JP2004142993A - Hexagonal composite carbide, and production method therefor - Google Patents

Hexagonal composite carbide, and production method therefor Download PDF

Info

Publication number
JP2004142993A
JP2004142993A JP2002309855A JP2002309855A JP2004142993A JP 2004142993 A JP2004142993 A JP 2004142993A JP 2002309855 A JP2002309855 A JP 2002309855A JP 2002309855 A JP2002309855 A JP 2002309855A JP 2004142993 A JP2004142993 A JP 2004142993A
Authority
JP
Japan
Prior art keywords
carbide
composite carbide
powder
hexagonal composite
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002309855A
Other languages
Japanese (ja)
Inventor
Masaki Kobayashi
小林 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP2002309855A priority Critical patent/JP2004142993A/en
Priority to US10/690,672 priority patent/US20040079191A1/en
Priority to EP03024424A priority patent/EP1420076A1/en
Publication of JP2004142993A publication Critical patent/JP2004142993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prepare WC powder which is simultaneously improved in hardness, strengths, toughness, oxidation resistance, corrosion resistance, or the like, and is optimum for the production of cemented carbide though there is a problem in an antinomy that, when any alloy properties are improved, the other alloy properties are reduced in the conventional cemented carbide. <P>SOLUTION: The powder of hexagonal composite carbide is obtained by subjecting 0.1 to 3 wt.% of at least one kind of element selected from Ti, Zr, Hf, Nb, Ta and Cr to a solid solution in WC. The solid solution elements to be allowed to enter into the solid solution improve the hardness, toughness, oxidation resistance, corrosion resistance, or the like, of WC itself. The cemented carbide produced by using the hexagonal composite carbide exhibits excellent alloy properties. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主に超硬合金に用いられる六方晶複合炭化物とその製造方法、および六方晶複合炭化物を用いた超硬合金に関するものである。
【0002】
【従来の技術】
WC,CoおよびTiC,TaC,VC,Crなどの原料粉末を混合,加圧成形,加熱焼結して製造される超硬合金は、切削工具,耐摩耗工具および部品などの様々な用途に使用されている。そして、WCの粒度,Co量,添加炭化物の種類と量などを調整することにより、各用途で必要となる硬さ,強度,靱性,耐熱性,耐酸化性,耐食性などの合金特性を得ている。添加炭化物として、例えば、反応・溶着による摩耗が問題となる鋼切削工具ではTiCが、高温での塑性変形が問題となる熱間金型や鋼切削工具ではTaCやZrCが、硬度と刃先強度が要求されるドリル,エンドミルではWCの粒成長抑制剤としてVC,Crが、腐食が問題となる耐摩耗性部品ではCr,MoCがそれぞれ超硬合金に添加されている。
【0003】
しかし、添加炭化物を超硬合金に添加する方法では、ある合金特性を改善すると別の合金特性が低下するという二律背反の問題がある。例えば、超硬合金にTiC,TaC,ZrC,VCなどを添加すると、添加量が少量であっても超硬合金の強度や靱性を著しく低下させる。また、Crを添加すると、超硬合金の結合相の耐食性,耐酸化性が改善するものの、WCはアルカリ腐食や酸化を起こしやすいために、その効果が十分に発揮できないという問題がある。
【0004】
一方、WCと添加炭化物とを含有した超硬合金用粉末に関する先行技術には、特開平7−54001号公報、特表2000−512688号公報、特開平10−212165号公報、などがある。さらに、タングステン以外の元素を固溶させたWC粉末に関する特許としては、特開昭59−18111号公報、特開昭59−110707号公報、特開昭51−146306号公報、特開平11−212165号公報などがある。
【0005】
WCと添加炭化物とを含有した超硬合金用粉末に関する先行技術の内、特開平7−54001号公報には、1μmの酸化タングステン,酸化コバルト,炭素,さらにV,Cr,Ta,Nbの炭化物からなる混合粉末を700〜1200℃で還元処理と炭化処理とを施す炭化タングステン基超硬合金製造用微細複合炭化物粉末の製造方法が記載されている。また、特表2000−512688号公報には、鉄,コバルト,ニッケルと、タングステン、チタン、タンタル、モリブデン、ジルコニウム、ハフニウム、バナジウム、ニオブ、クロム、これらの混合物および固溶体からなる群の遷移金属炭化物とからなる粉末の先駆体を水素雰囲気で1173〜1773Kに加熱した遷移金属炭化物―VIII族金属粉末およびその製造方法が記載されている。さらに、特開平10−212165号公報には、タングステン酸化物とクロム酸化物あるいは金属クロムとからなる混合粉末を水素中で700〜1100℃に加熱して固溶体もしくは金属間化合物とし、これに炭素粉末を混合し、水素および真空中で1300〜1700℃の温度で炭化して得られる炭化タングステンと、炭化タングステンに対して0.5〜2.0重量%の金属クロムとを含有した複合炭化物およびその製造方法が記載されている。
【0006】
これらの3公報に記載された炭化タングステンと遷移金属,遷移金属炭化物,鉄族金属などからなる複合炭化物粉末は、遷移金属あるいはその炭化物が均一・微細に分散しているため、超硬合金製造に用いた場合に超硬合金の硬さ,強度,靱性などの特性を改善できるが、加熱温度が低いため、炭化タングステン中への遷移金属の固溶量が極めて少なく、炭化タングステン自体の特性向上が見られず、合金特性の二律背反を解決できないという問題がある。
【0007】
一方、タングステン以外の元素を固溶させたWC粉末に関する先行技術の内、特開昭59−18111号公報には、WOとV化合物との溶融物を急冷し、これをHとCHの混合ガス中で1100℃以上に加熱することによって、WCに0.3%程度のVを固溶させた固溶炭化物粉末の製造方法が記載されている。同様に、特開昭59−110707号公報には、WO粉末をHとCHとVClとの混合ガス中で800℃以上に加熱するVを固溶させたWC粉末の製造方法が記載されている。
【0008】
これら両公報に記載されたV固溶のWC粉末は、微粒で均一に粒成長抑制剤のVを固溶しているため、微粒超硬合金の製造に適しているが、Vを固溶したWCは、WC自体の硬さや靱性が低く、また耐溶着性,耐塑性変形性,耐酸化性などに劣るため、切削工具や熱間金型工具には不向きであるという問題がある。
【0009】
さらに、特開昭51−146306号公報には、10〜100モル%のモリブデンモノカーバイドを含有したタングステンモノカーバイドを鉄族金属などと焼結したを焼結炭化物金属合金組成物およびその製造方法が記載されている。また、特開平11−212165号公報には、10気圧以上の窒素雰囲気中で500〜2000℃に加熱して窒化合成する複合炭窒化物、特に(W,Mo)(CN)に関する高融点金属複合炭窒化物材料が記載されている。
【0010】
