JP2002371301A - Tungsten sintered compact and manufacturing method therefor - Google Patents

Tungsten sintered compact and manufacturing method therefor

Info

Publication number
JP2002371301A
JP2002371301A JP2001183666A JP2001183666A JP2002371301A JP 2002371301 A JP2002371301 A JP 2002371301A JP 2001183666 A JP2001183666 A JP 2001183666A JP 2001183666 A JP2001183666 A JP 2001183666A JP 2002371301 A JP2002371301 A JP 2002371301A
Authority
JP
Japan
Prior art keywords
tungsten
sintered body
tensile strength
mass
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001183666A
Other languages
Japanese (ja)
Other versions
JP4659278B2 (en
Inventor
Takanori Sumikura
孝典 角倉
Tomohiro Takita
朋広 瀧田
Kenichi Okamoto
謙一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2001183666A priority Critical patent/JP4659278B2/en
Publication of JP2002371301A publication Critical patent/JP2002371301A/en
Application granted granted Critical
Publication of JP4659278B2 publication Critical patent/JP4659278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tungsten material superior in structural stability and strength at high temperature, by dispersing metal and metal oxide with the use of an alternative substance to ThO2 , while taking difficulty of a technical method and an effect on a production cost into account, and to provide a manufacturing method therefor. SOLUTION: The closely packed W-sintered compact includes lanthanum oxide (La2O3) of 5.0-10.0 mass%, rhenium(Re) of 3-20 mass%, and the balance tungsten (W) with unavoidable impurities, and is made with the use of hot isostatic pressing(HIP). The sintered compact is comprised of very fine crystal grains, and has such stability as not to cause coarsening of the crystal grains even by severe heating, due to an effect of La2O3 and Re. Materials such as plates and linear rods manufactured in a predetermined process from the sintered compact as a raw material, have tensile strength of higher than 450 MPa even when heated to 1,000 deg.C or higher, and tensile strength of higher than 230 MPa even when heated to the range of 1,500 deg.C to 1,700 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、W材料およびその
製造方法に関し、詳しくは高温炉用反射板および炉用構
造部材および高輝度電極素材等に用いられるW材料およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a W material and a method for producing the same, and more particularly, to a W material used for a reflector for a high-temperature furnace, a structural member for a furnace, a high-luminance electrode material, and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】高融点金属材料の特長は優れた耐熱性で
ある。高融点金属材料中でもWは、最高融点3380℃
を有する金属であり、高温における多用が期待されるも
のである。しかしながら、現行市販されているW板材お
よび線棒材は純Wであり、次の理由から使用の制限を受
けている。その理由は、例えばW板材を1100℃以上
の高温下で使用すると再結晶粒成長を起こし、圧延加工
により形成された伸長した積層の繊維組織が等軸状の球
状組織に変貌し高温強度が低下してしまうことである。
また、この組織の変貌は、元々延性に乏しい性質を更に
脆弱な材料へ変質させてしまい実用性に欠く原因となっ
ている。
2. Description of the Related Art A refractory metal material is characterized by excellent heat resistance. Among the high melting point metal materials, W has a maximum melting point of 3380 ° C.
And is expected to be used frequently at high temperatures. However, currently commercially available W plate materials and wire rods are pure W, and their use is restricted for the following reasons. The reason is that, for example, when a W plate material is used at a high temperature of 1100 ° C. or more, recrystallized grain growth occurs, and the fiber structure of the stretched laminate formed by rolling is transformed into an equiaxed spherical structure, and the high-temperature strength is reduced. It is to do.
In addition, this transformation of the structure causes the originally poor ductility to be transformed into a more brittle material, which is a cause of lack of practicality.

【0003】そのような再結晶粒成長は、Wの本質的性
質であり、これを防止することは不可能であるが、粒成
長を抑制することによって、W本来の特質が活かされた
用途の展望が開かれると考える。
[0003] Such recrystallized grain growth is an essential property of W, and it is impossible to prevent such growth. However, by suppressing the grain growth, it is possible to use the inherent properties of W in applications. I think the prospects are open.

【0004】次に、純W板および線棒材の欠点について
述べる。これらの材料は、再結晶開始温度が1100℃
である。保持時間との関連もあるが、1100℃から再
結晶粒成長が始まる。
Next, defects of the pure W plate and the wire rod will be described. These materials have a recrystallization initiation temperature of 1100 ° C.
It is. Although related to the holding time, recrystallized grain growth starts at 1100 ° C.

【0005】また、Wに期待される実用温度は1700
℃以上である。Wに代用できる材料としては、モリブデ
ン(Mo)があるが、Moの融点は、2630℃とWに
比べて低いため、強度の低下が大きい。また1700℃
における蒸気圧は、W(10 −11torr)がMo
(10−7torr)に比べ4桁以上小さく、消耗が少
ないため長寿命である。
[0005] The expected practical temperature of W is 1700.
° C or higher. Materials that can be substituted for W include molybdenum
(Mo), but the melting point of Mo is 2630 ° C and W
Because of the lower strength, the strength is greatly reduced. 1700 ° C
Is W (10 -11torr) is Mo
(10-7torr), which is at least 4 orders of magnitude smaller and less wear
No long life.

【0006】さらに、再結晶開始と同時に組織が変化す
る。高温強度が維持されている組織であれば問題無い
が、組織変化により高温強度が低下し、且つ脆性材料へ
と変質する。
Further, the structure changes simultaneously with the start of recrystallization. Although there is no problem as long as the structure maintains the high-temperature strength, the high-temperature strength is reduced due to the structure change, and the structure is changed to a brittle material.

【0007】[0007]

【発明が解決しようとする課題】そこで、W材料の高温
特性の改善を進める方法が種々提案されている。それら
の改善方法は、次のように大別される。
Therefore, various methods for improving the high-temperature characteristics of W materials have been proposed. These improvement methods are roughly classified as follows.

