JP3102167B2 - Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide - Google Patents
Production method of fine composite carbide powder for production of tungsten carbide based cemented carbideInfo
- Publication number
- JP3102167B2 JP3102167B2 JP04319309A JP31930992A JP3102167B2 JP 3102167 B2 JP3102167 B2 JP 3102167B2 JP 04319309 A JP04319309 A JP 04319309A JP 31930992 A JP31930992 A JP 31930992A JP 3102167 B2 JP3102167 B2 JP 3102167B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- carbide
- based cemented
- average particle
- powders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、炭化タングステン
(以下、WCで示す)基超硬合金を粉末冶金法にて製造
するに際して、これの原料粉末として使用するのに適し
た微細複合炭化物粉末の製造法に関するものである。BACKGROUND OF THE INVENTION This invention relates to a fine composite carbide powder suitable for use as a raw material powder when a tungsten carbide (hereinafter, referred to as WC) -based cemented carbide is produced by powder metallurgy. It concerns the manufacturing method.
【0002】[0002]
【従来の技術】従来、一般に、WC基超硬合金製の切削
工具や塑性加工用耐摩工具などが知られており、これら
の製造に、原料粉末として、WCとCo−W炭化物固溶
体(以下、(Co,W)Cで示す)を主体とする複合炭
化物粉末が用いられ、さらにこれらの複合炭化物粉末
が、例えば1978年発行の「日本金属学会誌」、第4
2号(第871頁〜)や1979年発行の「日本金属学
会誌」、第43号(第890頁〜)などに発表されてい
るように、原料粉末として、酸化タングステン(以下、
WOxで示す)粉末、酸化コバルト(以下、CoxOy
で示す)粉末、およびカーボンブラック(炭素粉末)を
用い、これら原料粉末を所定の割合に配合し、例えばボ
ールミル中で48時間湿式混合した後、この混合粉末
に、水素気流中、700〜800℃の温度に加熱保持、
の条件で還元処理を施し、引続いて、水素気流中、90
0℃以上の温度に加熱保持、の条件で炭化処理を施すこ
とにより製造されることも知られている。2. Description of the Related Art Conventionally, a cutting tool made of WC-base cemented carbide, a wear-resistant tool for plastic working, and the like are generally known. (Indicated by (Co, W) C) are used. Further, these composite carbide powders are described in, for example, "Journal of the Japan Institute of Metals"
No. 2 (pages 871 to), and published in 1979, The Journal of the Japan Institute of Metals and No. 43 (pages 890 to 890).
WOx) powder, cobalt oxide (hereinafter referred to as CoxOy)
) And carbon black (carbon powder), these raw material powders are blended in a predetermined ratio, and wet-mixed in, for example, a ball mill for 48 hours, and then mixed with the mixed powder in a hydrogen stream at 700 to 800 ° C. Heating to the temperature of
, And subsequently in a stream of hydrogen, 90
It is also known that it is manufactured by performing carbonization under the condition of heating and holding at a temperature of 0 ° C. or higher.
【0003】[0003]
【発明が解決しようとする課題】一方、近年の切削加工
および塑性加工の省力化および高速化に対する要求は厳
しく、これに伴ない、これに用いられる各種工具を構成
するWC基超硬合金にはより一段の高強度を具備するこ
とが要求されるが、上記の従来方法はじめ、その他多く
の方法の場合、原料粉末として、例えば平均粒径で1μ
m以下の微細なWOx粉末やCoxOy粉末を用いて
も、還元および炭化処理工程での粒成長を避けることが
できないことから、生成された複合炭化物粉末は粗粒と
なり、通常2μm以上の平均粒径をもつようになるた
め、これを原料粉末として用いて製造したWC基超硬合
金に、これらの要求に十分対応することができる高強度
を具備せしめることができないのが現状である。On the other hand, recent demands for labor saving and speeding up of cutting and plastic working are severe, and accordingly, WC-based cemented carbide constituting various tools used in the cutting and plastic working is required. Although it is required to have a further higher strength, in the case of the above-mentioned conventional method and many other methods, the raw material powder is, for example, 1 μm in average particle size.
Even if a fine WOx powder or CoxOy powder having a particle size of m or less is used, the grain growth in the reduction and carbonization process cannot be avoided. At present, it is not possible to provide a WC-based cemented carbide manufactured using this as a raw material powder with a high strength that can sufficiently meet these requirements.