これら両公報に記載された(W,Mo)Cおよび(W,Mo)(CN)は、超硬合金に用いた場合に強度,靱性を改善できるが、Mo固溶量が多くなると硬さ,耐摩耗性の低下が顕著となり、耐耐溶着性,耐塑性変形性,耐酸化性なども劣化するため、切削工具や熱間金型工具には不向きであるという問題がある。
【0011】
【発明が解決しようとする課題】
本発明は、上記のような問題点を解決するもので、具体的には、炭化タングステン自体の硬さ,靱性,耐酸化性,耐食性などを改善させるために、炭化タングステンにTi,Zr,Hf,Nb,Ta,Crから選ばれた少なくとも1種の元素を固溶させた六方晶複合炭化物の提供と、六方晶複合炭化物を含む合金特性の優れた超硬合金の提供を目的とする。
【0012】
【課題を解決するための手段】
本発明者は、長年に亘り、超硬合金における相反する合金特性の同時向上について検討していた所、WC自体の特性を改善することが最も効果的なこと、WCに他元素を固溶させればWCの特性が改善できること、固溶元素としてはTi,Zr,Hf,Nb,Ta,Crなどが最も有効であるという知見を得て、本発明を完成するに至ったものである。
【0013】
本発明の六方晶複合炭化物は、炭化タングステンと、Ti,Zr,Hf,Nb,Ta,Crからなる群から選ばれた少なくとも1種の元素からなる第1固溶元素とで構成された六方晶複合炭化物であって、該炭化タングステンに該第1固溶体元素を該六方晶複合炭化物全体に対して0.1〜3重量%固溶させた六方晶複合炭化物である。
【0014】
本発明の六方晶複合炭化物は、化学組成式(W1−x,M)Cで表し、ただし、MはTi,Zr,Hf,Nb,Ta,Crからなる群から選ばれた少なくとも1種の元素からなる第1固溶元素を表し、化学組成式中のxは金属成分であるWとMの合計に対するMのモル比率を表し、化学組成式中のyは金属成分全体に対するC(炭素)のモル比率を表すと、xおよびyは固溶元素の原子量によって大きく異なるが、それぞれ、0.002≦x≦0.06,0.95≦y≦1.00の範囲内となっている。
【0015】
本発明の六方晶複合炭化物における第1固溶元素として、具体的には、Ti,Zr,Hf,Nb,Ta,Crの中の1種あるいはTiとTa、TiとCr、ZrとNb,TiとZrとTaなどの2種以上が挙げられる。六方晶複合炭化物全体に対する第1固溶元素の固溶量は、0.1重量%未満ではWCに対する硬さ,靱性,耐酸化性,耐食性などを改善する効果が小さく、逆に3重量%を超えて固溶させることが困難なため、0.1〜3重量%と定めた。ここで、第1固溶元素の主効果として、Ti,Zr,Hfの添加によりWCの硬さ,耐溶着性,耐酸化性が向上し、Nb,Taの添加によりWCの靱性,耐熱変形性が向上し、Crの添加によりWCの耐酸化性,耐食性,靱性が向上する。第1固溶元素が2種以上の元素からなる場合には、これらの効果が相加的あるいは相乗的に出現する。
【0016】
本発明の六方晶複合炭化物における固溶元素は、前記第1固溶元素と、Vおよび/またはMoからなる第2固溶元素とであると、第1固溶元素の効果に第2固溶元素の効果が付加されるので好ましい。すなわち、Vが有する粒成長抑制効果により微粒超硬合金が得られる。また、Mo添加によってWCの靱性を向上させることで高靱性超硬合金が得られる。第2固溶元素の六方晶複合炭化物全体に対する固溶量は、0.1重量%未満ではその効果が小さく、逆にVを5重量%を超えて固溶させることが困難である。また、Moを5重量%を超えて固溶させると耐摩耗性や耐酸化性の低下が著しい。
【0017】
本発明の六方晶複合炭化物のa軸の格子定数が0.2910〜0.2925nmおよび/または本発明の六方晶複合炭化物のc軸の格子定数が0.2840〜0.2855nmであると、すなわち、(A)本発明の六方晶複合炭化物のa軸の格子定数が0.2910〜0.2925nm、(B)本発明の六方晶複合炭化物のc軸の格子定数が0.2840〜0.2855nmとすると、(A)、(A)および(B)、(B)のいずれかであると、WC中への固溶元素の固溶が完全かつ均一であるため、WCの特性改善効果が最大となるので好ましい。
【0018】
本発明の六方晶複合炭化物は、平均粒子径が0.5〜100μmの粉末状が好ましい。0.5μm未満の粒子は固溶化処理の温度が高いために製造困難であり、逆に100μmを超えた粒子は超硬合金の原料粉末としては実用的でないためである。
【0019】
本発明の六方晶複合炭化物は、六方晶複合炭化物の粒子のみからなる六方晶複合炭化物含有粉末として得ることが可能であるが、六方晶複合炭化物の粒子と、WCの粒子と、周期律表4a,5a,6a族元素の炭化物、窒化物、炭窒化物およびこれらの相互固溶体からなる群から選ばれた少なくとも1種からなる立方晶化合物の粒子とで構成された2次粒子の六方晶複合炭化物含有粉末として得ることが可能である。なお、六方晶複合炭化物含有粉末において、六方晶複合炭化物の粒子の一部と、WCの粒子の一部および/または立方晶化合物の粒子の一部とが固溶する場合がある。
【0020】
すなわち、本発明の六方晶複合炭化物含有粉末は、六方晶複合炭化物の粒子:60〜100体積%と、WCの粒子:0〜10体積%と、4a,5a,6a族元素の炭化物,窒化物,炭窒化物およびこれらの相互固溶体からなる群から選ばれた少なくとも1種からなる立方晶化合物の粒子:0〜30体積%とで構成される。
【0021】
本発明の六方晶複合炭化物含有粉末に含まれる六方晶複合炭化物の粒子の含有量が60体積%未満であると、六方晶複合炭化物含有粉末を用いて製造される超硬合金の硬さ,靱性,耐酸化性,耐食性などの合金特性について固溶元素による改善効果が小さくなる。また、本発明の六方晶複合炭化物含有粉末に含まれるWCの粒子の含有量が10体積%を超えると、超硬合金を製造する際の炭素量,WC粒度の調整が困難となりやすく、焼結時に反応,溶解などの問題が生じる。ここで、炭素含有量が少ない場合,高温で加熱処理する場合,もしくは固溶元素がCr,Moである場合、WCが生成し易い。なお、固溶元素の含有量を大きくするにはWCを含有させた方が良い。
【0022】
本発明の六方晶複合炭化物含有粉末に含有される立方晶化合物の粒子として、具体的には、(W0.6Ti0.4)C0.8,(W0.06Zr0.95)C0.75,(W0.65Ta0.35)C0.9,(W0.5Ti0.3Ta0.2)C0.9,(W0.5Ti0.5)(C0.90.10.95,(W0.45Ti0.4Mo0.15)C0.85,(W0.40.5Cr0.1)C0.8などを挙げることができる。本発明の六方晶複合炭化物を作製するとき、WCにTi,Zr,Hf,Nb,Taなどの固溶元素を固溶限界以上添加すると、固溶しきれなかった固溶元素が立方晶化合物の粒子を形成する。固溶元素の添加効果を最大限に発揮させるためには、立方晶化合物の粒子を含有すると好ましい場合がある。しかし、本発明の六方晶複合炭化物含有粉末における立方晶化合物の粒子の含有量が30体積%を超えると、超硬合金を製造する際の組成調整が困難になるとともに、相対的に六方晶複合炭化物の含有量が減少してその効果が低下する。
【0023】
本発明の六方晶複合炭化物の粒子内に、微小な立方晶化合物の粒子が分散していると、六方晶複合炭化物の粒子の硬さや靱性を改善できるので好ましい。WCに固溶元素を固溶限界以上に添加した場合、立方晶化合物の粒子が六方晶複合炭化物の粒成長過程で粒子内に取り込まれるため、このような組織が形成される。
【0024】
本発明の六方晶複合炭化物は、例えば、WC粉末とTiH粉末の混合粉末,W粉末とTiN粉末とC粉末との混合粉末,WO粉末とTiO粉末とC粉末との混合粉末などを非酸化性雰囲気あるいは還元性と浸炭性との組合せ雰囲気で高温加熱することによって得られるが、以下の方法で製造すると、固溶元素の含有量が大きく、固溶状態や粒度分布が均一なものが製造できる。
【0025】
すなわち、本発明の六方晶複合炭化物の製造方法は、Ti,Zr,Hf,Nb,Ta,Cr,V,Moの酸化物およびこれらの相互固溶体からなる群から選ばれた少なくとも1種の酸化物の粉末(ただし、V酸化物,Mo酸化物,VとMoとの複合酸化物は除く)と、W粉末と、C粉末とからなる混合粉末を真空中で加熱するものである。
【0026】
本発明の六方晶複合炭化物の製造方法における酸化物の粉末,W粉末,およびC粉末は微粒ほど好ましく、特にW粉末は1μm以下が望ましい。また、固溶元素を含む化合物を溶液化して添加すると、酸化物がより微細・均一に分散できるので好ましい。さらに、混合粉末中のC粉末の含有量は、加熱処理後に少量のWCが生成する程度が好ましい。
【0027】
混合粉末の加熱処理温度は1750〜2100℃が好ましい。すなわち、1750℃未満では拡散速度が小さく固溶元素量が多いので、固溶元素が均一に固溶した六方晶複合炭化物は得られず、逆に2100℃を超えて高くなると固溶元素量が減少するとともに、WC量の増加,WCの異常粒成長が問題となるためである。また、混合粉末の加熱処理雰囲気は、10Pa以下の高真空が好ましい。10Pa以下の高真空であると酸化物の還元とW中への拡散が促進されるとともに固溶元素が均一に固溶した固溶元素量が多い六方晶複合炭化物が得られるためである。
【0028】