【0008】(1)ThOなどの酸化物分散効果によ
る改善、(2)HfCなどの炭化物析出効果による改
善、(3)Nbなどの異種金属の合金固溶効果による改
善等。
(1) Improvement by the effect of dispersing oxides such as ThO 2 , (2) Improvement by the effect of precipitation of carbides such as HfC, and (3) Improvement by the effect of dissolving alloys of dissimilar metals such as Nb.

【0009】上記(2)の改善方法は、大きさがnmオ
ーダーの微細な炭化物を析出間距離を小さくし、析出物
とWマトリックスの転位との相互作用によるものであ
る。炭化物を微細にドープ,析出させる方法としてメカ
ニカルアロイング(MA)法がある。
The improvement method (2) is based on the interaction between the precipitates and the dislocations of the W matrix by reducing the inter-precipitation distance of fine carbides having a size on the order of nm. As a method of finely doping and depositing carbide, there is a mechanical alloying (MA) method.

【0010】しかしながら、この(2)の方法では、W
粒子も非常に微細になることにより活性となり空気との
反応により着火,爆発の恐れのため取扱が困難であり、
Wの工業的生産手法としては難がある。
However, according to the method (2), W
Particles become very fine and become active due to reaction with air, which makes them difficult to handle due to the risk of ignition and explosion.
There is difficulty as an industrial production method for W.

【0011】一方、上記(3)の改善方法は、高融点金
属同士の固溶による強化を狙うものではあるが、Nbは
非常に高価な金属であるため数%の添加を考えても、コ
ストが高く商用規模の材料提供には非現実的であり、特
殊部材向けなどの限定的用途となる。
On the other hand, the above-mentioned improvement method (3) aims at strengthening by solid solution of high melting point metals. However, since Nb is a very expensive metal, even if addition of several% is considered, cost is low. Therefore, it is impractical to provide materials on a commercial scale, and is limited to applications for special components.

【0012】そこで、上記(1)の酸化物分散効果は、
Wの組織を高温化においても安定せしめ、再結晶温度を
上昇させる働きがあるためと考えられる。
Therefore, the oxide dispersion effect of the above (1) is as follows.
It is considered that the structure of W stabilizes even at a high temperature and has a function of increasing the recrystallization temperature.

【0013】しかしながら、上記(1)の改善方法にお
いてThOは、放射性物質であるため、取扱の法規制
や使用時の環境への飛散による汚染などの観点から使用
困難な物質である。
However, in the above-mentioned improvement method (1), since ThO 2 is a radioactive substance, it is a substance that is difficult to use from the viewpoint of legal restrictions on handling and pollution due to scattering into the environment during use.

【0014】先行技術として、ThOの代わる代替材
として、希土類元素のうちランタン酸化物(La
,融点2300℃)を選定し、WにLa
0.4〜1.2質量%分散させ、再結晶後に加工方向に
伸長した長大結晶粒の積層組織を形成させることによっ
て、高温域においても高い引張強度を有した板材が提案
されている(特開平11−152534号公報、参
照)。
As a prior art, lanthanum oxide (La) among rare earth elements has been used as an alternative to ThO 2.
2 O 3 , melting point 2300 ° C.), disperse 0.4 to 1.2 mass% of La 2 O 3 in W, and form a lamination structure of long crystal grains elongated in the processing direction after recrystallization. In addition, a plate material having high tensile strength even in a high temperature range has been proposed (see JP-A-11-152534).

【0015】このように従来技術において、再結晶後に
高温特性に優れた長大結晶粒の積層組織を有する板材を
得るためには高加工率の塑性加工が不可欠となり、バル
ク,厚板への適用には限界がある。
As described above, in the prior art, in order to obtain a sheet having a laminated structure of long crystal grains having excellent high-temperature characteristics after recrystallization, plastic working at a high working rate is indispensable, and application to bulk and thick plates is required. Has limitations.

【0016】そこで、本発明の一技術的課題は、高温下
においても結晶粒が殆ど粗大化しない優れた組織安定性
を有する焼結体とその製造方法とを提供することにあ
る。
It is an object of the present invention to provide a sintered body having excellent structural stability in which crystal grains hardly become coarse even at a high temperature, and a method for producing the same.

【0017】また、本発明のもう一つの技術的課題は、
前記焼結体を素材として塑性加工を施した板材および線
棒材において、先行技術品より高い高温強度を有するモ
リブデン板材及び線棒材を提供することにある。
Another technical problem of the present invention is that
It is an object of the present invention to provide a molybdenum plate and a wire rod having higher high-temperature strength than a prior art product in a plate and a wire rod which have been subjected to plastic working using the sintered body as a raw material.

【0018】[0018]

【課題を解決するための手段】本発明によれば、タング
ステン焼結体において、前記焼結体はランタン酸化物お
よびレニウムを含有し、高温加熱を施しても結晶粒が粗
大化しない組織安定性を有することを特徴とするタング
ステン焼結体が得られる。
According to the present invention, in a tungsten sintered body, the sintered body contains lanthanum oxide and rhenium, and the crystal grains do not become coarse even when heated at a high temperature. Is obtained.

【0019】また、本発明によれば、前記タングステン
焼結体において、タングステン中に含まれるランタン酸
化物は5〜10質量%,レニウムが3〜20質量%,残
部がタングステンおよび不可避不純物分からなることを
特徴とするタングステン焼結体が得られる。
According to the present invention, in the tungsten sintered body, the lanthanum oxide contained in tungsten is 5 to 10% by mass, rhenium is 3 to 20% by mass, and the balance is tungsten and unavoidable impurities. Is obtained.