【0004】[0004]
【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、より一段と高強度を有するWC
基超硬合金の製造には、これの製造に原料粉末として用
いられている複合炭化物粉末の微細化が不可欠であると
の認識にもとづき研究を行なった結果、原料粉末とし
て、従来方法と同じいずれも1μm以下の平均粒径を有
するWOx粉末、CoxOy粉末、および炭素粉末を用
いるが、これに加えて同じく1μm以下の平均粒径を有
するV,Cr,Ti,Ta、およびNbの酸化物(以
下、これらを総称してMxOyで示す)粉末を用い、こ
れらの原料粉末を、所定の割合に配合し、混合した状態
で、これに、窒素またはアルゴン気流中、700〜12
00℃の温度に加熱保持、の条件での還元処理と、水素
気流中、700〜1200℃の温度に加熱保持、の条件
での炭化処理を施すと、上記MxOy粉末の作用で、上
記還元処理工程およびこれに引続いての炭化処理工程で
の粉末の成長が抑制され、実質的に上記原料粉末と同じ
状態の粒径が保持されることから、得られた複合炭化物
粉末は平均粒径で1μm以下の微粉末になるという研究
結果を得たのである。Means for Solving the Problems Accordingly, the present inventors have
In view of the above, WC with higher strength
Based on the recognition that the production of a base cemented carbide requires the refinement of the composite carbide powder used as the raw material powder for its production, the research was conducted. WOx powder, CoxOy powder, and carbon powder having an average particle size of 1 μm or less, and oxides of V, Cr, Ti, Ta, and Nb also having an average particle size of 1 μm or less. , And these are collectively referred to as MxOy), and these raw material powders are blended in a predetermined ratio and mixed with each other in a nitrogen or argon gas stream at 700 to 12%.
When a reduction treatment under the condition of heating and holding at a temperature of 00 ° C. and a carbonization treatment under the condition of heating and holding at a temperature of 700 to 1200 ° C. in a hydrogen stream are performed, the reduction treatment is performed by the action of the MxOy powder. The growth of the powder in the step and the subsequent carbonization treatment step is suppressed, and the particle diameter in substantially the same state as the raw material powder is maintained, so that the obtained composite carbide powder has an average particle diameter. The research result showed that it became a fine powder of 1 μm or less.
【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、原料粉末として、いずれも1μ
m以下の平均粒径を有するWOx粉末、CoxOy粉
末、および炭素粉末に加えて、MxOy粉末を用い、こ
れら原料粉末を、重量%で(以下、%は重量%を示
す)、 CoxOy粉末:3〜24%、 炭素粉末:9〜18%、 MxOy粉末のうちの1種または2種以上:0.1〜5
%、 WOx粉末:残り、 からなる配合組成に配合し、混合した後、この混合粉末
に、まず、窒素またはアルゴン気流中、700〜120
0℃の温度に加熱保持、の条件での還元処理と、引続い
て、水素気流中、700〜1200℃の温度に加熱保
持、の条件での炭化処理を施すことによりWCと、(C
o,W)Cに上記MxOyを構成する金属成分の少なく
とも1部が固溶するCo−W系炭化物固溶体(以下、
(Co,W,M)Cで示す)を主体とする平均粒径:1
μm以下の微細なWC基超硬合金製造用複合炭化物粉末
を製造する方法に特徴を有するものである。[0005] The present invention has been made based on the above research results, and each of the raw material powders is 1 μm.
MxOy powder in addition to WOx powder, CoxOy powder, and carbon powder having an average particle diameter of not more than m, and these raw material powders are expressed by weight% (hereinafter,% indicates weight%). 24%, carbon powder: 9 to 18%, one or more of MxOy powders: 0.1 to 5
%, WOx powder: remaining, blended into a composition consisting of: and mixed, and then mixed with the mixed powder first in a nitrogen or argon gas stream at 700 to 120%.
WC and (C) by performing a reduction treatment under the condition of heating and holding at a temperature of 0 ° C., and subsequently performing a carbonizing treatment under the condition of heating and holding at a temperature of 700 to 1200 ° C. in a hydrogen stream.
o, W) Co-W-based carbide solid solution in which at least a part of the metal component constituting MxOy forms a solid solution in C
(Indicated by (Co, W, M) C)):
The present invention is characterized by a method for producing a composite carbide powder for producing a fine WC-based cemented carbide having a diameter of not more than μm.