本発明の六方晶複合炭化物を原料として用い、WC−Co系,WC−TiC−TaC−Co系,WC−(Ni,Cr)系に代表される超硬合金を製造できる。本発明の六方晶複合炭化物含有粉末に鉄族金属の粉末を添加し焼結させて超硬合金を作製すると、固溶元素の効果を最大限に発揮できる。用途によっては鉄族金属とともに、TiN,ZrC,TaC,VC,Cr,MoCなどを添加しても良い。
【0029】
すなわち、本発明の六方晶複合炭化物を含有した超硬合金としては、六方晶複合炭化物:40〜97重量%と、周期律表4a,5a,6a族元素の炭化物,窒化物,炭窒化物およびこれらの相互固溶体からなる群から選ばれた少なくとも1種からなる立方晶化合物:0〜30重量%と、鉄族金属を主成分とする結合相:3〜30重量%が好ましく、従来のWCを用いた超硬合金に比較して抗折力、硬さ、破壊靱性値に優れる。なお、結合相が3重量%未満では耐欠損性に劣り、30重量%を超えると耐食性や耐摩耗性が低下する傾向が見られる。六方晶複合炭化物と結合相とからなる超硬合金でも良いが、特に耐摩耗性や高温硬さを要求される用途には、周期律表4a,5a,6a族元素の炭化物,窒化物,炭窒化物およびこれらの相互固溶体からなる群から選ばれた少なくとも1種からなる立方晶化合物を30重量%以下含有すると好ましい。しかし、立方晶化合物を30重量%を超えて含有させると耐欠損性が低下する傾向が見られる。
【0030】
【実施例1】
市販されている平均粒子径が0.5μmのW,0.02μmのカーボンブラック(Cと記す),0.05〜0.2μmのTiO,ZrO,HfO,Nb,Ta,Cr,V,MoOおよび0.5μmのWC(WC/Fと記す),1.2μmのTiC,1.1μmのMoC,3.0μmのWC(WC/Mと記す)の各粉末を用い、表1に示した配合組成に秤量して、ステンレス製ポットに鉄製ボールとともに挿入して振動ボールミル機を用いて乾式で2時間混合した。この混合粉末を黒鉛製ルツボに充填して真空加熱炉に挿入した後、10Paの真空中で表1に併記した温度で2時間の加熱処理を行って、本発明品1〜15および比較品1〜9を得た。但し、比較品9は混合および加熱処理を行っていない。
【0031】
【表1】

Figure 2004142993
【0032】
こうして得た本発明品1〜14および比較品1〜9の加熱処理粉末を解砕し、100#の篩を通過させて評価用試料粉末とした。これについてX線回折(管球:Cu,管電圧;50kV,管電流;250mA)を行い、粉末中の成分を同定した。その結果を表1に併記した。なお、実施例1および2において、WC相はWCまたは六方晶複合炭化物を示す。また、WCの含有量(体積%)をWC(101)とWC相(101)のピーク強度比から求め、その結果は表2、4に記載した。ここで、WCの含有量は比較品9のWC粉末に市販のWC粉末の所定量を添加してX線回折を行った検量線から求めた。
【0033】
次に、各試料粉末に30重量%の銅粉末(市販の電解銅粉:2.5μm)を添加して乳鉢中で混合し、196MPaの圧力でもって金型成形した後、真空中で1150℃−20分の加熱・焼結により分析用試料合金を得た。そして、試料合金をダイヤモンド砥石で研削し、平均粒径が0.3μmのダイヤモンドペーストでラップ加工した後、電界放射型走査電子顕微鏡による観察・分析に供した。
【0034】
まず、WC相とWC相以外の粒子(WC,立方晶化合物,Cr)の存在と分布とを、組成像コントラストと元素マッピングにより確認した。そして、WC相と立方晶化合物については、比較的大きい粒子の中央に電子ビームを絞ることによって組成分析を行った。また、写真撮影と画像処理装置によって、各試料粉末を構成する各種成分粒子の含有体積%を求めた。これらの結果を表2〜5に示す。さらに、WC相,WC,立方晶化合物の平均粒子径を求めた。その結果は表6に示す。
【0035】
【表2】
Figure 2004142993
【0036】
【表3】
Figure 2004142993
【0037】
【表4】
Figure 2004142993
【0038】
【表5】
Figure 2004142993
【0039】
【表6】
Figure 2004142993
【0040】
次に、前記のX線回折条件で測定したWC相のピーク位置(2θ=30〜120°)から面間隔と格子間隔を算出し、a軸とc軸のそれぞれについて外挿法により格子定数を求めた。その結果を表6に併記した。
【0041】
【実施例2】
実施例1で得られた本発明品2,8,14、比較品2,8,9および市販されている平均粒子径が1.0μmのCo,1.2μmの(W,Ti)C(重量比でWC/TiC=70/30),1.0μmのNbC,2.6μmのCrの各粉末を用いて、表7に示す配合組成に秤量し、ステンレス製ポットにアセトン溶媒と超硬合金製ボールとともに挿入し、48時間混合粉砕後、乾燥して混合粉末を得た。そして、これらの粉末を金型に充填し、196MPaの圧力でもって5.5×9.5×29mmの圧粉成形体を作製し、アルミナとカーボン繊維からなるシート上に設置し、雰囲気圧力20Paの真空中で1400℃、1.0時間の焼結を行って超硬合金試料:A〜Fを得た。
【0042】
【表7】
Figure 2004142993
【0043】
得られた超硬合金試片を#230のダイヤモンド砥石で湿式研削加工し、4.0×8.0×25.0mmの形状に作製し、JIS法による抗折力を測定した。また、同試料の1面を0.3μmのダイヤモンドペーストでラップ加工した後、ビッカース圧子を用いた荷重:196Nでの硬さおよび破壊靱性値K1C(IM法)を測定した。さらに、各試料のラップ面について電子顕微鏡にて組織写真を撮り、画像処理装置を使用してWC相の平均粒径と立方晶化合物の含有量を求めた。これらの結果を表8に示す。
【0044】
【表8】
Figure 2004142993
【0045】
【発明の効果】
本発明の六方晶複合炭化物は、WCにTi,Zr,Hf,Nb,Ta,Crからなる群から選ばれた少なくとも1種の第一固溶元素を固溶させることでWC自体の硬さ,靱性,耐酸化性,耐食性などの特性を改善させる。本発明の六方晶複合炭化物を用いて製造された超硬合金は、従来の高純度WCを用いた超硬合金に比べて、組成とWC粒度をほぼ同一にした場合に、硬さ,強度,靱性などがいずれも向上し、特に、少量のTiC,NbCあるいはVC,Crを添加した超硬合金では強度が顕著に改善されるという効果がある。本発明の六方晶複合炭化物の製造方法によって、WCにTi,Zr,Hf,Nb,Ta,Crからなる群から選ばれた少なくとも1種の第1固溶元素を固溶させた六方晶複合炭化物を容易に得ることが可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hexagonal composite carbide mainly used for a cemented carbide, a method for producing the same, and a cemented carbide using the hexagonal composite carbide.
[0002]
[Prior art]
Cemented carbide manufactured by mixing, pressing, and heat sintering raw material powders such as WC, Co and TiC, TaC, VC, Cr 3 C 2 can be used for various tools such as cutting tools, wear-resistant tools and parts. Used for applications. And by adjusting the particle size of WC, the amount of Co, the type and amount of added carbide, etc., alloy properties such as hardness, strength, toughness, heat resistance, oxidation resistance, and corrosion resistance required for each application can be obtained. I have. As the added carbide, for example, TiC is used in a steel cutting tool in which wear due to reaction and welding is a problem, and TaC or ZrC is used in a hot die or a steel cutting tool in which plastic deformation at a high temperature is a problem. In required drills and end mills, VC and Cr 3 C 2 are added to WC grain growth inhibitors, and in wear-resistant parts where corrosion is a problem, Cr 3 C 2 and Mo 2 C are added to the cemented carbide. .
[0003]
However, in the method of adding the added carbide to the cemented carbide, there is a trade-off problem that when one alloy property is improved, another alloy property is reduced. For example, when TiC, TaC, ZrC, VC, or the like is added to a cemented carbide, even if the addition amount is small, the strength and toughness of the cemented carbide are significantly reduced. In addition, when Cr 3 C 2 is added, the corrosion resistance and oxidation resistance of the binder phase of the cemented carbide are improved, but WC is liable to cause alkali corrosion and oxidation, so that there is a problem that the effect cannot be sufficiently exhibited. .
[0004]
On the other hand, prior arts relating to powder for cemented carbide containing WC and added carbide include JP-A-7-54001, JP-T-2000-512688, and JP-A-10-212165. Further, patents relating to WC powder in which elements other than tungsten are dissolved are disclosed in JP-A-59-18111, JP-A-59-110707, JP-A-51-146306, and JP-A-11-212165. No. Gazette.
[0005]
Among prior arts relating to cemented carbide powders containing WC and added carbides, Japanese Patent Application Laid-Open No. 7-54001 discloses that 1 μm tungsten oxide, cobalt oxide, carbon, and V, Cr, Ta, Nb carbides are used. A method for producing a fine composite carbide powder for producing a tungsten carbide-based cemented carbide in which a mixed powder is subjected to a reduction treatment and a carbonization treatment at 700 to 1200 ° C. is described. JP-T-2000-512688 discloses iron, cobalt, nickel, and a transition metal carbide of a group consisting of tungsten, titanium, tantalum, molybdenum, zirconium, hafnium, vanadium, niobium, chromium, a mixture thereof, and a solid solution. Transition metal carbide-Group VIII metal powder obtained by heating a powder precursor of 1173 to 1773K in a hydrogen atmosphere and a method for producing the same. Further, JP-A-10-212165 discloses that a mixed powder composed of tungsten oxide and chromium oxide or metallic chromium is heated to 700 to 1100 ° C. in hydrogen to form a solid solution or an intermetallic compound. And a composite carbide containing tungsten carbide obtained by hydrogenation and carbonization in a vacuum at a temperature of 1300 to 1700 ° C., and 0.5 to 2.0% by weight of metal chromium with respect to tungsten carbide. A manufacturing method is described.
[0006]
The composite carbide powder described in these three publications comprising tungsten carbide and a transition metal, a transition metal carbide, an iron group metal, etc. is used for producing a cemented carbide because the transition metal or its carbide is uniformly and finely dispersed. When used, the properties such as hardness, strength, and toughness of cemented carbide can be improved. However, since the heating temperature is low, the amount of transition metal dissolved in tungsten carbide is extremely small, and the properties of tungsten carbide itself are improved. There is a problem that the trade-off of alloy properties cannot be solved.
[0007]
On the other hand, among the prior art relating to WC powder was a solid solution of elements other than tungsten, in JP-A-59-18111, quenching the melt of the WO 3 and V compound, which H 2 and CH 4 A method for producing a solid-solution carbide powder in which about 0.3% of V is dissolved in WC by heating to a temperature of 1100 ° C. or higher in a mixed gas of WC. Similarly, Japanese Patent Application Laid-Open No. 59-110707 discloses a method for producing WC powder in which WO 3 powder is heated to 800 ° C. or higher in a mixed gas of H 2 , CH 4 and VCl 4 to form a solid solution of V. Has been described.
[0008]
The V solid solution WC powders described in both of these publications are suitable for the production of fine-grain cemented carbides because V is a fine grain and is uniformly dissolved in the WC powder. WC has a problem that it is not suitable for a cutting tool or a hot die tool because WC itself has low hardness and toughness and is inferior in welding resistance, plastic deformation resistance, oxidation resistance and the like.
[0009]
JP-A-51-146306 discloses a sintered carbide metal alloy composition obtained by sintering tungsten monocarbide containing 10 to 100 mol% of molybdenum monocarbide with an iron group metal or the like, and a method for producing the same. Has been described. Japanese Patent Application Laid-Open No. H11-212165 discloses a composite carbonitride which is nitrided and synthesized by heating to 500 to 2000 ° C. in a nitrogen atmosphere of 10 atm or more, particularly a high melting point metal composite relating to (W, Mo) (CN). A carbonitride material is described.
[0010]
(W, Mo) C and (W, Mo) (CN) described in these two publications can improve the strength and toughness when used for a cemented carbide, but when the amount of Mo solid solution increases, the hardness, The wear resistance is remarkably reduced, and the welding resistance, plastic deformation resistance, oxidation resistance, and the like are also deteriorated. Therefore, there is a problem that it is not suitable for a cutting tool or a hot die tool.
[0011]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems. Specifically, in order to improve the hardness, toughness, oxidation resistance, corrosion resistance, etc. of tungsten carbide itself, tungsten carbide is made of Ti, Zr, Hf. It is an object of the present invention to provide a hexagonal composite carbide in which at least one element selected from the group consisting of Ni, Nb, Ta, and Cr is dissolved, and to provide a cemented carbide containing hexagonal composite carbide and having excellent alloy properties.
[0012]
[Means for Solving the Problems]
The inventor of the present invention has been studying the simultaneous improvement of contradictory alloy properties in cemented carbide for many years, and it is most effective to improve the properties of WC itself. Thus, the present inventors have found that the characteristics of WC can be improved, and that Ti, Zr, Hf, Nb, Ta, Cr and the like are the most effective as the solid solution elements, and have completed the present invention.
[0013]
The hexagonal composite carbide of the present invention is a hexagonal crystal composed of tungsten carbide and a first solid solution element of at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, and Cr. A hexagonal composite carbide in which the first solid solution element is solid-dissolved in the tungsten carbide in an amount of 0.1 to 3% by weight based on the whole hexagonal composite carbide.
[0014]
Hexagonal composite carbide of the present invention represents a chemical composition formula (W 1-x, M x ) in C y, however, M is Ti, Zr, Hf, Nb, at least one selected Ta, from the group consisting of Cr X in the chemical composition formula represents a molar ratio of M to the sum of W and M as metal components, and y in the chemical composition formula represents C ( When expressing the molar ratio of (carbon), x and y vary greatly depending on the atomic weight of the solid solution element, but fall within the range of 0.002 ≦ x ≦ 0.06, 0.95 ≦ y ≦ 1.00, respectively. I have.
[0015]
As the first solid solution element in the hexagonal composite carbide of the present invention, specifically, one of Ti, Zr, Hf, Nb, Ta, and Cr or Ti and Ta, Ti and Cr, Zr and Nb, Ti And two or more of Zr and Ta. If the amount of the first solid solution element with respect to the whole hexagonal composite carbide is less than 0.1% by weight, the effect of improving hardness, toughness, oxidation resistance, corrosion resistance, etc. with respect to WC is small, and conversely, 3% by weight. Since it is difficult to form a solid solution exceeding the above range, the content is set to 0.1 to 3% by weight. Here, as the main effects of the first solid solution element, the addition of Ti, Zr, and Hf improves the hardness, welding resistance, and oxidation resistance of WC, and the addition of Nb and Ta enhances the toughness and thermal deformation resistance of WC. And the addition of Cr improves the oxidation resistance, corrosion resistance and toughness of WC. When the first solid solution element is composed of two or more elements, these effects appear additively or synergistically.
[0016]
When the solid solution element in the hexagonal complex carbide of the present invention is the first solid solution element and the second solid solution element composed of V and / or Mo, the second solid solution element has an effect of the first solid solution element. It is preferable because the effect of the element is added. That is, a fine-grain cemented carbide can be obtained by the grain growth suppressing effect of V. In addition, a high toughness cemented carbide can be obtained by improving the toughness of WC by adding Mo. If the amount of the second solid solution element with respect to the entire hexagonal composite carbide is less than 0.1% by weight, the effect is small, and conversely, it is difficult to form a solid solution with V exceeding 5% by weight. Further, when Mo exceeds 5% by weight as a solid solution, wear resistance and oxidation resistance are remarkably reduced.
[0017]
When the lattice constant of the a-axis of the hexagonal composite carbide of the present invention is 0.2910 to 0.2925 nm and / or the lattice constant of the c-axis of the hexagonal composite carbide of the present invention is 0.2840 to 0.2855 nm, that is, (A) the lattice constant of the a-axis of the hexagonal composite carbide of the present invention is 0.2910 to 0.2925 nm, and (B) the lattice constant of the c-axis of the hexagonal composite carbide of the present invention is 0.2840 to 0.2855 nm. In any of (A), (A) and (B) and (B), the solid solution of the solid solution element in WC is complete and uniform, and the effect of improving the characteristics of WC is maximized. Is preferable.
[0018]
The hexagonal composite carbide of the present invention is preferably in the form of powder having an average particle diameter of 0.5 to 100 μm. This is because particles having a particle size of less than 0.5 μm are difficult to produce due to a high solution treatment temperature, and particles having a particle size of more than 100 μm are not practical as raw material powder of a cemented carbide.
[0019]
The hexagonal composite carbide of the present invention can be obtained as a hexagonal composite carbide-containing powder consisting of only hexagonal composite carbide particles. However, the hexagonal composite carbide particles, the W 2 C particles, Table 4a, Hexagonal secondary particles composed of particles of at least one cubic compound selected from the group consisting of carbides, nitrides, carbonitrides, and mutual solid solutions of Group 5a elements It can be obtained as a composite carbide-containing powder. In the hexagonal composite carbide-containing powder, some of the hexagonal composite carbide particles, some of the W 2 C particles, and / or some of the cubic compound particles may form a solid solution.
[0020]
That is, the hexagonal composite carbide-containing powder of the present invention comprises hexagonal composite carbide particles: 60 to 100% by volume, W 2 C particles: 0 to 10% by volume, and carbides of 4a, 5a, and 6a group elements, Particles of at least one cubic compound selected from the group consisting of nitrides, carbonitrides, and mutual solid solutions thereof: 0 to 30% by volume.
[0021]
When the content of the hexagonal composite carbide particles contained in the hexagonal composite carbide-containing powder of the present invention is less than 60% by volume, the hardness and toughness of the cemented carbide produced using the hexagonal composite carbide-containing powder The effect of solid solution elements on alloy properties such as corrosion resistance, oxidation resistance, and corrosion resistance is reduced. Further, when the content of the W 2 C particles contained in the hexagonal composite carbide-containing powder of the present invention exceeds 10% by volume, it becomes easy to adjust the amount of carbon and the WC particle size when manufacturing a cemented carbide, Problems such as reaction and melting occur during sintering. Here, when the carbon content is small, when heat treatment is performed at a high temperature, or when the solid solution element is Cr or Mo, W 2 C is easily generated. In order to increase the content of the solid solution element, it is better to include W 2 C.
[0022]
As the particles of the cubic compound contained in the hexagonal composite carbide-containing powder of the present invention, specifically, (W 0.6 Ti 0.4 ) C 0.8 , (W 0.06 Zr 0.95 ) C 0.75 , (W 0.65 Ta 0.35 ) C 0.9 , (W 0.5 Ti 0.3 Ta 0.2 ) C 0.9 , (W 0.5 Ti 0.5 ) ( C 0.9 N 0.1 ) 0.95 , (W 0.45 Ti 0.4 Mo 0.15 ) C 0.85 , (W 0.4 V 0.5 Cr 0.1 ) C 0.8 And the like. When the hexagonal composite carbide of the present invention is produced, if a solid solution element such as Ti, Zr, Hf, Nb, Ta or the like is added to WC at or above the solid solution limit, the solid solution element that cannot be completely dissolved becomes a cubic compound. Form particles. In order to maximize the effect of adding a solid solution element, it may be preferable to include particles of a cubic compound. However, when the content of the cubic compound particles in the hexagonal composite carbide-containing powder of the present invention exceeds 30% by volume, it becomes difficult to adjust the composition when manufacturing a cemented carbide, and the hexagonal composite carbide is relatively high. The effect is reduced by reducing the content of carbide.
[0023]
It is preferable that fine cubic compound particles are dispersed in the hexagonal composite carbide particles of the present invention because the hardness and toughness of the hexagonal composite carbide particles can be improved. When the solid solution element is added to the WC beyond the solid solution limit, particles of the cubic compound are incorporated into the particles during the grain growth process of the hexagonal composite carbide, and thus such a structure is formed.
[0024]
The hexagonal composite carbide of the present invention includes, for example, a mixed powder of WC powder and TiH 2 powder, a mixed powder of W powder, TiN powder and C powder, a mixed powder of WO 3 powder, TiO 2 powder and C powder, and the like. It can be obtained by heating at a high temperature in a non-oxidizing atmosphere or a combined atmosphere of reducing and carburizing, but if manufactured by the following method, the content of solid solution elements is large and the solid solution state and particle size distribution are uniform. Can be manufactured.
[0025]
That is, the method for producing a hexagonal composite carbide according to the present invention is characterized in that at least one oxide selected from the group consisting of oxides of Ti, Zr, Hf, Nb, Ta, Cr, V, and Mo and a mutual solid solution thereof (Except for V oxide, Mo oxide, and composite oxide of V and Mo), and a mixed powder composed of W powder and C powder in a vacuum.
[0026]
In the method for producing a hexagonal composite carbide of the present invention, the finer the powder of the oxide, the W powder, and the C powder, the more preferable. Further, it is preferable to add a compound containing a solid solution element in the form of a solution since the oxide can be finely and uniformly dispersed. Further, the content of the C powder in the mixed powder is preferably such that a small amount of W 2 C is generated after the heat treatment.
[0027]
The heat treatment temperature of the mixed powder is preferably 1750 to 2100 ° C. That is, if the temperature is lower than 1750 ° C., the diffusion rate is small and the amount of solid solution elements is large, so that a hexagonal composite carbide in which the solid solution elements are uniformly dissolved cannot be obtained. This is because, together with the decrease, an increase in the amount of W 2 C and abnormal grain growth of the WC become problems. The atmosphere for the heat treatment of the mixed powder is preferably a high vacuum of 10 Pa or less. This is because a high vacuum of 10 Pa or less promotes reduction of oxides and diffusion into W, and a hexagonal composite carbide having a large amount of solid solution elements in which solid solution elements are uniformly dissolved is obtained.
[0028]
Using the hexagonal composite carbide of the present invention as a raw material, a cemented carbide represented by WC-Co, WC-TiC-TaC-Co, and WC- (Ni, Cr) can be manufactured. When the iron group metal powder is added to the hexagonal composite carbide-containing powder of the present invention and sintered to produce a cemented carbide, the effect of the solid solution elements can be maximized. Depending on the application, TiN, ZrC, TaC, VC, Cr 3 C 2 , Mo 2 C, etc. may be added together with the iron group metal.
[0029]
That is, as the cemented carbide containing the hexagonal composite carbide of the present invention, the hexagonal composite carbide: 40 to 97% by weight, and carbides, nitrides, carbonitrides, and carbides of the elements in Groups 4a, 5a, and 6a of the periodic table. A cubic compound composed of at least one selected from the group consisting of these mutual solid solutions: 0 to 30% by weight, and a binder phase containing iron group metal as a main component: 3 to 30% by weight are preferable. Excellent in bending strength, hardness and fracture toughness compared to the cemented carbide used. If the binder phase is less than 3% by weight, the fracture resistance is poor, and if it exceeds 30% by weight, the corrosion resistance and the wear resistance tend to decrease. A cemented carbide consisting of a hexagonal composite carbide and a binder phase may be used. However, in applications where wear resistance and high-temperature hardness are required, carbides, nitrides, and carbons of Group 4a, 5a, and 6a elements of the periodic table can be used. It is preferable to contain 30% by weight or less of a cubic compound of at least one selected from the group consisting of nitrides and mutual solid solutions thereof. However, when the cubic compound is contained in an amount exceeding 30% by weight, the fracture resistance tends to decrease.
[0030]
Embodiment 1
Commercially available W having an average particle diameter of 0.5 μm, carbon black (referred to as C) of 0.02 μm, TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 5 , and Ta 2 of 0.05 to 0.2 μm. O 5 , Cr 2 O 3 , V 2 O 5 , MoO 3 and 0.5 μm WC (denoted as WC / F), 1.2 μm TiC, 1.1 μm Mo 2 C, 3.0 μm WC (WC / M) was weighed to the composition shown in Table 1, inserted into a stainless steel pot together with an iron ball, and mixed dry for 2 hours using a vibrating ball mill. This mixed powder was filled in a graphite crucible and inserted into a vacuum heating furnace, and then subjected to a heat treatment for 2 hours at a temperature shown in Table 1 in a vacuum of 10 Pa to obtain products 1 to 15 of the present invention and comparative product 1 ~ 9. However, the comparative product 9 was not subjected to mixing and heat treatment.
[0031]
[Table 1]
Figure 2004142993
[0032]
The heat-treated powders of the inventive products 1 to 14 and the comparative products 1 to 9 thus obtained were crushed and passed through a 100 # sieve to obtain evaluation sample powders. X-ray diffraction (tube: Cu, tube voltage: 50 kV, tube current: 250 mA) was performed on this, and the components in the powder were identified. The results are shown in Table 1. In Examples 1 and 2, the WC phase indicates WC or hexagonal composite carbide. The content of W 2 C (volume%) determined from the peak intensity ratio of W 2 C (101) and WC phase (101), the results set forth in Table 2 and 4. The content of W 2 C is obtained from the calibration curve was subjected to X-ray diffraction by adding a predetermined amount of commercially available W 2 C powder WC powder of comparative 9.
[0033]
Next, 30% by weight of copper powder (commercially available electrolytic copper powder: 2.5 μm) was added to each sample powder, mixed in a mortar, molded at a pressure of 196 MPa, and then 1150 ° C. in vacuum. A sample alloy for analysis was obtained by heating and sintering for -20 minutes. Then, the sample alloy was ground with a diamond grindstone, wrapped with a diamond paste having an average particle diameter of 0.3 μm, and then subjected to observation and analysis with a field emission scanning electron microscope.
[0034]
First, the existence and distribution of the WC phase and particles other than the WC phase (W 2 C, cubic compound, Cr 3 C 2 ) were confirmed by composition image contrast and element mapping. The composition of the WC phase and the cubic compound was analyzed by focusing the electron beam on the center of relatively large particles. Further, the content volume% of various component particles constituting each sample powder was determined by photographing and an image processing apparatus. Tables 2 to 5 show these results. Further, the average particle size of the WC phase, W 2 C, and cubic compound was determined. Table 6 shows the results.
[0035]
[Table 2]
Figure 2004142993
[0036]
[Table 3]
Figure 2004142993
[0037]
[Table 4]
Figure 2004142993
[0038]
[Table 5]
Figure 2004142993
[0039]
[Table 6]
Figure 2004142993
[0040]
Next, the plane spacing and the lattice spacing are calculated from the peak position (2θ = 30 to 120 °) of the WC phase measured under the X-ray diffraction conditions, and the lattice constant is calculated by extrapolation for each of the a-axis and the c-axis. I asked. The results are shown in Table 6.
[0041]
Embodiment 2
Inventive products 2, 8, 14 and Comparative products 2, 8, 9 obtained in Example 1 and commercially available Co having an average particle diameter of 1.0 μm, and (W, Ti) C having a weight of 1.2 μm (weight) (WC / TiC = 70/30 in ratio), 1.0 μm NbC and 2.6 μm Cr 3 C 2 were weighed to the composition shown in Table 7, and the acetone solvent and super It was inserted together with a hard alloy ball, mixed and pulverized for 48 hours, and then dried to obtain a mixed powder. Then, these powders are filled in a mold, and a green compact of 5.5 × 9.5 × 29 mm is produced at a pressure of 196 MPa, and is placed on a sheet made of alumina and carbon fiber. The sintering was performed at 1400 ° C. for 1.0 hour in a vacuum to obtain cemented carbide samples: A to F.
[0042]
[Table 7]
Figure 2004142993
[0043]
The obtained cemented carbide specimen was wet-ground with a # 230 diamond grindstone to form a 4.0 × 8.0 × 25.0 mm shape, and the bending strength was measured by the JIS method. After lapping one surface of the same sample with a diamond paste of 0.3 μm, the hardness and the fracture toughness K1C (IM method) at a load of 196 N using a Vickers indenter were measured. Further, a micrograph of the lap surface of each sample was taken with an electron microscope, and the average particle size of the WC phase and the content of the cubic compound were determined using an image processor. Table 8 shows the results.
[0044]
[Table 8]
Figure 2004142993
[0045]
【The invention's effect】
The hexagonal composite carbide of the present invention is capable of forming a solid solution of at least one first solid solution element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, and Cr into WC to obtain a hardness of WC itself, Improves properties such as toughness, oxidation resistance, and corrosion resistance. The cemented carbide produced using the hexagonal composite carbide of the present invention has a hardness, strength, strength and strength which are substantially the same as those of the conventional cemented carbide using high-purity WC when the composition and the WC grain size are almost the same. The toughness and the like are all improved, and in particular, there is an effect that the strength is remarkably improved in a cemented carbide to which a small amount of TiC, NbC or VC, Cr 3 C 2 is added. The hexagonal composite carbide obtained by dissolving at least one first solid solution element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, and Cr in WC by the method for producing a hexagonal composite carbide of the present invention. Can be easily obtained.

Claims (7)

炭化タングステンと、Ti,Zr,Hf,Nb,Ta,Crからなる群から選ばれた少なくとも1種の元素からなる第1固溶元素とで構成された六方晶複合炭化物であって、該炭化タングステンに該第1固溶体元素を該六方晶複合炭化物全体に対して0.1〜3重量%固溶させた六方晶複合炭化物。A hexagonal composite carbide composed of tungsten carbide and a first solid solution element of at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, and Cr, A hexagonal composite carbide obtained by dissolving the first solid solution element in a solid solution in an amount of 0.1 to 3% by weight based on the entire hexagonal composite carbide. 前記六方晶複合炭化物に、Vおよび/またはMoからなる第2固溶元素を該六方晶複合炭化物全体に対して0.1〜5重量%固溶させた請求項1に記載の六方晶複合炭化物。2. The hexagonal composite carbide according to claim 1, wherein a second solid solution element consisting of V and / or Mo is solid-dissolved in the hexagonal composite carbide in an amount of 0.1 to 5% by weight based on the entire hexagonal composite carbide. 3. . 前記六方晶複合炭化物のa軸の格子定数が0.2910〜0.2925nmおよび/またはc軸の格子定数が0.2840〜0.2855nmである請求項1または2に記載の六方晶複合炭化物。The hexagonal composite carbide according to claim 1 or 2, wherein the a-axis lattice constant of the hexagonal composite carbide is 0.2910 to 0.2925 nm and / or the c-axis lattice constant is 0.2840 to 0.2855 nm. 平均粒子径0.5〜100μmの粉末状である請求項1〜3のいずれか1項に記載の六方晶複合炭化物。The hexagonal composite carbide according to any one of claims 1 to 3, which is in the form of a powder having an average particle diameter of 0.5 to 100 µm. 請求項1〜4のいずれか1項に記載された前記六方晶複合炭化物の粒子:60〜100体積%と、WCの粒子:0〜10体積%と、周期律表4a,5a,6a族元素の炭化物,窒化物,炭窒化物およびこれらの相互固溶体からなる群から選ばれた少なくとも1種の立方晶化合物の粒子:0〜30体積%とで構成された六方晶複合炭化物含有粉末。Any one in the listed the hexagonal complex carbide particles of claims 1 to 4: 60-100 and volume%, W 2 C particles: 0-10 and volume%, the periodic table 4a, 5a, 6a A hexagonal composite carbide-containing powder comprising: particles of at least one cubic compound selected from the group consisting of carbides, nitrides, carbonitrides, and mutual solid solutions of group elements: 0 to 30% by volume. 請求項1〜4のいずれか1項に記載の前記六方晶複合炭化物:40〜97重量%と、周期律表4a,5a,6a族元素の炭化物,窒化物,炭窒化物およびこれらの相互固溶体からなる群から選ばれた少なくとも1種の立方晶化合物:0〜30重量%と、鉄族金属を主成分とする結合相:3〜30重量%とで構成された超硬合金。The hexagonal composite carbide according to any one of claims 1 to 4, 40 to 97% by weight, and carbides, nitrides, carbonitrides, and mutual solid solutions of elements of Group 4a, 5a, and 6a in the periodic table. A hard metal alloy comprising at least one cubic compound selected from the group consisting of: 0 to 30% by weight and a binder phase containing an iron group metal as a main component: 3 to 30% by weight. Ti,Zr,Hf,Nb,Ta,Cr,V,Moの酸化物およびこれらの相互固溶体からなる群から選ばれた少なくとも1種の酸化物の粉末と、W粉末と、C粉末とからなる混合粉末を真空中で加熱することを特徴とする六方晶複合炭化物の製造方法。Mixing consisting of a powder of at least one oxide selected from the group consisting of oxides of Ti, Zr, Hf, Nb, Ta, Cr, V, and Mo and their mutual solid solution, W powder, and C powder A method for producing a hexagonal composite carbide, wherein the powder is heated in a vacuum.
JP2002309855A 2002-10-24 2002-10-24 Hexagonal composite carbide, and production method therefor Pending JP2004142993A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002309855A JP2004142993A (en) 2002-10-24 2002-10-24 Hexagonal composite carbide, and production method therefor
US10/690,672 US20040079191A1 (en) 2002-10-24 2003-10-23 Hard alloy and W-based composite carbide powder used as starting material
EP03024424A EP1420076A1 (en) 2002-10-24 2003-10-23 Hard alloy and W-based composite carbide powder used as starting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309855A JP2004142993A (en) 2002-10-24 2002-10-24 Hexagonal composite carbide, and production method therefor

Publications (1)

Publication Number Publication Date
JP2004142993A true JP2004142993A (en) 2004-05-20

Family

ID=32455541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309855A Pending JP2004142993A (en) 2002-10-24 2002-10-24 Hexagonal composite carbide, and production method therefor

Country Status (1)

Country Link
JP (1) JP2004142993A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269534A (en) * 2006-03-31 2007-10-18 Allied Material Corp Wc powder and its production method
JP2010115657A (en) * 2008-11-04 2010-05-27 Japan New Metals Co Ltd Binderless powder for surface hardening
JP2010248561A (en) * 2009-04-14 2010-11-04 Sumitomo Electric Hardmetal Corp Cemented carbide
WO2012145773A1 (en) * 2011-04-26 2012-11-01 Wolfram Bergbau Und Hütten Ag Doped hexagonal tungsten carbide and method for producing same
JP2013510783A (en) * 2009-11-16 2013-03-28 チャンシー レア アース アンド レア メタルズ タングステン グループ コーポレーション How to make ultra fine tungsten carbide
JP2016526102A (en) * 2013-05-31 2016-09-01 サンドビック インテレクチュアル プロパティー アクティエボラーグ New manufacturing method of cemented carbide and product obtained thereby
JP2016526101A (en) * 2013-05-31 2016-09-01 サンドビック インテレクチュアル プロパティー アクティエボラーグ New manufacturing method of cemented carbide and product obtained thereby
WO2019098183A1 (en) * 2017-11-14 2019-05-23 株式会社アライドマテリアル Powder containing tungsten carbide
JP2020050569A (en) * 2018-09-28 2020-04-02 三菱マテリアル株式会社 Hard sintered body and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118314A (en) * 1978-02-28 1979-09-13 Sandvik Ab Sintered carbide alloy
JPS54143413A (en) * 1978-04-28 1979-11-08 Sumitomo Electric Industries Manufacture of hard solid solution containing molybdenum
JPH09309715A (en) * 1996-05-21 1997-12-02 Tokyo Tungsten Co Ltd Composite carbide powder and production thereof
JPH10212165A (en) * 1997-01-27 1998-08-11 Tokyo Tungsten Co Ltd Composite carbide powder and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118314A (en) * 1978-02-28 1979-09-13 Sandvik Ab Sintered carbide alloy
JPS54143413A (en) * 1978-04-28 1979-11-08 Sumitomo Electric Industries Manufacture of hard solid solution containing molybdenum
JPH09309715A (en) * 1996-05-21 1997-12-02 Tokyo Tungsten Co Ltd Composite carbide powder and production thereof
JPH10212165A (en) * 1997-01-27 1998-08-11 Tokyo Tungsten Co Ltd Composite carbide powder and its production

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269534A (en) * 2006-03-31 2007-10-18 Allied Material Corp Wc powder and its production method
JP2010115657A (en) * 2008-11-04 2010-05-27 Japan New Metals Co Ltd Binderless powder for surface hardening
JP2010248561A (en) * 2009-04-14 2010-11-04 Sumitomo Electric Hardmetal Corp Cemented carbide
JP2013510783A (en) * 2009-11-16 2013-03-28 チャンシー レア アース アンド レア メタルズ タングステン グループ コーポレーション How to make ultra fine tungsten carbide
WO2012145773A1 (en) * 2011-04-26 2012-11-01 Wolfram Bergbau Und Hütten Ag Doped hexagonal tungsten carbide and method for producing same
JP2016526101A (en) * 2013-05-31 2016-09-01 サンドビック インテレクチュアル プロパティー アクティエボラーグ New manufacturing method of cemented carbide and product obtained thereby
JP2016526102A (en) * 2013-05-31 2016-09-01 サンドビック インテレクチュアル プロパティー アクティエボラーグ New manufacturing method of cemented carbide and product obtained thereby
WO2019098183A1 (en) * 2017-11-14 2019-05-23 株式会社アライドマテリアル Powder containing tungsten carbide
JPWO2019098183A1 (en) * 2017-11-14 2020-11-19 株式会社アライドマテリアル Powder containing tungsten carbide
US11293082B2 (en) 2017-11-14 2022-04-05 A.L.M.T. Corp. Powder containing tungsten carbide
JP7216656B2 (en) 2017-11-14 2023-02-01 株式会社アライドマテリアル Powder containing tungsten carbide
JP2020050569A (en) * 2018-09-28 2020-04-02 三菱マテリアル株式会社 Hard sintered body and manufacturing method thereof
JP7068658B2 (en) 2018-09-28 2022-05-17 三菱マテリアル株式会社 Hard sintered body and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3709200B2 (en) High-density fine refractory metal or solid solution (mixed metal) carbide ceramic
JP4542799B2 (en) High strength and high wear resistance diamond sintered body and method for producing the same
EP0759480B1 (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
JP5302965B2 (en) Hard powder, method for producing hard powder, and sintered hard alloy
US5918103A (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
US20040079191A1 (en) Hard alloy and W-based composite carbide powder used as starting material
JP2017014084A (en) Cubic crystal boron nitride sintered body, method of producing cubic crystal boron nitride sintered body, tool and cutting tool
CN1497053A (en) Hard alloy and W-based complex carbide powder used as raw material
JP2004142993A (en) Hexagonal composite carbide, and production method therefor
US20120063943A1 (en) Metal composite powder, sintered body, and preparation method thereof
JP2010208942A (en) High strength-high wear resistant diamond sintered body and method of producing the same
KR101450661B1 (en) The method of preparation for ternary titanium carbonitride sintered bodies having enhanced mechanical properties and ternary titanium carbonitride sintered bodies prepared thereby
JP2004292842A (en) Cermet
JP5618364B2 (en) Method for producing ultrafine and homogeneous titanium carbonitride solid solution powder
JP4282298B2 (en) Super fine cemented carbide
JPH07278719A (en) Particulate plate crystal cemented carbide containing wc and its production
JP2006111947A (en) Ultra-fine particle of cermet
JP4140928B2 (en) Wear resistant hard sintered alloy
JPH0978174A (en) Titanium-based carbonitride cermet having high strength
JP2004263251A (en) Group 7a element-containing cemented carbide
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JP3605740B2 (en) Carbide alloy for end mill
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP2978052B2 (en) Composition for powder metallurgy and method for producing the same
JP4058758B2 (en) Surface-coated cemented carbide end mill with excellent heat-resistant plastic deformation in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317