【0020】また、本発明によれば,前記いずれかのタ
ングステン焼結体を素材として加工した板材であって、
1000℃以上の加熱時において、450MPaを超え
る引張強度を有し、1500℃〜1700℃の温度範囲
において、230MPaを超える引張強度を有するタン
グステン板材が得られる。
According to the present invention, there is provided a plate processed by using any one of the above-mentioned tungsten sintered bodies as a raw material,
At the time of heating at 1000 ° C. or more, a tungsten plate material having a tensile strength exceeding 450 MPa and having a tensile strength exceeding 230 MPa in a temperature range of 1500 ° C. to 1700 ° C. is obtained.

【0021】また、本発明によれば、前記いずれかのタ
ングステン焼結体を素材として加工した線棒材であっ
て、1000℃以上の加熱時において、450MPaを
超える引張強度を有し、1500℃〜1700℃の温度
範囲において、230MPaを超える引張強度を有する
タングステン線棒材が得られる。
Further, according to the present invention, there is provided a wire rod formed by using any of the above-mentioned tungsten sintered bodies as a raw material, having a tensile strength exceeding 450 MPa when heated at 1000 ° C. or more, and having a tensile strength of 1500 ° C. In a temperature range of 11700 ° C., a tungsten wire rod having a tensile strength exceeding 230 MPa can be obtained.

【0022】また、本発明によれば、前記タングステン
焼結体を製造する方法であって、等方加圧焼結(HI
P)を用いることによって高緻密且つ10μm以下の微
細結晶粒からなるタングステン焼結体の製造方法が得ら
れる。
Further, according to the present invention, there is provided a method for producing the above-mentioned tungsten sintered body, comprising the steps of isostatic pressing (HI)
By using P), it is possible to obtain a method for producing a tungsten sintered body having high density and fine crystal grains of 10 μm or less.

【0023】また、本発明によれば、前記タングステン
板材を製造する方法であって、タングステンの青色酸化
物にランタン酸化物を5〜10質量%添加した後、還元
し、その粉末にレニウムを添加・混合した後、等方加圧
焼結(HIP)を用いて焼結し、総板厚減少率93%以
上で鍛造あるいは圧延することを特徴とするタングステ
ン板材の製造方法が得られる。
Further, according to the present invention, there is provided a method for producing the above-mentioned tungsten plate material, comprising adding 5 to 10% by mass of lanthanum oxide to a blue oxide of tungsten, reducing the same, and then adding rhenium to the powder. After the mixing, a method for producing a tungsten sheet material characterized by sintering using isotropic pressure sintering (HIP) and forging or rolling at a total sheet thickness reduction rate of 93% or more is obtained.

【0024】さらに、本発明によれば、前記タングステ
ン線棒材を製造する方法であって、タングステンの青色
酸化物にランタン酸化物を5〜10質量%添加した後、
還元し、その粉末にレニウムを添加・混合した後、等方
加圧焼結(HIP)を用いて焼結し、総断面減少率83
%以上で孔型圧延加工,転打加工,線引き加工の内すく
なくとも一種の一方向加工することを特徴とするタング
ステン線棒材の製造方法が得られる。
Further, according to the present invention, there is provided the method for producing the tungsten wire rod, wherein 5 to 10% by mass of lanthanum oxide is added to blue tungsten oxide.
After reducing, adding and mixing rhenium to the powder, sintering it using isotropic pressure sintering (HIP) to reduce the total area reduction rate to 83%.
% Or more, a method of manufacturing a tungsten wire rod characterized by at least one type of unidirectional working out of grooved rolling, rolling and drawing.

【0025】[0025]

【発明の実施の形態】まず、本発明について更に詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the present invention will be described in more detail.

【0026】本発明では、W材料の高温強度を図るた
め、ランタン酸化物分散効果に加え、Reの固溶強化に
よる改善を狙った。
In the present invention, in order to increase the high-temperature strength of the W material, in addition to the effect of dispersing the lanthanum oxide, the improvement by solid solution strengthening of Re is aimed.

【0027】W材料中にドープ酸化物を均一微細分散さ
せるには、W材料製造工程の上流、すなわち原料に近い
ほうが良い。安定な酸化物として、三酸化タングステン
(WO),青色酸化物(W11)がある。
In order to uniformly and finely disperse the doped oxide in the W material, it is better upstream of the W material manufacturing process, that is, closer to the raw material. Stable oxides include tungsten trioxide (WO 3 ) and blue oxide (W 4 O 11 ).

【0028】本発明では、酸化物粒子表面に微細なクラ
ックが存在する青色酸化物がドープ元素量のコントロー
ルの点で優位であると考え、これを使用することにし
た。
In the present invention, the blue oxide having fine cracks on the surface of the oxide particles is considered to be superior in controlling the amount of the doping element, and is used.

【0029】ドープ元素は高温強度向上に不可欠である
が、少なくてもその効果は発揮できず、多すぎると圧粉
体の焼結密度が不足し、後工程の熱間加工が不可能とな
る欠点がある。
The doping element is indispensable for improving the high-temperature strength, but the effect cannot be exerted even if the amount is small. If the amount is too large, the sintered density of the green compact becomes insufficient, so that hot working in a later step becomes impossible. There are drawbacks.

【0030】そこで、本発明ではLa添加量を5
〜10%にし、且つ固溶強化元素であるReを3〜20
%添加したW圧粉体を作製し、焼結体の焼結密度を上げ
るため、真空焼結の後、等方加圧焼結(HIP)を用い
て高緻密化させた焼結体を作製した。
Therefore, in the present invention, the amount of La 2 O 3 added is 5
And the solid solution strengthening element Re is 3 to 20%.
% Of W powder compact, and to increase the sintering density of the sintered compact, after vacuum sintering, produce a highly densified sintered compact using isotropic pressure sintering (HIP) did.

【0031】ここで、本発明において、最大La
添加量を10%にしたのは、これ以上添加量を増やすと
HIPを用いても焼結密度が上がらないためである。
Here, in the present invention, the maximum La 2 O 3
The addition amount is set to 10% because if the addition amount is further increased, the sintering density does not increase even when HIP is used.

【0032】また、本発明において、Re量を3〜20
%にしたのは、3%以下だと固溶強化としての効果を示
さないためであり、20%以上になると、コストが高く
商用規模の材料提供には非現実的になるためである。
In the present invention, the amount of Re is 3 to 20.
The reason is that if it is 3% or less, the effect of solid solution strengthening is not exhibited, and if it is 20% or more, the cost becomes high and it becomes impractical to provide a commercial-scale material.

【0033】次に、本発明の実施の形態によるW材料の
作製方法と、材料評価方法の具体例を純W材料と比較し
て述べる。
Next, a method of manufacturing a W material according to the embodiment of the present invention and a specific example of a material evaluation method will be described in comparison with a pure W material.

【0034】(材料作製方法)本発明の実施の形態によ
るW材料は、粉末冶金法に拠り作製される。平均粒径1
5μm,高純度の青色W酸化物粉(通称,代表的組成式
11,W純度99.98%)を原料とし、これに
所定量のLaを分散含有させた。酸化物を数十質
量ppmから数質量%の範囲で微細均一分散させるため
に湿式法を用いた。まずLaを試薬特級の硝酸に
て溶解後、エチルアルコールにて希釈し、La
度10g/lのドープ用原液を作製する。磁器製蒸発皿
に、1lのエチルアルコールを計量注入し、さらに目的
ドープ量に見合うドープ原液をメスビュレットにて計量
注入した蒸発皿の中に、予め秤量した青色酸化物(酸素
量19.4%)5,000gを投入し、スラリー状にな
るまで十分攪拌する。この蒸発皿を乾燥機の上に乗せ、
約100℃に加熱しながら攪拌を続け、アルコール臭が
無くなるまで乾燥した後冷却する。元の状態に戻った青
色酸化物は、Laを分散させたW酸化物となる。
(Material Manufacturing Method) The W material according to the embodiment of the present invention is manufactured by powder metallurgy. Average particle size 1
A 5 μm, high-purity blue W oxide powder (commonly referred to as a typical composition formula W 4 O 11 , W purity 99.98%) was used as a raw material, and a predetermined amount of La 2 O 3 was dispersed and contained therein. A wet method was used to finely and uniformly disperse the oxide in the range of tens of ppm by mass to several percent by mass. First, La 2 O 3 is dissolved in nitric acid of a reagent grade, and then diluted with ethyl alcohol to prepare a stock solution for doping having a La 2 O 3 concentration of 10 g / l. 1 l of ethyl alcohol was metered into a porcelain evaporating dish, and a dope stock solution corresponding to the target dope amount was metered into the evaporating dish with a mess burette. ) Charge 5,000 g and stir well until a slurry is formed. Place this evaporating dish on the dryer,
Stirring is continued while heating to about 100 ° C., followed by drying until there is no alcohol odor and then cooling. The blue oxide that has returned to the original state becomes a W oxide in which La 2 O 3 is dispersed.

【0035】ドープW酸化物を850℃の水素還元炉中
のて還元し、ドープW粉を得る。このドープW粉の平均
粒径は2.50μm,W純度99.95%であり、La
濃度はドープW酸化物状態と同一濃度である。
The doped W oxide is placed in a hydrogen reduction furnace at 850 ° C.
And reduced to obtain a dope W powder. Average of this dope W powder
The particle size is 2.50 μm, the W purity is 99.95%, and La
2O 3The concentration is the same as that of the doped W oxide state.

【0036】それぞれ所定量のLaを添加したド
ープW粉に所定量の金属Re粉を添加し、混合した。
A predetermined amount of metal Re powder was added to a dope W powder to which a predetermined amount of La 2 O 3 was added, respectively, and mixed.

【0037】このようにして得られたW−La
Re粉をラバーバックに充填、密閉後、真空引きし、静
水圧プレス機により成型した。成型圧力は223MPa
とした。この成型体を2000℃の真空焼結炉で10時
間焼結した後、2000℃−196MPa−3時間の条
件でHIPを行い、高緻密化させたW合金を得た。本発
明にて作製したW焼結体の密度を表1に示す。上記手法
にて得られたこれらの焼結体の組織を確認したところ、
純Wと比較して非常に微細な結晶粒を有するものであっ
た。測定した結晶粒径の値も併せて下記表1に示す。
The thus obtained W-La 2 O 3
The rubber powder was filled in a rubber bag, sealed, and then evacuated and molded by a hydrostatic press. Molding pressure is 223MPa
And After sintering this molded body in a vacuum sintering furnace at 2000 ° C. for 10 hours, HIP was performed under the conditions of 2000 ° C. and 196 MPa for 3 hours to obtain a highly densified W alloy. Table 1 shows the density of the W sintered body produced according to the present invention. When the structure of these sintered bodies obtained by the above method was confirmed,
It had very fine crystal grains as compared with pure W. The measured crystal grain size values are also shown in Table 1 below.

【0038】[0038]

【表1】 [Table 1]

【0039】焼結体の寸法は厚さ15mm,幅60m
m,長さ100mmである。焼結体中のランタン酸化物
は、W焼結粒の粒界および粒内に平均粒径サブミクロン
ないし1μmの粒状に分布・存在していた。またRe
は、EPMAにて固溶状態を調べたところ、Wマトリッ
クス中に均一に固溶していた。
The dimensions of the sintered body are 15 mm in thickness and 60 m in width.
m, length 100 mm. The lanthanum oxide in the sintered body was distributed and existed in the form of particles having an average particle diameter of submicron to 1 μm in the grain boundaries and in the grains of the W sintered grains. Also Re
When the solid solution state was examined by EPMA, it was found to be uniformly dissolved in the W matrix.

【0040】これらの焼結体を小さく切り出し、真空中
2200℃にて1時間から最長100時間まで加熱処理
を行い、それらの結晶粒径を測定することによって、高
温加熱による組織安定性を調べた。加熱時間と結晶粒径
の関係を図1に示す。図1に示すように、焼結温度より
200℃高い温度にて100時間加熱を施しても、その
結晶粒は殆ど粗大化はせず、10μm以下の微細結晶粒
を保持していた。
These sintered bodies were cut into small pieces, heat-treated in vacuum at 2200 ° C. for 1 hour to a maximum of 100 hours, and their crystal grain size was measured to examine the structural stability due to high-temperature heating. . FIG. 1 shows the relationship between the heating time and the crystal grain size. As shown in FIG. 1, even when heating was performed at a temperature 200 ° C. higher than the sintering temperature for 100 hours, the crystal grains hardly became coarse and fine crystal grains of 10 μm or less were retained.

【0041】これらの焼結体を次の手順で熱間圧延し、
最終板厚1mm(総板厚減少率93%)に仕上げた。熱
間圧延の初期段階では加熱温度1300℃〜1500
℃,圧延パス当りの圧延率を15〜30%とした。圧延
終期では加熱温度800℃〜1000℃,圧延率を10
〜25%とし、板厚1mm×幅70mm×長さ600m
m(圧延作業に支障のため中間で長手方向半分に切断)
の表面が酸化物で覆われた圧延板を得た。この圧延板を
水素中,1200℃,30分の歪取焼鈍処理の後、酸洗
化学処理により洗浄し金属光沢面の板となし、引張試験
用素材に使用した。
These sintered bodies were hot-rolled in the following procedure,
Finished to a final thickness of 1 mm (total thickness reduction rate 93%). In the initial stage of hot rolling, the heating temperature is 1300 ° C. to 1500
° C, and the rolling reduction per rolling pass was 15 to 30%. At the end of rolling, the heating temperature is 800-1000 ° C and the rolling rate is 10
2525%, board thickness 1mm × width 70mm × length 600m
m (cut in half in the longitudinal direction at the middle for trouble in rolling work)
A rolled plate having the surface covered with oxide was obtained. The rolled sheet was subjected to a strain relief annealing treatment in hydrogen at 1200 ° C. for 30 minutes, and then washed by a pickling chemical treatment to form a plate having a metallic glossy surface, and used as a material for a tensile test.

【0042】引張試験片の作製には、放電ワイヤ加工機
を用いた。その試験片は全長60mm,平行部長さ30
mm,幅4mmとし、平行部は1500番のエメリー紙
で最終研磨し、切断時の変形層を除去した。
For the production of the tensile test pieces, an electric discharge wire machine was used. The test piece has a total length of 60 mm and a parallel part length of 30
mm and a width of 4 mm, and the parallel portion was finally polished with a 1500 emery paper to remove a deformed layer at the time of cutting.

【0043】一方、比較材の純W材料の作製はドープ工
程を除き同じプロセスを踏襲して実施した。
On the other hand, a pure W material as a comparative material was manufactured by following the same process except for the doping step.

【0044】本発明と比較材との両試験片に、真空中1
500℃,1時間の焼鈍処理を行った後、引張試験に供
した。高温引張試験は、窒素雰囲気中,歪速度5×10
−4−1で行った。
Each of the test pieces of the present invention and the comparative material was subjected to
After an annealing treatment at 500 ° C. for 1 hour, it was subjected to a tensile test. The high-temperature tensile test was performed in a nitrogen atmosphere at a strain rate of 5 × 10
-4 S- 1 .

【0045】図2は1700℃における本発明材(W−
10%La−3〜20%Re)のRe量と引張強
度の関係を示す図である。図2に示すように、La
およびReを添加した本発明材の引張強度が比較材よ
り高い値を示した。更にRe添加量を増やすほど、引張
強度は高い値を示した。
FIG. 2 shows the material of the present invention (W-
Is a diagram showing a relationship of Re amount and tensile strength of 10% La 2 O 3 -3~20% Re). As shown in FIG. 2, La 2 O
The tensile strength of the material of the present invention to which 3 and Re were added showed a higher value than the comparative material. As the amount of Re added was further increased, the tensile strength showed a higher value.

【0046】図3は1000℃〜1700℃の高温域に
おける本発明材(W−10%La−20%Re)
と比較材の引張強度と温度の関係を示す図である。図3
に示すように、試験を行った全ての温度域において、本
発明材の引張強度が比較材の約2.5倍の引張強度を示
した。更に先行技術により提案されたW−1%La
板(圧延等の条件は同じ)と比較しても高い引張強度
を示した。尚、他の組成のW板材の強度の例を下記表2
に示す。
FIG. 3 shows the material of the present invention (W-10% La 2 O 3 -20% Re) in a high temperature range of 1000 ° C. to 1700 ° C.
FIG. 6 is a diagram showing a relationship between tensile strength and temperature of a comparative material. FIG.
As shown in Table 2, the tensile strength of the material of the present invention was about 2.5 times that of the comparative material in all the temperature ranges where the test was performed. Further, W-1% La 2 O proposed by the prior art
Even when compared with three sheets (the conditions of rolling and the like are the same), high tensile strength was shown. Table 2 below shows examples of the strength of W plate materials having other compositions.
Shown in

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【発明の効果】以上、説明したように、本発明によれ
ば、ランタン酸化物およびレニウムを均一に分散・固溶
させることによって、純Wに比べ、非常に微細な結晶粒
を有し、これらの焼結体は高温加熱においても結晶粒粗
大化は起こらない非常に安定した焼結体およびその製造
方法を提供することができる。
As described above, according to the present invention, lanthanum oxide and rhenium are uniformly dispersed and dissolved to have very fine crystal grains as compared with pure W. Can provide a very stable sintered body which does not cause crystal grain coarsening even when heated at a high temperature, and a method for producing the same.

【0049】さらに、本発明によれば、前述の焼結体を
素材として、例えば2.5倍程度の高温強度を有する新
規なタングステン板および線棒材およびその製造方法を
提供することができる。
Further, according to the present invention, it is possible to provide a novel tungsten plate and wire rod having a high temperature strength of, for example, about 2.5 times, using the above-mentioned sintered body as a raw material, and a method for producing the same.

【0050】また、本発明に用いたランタン酸化物は、
ThOに比べ取り扱いが容易で放射能汚染も全く無
く、無公害の材料である。したがって本発明によれば、
Laのドープ技術,当該ドープ焼結体の圧延技術
は量産志向の高いものであり、工業化も容易であるタン
グステン焼結体ならびにそれらを素材として塑性加工を
施した板材および線棒材の製造方法を提供することがで
きる。
The lanthanum oxide used in the present invention is:
Compared to ThO 2, it is easier to handle, has no radioactive contamination, and is a pollution-free material. Therefore, according to the present invention,
The La 2 O 3 doping technology and the rolling technology of the dope sintered body are high in mass production and are easy to industrialize. Tungsten sintered bodies and sheet and wire rods subjected to plastic working using them are used as raw materials. A manufacturing method can be provided.

【0051】また、本発明によるタングステン焼結体な
らびにそれらを素材として塑性加工を施した板材および
線棒材は、優れた組織安定性や高温強度を生かし、高温
炉用反射板および炉用構造部材等の耐高温脆性,耐高温
変形性が要求される用途に最適である。
Further, the tungsten sintered body according to the present invention, and the plate material and the wire rod obtained by subjecting them to plastic working by using them as a raw material, make use of excellent structural stability and high-temperature strength, and provide a reflector for a high-temperature furnace and a structural member for a furnace. Ideal for applications requiring high temperature brittleness resistance and high temperature deformation resistance.

【0052】さらに、本発明によるタングステン焼結体
ならびにそれらを素材として塑性加工を施した板材およ
び線棒材は、優れた高温強度を有するので、高温負荷
や、高エネルギーが入力される高輝度電極の耐垂下性,
耐消耗性および耐熱変形も改善することができる。
Further, the tungsten sintered body according to the present invention and the plate and wire rod obtained by subjecting them to plastic working have excellent high-temperature strength, so that a high-temperature load or a high-luminance electrode to which high energy is input can be obtained. Droop resistance,
Wear resistance and heat deformation can also be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による焼結体を真空中22
00℃にて1時間〜100時間まで加熱処理したもの
の、加熱時間と結晶粒径との関係を示す図である。
FIG. 1 shows a sintered compact according to an embodiment of the present invention in a vacuum.
It is a figure which shows the relationship between a heating time and a crystal grain size after performing heat processing for 1 hour-100 hours at 00 degreeC.

【図2】本発明の実施の形態による焼鈍材(W−10%
La−3〜20%Re)における、Re量と引張
強度との関係を示す図であり、併せて比較材として純W
の焼鈍材も示している。
FIG. 2 shows an annealed material (W-10%) according to an embodiment of the present invention.
In La 2 O 3 -3~20% Re) , a diagram showing the relationship between Re quantity and tensile strength, together with pure W as a comparative material
The annealed material is also shown.

【図3】本発明の実施の形態による焼鈍材(W−10%
La−20%Re)における、試験温度と引張強
度との関係を示す図であり、併せて比較材として純Wの
焼鈍材も示している。
FIG. 3 shows an annealed material (W-10%) according to an embodiment of the present invention.
In La 2 O 3 -20% Re) , a diagram showing the relationship between the tensile strength and the test temperature are also shown annealed material of pure W as comparative material together.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 謙一 富山県富山市岩瀬古志町2番地 株式会社 アライドマテリアル富山製作所内 Fターム(参考) 4K018 AA20 BC09 BC11 BC17 EA13 FA02 KA07 KA37  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenichi Okamoto 2nd Iwase Koshimachi, Toyama City, Toyama Prefecture Allied Materials Toyama Works F-term (reference) 4K018 AA20 BC09 BC11 BC17 EA13 FA02 KA07 KA37 KA37

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 タングステン焼結体において、前記焼結
体はランタン酸化物およびレニウムを含有し、高温加熱
を施しても結晶粒が粗大化しない組織安定性を有するこ
とを特徴とするタングステン焼結体。
1. A tungsten sintered body, characterized in that said sintered body contains lanthanum oxide and rhenium, and has a structural stability such that crystal grains are not coarsened even when subjected to high-temperature heating. body.
【請求項2】 請求項1に記載されたタングステン焼結
体において、タングステン中に含まれるランタン酸化物
は5〜10質量%,レニウムが3〜20質量%,残部が
タングステンおよび不可避不純物分からなることを特徴
とするタングステン焼結体。
2. The tungsten sintered body according to claim 1, wherein the lanthanum oxide contained in the tungsten is 5 to 10% by mass, rhenium is 3 to 20% by mass, and the balance is tungsten and unavoidable impurities. A tungsten sintered body characterized by the following.
【請求項3】 請求項1又は2に記載されたタングステ
ン焼結体を素材として加工した板材であって、1000
℃以上の加熱時において、450MPaを超える引張強
度を有し、1500℃〜1700℃の温度範囲におい
て、230MPaを超える引張強度を有するタングステ
ン板材。
3. A plate processed using the tungsten sintered body according to claim 1 as a raw material,
A tungsten sheet material having a tensile strength of more than 450 MPa at the time of heating at not less than ℃ and having a tensile strength of more than 230 MPa in a temperature range of 1500 to 1700 ℃.
【請求項4】 請求項1又は2に記載されたタングステ
ン焼結体を素材として加工した線棒材であって、100
0℃以上の加熱時において、450MPaを超える引張
強度を有し、1500℃〜1700℃の温度範囲におい
て、230MPaを超える引張強度を有するタングステ
ン線棒材。
4. A wire rod processed by using the tungsten sintered body according to claim 1 as a raw material,
A tungsten wire rod having a tensile strength exceeding 450 MPa when heated at 0 ° C. or higher and having a tensile strength exceeding 230 MPa in a temperature range of 1500 ° C. to 1700 ° C.
【請求項5】 請求項1に記載されたタングステン焼結
体を製造する方法であって、等方加圧焼結(HIP)を
用いることによって高緻密且つ10μm以下の微細結晶
粒からなるタングステン焼結体の製造方法。
5. A method for producing a tungsten sintered body according to claim 1, wherein the tungsten sintered body is made of high-density and fine crystal grains of 10 μm or less by using isotropic pressure sintering (HIP). The method of manufacturing the aggregate.
【請求項6】 請求項3に記載されたタングステン板材
を製造する方法であって、タングステンの青色酸化物に
ランタン酸化物を5〜10質量%添加した後、還元し、
その粉末にレニウムを添加・混合した後、等方加圧焼結
(HIP)を用いて焼結し、総板厚減少率93%以上で
鍛造あるいは圧延することを特徴とするタングステン板
材の製造方法。
6. The method for producing a tungsten plate material according to claim 3, wherein 5 to 10% by mass of lanthanum oxide is added to a blue oxide of tungsten, and then reduced.
A method of manufacturing a tungsten sheet material, comprising adding and mixing rhenium to the powder, sintering using isotropic pressure sintering (HIP), and forging or rolling at a total sheet thickness reduction rate of 93% or more. .
【請求項7】 請求項4に記載されたタングステン線棒
材を製造する方法であって、タングステンの青色酸化物
にランタン酸化物を5〜10質量%添加した後、還元
し、その粉末にレニウムを添加・混合した後、等方加圧
焼結(HIP)を用いて焼結し、総断面減少率83%以
上で孔型圧延加工,転打加工,線引き加工の内すくなく
とも一種の一方向加工することを特徴とするタングステ
ン線棒材の製造方法。
7. The method for producing a tungsten wire rod according to claim 4, wherein after adding 5 to 10% by mass of lanthanum oxide to tungsten blue oxide, reduction is performed, and the powder is rhenium. After adding and mixing, sintering is performed using isotropic pressure sintering (HIP), and at least 83% or more of the total cross-sectional reduction rate is at least one type of one-way processing among the die rolling, rolling, and drawing. A method for producing a tungsten wire rod.
JP2001183666A 2001-06-18 2001-06-18 Tungsten sintered body and manufacturing method thereof, tungsten plate material and manufacturing method thereof Expired - Fee Related JP4659278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183666A JP4659278B2 (en) 2001-06-18 2001-06-18 Tungsten sintered body and manufacturing method thereof, tungsten plate material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001183666A JP4659278B2 (en) 2001-06-18 2001-06-18 Tungsten sintered body and manufacturing method thereof, tungsten plate material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002371301A true JP2002371301A (en) 2002-12-26
JP4659278B2 JP4659278B2 (en) 2011-03-30

Family

ID=19023578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183666A Expired - Fee Related JP4659278B2 (en) 2001-06-18 2001-06-18 Tungsten sintered body and manufacturing method thereof, tungsten plate material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4659278B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073418A1 (en) * 2004-01-30 2005-08-11 Nippon Tungsten Co., Ltd. Tungsten based sintered compact and method for production thereof
JP2007169789A (en) * 2005-12-23 2007-07-05 Plansee Metall Gmbh Method for producing semi-manufactured product or component having high density
CN100340365C (en) * 2004-09-30 2007-10-03 北京科技大学 Preparation of low-temperature primary sintering high-density superfine crystal particle pure tungsten material
CN100439522C (en) * 2006-12-15 2008-12-03 西部金属材料股份有限公司 Process for preparing molybdenum-lanthanum alloy
CN102581282A (en) * 2012-03-26 2012-07-18 苏州先端稀有金属有限公司 Process for preparing large-specification tungsten plate billet by means of resistance sintering
DE102012217188A1 (en) * 2012-09-24 2014-03-27 Siemens Aktiengesellschaft Producing a refractory metal component
CN103849804A (en) * 2014-03-01 2014-06-11 深圳市威勒达科技开发有限公司 Non-radiative multi-component composite tungsten negative material for microwave oven magnetron and preparation process of negative material
CN103862196A (en) * 2014-03-01 2014-06-18 深圳市威勒达科技开发有限公司 Radiation-free multi-component rare earth tungsten electrode material and preparing method thereof
WO2016061721A1 (en) * 2014-10-20 2016-04-28 中南大学 Method for preparing rare-earth oxide dispersion strengthened fine-grained tungsten material
WO2017070479A1 (en) * 2015-10-22 2017-04-27 Applied Materials, Inc. Systems and methods for low resistivity physical vapor deposition of a tungsten film
CN109047781A (en) * 2018-08-16 2018-12-21 北京科技大学 A method of preparing large scale tungsten product
CN110000387A (en) * 2019-05-20 2019-07-12 安泰天龙钨钼科技有限公司 A kind of big specification fine grain tungsten bar and its two rolling preparation methods
CN111940753A (en) * 2020-08-27 2020-11-17 崇义章源钨业股份有限公司 System and method for preparing ultra-coarse tungsten powder
CN116770148A (en) * 2023-06-20 2023-09-19 西华大学 Block tungsten alloy with high thermal conductivity and low-temperature toughness and preparation method thereof
CN117600477A (en) * 2024-01-24 2024-02-27 崇义章源钨业股份有限公司 Tungsten filament containing lanthanum, rhenium and yttrium and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137694A (en) * 1988-10-17 1990-05-25 Wolfram Ind Mbh:G Manufacture of tungsten alloy rod
JPH11152534A (en) * 1997-11-17 1999-06-08 Tokyo Tungsten Co Ltd Tungsten sheet and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137694A (en) * 1988-10-17 1990-05-25 Wolfram Ind Mbh:G Manufacture of tungsten alloy rod
JPH11152534A (en) * 1997-11-17 1999-06-08 Tokyo Tungsten Co Ltd Tungsten sheet and its production

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073418A1 (en) * 2004-01-30 2005-08-11 Nippon Tungsten Co., Ltd. Tungsten based sintered compact and method for production thereof
CN100340365C (en) * 2004-09-30 2007-10-03 北京科技大学 Preparation of low-temperature primary sintering high-density superfine crystal particle pure tungsten material
JP2007169789A (en) * 2005-12-23 2007-07-05 Plansee Metall Gmbh Method for producing semi-manufactured product or component having high density
CN100439522C (en) * 2006-12-15 2008-12-03 西部金属材料股份有限公司 Process for preparing molybdenum-lanthanum alloy
CN102581282A (en) * 2012-03-26 2012-07-18 苏州先端稀有金属有限公司 Process for preparing large-specification tungsten plate billet by means of resistance sintering
DE102012217188A1 (en) * 2012-09-24 2014-03-27 Siemens Aktiengesellschaft Producing a refractory metal component
CN103849804A (en) * 2014-03-01 2014-06-11 深圳市威勒达科技开发有限公司 Non-radiative multi-component composite tungsten negative material for microwave oven magnetron and preparation process of negative material
CN103862196A (en) * 2014-03-01 2014-06-18 深圳市威勒达科技开发有限公司 Radiation-free multi-component rare earth tungsten electrode material and preparing method thereof
CN103862196B (en) * 2014-03-01 2016-08-17 深圳市威勒科技股份有限公司 A kind of radiationless electrode material of multielement composite rare earth tungsten and preparation method thereof
WO2016061721A1 (en) * 2014-10-20 2016-04-28 中南大学 Method for preparing rare-earth oxide dispersion strengthened fine-grained tungsten material
WO2017070479A1 (en) * 2015-10-22 2017-04-27 Applied Materials, Inc. Systems and methods for low resistivity physical vapor deposition of a tungsten film
US10043670B2 (en) 2015-10-22 2018-08-07 Applied Materials, Inc. Systems and methods for low resistivity physical vapor deposition of a tungsten film
US10734235B2 (en) 2015-10-22 2020-08-04 Applied Materials, Inc. Systems and methods for low resistivity physical vapor deposition of a tungsten film
CN109047781A (en) * 2018-08-16 2018-12-21 北京科技大学 A method of preparing large scale tungsten product
CN110000387A (en) * 2019-05-20 2019-07-12 安泰天龙钨钼科技有限公司 A kind of big specification fine grain tungsten bar and its two rolling preparation methods
CN110000387B (en) * 2019-05-20 2021-06-01 安泰天龙钨钼科技有限公司 Large-size fine-grain tungsten rod and two-roller rolling preparation method thereof
CN111940753A (en) * 2020-08-27 2020-11-17 崇义章源钨业股份有限公司 System and method for preparing ultra-coarse tungsten powder
CN116770148A (en) * 2023-06-20 2023-09-19 西华大学 Block tungsten alloy with high thermal conductivity and low-temperature toughness and preparation method thereof
CN116770148B (en) * 2023-06-20 2024-03-08 西华大学 Block tungsten alloy with high thermal conductivity and low-temperature toughness and preparation method thereof
CN117600477A (en) * 2024-01-24 2024-02-27 崇义章源钨业股份有限公司 Tungsten filament containing lanthanum, rhenium and yttrium and preparation method thereof
CN117600477B (en) * 2024-01-24 2024-03-22 崇义章源钨业股份有限公司 Tungsten filament containing lanthanum, rhenium and yttrium and preparation method thereof

Also Published As

Publication number Publication date
JP4659278B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US4950327A (en) Creep-resistant alloy of high-melting metal and process for producing the same
US7767138B2 (en) Process for the production of a molybdenum alloy
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
US20120241054A1 (en) Fine grain niobium sheet via ingot metallurgy
US4165982A (en) Molybdenum base alloy having excellent high-temperature strength and a method of producing same
JP4558572B2 (en) High heat resistant molybdenum alloy and manufacturing method thereof
JPH11152534A (en) Tungsten sheet and its production
JPS6033335A (en) Heat resistant molybdenum material
JPS63171847A (en) Molybdenum crucible and its production
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
US20050118052A1 (en) Stabilized grain size refractory metal powder metallurgy mill products
JP4108943B2 (en) Molybdenum sintered body, molybdenum plate material, and manufacturing method thereof
EP1546422B1 (en) Method of forming sag-resistant molybdenum-lanthana alloys
JPH06336631A (en) Oxide dispersion enhanced platinum or plating alloy and its production
JPH0754093A (en) Molybdenum material and production thereof
JP3385552B2 (en) Molybdenum material and manufacturing method thereof
JPH06128604A (en) Production of metallic material
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
JPH05147917A (en) Production of fine tungsten-based carbide powder
CN116673589A (en) Tungsten-rhenium alloy bar for friction stir welding stirring head and preparation method thereof
JPS6221066B2 (en)
CN117884617A (en) Preparation method of high-plasticity recrystallized molybdenum and molybdenum alloy
JP3223205B2 (en) Method for producing silicon nitride reaction sintered body
JP2004091803A (en) Manufacturing method of platinum material
JPH0860273A (en) Production of high strength tungsten carbide-base cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4659278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees