the oxide of the metal serving as the mother phase of the raw material of the mother phase, the metal oxide corresponding to the metal component, the metal Exposing the mixture to an atmosphere that can be converted to at least one of nitride and metal carbide; selectively reducing the matrix metal in the mixture in a reducing atmosphere; and sintering the mixture. And a method for producing a dispersion strengthened alloy (hereinafter referred to as a second production method). That is, the method for producing this dispersion-strengthened alloy is such that copper, silver, or an oxide of these alloys is impregnated with a solution of a raw material of dispersed particles, and the resulting mixture is roasted to form oxides as dispersed particles. While generating, copper, silver or alloys of these are selectively reduced from oxides to simple metal.

【0021】上述したような第2の製造方法において
は、例えば分散粒子の出発原料としての金属化合物が溶
解した低粘度の溶液を母相の原料に含浸させることによ
り、特定の金属成分を含有する溶液が母相の原料の微視
的な孔、割れ目等を通って粒子内にまで浸透する。従っ
て、前記金属成分の酸化物、窒化物または炭化物が生成
し得る雰囲気に晒した後、母相となる金属を選択的に還
元して焼結すれば、特に母相の原料と分散粒子の原料と
を混合粉砕することなく、微細な分散粒子が母相中に均
一に分散してなる高強度の分散強化型合金が製造され
る。しかも、母相の原料と分散粒子の原料との混合粉砕
時に生じる汚染を完全に回避することができ、原料の混
合粉砕時の汚染による分散強化型合金の電気伝導度の低
下を完全に防止することが可能である。このため第2の
製造方法は、母相となる金属それ自体が電気伝導度の高
い銅、銀またはこれらの合金である場合に有効に適用さ
れ、母相となる金属が銅、銀またはこれらの合金である
ことに由来する高い電気伝導度と、分散粒子が均一に分
散されたことに起因する充分な機械的強度とを兼ね備
え、極めて特性の優れた分散強化型合金を製造すること
が可能となる。
In the second manufacturing method as described above, for example, the raw material of the mother phase is impregnated with a low-viscosity solution in which a metal compound as a starting material for the dispersed particles is dissolved to contain a specific metal component. The solution penetrates into the particles through microscopic holes, cracks, etc. in the raw material of the matrix phase. Therefore, when exposed to an atmosphere in which oxides, nitrides or carbides of the metal components can be formed and then selectively reducing and sintering the metal serving as the mother phase, especially the raw material of the mother phase and the raw material of the dispersed particles A high-strength dispersion-strengthened alloy in which fine dispersed particles are uniformly dispersed in the matrix phase is manufactured without mixing and pulverizing and. Moreover, it is possible to completely avoid the contamination that occurs when the raw material of the mother phase and the raw material of the dispersed particles are mixed and pulverized, and to completely prevent the reduction of the electric conductivity of the dispersion strengthening alloy due to the contamination when the raw material is mixed and pulverized. It is possible. Therefore, the second manufacturing method is effectively applied when the metal serving as the mother phase itself is copper, silver or an alloy thereof having high electric conductivity, and the metal serving as the mother phase is copper, silver or these alloys. It is possible to produce a dispersion-strengthened alloy having extremely high properties, which has both high electrical conductivity derived from being an alloy and sufficient mechanical strength resulting from the dispersed particles being uniformly dispersed. Become.

【0022】ここで分散粒子の出発原料としての金属化
合物には、上述したような第1の製造方法と同様の金属
成分の無機または有機化合物、具体的には硝酸塩、硫酸
塩、塩化物、カルボン酸塩等の脂肪酸塩、アセチルアセ
トナトキレート等の錯化合物、プロポキシド等のアルコ
キシドが用いられ得る。一方、金属化合物を溶解させる
溶媒としては、母相の原料である母相となる金属の酸化
物との濡れ性の良好な水、アルコール、ベンゼン等が例
示され、前記金属化合物をこれら溶媒に溶解させて25
℃での粘度が5cp(センチポワズ)以下の溶液を調製
すればよい。なおこのとき溶液の濃度が高すぎると、溶
液の粘度が上昇する傾向があり、溶液の濃度が低すぎる
と、溶液を母相の原料に含浸させて得られた混合物を例
えば焙焼させる前に、多量の溶媒を蒸発、除去させるた
め混合物を非常に長時間乾燥させる必要が生じるおそれ
があるため、溶液の濃度は0.1〜1mol/l程度に
設定されることが好ましい。
Here, the metal compound as the starting material for the dispersed particles is an inorganic or organic compound having the same metal component as in the first production method as described above, specifically, nitrates, sulfates, chlorides, carvone. Fatty acid salts such as acid salts, complex compounds such as acetylacetonato chelate, and alkoxides such as propoxide can be used. On the other hand, as the solvent for dissolving the metal compound, water, alcohol, benzene and the like having good wettability with the oxide of the metal serving as the mother phase that is the raw material of the mother phase are exemplified, and the metal compound is dissolved in these solvents. Let me 25
A solution having a viscosity at 5 ° C. of 5 cp (centipoise) or less may be prepared. At this time, if the concentration of the solution is too high, the viscosity of the solution tends to increase, and if the concentration of the solution is too low, before the mixture obtained by impregnating the raw material of the mother phase with the solution is roasted, for example. The concentration of the solution is preferably set to about 0.1 to 1 mol / l because the mixture may need to be dried for a very long time in order to evaporate and remove a large amount of the solvent.

【0023】第2の製造方法において、母相の原料に含
浸させる前記溶液等の流体の粘度が25℃で5cp以下
に規定される理由は、溶液の粘度が高すぎると溶液が母
相の原料の粒子内にまで充分に浸透しないからであり、
より好ましくは1cp以下である。さらに、溶液を母相
の原料の粒子内にまで充分に浸透させるためには、母相
の原料の粒子は孔や割れ目が多いほどよい。また前記溶
媒中、水は比較的多量の金属化合物を溶解しても溶液の
粘度の上昇が生じ難い点で好ましい。ただし、それ自体
25℃で粘度5cp以下の液体である金属化合物を分散
粒子の出発原料として用いる場合は、金属化合物を溶媒
に溶解させて溶液を調製することなく、金属化合物を直
接母相の原料である母相となる金属の酸化物に含浸させ
ても構わない。
In the second production method, the viscosity of the fluid such as the solution impregnated into the raw material of the mother phase is specified to be 5 cp or less at 25 ° C. because the viscosity of the solution is too high. Because it does not penetrate sufficiently into the particles of
It is more preferably 1 cp or less. Further, in order to sufficiently permeate the solution into the particles of the raw material of the mother phase, it is better that the particles of the raw material of the mother phase have more pores and cracks. Further, in the solvent, water is preferable because the viscosity of the solution hardly rises even if a relatively large amount of the metal compound is dissolved. However, when a metal compound, which is a liquid having a viscosity of 5 cp or less at 25 ° C. itself, is used as a starting material for dispersed particles, the metal compound is directly dissolved in a solvent to prepare a solution, and the metal compound is directly used as a raw material for the mother phase. It may be impregnated with an oxide of a metal serving as a mother phase.

【0024】一方、上述したような金属の酸化物からな
る母相の原料としては、粒径が1μm以下、さらには
0.5μm以下の粉末を用いることが好ましく、このよ
うな金属の酸化物の粉末は、例えば対応する金属塩の水
溶液からpHを調整して金属の酸化物の粒子を沈殿せし
め、瀘過後水洗、乾燥して合成すればよい。ただし、こ
こでの粒径は一次粒子の粒子径であって、凝集して粒径
の大きな二次粒子を形成しても、粒子の孔や割れ目等を
通っての溶液の浸透は可能であるため特に問題ない。
On the other hand, it is preferable to use a powder having a particle size of 1 μm or less, more preferably 0.5 μm or less, as a raw material of the mother phase composed of the metal oxide as described above. The powder may be synthesized, for example, by adjusting the pH from an aqueous solution of the corresponding metal salt to precipitate particles of the metal oxide, followed by filtration, washing with water, and drying. However, the particle size here is the particle size of the primary particles, and even if the particles are aggregated to form secondary particles having a large particle size, it is possible to penetrate the solution through the pores or cracks of the particles. Therefore there is no particular problem.

【0025】次にこの第2の製造方法においては、流体
を含浸させた母相の原料を必要に応じ乾燥後、得られた
母相の原料と分散粒子の原料との混合物を例えば所望の
雰囲気中で焙焼することにより、上述したような分散粒
子の原料としての金属成分に対応する金属酸化物、金属
窒化物または金属炭化物が、母相の原料の粒子表面及び
粒子内で生成される。このとき、分散粒子の出発原料と
しての金属化合物を溶媒に溶解させて調製した溶液を用
いて母相の原料粉末に含浸させた場合は、所望の雰囲気
中での焙焼の前に、100℃程度の加熱下あるいは減圧
下等で母相の原料粉末に含浸した溶液の溶媒を蒸発、除
去させて、母相の原料粉末を乾燥させることが好まし
い。また前記乾燥の際には、溶媒の蒸発に伴って濃縮し
た溶液が部分的に凝集し、ひいては分散強化型合金にお
いて分散粒子が偏析するおそれがあるので、母相の原料
粉末を適宜撹拌することが好ましい。
In the second production method, the raw material of the mother phase impregnated with the fluid is dried if necessary, and then the mixture of the obtained raw material of the mother phase and the raw material of the dispersed particles is mixed in a desired atmosphere, for example. By roasting in the inside, a metal oxide, a metal nitride, or a metal carbide corresponding to the metal component as the raw material of the dispersed particles as described above is generated on the surface and inside the particle of the raw material of the mother phase. At this time, when the raw material powder of the mother phase is impregnated with a solution prepared by dissolving a metal compound as a starting raw material of the dispersed particles in a solvent, it is heated to 100 ° C. before roasting in a desired atmosphere. It is preferable to evaporate and remove the solvent of the solution impregnated in the raw material powder of the mother phase under moderate heating or reduced pressure to dry the raw material powder of the mother phase. Further, during the drying, the solution concentrated with evaporation of the solvent may partially agglomerate, which may cause segregation of dispersed particles in the dispersion-strengthened alloy, so that the raw material powder of the mother phase should be appropriately stirred. Is preferred.

【0026】ここで上述したような混合物の焙焼は、分
散粒子の原料の金属成分が最終的に対応する金属酸化
物、金属窒化物または金属炭化物に転換し得る雰囲気で
行なえばよい。このとき前記混合物中で、分散粒子の出
発原料としての金属化合物の分解や酸化物の生成等が並
行あるいは連続して進行する。具体的には、例えば大気
中での加熱でも分散粒子の原料の金属成分に対応する金
属酸化物が生成され得るが、混合物の焙焼の際の温度は
400℃以上900℃以下の範囲内に設定されることが
好ましい。この理由は、400℃未満の焙焼では上述し
たような金属酸化物、金属窒化物または金属炭化物の生
成までに長時間を要するか、あるいはこれらが充分には
生成しなくなるおそれがあるからであり、900℃を越
えると分散粒子の凝集や粗大化が発生し、ひいては微細
な分散粒子が均一に分散した高強度の分散強化型合金を
製造することが困難となるためである。
The roasting of the mixture as described above may be carried out in an atmosphere in which the metal component of the raw material of the dispersed particles can finally be converted into the corresponding metal oxide, metal nitride or metal carbide. At this time, in the mixture, the decomposition of the metal compound as the starting material of the dispersed particles, the formation of oxides, etc. proceed in parallel or continuously. Specifically, for example, even when heated in the air, a metal oxide corresponding to the metal component of the raw material of the dispersed particles can be produced, but the temperature at the time of roasting the mixture is in the range of 400 ° C to 900 ° C. It is preferably set. The reason for this is that in the case of roasting at less than 400 ° C., it may take a long time to form the above-mentioned metal oxide, metal nitride or metal carbide, or these may not be sufficiently formed. When the temperature exceeds 900 ° C., the dispersed particles are aggregated or coarsened, which makes it difficult to produce a high strength dispersion strengthened alloy in which fine dispersed particles are uniformly dispersed.

【0027】さらに、例えば母相となる金属は金属単体
まで還元されるが分散粒子中の金属成分は金属単体まで
は還元されない還元ポテンシャルを有する還元性雰囲気
中で母相となる金属を選択的に還元し、続いて前記還元
後の混合物を焼結すれば、母相となる金属中に金属酸化
物、金属窒化物あるいは金属炭化物からなる分散粒子が
均一に分散されてなる分散強化型合金が製造される。こ
のとき、混合物の還元及び焼結に当っての好ましい温
度、雰囲気等については第1の製造方法に準ずるが、さ
らに前記焙焼の際の温度を適宜考慮しながら、分散粒子
の凝集や粗大化が抑えられるように還元時の温度を設定
することがより好ましい。なおここでは、上述したよう
な金属成分の金属酸化物、金属窒化物または金属炭化物
への転換と母相となる金属の酸化物から金属単体への選
択的な還元が並行して進行し得る水素や一酸化炭素を含
有する雰囲気等で、分散粒子となる金属酸化物、金属窒
化物または金属炭化物及び母相となる金属を同時に生成
させることも可能である。また第1の製造方法と同様
に、例えば焼結前に予め混合物をプレス等により成形す
れば、所定の形状を有する分散強化型合金を製造するこ
とができる。
Further, for example, the metal serving as the mother phase is reduced to the metal alone, but the metal component in the dispersed particles is not reduced to the metal alone. In the reducing atmosphere having a reducing potential, the metal serving as the mother phase is selectively selected. Reduction and subsequent sintering of the mixture after the reduction produces a dispersion-strengthened alloy in which dispersed particles of a metal oxide, a metal nitride or a metal carbide are uniformly dispersed in a metal serving as a matrix phase. To be done. At this time, the preferable temperature, atmosphere, etc. for the reduction and sintering of the mixture are in accordance with the first production method, but the agglomeration and coarsening of dispersed particles are further taken into consideration while appropriately considering the temperature at the time of roasting. It is more preferable to set the temperature during the reduction so that In addition, here, hydrogen capable of proceeding in parallel with the conversion of the metal component to the metal oxide, the metal nitride or the metal carbide as described above and the selective reduction of the metal oxide serving as the mother phase to the simple metal. It is also possible to simultaneously generate a metal oxide, a metal nitride or a metal carbide to be dispersed particles and a metal to be a matrix phase in an atmosphere containing carbon monoxide or carbon monoxide. Further, similarly to the first manufacturing method, for example, if the mixture is previously molded by pressing before sintering, a dispersion strengthened alloy having a predetermined shape can be manufactured.

【0028】このような第2の製造方法は、上述した通
り母相となる金属が銅、銀またはこれらの合金の場合に
適用することが可能である。ここで母相となる金属が銅
や銀の合金であるときは、銅、銀に対する合金化成分と
して1000℃以下程度の還元性雰囲気で金属まで還元
することが可能な鉄、鉛、亜鉛、錫等が例示されるが、
合金化成分の含有量は鉄で0.01重量%以下、鉛で
0.10重量%以下、亜鉛で0.5重量%以下、錫で
0.06重量%以下程度であることが好ましい。何とな
れば、合金化成分がそれぞれ上述したような含有量を越
えると、分散強化型合金の母相において母相となる金属
単体からの電気伝導度の低下量が5%IACSを越え
て、結果的に分散強化型合金における電気伝導度の低下
が大きくなるためである。なお母相となる金属が合金で
ある場合、分散粒子の原料としての金属成分の溶液を母
相となる金属の酸化物に含浸させる前に、予め母相の原
料としての各金属の酸化物を混合して混合物を調製する
必要があるが、ここでは可及的に汚染のおそれの少ない
Vミキサー等の混合装置を使用することが望まれる。
The second manufacturing method as described above can be applied to the case where the metal serving as the mother phase is copper, silver or an alloy thereof as described above. When the metal serving as the mother phase is an alloy of copper or silver, iron, lead, zinc, tin capable of reducing to a metal in a reducing atmosphere of about 1000 ° C. or less as an alloying component for copper and silver. Etc. are illustrated,
The content of the alloying component is preferably about 0.01 wt% or less for iron, 0.10 wt% or less for lead, 0.5 wt% or less for zinc, and 0.06 wt% or less for tin. What is more, when the alloying components exceed the above-mentioned contents respectively, the amount of decrease in the electrical conductivity from the simple metal as the parent phase in the parent phase of the dispersion strengthened alloy exceeds 5% IACS, and the result This is because the decrease in the electric conductivity of the dispersion strengthened alloy becomes large. When the metal as the mother phase is an alloy, before impregnating the solution of the metal component as the raw material of the dispersed particles into the oxide of the metal as the mother phase, the oxide of each metal as the raw material of the mother phase is previously prepared. It is necessary to prepare a mixture by mixing, but it is desirable to use a mixing device such as a V mixer which is less likely to be contaminated here.

【0029】さらに第2の製造方法において、母相とし
て特に銅−銀合金は、分散強化型合金の電気伝導度をさ
ほど低下させることなく固溶強化による高強度化が期待
できるので好ましく、このとき0.1〜3重量%の銀及
び残部銅からなる銅−銀合金がさらに好ましい。これ
は、銅−銀合金中銀の含有量が0.1重量%未満だと、
固溶強化による分散強化型合金の顕著な高強度化は期待
できず、銀の含有量が3重量%を越えると、分散強化型
合金における電気伝導度の低下が大きくなるおそれがあ
るからである。
Further, in the second production method, a copper-silver alloy is particularly preferable as a matrix phase because it is expected that the strength of the dispersion-strengthened alloy can be enhanced by solid solution without significantly lowering the electric conductivity thereof. More preferred is a copper-silver alloy consisting of 0.1 to 3 wt% silver and the balance copper. This means that if the content of silver in the copper-silver alloy is less than 0.1% by weight,
This is because it is not possible to expect a remarkable increase in strength of the dispersion-strengthened alloy by solid solution strengthening, and if the content of silver exceeds 3% by weight, the electrical conductivity of the dispersion-strengthened alloy may be significantly reduced. .

【0030】なお上述したような本発明では、分散強化
型合金における母相中の固溶元素の全体量が少ない方が
好ましい。具体的には、母相において母相となる金属単
体からの電気伝導度の低下量が5%IACS以内(銅母
相の場合電気抵抗率の絶対値が1.77μΩcm以下)
となるように、固溶元素の全体量を制御することが望ま
れる。
In the present invention as described above, it is preferable that the total amount of solid solution elements in the matrix phase of the dispersion strengthened alloy is small. Specifically, in the parent phase, the amount of decrease in the electrical conductivity from the single metal that is the parent phase is within 5% IACS (in the case of the copper parent phase, the absolute value of the electrical resistivity is 1.77 μΩcm or less).
Therefore, it is desirable to control the total amount of solid solution elements.

【0031】また本発明で用いられ得る分散粒子として
は、上述したようにアルミニウム、ジルコニウム、ベリ
リウム、ハフニウム、トリウム、マグネシウム、チタン
や希土類元素の酸化物、窒化物、炭化物等を用いること
ができるが、具体的には酸化アルミニウム、酸化ジルコ
ニウム、酸化チタン、酸化ハフニウム、酸化トリウム、
酸化珪素、酸化マグネシウム、酸化イットリウム、酸化
ランタン、酸化セリウム、酸化クロム、窒化アルミニウ
ム、窒化珪素、窒化チタン、窒化硼素、炭化チタン、炭
化硼素、硼化チタン等が例示される。特に好ましくは酸
化アルミニウムであり、このとき上述したような理由か
ら、母相中のアルミニウムの固溶量は0.04重量%以
下であることが好ましい。さらに、本発明における分散
粒子の好ましい分散量は0.5〜6体積%であり、0.
5体積%未満だと充分な機械的強度が得られず、6体積
%を越えると電気伝導度が低下するうえ二次加工も困難
となる。
As the dispersed particles that can be used in the present invention, as described above, aluminum, zirconium, beryllium, hafnium, thorium, magnesium, titanium and oxides, nitrides and carbides of rare earth elements can be used. , Specifically, aluminum oxide, zirconium oxide, titanium oxide, hafnium oxide, thorium oxide,
Examples thereof include silicon oxide, magnesium oxide, yttrium oxide, lanthanum oxide, cerium oxide, chromium oxide, aluminum nitride, silicon nitride, titanium nitride, boron nitride, titanium carbide, boron carbide and titanium boride. Aluminum oxide is particularly preferable, and for this reason, the solid solution amount of aluminum in the mother phase is preferably 0.04% by weight or less. Furthermore, the preferable dispersion amount of the dispersed particles in the present invention is 0.5 to 6% by volume, and
If it is less than 5% by volume, sufficient mechanical strength cannot be obtained, and if it exceeds 6% by volume, the electrical conductivity is lowered and the secondary processing becomes difficult.

【0032】一方、本発明でこのような分散粒子の粒径
は、分散強化型合金の機械的強度、延性、加工性等の観
点から好ましくは0.1μm以下、より好ましくは0.
005μm以上0.05μm以下とする。さらに本発明
では、分散粒子の存在しない母相の領域の平均径が0.
3μm以下であることが好ましい。これは、この平均径
が0.3μmを越えると、分散強化型合金の機械的強度
が不充分となるおそれがあるからである。なおここで、
分散粒子の存在しない母相の領域の平均径の算出方法に
ついて説明する。まず、分散強化型合金のサンプルから
薄膜試料を作成し、透過型電子顕微鏡で得られた薄膜試
料の100000倍の写真を写す。このときの顕微鏡写
真を図1に模式的に示す。次いで、図1に示されるよう
に写真上で分散粒子1以外の位置の任意の10点を選
び、各点を含み分散粒子1を含まないで描ける最大の円
を10個描き(ただし各点がこの円の中心になるとは限
らない)、これらの円の直径の平均値を分散粒子1の存
在しない母相2の領域の平均径とする。
On the other hand, the particle diameter of such dispersed particles in the present invention is preferably 0.1 μm or less, more preferably 0.1 μm or less from the viewpoint of mechanical strength, ductility, workability, etc. of the dispersion strengthened alloy.
It is set to 005 μm or more and 0.05 μm or less. Further, in the present invention, the average diameter of the matrix region where dispersed particles do not exist is 0.
It is preferably 3 μm or less. This is because if the average diameter exceeds 0.3 μm, the mechanical strength of the dispersion-strengthened alloy may be insufficient. Here,
A method of calculating the average diameter of the matrix region in which dispersed particles do not exist will be described. First, a thin film sample is prepared from a dispersion-strengthened alloy sample, and a 100,000-fold photograph of the thin film sample obtained by a transmission electron microscope is taken. A micrograph at this time is schematically shown in FIG. Next, as shown in FIG. 1, 10 arbitrary points on the photograph other than the dispersed particles 1 are selected, and 10 maximum circles including each point and not including the dispersed particles 1 are drawn (provided that each point is The average value of the diameters of these circles is not necessarily the center of these circles, and the average diameter of the region of the matrix phase 2 in which the dispersed particles 1 do not exist is used.

【0033】さらに本発明の分散強化型合金の製造方法
においては、脱酸剤、固体還元剤等の第3成分を母相の
原料及び分散粒子の原料に対し、0.5重量%程度まで
添加しても構わない。また製造された分散強化型合金
は、そのまま使用することもできるし、必要に応じ機械
加工、冷間加工、熱間加工等の二次加工を行なってから
使用してもよい。ここで分散強化型合金の加工に当って
は、通常の鍛造、圧延、押出し、線引き等を行なえばよ
いが、特に上述したような第2の製造方法によれば、原
料の混合粉砕に伴う汚染が全くなく極めて二次加工性の
良好な分散強化型合金を製造することが可能である。
Further, in the method for producing a dispersion strengthened alloy of the present invention, a third component such as a deoxidizer and a solid reducing agent is added up to about 0.5% by weight with respect to the raw material of the mother phase and the raw material of the dispersed particles. It doesn't matter. The produced dispersion strengthened alloy may be used as it is, or may be used after being subjected to secondary working such as mechanical working, cold working and hot working, if necessary. In processing the dispersion-strengthened alloy here, ordinary forging, rolling, extrusion, wire drawing, etc. may be carried out. In particular, according to the second manufacturing method as described above, contamination due to mixing and grinding of raw materials is performed. It is possible to produce a dispersion-strengthened alloy that is completely free of defects and has excellent secondary workability.

【0034】[0034]

【実施例】【Example】

実施例1 まず、母相の原料粉末として平均粒径1μmの酸化第二
銅の粒子を用い、これにそれぞれ下記表1に示した分散
粒子の原料粉末を、前記酸化第二銅の還元後の銅母相中
に2体積%の分散粒子が分散されるような配合量で配合
した。続いて、混合物を酸化アルミニウム製の容器及び
ボールからなるボールミル中5日間乾式で粉砕・混合し
た。この後、分散粒子の原料粉末として水素化物を用い
た試料No.1,2の混合物については、大気中で75
0℃、2時間加熱して水素化物を酸化物に転換させた。
Example 1 First, cupric oxide particles having an average particle size of 1 μm were used as a raw material powder of a mother phase, and the raw material powders of dispersed particles shown in Table 1 below were used after the reduction of the cupric oxide. The compounding amount was such that 2% by volume of dispersed particles were dispersed in the copper mother phase. Then, the mixture was dry-ground and mixed for 5 days in a ball mill consisting of an aluminum oxide container and balls. After this, sample No. 1 using hydride as the raw material powder of the dispersed particles. For mixtures of 1 and 2, 75 in air
The hydride was converted to the oxide by heating at 0 ° C. for 2 hours.

【0035】次いで、得られた混合物を酸化アルミニウ
ムからなるボート中に入れ、1気圧の水素とアルゴンと
の混合気流中で700℃、2時間保持し、前記酸化第二
銅が金属銅となるまで選択的に還元した。冷却後、生成
した分散強化型合金粉末をカーボン/カーボン複合体製
型中に充填し、水素雰囲気中900℃の温度にて400
kg/cm2 の圧力でホットプレス成形を行ない、試料
No.1〜5の分散強化型合金のビレットを製造した。
Then, the obtained mixture was put into a boat made of aluminum oxide and kept at 700 ° C. for 2 hours in a mixed gas stream of hydrogen and argon at 1 atm until the cupric oxide became metallic copper. Selectively reduced. After cooling, the generated dispersion-strengthened alloy powder was filled in a carbon / carbon composite mold, and the temperature was set to 400 at 900 ° C. in a hydrogen atmosphere.
Hot press molding was performed at a pressure of kg / cm 2 , and sample No. Billets of 1-5 dispersion strengthened alloys were produced.

【0036】次に、これら5種類の分散強化型合金のビ
レットについて、室温における電気伝導度、機械的強度
として0.2%耐力及び引張り伸び、並びに800℃で
の0.2%耐力及び引張り伸びを測定した。結果を表1
に併せて示す。表1に示されるように、分散粒子の原料
粉末として水素化物を用い本発明の第1の製造方法で製
造された試料No.1,2の分散強化型合金は、高い電
気伝導度を有し、かつ銅母相中に分散粒子が均一に分散
されたことに基づき機械的強度も充分であることが判っ
た。
Next, regarding the billets of these five kinds of dispersion strengthening alloys, the electrical conductivity at room temperature, 0.2% proof stress and tensile elongation as mechanical strength, and 0.2% proof stress and tensile elongation at 800 ° C. Was measured. The results are shown in Table 1.
Are also shown. As shown in Table 1, the sample No. manufactured by the first manufacturing method of the present invention using a hydride as the raw material powder of the dispersed particles. It was found that the dispersion-strengthened alloys 1 and 2 have high electric conductivity and also have sufficient mechanical strength based on the fact that the dispersed particles are uniformly dispersed in the copper matrix.

【0037】[0037]

【表1】 実施例2 まず、硫酸銅の水溶液のpHを調整して銅の酸化物を沈
殿させ、水洗、乾燥して粒径0.5μm以下の酸化第二
銅の粒子を母相の原料として用意した。一方、分散粒子
の出発原料としての硝酸アルミニウム九水和物13.3
gを純水100mlに溶解させて、25℃での粘度が
1.3cpの水溶液を調製し、この水溶液を前記母相の
原料に含浸せしめて母相の原料と分散粒子の原料との混
合物を得た。続いて、混合物を100℃程度に加熱、乾
燥させて水分を蒸発、除去した後、大気中で700℃、
2時間焙焼してアルミニウム成分を酸化物に転換させ
た。
[Table 1] Example 2 First, the pH of an aqueous solution of copper sulfate was adjusted to precipitate copper oxide, washed with water, and dried to prepare cupric oxide particles having a particle diameter of 0.5 μm or less as a raw material for a mother phase. On the other hand, aluminum nitrate nonahydrate 13.3 as a starting material for dispersed particles
g in 100 ml of pure water to prepare an aqueous solution having a viscosity of 1.3 cp at 25 ° C. and impregnating the aqueous solution with the raw material of the mother phase to prepare a mixture of the raw material of the mother phase and the raw material of the dispersed particles. Obtained. Then, the mixture is heated to about 100 ° C. and dried to evaporate and remove water, and then 700 ° C. in the atmosphere.
The aluminum component was converted into an oxide by roasting for 2 hours.

【0038】次いで、混合物を酸化アルミニウムからな
るボート中に入れ、全圧1気圧の水素とアルゴンとの混
合気流中で700℃、2時間保持し、前記酸化第二銅が
金属銅となるまで選択的に還元した。冷却後、生成した
分散強化型合金粉末をカーボン/カーボン複合体製型中
に充填し、真空中900℃の温度にて600kg/cm
2 の圧力でホットプレス成形を行ない、試料No.1の
分散強化型合金のビレットを製造した。一方比較のた
め、分散粒子の出発原料としてアルミニウムイソアミラ
ートを85℃の水中に滴下した後、加水分解して調製さ
れた25℃での粘度が12cpのAlO(OH)のゲル
を母相の原料に含浸せしめ、母相の原料と分散粒子の原
料との混合物を得た以外は全く同様にして、試料No.
2の試料分散強化型合金のビレットを製造した。また、
母相の原料と分散粒子の原料との混合物を焙焼してアル
ミニウム成分を酸化物に転換させた後、SUS304製
またはジルコニア製のポット、ブレード及びボールから
なるアトライター中8時間粉砕した以外は試料No.1
と全く同様の分散強化型合金のビレットを製造し、それ
ぞれ試料No.3及び試料No.4とした。
Then, the mixture was put into a boat made of aluminum oxide and kept at 700 ° C. for 2 hours in a mixed gas of hydrogen and argon at a total pressure of 1 atm, and the cupric oxide was selected until it became metallic copper. Reduced. After cooling, the generated dispersion-strengthened alloy powder is filled in a carbon / carbon composite mold, and 600 kg / cm at a temperature of 900 ° C. in vacuum.
Hot press molding was performed at a pressure of 2 , and sample No. A dispersion strengthened alloy billet No. 1 was produced. On the other hand, for comparison, aluminum isoamylate as a starting material for the dispersed particles was dropped into water at 85 ° C. and then hydrolyzed to prepare an AlO (OH) gel having a viscosity of 12 cp at 25 ° C. Sample No. 3 was prepared in the same manner except that the raw material was impregnated to obtain a mixture of the raw material of the mother phase and the raw material of the dispersed particles.
A sample dispersion strengthened alloy billet No. 2 was manufactured. Also,
Except that the mixture of the raw material of the mother phase and the raw material of the dispersed particles was roasted to convert the aluminum component to an oxide, and then pulverized in an attritor consisting of a SUS304 or zirconia pot, blade and ball for 8 hours. Sample No. 1
Billets of dispersion-strengthening type alloy were manufactured in exactly the same manner as in the above, and sample No. 3 and sample No. 3 It was set to 4.

【0039】次に、これら4種類の分散強化型合金のビ
レットについて、室温における電気伝導度、機械的強度
として0.2%耐力及び引張り伸び、並びに不純物であ
る鉄の含有量を測定した。さらに、機械加工により切り
出した直径10mmの円柱状試験片について鍛造、線引
きを行なって、線材として加工可能な限界直径を算出し
て二次加工性を評価した。なお、このとき加工に使用し
た線引きダイスでは、25μmが加工可能な限界直径の
下限であった。結果を表2に併せて示す。表2に示され
るように、分散粒子の原料としてのアルミニウム成分を
含有する25℃での粘度が5cp以下の水溶液を用い本
発明の第2の製造方法で製造された試料No.1の分散
強化型合金は、不純物による汚染が少なく高い電気伝導
度を有し、かつ銅母相中に分散粒子が均一に分散された
ことに基づき機械的強度が充分で、さらには二次加工性
も良好であることが判った。
Next, the billets of these four kinds of dispersion strengthening alloys were measured for electrical conductivity at room temperature, 0.2% proof stress and tensile elongation as mechanical strength, and the content of iron as an impurity. Further, a cylindrical test piece having a diameter of 10 mm cut out by machining was forged and drawn to calculate a limit diameter that can be processed as a wire rod to evaluate the secondary workability. In the wire drawing die used for processing at this time, 25 μm was the lower limit of the limit diameter for processing. The results are also shown in Table 2. As shown in Table 2, the sample No. manufactured by the second manufacturing method of the present invention using an aqueous solution containing an aluminum component as a raw material of dispersed particles and having a viscosity at 25 ° C. of 5 cp or less. The dispersion-strengthened alloy of No. 1 has a high electric conductivity with less contamination by impurities, and has sufficient mechanical strength based on the fact that the dispersed particles are uniformly dispersed in the copper matrix, and further the secondary processing is performed. It was found that the property was also good.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】以上詳述したように本発明によれば、電
気伝導及び熱伝導、機械的強度とも良好な分散強化型合
金を製造することが可能となる。
As described above in detail, according to the present invention, it is possible to produce a dispersion strengthening alloy having good electric conduction, heat conduction, and mechanical strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】 銅母相領域の平均径の算出方法を説明するた
めの模式図である。
FIG. 1 is a schematic diagram for explaining a method of calculating an average diameter of a copper matrix region.

【符号の説明】[Explanation of symbols]

1…分散粒子、2…銅母相。 1 ... Dispersed particles, 2 ... Copper mother phase.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 母相となる金属中に分散粒子が均一に分
散されてなる分散強化型合金の製造方法であって、少な
くとも一方は水素を含有する母相の原料粉末と分散粒子
の原料粉末とを混合粉砕する工程と、得られた混合物を
酸素、窒素及び炭素の少なくとも1種を含有する雰囲気
中で加熱する工程と、前記加熱の後混合物中の母相とな
る金属を還元性雰囲気中で選択的に還元する工程と、混
合物を焼結する工程とを具備することを特徴とする分散
強化型合金の製造方法。
1. A method for producing a dispersion-strengthened alloy in which dispersed particles are uniformly dispersed in a metal serving as a mother phase, at least one of which contains hydrogen-containing mother-phase raw material powder and dispersed-particle raw material powder. And pulverizing the mixture, heating the obtained mixture in an atmosphere containing at least one of oxygen, nitrogen and carbon, and heating the metal to be the mother phase in the mixture in a reducing atmosphere. A method for producing a dispersion-strengthened alloy, comprising: a step of selectively reducing with 1. and a step of sintering the mixture.
【請求項2】 母相となる金属は銅、銀及びこれらの合
金から選ばれたいずれか1種であることを特徴とする請
求項1記載の分散強化型合金の製造方法。
2. The method for producing a dispersion-strengthened alloy according to claim 1, wherein the metal serving as the mother phase is any one selected from copper, silver and alloys thereof.
【請求項3】 母相となる金属中に分散粒子が均一に分
散されてなり、母相となる金属は銅、銀及びこれらの合
金から選ばれたいずれか1種である分散強化型合金の製
造方法であって、分散粒子の原料としての金属成分を含
有する25℃での粘度が5cp以下の流体を母相の原料
である母相となる金属の酸化物に含浸させて母相の原料
と分散粒子の原料との混合物を得る工程と、前記金属成
分が対応する金属酸化物、金属窒化物及び金属炭化物の
少なくとも1種に転換し得る雰囲気に前記混合物を晒す
工程と、混合物中の母相となる金属を還元性雰囲気中で
選択的に還元する工程と、混合物を焼結する工程とを具
備することを特徴とする分散強化型合金の製造方法。
3. A dispersion-strengthened alloy in which dispersed particles are uniformly dispersed in a metal serving as a mother phase, and the metal serving as a mother phase is any one selected from copper, silver and alloys thereof. A method for producing a mother phase, comprising impregnating a fluid containing a metal component as a raw material of dispersed particles and having a viscosity at 25 ° C. of not more than 5 cp into a metal oxide serving as a mother phase of a mother phase And a raw material of dispersed particles, a step of exposing the mixture to an atmosphere in which the metal component can be converted into at least one of a corresponding metal oxide, metal nitride and metal carbide, and a mother in the mixture. A method for producing a dispersion strengthened alloy, comprising: a step of selectively reducing a phase metal in a reducing atmosphere; and a step of sintering a mixture.
JP23083594A 1994-09-27 1994-09-27 Production of dispersion strengthened alloy Pending JPH0892672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23083594A JPH0892672A (en) 1994-09-27 1994-09-27 Production of dispersion strengthened alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23083594A JPH0892672A (en) 1994-09-27 1994-09-27 Production of dispersion strengthened alloy

Publications (1)

Publication Number Publication Date
JPH0892672A true JPH0892672A (en) 1996-04-09

Family

ID=16914029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23083594A Pending JPH0892672A (en) 1994-09-27 1994-09-27 Production of dispersion strengthened alloy

Country Status (1)

Country Link
JP (1) JPH0892672A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502219B1 (en) * 1996-08-30 2005-10-21 지케이엔 신터 메탈즈, 인크. Method of forming by cold worked powdered metal forged parts
JP2015017254A (en) * 2013-07-12 2015-01-29 ゼロックス コーポレイションXerox Corporation Phase change ink pigment dispersion process
CN104928587A (en) * 2015-05-14 2015-09-23 浙江工贸职业技术学院 Method for machining yttria dispersion-strengthened steel
KR20200122656A (en) * 2019-04-18 2020-10-28 전북대학교산학협력단 Manufacturing method for oxide dispersion strenthening alloys

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502219B1 (en) * 1996-08-30 2005-10-21 지케이엔 신터 메탈즈, 인크. Method of forming by cold worked powdered metal forged parts
JP2015017254A (en) * 2013-07-12 2015-01-29 ゼロックス コーポレイションXerox Corporation Phase change ink pigment dispersion process
CN104928587A (en) * 2015-05-14 2015-09-23 浙江工贸职业技术学院 Method for machining yttria dispersion-strengthened steel
KR20200122656A (en) * 2019-04-18 2020-10-28 전북대학교산학협력단 Manufacturing method for oxide dispersion strenthening alloys

Similar Documents

Publication Publication Date Title
US3779714A (en) Dispersion strengthening of metals by internal oxidation
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
CN101956094B (en) Preparation method of high-strength and high-conductivity dispersion-strengthened alloy
JPS62238344A (en) Mechanical alloying method
WO2005102568A2 (en) Binary rhenium alloys
CN109576529A (en) High-performance disperse copper alloy and preparation method thereof
WO2017045146A1 (en) Powder metallurgy titanium alloys
CN114029496B (en) Preparation method of novel superfine molybdenum-rhenium alloy powder
CN102161097A (en) Preparation method of novel fine grained tungsten copper electrode material
JPH0892672A (en) Production of dispersion strengthened alloy
CN114592138B (en) Nano alumina particle reinforced copper-based composite material and preparation method thereof
JP2531701B2 (en) Manufacturing method of dispersion strengthened copper alloy
CN114807660A (en) Method for preparing copper-based composite material through copper-containing intermetallic compound
JPH0762467A (en) Dispersion-strengthening type copper alloy and its production
US3176386A (en) Dispersion strengthening of metals
CN110983087B (en) Method for improving oxide distribution in yttrium oxide dispersion strengthening tungsten alloy
JP2637192B2 (en) Manufacturing method of dispersion strengthened copper alloy
JPH0379401B2 (en)
He et al. A method to produce two-phase nanocomposites in solid state
CN117385223A (en) Cu- (Si) with excellent comprehensive performance 3 N 4 -Y 2 O 3 ) Preparation method of composite material
Scheithauer Jr et al. The Manufacture and Properties of High-Conductivity High-Strength Cu-ThO2
JPH06128604A (en) Production of metallic material
JPS6112801A (en) Production of powder for dispersion-strengthened alloy
JPH0293029A (en) Manufacture of oxide dispersion strengthened alloy
JPH0949001A (en) Oxide dispersion strengthened nickel alloy powder for anode of fuel cell and its production