【0006】つぎに、この発明の方法において、製造条
件を上記の通りに限定した理由を説明する。 (1) 原料粉末の平均粒径 その平均粒径が1μmを越えると、製造される複合炭化
物粉末の平均粒径も1μmを越えて粗くなってしまい、
1μm以下の平均粒径とすることは困難になることか
ら、その平均粒径を1μm以下と定めた。Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be described. (1) Average particle size of raw material powder When the average particle size exceeds 1 μm, the average particle size of the produced composite carbide powder also exceeds 1 μm and becomes coarse.
Since it is difficult to reduce the average particle size to 1 μm or less, the average particle size is set to 1 μm or less.
【0007】(2) 配合組成 (a) CoxOy CoxOyは、還元処理工程および炭化処理工程で還元
および炭化されて主として(Co,W,M)Cを形成
し、これを構成するCoがWC基超硬合金製造時に焼結
性を向上させ、強度を向上させる作用があるが、その配
合割合が3%未満では、前記(Co,W,M)C中のC
o含有割合が少なすぎて前記作用を十分に発揮させるこ
とができず、一方その配合割合が24%を越えると粗粒
化を抑制した状態での完全な還元および炭化が困難にな
ることから、その配合割合を3〜24%と定めた。(2) Blending composition (a) CoxOy CoxOy is reduced and carbonized in the reduction step and the carbonization step to mainly form (Co, W, M) C. It has the effect of improving the sinterability and improving the strength during the production of hard alloys.
If the content of o is too small, the above effect cannot be sufficiently exerted. On the other hand, if the content is more than 24%, complete reduction and carbonization in a state in which coarsening is suppressed becomes difficult. The mixing ratio was determined to be 3 to 24%.
【0008】(b) MxOy これらの酸化物には、上記の通り還元処理工程および炭
化処理工程での粉末の成長を抑制し、もって原料粉末の
もつ粒径をそのまま、あるいはこれ以下の粒径に保持せ
しめる作用があるが、その配合が0.1%未満では、前
記作用に所望の効果が得られず、一方その配合割合が5
%を越えると、(Co,W,M)C中のMの割合が多く
なってWC基超硬合金製造時のCoの作用、すなわち焼
結性が低下するようになることから、その配合割合を
0.1〜5%と定めた。(B) MxOy These oxides suppress the growth of the powder in the reduction step and the carbonization step as described above, so that the particle size of the raw material powder is kept as it is or a particle size smaller than this. When the content is less than 0.1%, a desired effect cannot be obtained in the above-mentioned effect.
%, The proportion of M in (Co, W, M) C increases, and the effect of Co during the production of a WC-based cemented carbide, that is, the sinterability decreases. Was determined to be 0.1 to 5%.
【0009】(c) 炭素 その配合割合が9%未満では、還元および炭化反応が不
十分となり、この結果製造された複合炭化物粉末中に酸
化物が残留するようになり、一方その配合割合が18%
を越えると、製造された複合炭化物粉末中に多量の遊離
炭素が残留するようになることから、その配合割合を9
〜18%と定めた。(C) Carbon If the compounding ratio is less than 9%, the reduction and carbonization reactions become insufficient, and as a result, oxides remain in the produced composite carbide powder, while the compounding ratio is 18%. %
Is exceeded, a large amount of free carbon will remain in the produced composite carbide powder.
1818%.
【0010】(3) 還元温度 窒素またはアルゴン気流中での還元処理では、主に酸化
物の還元反応が行なわれるが、その温度が700℃未満
では還元反応が遅く、実操業上望ましくなく、一方その
温度が1200℃を越えると粗粒化が急激に進行するよ
うになることから、その温度を700〜1200℃と定
めた。(3) Reduction temperature In the reduction treatment in a stream of nitrogen or argon, the reduction reaction of oxides is mainly performed. If the temperature is lower than 700 ° C., the reduction reaction is slow, which is not desirable in actual operation. If the temperature exceeds 1200 ° C., coarsening proceeds rapidly, so the temperature is set to 700 to 1200 ° C.
【0011】(4) 炭化温度 水素気流中での炭化処理では炭化反応が行なわれるが、
その温度が700℃未満では炭化反応の進行が遅く、実
操業上望ましくなく、一方その温度が1200℃を越え
ると、同様に粗粒化が急激に起るようになることから、
その温度を700〜1200℃と定めた。(4) Carbonization temperature In the carbonization treatment in a hydrogen stream, a carbonization reaction occurs.
If the temperature is lower than 700 ° C., the progress of the carbonization reaction is slow, which is not desirable in actual operation. On the other hand, if the temperature exceeds 1200 ° C., coarsening similarly occurs rapidly,
The temperature was determined to be 700-1200 ° C.
【0012】[0012]
【実施例】つぎに、この発明の方法を実施例により具体
的に説明する。原料粉末として、それぞれ表1〜4に示
される組成および平均粒径をもったCoxOy粉末、M
xOy粉末、およびWOx粉末、さらに同じく表1〜4
に示される平均粒径の炭素粉末(カーボンブラック)を
用意し、これら原料粉末を同じく表1〜4に示される配
合組成に配合し、ボールミルで72時間湿式混合し、乾
燥した後、表5〜7に示される条件で還元処理と炭化処
理を行なうことにより本発明法1〜21および従来法1
〜7を実施し、それぞれ表5〜7に示される平均粒径を
有し、かつWCおよび(Co,W,M)Cまたは(C
o,W)Cの含有割合が同じく表5〜7に示される複合
炭化物粉末(以下、本発明法1〜21で製造された複合
炭化物粉末を、本発明複合炭化物粉末1〜21といい、
従来法1〜7で製造されたものを、従来複合炭化物粉末
1〜7という)を製造した。Next, the method of the present invention will be specifically described with reference to examples. As raw material powder, CoxOy powder having the composition and average particle size shown in Tables 1 to 4, respectively, M
xOy powder, WOx powder, and also Tables 1-4
Are prepared, the raw material powders are similarly blended in the composition shown in Tables 1 to 4, wet-mixed in a ball mill for 72 hours, dried, and then dried. By performing the reduction treatment and the carbonization treatment under the conditions shown in FIG.
To WC and (Co, W, M) C or (C) having the average particle size shown in Tables 5 to 7, respectively.
o, W) The composite carbide powder having the same content of C as shown in Tables 5 to 7 (hereinafter, the composite carbide powder produced by the present invention methods 1 to 21 is referred to as the present composite carbide powder 1 to 21,
Those manufactured by conventional methods 1 to 7 were conventionally referred to as composite carbide powders 1 to 7).
【0013】[0013]
【表1】 [Table 1]
【0014】[0014]
【表2】 [Table 2]
【0015】[0015]
【表3】 [Table 3]
【0016】[0016]
【表4】 [Table 4]
【0017】[0017]
【表5】 [Table 5]
【0018】[0018]
【表6】 [Table 6]
【0019】[0019]
【表7】 [Table 7]
【0020】[0020]
【表8】 [Table 8]
【0021】[0021]
【表9】 [Table 9]
【0022】[0022]
【表10】 [Table 10]
【0023】[0023]
【表11】 [Table 11]
【0024】つぎに、この結果得られた各種の複合炭化
物粉末を、表8〜11に示される平均粒径のWC粉末お
よび炭素粉末(カーボンブラック)、さらに各種組成の
金属炭化物粉末とともに原料粉末として用い、これらの
原料粉末を表8〜11に示される配合組成に配合し、ボ
ールミルで72時間湿式混合し、乾燥した後、1ton/c
m2 の圧力で圧粉体にプレス成形し、この圧粉体を真空
中、1280〜1390℃の範囲内の所定温度に2時間
保持の条件で焼結することによりWC基超硬合金(以
下、本発明複合炭化物粉末1〜21を用いて製造された
WC基超硬合金を、本発明WC基超硬合金1〜21とい
い、従来複合炭化物粉末1〜7を用いて製造されたもの
を、従来WC基超硬合金1〜7という)をそれぞれ製造
した。この結果得られた各種WC基超硬合金の抗折力を
測定し、強度を評価した。この測定結果を表8〜11に
示した。Next, the various composite carbide powders obtained as a result were used as raw material powders together with WC powder and carbon powder (carbon black) having average particle sizes shown in Tables 8 to 11, and metal carbide powders having various compositions. These raw material powders were blended into the blending compositions shown in Tables 8 to 11, wet-mixed for 72 hours in a ball mill, dried, and then 1 ton / c
Press molding at a pressure of m 2 into a green compact, and sintering the green compact in vacuum at a predetermined temperature in the range of 1280 to 1390 ° C. for 2 hours to obtain a WC-based cemented carbide (hereinafter referred to as The WC-based cemented carbide produced using the composite carbide powders 1 to 21 of the present invention is referred to as the WC-based cemented carbide 1 to 21 of the present invention. And conventional WC-based cemented carbides 1 to 7), respectively. The bending strength of the various WC-based cemented carbides obtained as a result was measured and the strength was evaluated. The measurement results are shown in Tables 8 to 11.
【0025】[0025]
【発明の効果】表8〜11に示される結果から、本発明
法1〜21によって製造された本発明複合炭化物粉末は
いずれも従来法1〜7によって製造された従来複合炭化
物粉末に比して微細で、前者の平均粒径がいずれも1μ
m以下であるのに対して、後者のそれはいずれも2μm
以上を示し、これを原料粉末として用いてWC基超硬合
金を製造した場合、本発明複合炭化物粉末1〜21を用
いて製造した本発明WC基超硬合金1〜21の方が、従
来複合炭化物粉末1〜7を用いて製造した従来WC基超
硬合金1〜7に比して一段と高強度をもつことが明らか
である。From the results shown in Tables 8 to 11, the composite carbide powders of the present invention produced by the methods 1 to 21 of the present invention are all smaller than those of the conventional composite carbide powders produced by the conventional methods 1 to 7. Fine, the average particle size of both is 1μ
m, whereas the latter one is 2 μm
As described above, when a WC-based cemented carbide is manufactured by using this as a raw material powder, the WC-based cemented carbides 1 to 21 of the present invention manufactured using the composite carbide powders 1 to 21 of the present invention are more conventional It is evident that it has a much higher strength than conventional WC-based cemented carbides 1 to 7 manufactured using carbide powders 1 to 7.
【0026】上述のように、この発明の方法によれば、
平均粒径で1μm以下のきわめて微細な複合炭化物粉末
を製造することができ、かつこれを原料粉末として用い
てWC基超硬合金を製造した場合、高強度を具備するよ
うになるので、これを各種の切削加工や塑性加工などの
分野に適用した場合、苛酷な使用環境下でもすぐれた性
能を発揮するなど工業上有用な効果がもたらされるので
ある。As described above, according to the method of the present invention,
An extremely fine composite carbide powder having an average particle diameter of 1 μm or less can be produced, and when a WC-based cemented carbide is produced using the powder as a raw material powder, the WC-based cemented carbide has high strength. When applied to various fields such as cutting and plastic working, industrially useful effects such as excellent performance are exhibited even under severe use environments.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 耕治 埼玉県大宮市北袋町1−297 三菱マテ リアル株式会社 中央研究所内 (72)発明者 植田 文洋 埼玉県大宮市北袋町1−297 三菱マテ リアル株式会社 中央研究所内 (72)発明者 棚瀬 照義 岐阜県安八郡神戸町大字横井字中新田 1528 三菱マテリアル株式会社 岐阜製 作所内 (72)発明者 市川 洋 埼玉県大宮市北袋町1−297 三菱マテ リアル株式会社 中央研究所内 (56)参考文献 特開 昭48−67200(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 31/34 C22C 29/08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Shinohara, Inventor 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Mitsubishi Materials Real Co., Ltd. (72) Inventor Fumihiro Ueda 1-297 Kitabukurocho, Omiya City, Saitama Mitsubishi Materials Real Central Research Laboratory Co., Ltd. (56) References JP-A-48-67200 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 31/34 C22C 29/08
Claims (1)
平均粒径を有する酸化タングステン粉末、酸化コバルト
粉末、炭素粉末、さらにV,Cr,Ti,Ta、および
Nbの酸化物粉末を用い、これら原料粉末を、重量%
で、 酸化コバルト粉末:3〜24%、 炭素粉末:9〜18%、 V,Cr,Ti,Ta、およびNbの酸化物粉末のうち
の1種または2種以上:0.1〜5%、 酸化タングステン粉末:残り、 からなる配合組成に配合し、混合した後、この混合粉末
に、まず、 窒素またはアルゴン気流中、700〜1200℃の温度
に加熱保持、の条件で還元処理を施し、引続いて、 水素気流中、700〜1200℃の温度に加熱保持、の
条件で炭化処理を施すことにより、炭化タングステンと
Co−W系炭化物固溶体を主体とする平均粒径:1μm
以下の微細複合炭化物粉末を生成せしめることを特徴と
する炭化タングステン基超硬合金製造用微細複合炭化物
粉末の製造法。1. As raw material powders, tungsten oxide powder, cobalt oxide powder, carbon powder, and oxide powders of V, Cr, Ti, Ta, and Nb each having an average particle diameter of 1 μm or less are used. Powder, weight%
Cobalt oxide powder: 3 to 24%, carbon powder: 9 to 18%, one or more of oxide powders of V, Cr, Ti, Ta, and Nb: 0.1 to 5%, Tungsten oxide powder: remaining, blended into a blended composition consisting of: After mixing, this mixed powder was first subjected to a reduction treatment under the condition of heating to a temperature of 700 to 1200 ° C. in a stream of nitrogen or argon, and drawing. Subsequently, in a hydrogen stream, a carbonization treatment is performed under the condition of heating and holding at a temperature of 700 to 1200 ° C., so that an average particle diameter mainly containing tungsten carbide and a Co—W-based carbide solid solution: 1 μm
A method for producing a fine composite carbide powder for producing a tungsten carbide-based cemented carbide characterized by producing the following fine composite carbide powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04319309A JP3102167B2 (en) | 1992-05-27 | 1992-11-04 | Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-160231 | 1992-05-27 | ||
JP16023192 | 1992-05-27 | ||
JP04319309A JP3102167B2 (en) | 1992-05-27 | 1992-11-04 | Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0710517A JPH0710517A (en) | 1995-01-13 |
JP3102167B2 true JP3102167B2 (en) | 2000-10-23 |
Family
ID=26486791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04319309A Expired - Fee Related JP3102167B2 (en) | 1992-05-27 | 1992-11-04 | Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3102167B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT3064U1 (en) * | 1998-12-28 | 1999-09-27 | Plansee Tizit Gmbh | GAS CARBURETOR METHOD FOR PRODUCING PURE WC POWDER |
JP3947698B2 (en) | 2002-09-25 | 2007-07-25 | ポップリベット・ファスナー株式会社 | Spacer clip |
CN1302883C (en) * | 2005-05-04 | 2007-03-07 | 浙江天石粉末冶金有限公司 | Method and equipment for mfg. alloy powder contg. nanometer crystal particle WC-Co-VC-Cr3-C2 |
JP6845715B2 (en) | 2017-03-13 | 2021-03-24 | 三菱マテリアル株式会社 | Hard sintered body |
CN112760540B (en) * | 2020-12-04 | 2022-03-25 | 崇义章源钨业股份有限公司 | Composite WC-CrC-CoCr thermal spraying powder and preparation method and application thereof |
-
1992
- 1992-11-04 JP JP04319309A patent/JP3102167B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0710517A (en) | 1995-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010008004A1 (en) | Hard powder, method for producing hard powder and sintered hard alloy | |
US2814566A (en) | Boron and carbon containing hard cemented materials and their production | |
CN110102752B (en) | Solid solution alloy powder for metal ceramic and preparation method thereof | |
CN109576545B (en) | Ti (C, N) -based metal ceramic with mixed crystal structure and preparation method thereof | |
JP7272353B2 (en) | Cemented Carbide, Cutting Tool and Cemented Carbide Manufacturing Method | |
JP3102167B2 (en) | Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide | |
JPH05209248A (en) | High hardness and wear-resistant material | |
JP3063340B2 (en) | Production method of fine tungsten carbide powder | |
JP3111709B2 (en) | Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide | |
JP3303187B2 (en) | Method for producing tungsten carbide based cemented carbide having high strength | |
JP2004142993A (en) | Hexagonal composite carbide, and production method therefor | |
JPH06212341A (en) | Sintered hard alloy and its production | |
JPH0598384A (en) | Tungsten carbide base sintered hard alloy having high strength and high hardness | |
JPH10140204A (en) | Production of heat resistant tungsten-carbide-base cemented carbide with high strength | |
JP3605740B2 (en) | Carbide alloy for end mill | |
JP2502322B2 (en) | High toughness cermet | |
JPH05147917A (en) | Production of fine tungsten-based carbide powder | |
JPH1053823A (en) | Manufacture of tungsten carbide-base cemented carbide with high strength | |
JP2927400B2 (en) | Method for regenerating cemented carbide composition and method for producing cemented carbide | |
JP2002060802A (en) | Titanium carbonitride powder for hard material and its production method | |
JPH10259433A (en) | Production of hyperfine-grained tungsten carbide base sintered hard alloy having high strength | |
JP3063310B2 (en) | Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness | |
JPS6059195B2 (en) | Manufacturing method of hard sintered material with excellent wear resistance and toughness | |
JP3045199B2 (en) | Manufacturing method of high hardness cemented carbide | |
JP3018795B2 (en) | Method for producing fine Co-WC compound powder for powder metallurgy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000725 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080825 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090825 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110825 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110825 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120825 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |