JP4140928B2 - Wear resistant hard sintered alloy - Google Patents

Wear resistant hard sintered alloy Download PDF

Info

Publication number
JP4140928B2
JP4140928B2 JP29977396A JP29977396A JP4140928B2 JP 4140928 B2 JP4140928 B2 JP 4140928B2 JP 29977396 A JP29977396 A JP 29977396A JP 29977396 A JP29977396 A JP 29977396A JP 4140928 B2 JP4140928 B2 JP 4140928B2
Authority
JP
Japan
Prior art keywords
sintered alloy
weight
wear
hard sintered
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29977396A
Other languages
Japanese (ja)
Other versions
JPH10130771A (en
Inventor
正樹 小林
幸三 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP29977396A priority Critical patent/JP4140928B2/en
Publication of JPH10130771A publication Critical patent/JPH10130771A/en
Application granted granted Critical
Publication of JP4140928B2 publication Critical patent/JP4140928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐摩耗性,耐腐食性および低摩擦係数を有する硬質焼結合金に関し、具体的には、例えばノズル,メカニカルシール,軸受け部品,射出成形用金型,ボールペン用ボールなど耐摩耗性と共に、耐腐食性および潤滑性を必要とする用途に最適な耐摩耗性硬質焼結合金に関するものである。
【0002】
【従来の技術】
粉末冶金製品のなかでも耐腐食性と耐摩耗性を兼備した硬質焼結合金として、WCー(Co−Cr)基超硬合金,WCーNi基超硬合金,WC−(Ni−Cr)基超硬合金が多用されている。近年、これら超硬合金の各種用途において、さらなる耐腐食性の向上や潤滑性付与による摩擦・摩耗の低減が求められている。
【0003】
この問題を改善しようとして提案されている代表的なものに、特開昭50−45708号公報,特開昭59−133346号公報,および特開昭62−112750号公報がある。
【0004】
【発明が解決しようとする課題】
耐摩耗性の改善に着目した先行技術の内、特開昭50−45708号公報には、Ni:6〜12重量%とCr:1〜4重量%とMo:1〜4重量%と残り炭化タングステンでなるWC−(Ni−Cr−Mo)基超硬合金が開示されている。同公報に開示の超硬合金は、耐腐食性は向上されているものの、摩擦・摩耗が余り改善さていなく満足できないという問題がある。
【0005】
また、特開昭59−133346号公報には、W:75〜95重量%,TiとTaまたはTaの一部をNbに置換したもの0〜5重量%,カーボン:3〜8重量%の成分で、かつ結合相の鉄族金属:2〜20重量%含有した焼結体組織中にCo33Cを有せしめた超硬質焼結体について開示されている。同公報に開示されている超硬質焼結体は、組織中にCo33Cを含有せしめることにより切削工具としての耐摩耗性が向上したというものであるが、耐腐食性の改善および強度と摩擦係数の低下については配慮されていないという問題がある。
【0006】
さらに、特開昭62−112750号公報には、炭化タングステンでなる分散相と、CoにNi,Cr,WおよびCが固溶したCo基合金でなる結合相からなる超硬合金製熱間圧延ロールについて開示されている。同公報に開示の超硬合金製熱間圧延ロールは、超耐熱合金でなるCo基合金を結合相としていることから耐熱性にすぐれた超硬合金になっているのであるが、耐腐食性の改善、特に摩擦係数の低下については配慮されていないという問題がある。
【0007】
本発明は、上記のような問題点を解決したもので、具体的には、超硬合金中にCo33C,Ni24Cで代表される複合化合物の分散相を分散させ、かつ結合相中にWを固溶させることにより、耐腐食性および耐摩耗性を大幅に向上させること、摩擦係数を低下させることが可能となった耐摩耗性硬質焼結合金の提供を目的とするものである。
【0008】
【課題を解決するための手段】
本発明者らは、耐腐食性と耐摩耗性を兼備した硬質焼結合金について、長年に亘って検討していた所、超硬合金中にCo33C,Ni24Cに代表される複合化合物を分散させると同時に、結合相中にWを固溶させることにより、その目的が達成されるという知見を得て、本発明を完成するに至ったものである。
【0009】
本発明の耐摩耗性硬質焼結合金は、Coおよび/またはNiとWとを主成分として含む結合相:3〜15重量%と、WとCoおよび/またはNiと炭素を含む複合化合物でなる分散相:50重量%以下と、残りが炭化タングステンと不可避不純物からなることを特徴とするものである。
【0010】
【発明の実施の形態】
本発明の耐摩耗性硬質焼結合金における結合相は、Coおよび/またはNiとWを主成分とするもので、具体的には、例えばCo−W合金,Ni−W合金,Co−Ni−W合金,CoーWーCr合金,Co−W−Cr−V合金,Co−Ni−W−Cr合金,Ni−W−Cr−Mo合金を挙げることができる。この結合相は、結合相に対してCoおよび/またはNiが70重量%以上、Wが5〜30重量%含有することが好ましく、さらにCo,Ni,W以外の元素、例えばCr,V,Moが含まれる場合には、15重量%以下含有していると、耐腐食性および耐摩耗性が向上することから好ましいことである。この結合相量は、合金全体に対して3重量%未満になると、焼結が困難となって強度と硬さが低下し、逆に15重量%を超え多くなると硬さ低下による耐摩耗性劣化が顕著となるために、3〜15重量%と定めたものである。
【0011】
本発明の耐摩耗性硬質焼結合金における分散相は、WとCoおよび/またはNiと炭素からなるM6C型複合化合物および/またはM12C型複合化合物でなり、具体的には、例えばCo33C,Co24C,Co66C,Ni24Cおよびこれらの相互固溶体の中の1種以上からなる第1複合化合物でなる場合を挙げることができる。さらに、この複合化合物中のWの一部もしくはCoおよび/またはNiの一部が周期律表の4a,5a,6a族元素に代表される他の元素により置換された複合化合物、具体的には、例えば(Co,Cr)33C、(Ni,Cr,Mo)24C、(Co,Cr)3(W,Mo)3Cの1種以上からなる第2複合化合物でなる場合を挙げることができる。この分散相は、焼結合金全体に対して50重量%を超えて多くなると、強度低下と硬さ低下による耐摩耗性の劣化が顕著になる。分散相の特徴である潤滑性を、焼結合金として発揮させるために、焼結合金全体に対して5〜50重量%含有していることが好ましいことである。
【0012】
この分散相は、上述した第1複合化合物のみでなる場合、第2複合化合物のみでなる場合、または第1複合化合物と第2複合化合物の混在した場合でもよく、これらのうち、第1複合化合物の場合には、焼結合金全体に対して5〜45重量%、第2複合化合物の場合には、焼結合金全体に対して5〜30重量%含有していることが好ましいことである。このうち、第2複合化合物の場合は、WとCoおよび/またはNiとCrおよび/またはMoと炭素との複合化合物、具体的には、例えば(Co,Cr)33C、Co3(W,Cr)3C、(Co,Ni)3(W,Mo)3C、(Ni,Mo)33C、(Ni,Cr,Mo)24Cでなる場合を挙げることができる。この第2複合化合物の場合におけるCrおよび/またはMoは、複合化合物全体に対して20重量%以下固溶されている場合には、耐腐食性や耐摩耗性を向上させる効果が高いことから好ましい。
【0013】
本発明の耐摩耗性硬質焼結合金は、上述したように実質的に結合相と分散相と炭化タングステンとでなる場合、または結合相と分散相と炭化タングステンの他に、さらに、周期律表の4a,5a,6a族元素の炭化物,窒化物およびこれらの相互固溶体の中の1種以上の立方晶結晶構造の化合物でなる硬質相が焼結合金全体に対して30重量%以下含有している場合にも分散相と結合相の効果が充分に発揮され得ることから好ましいことである。この硬質相は、具体的には、例えば(W,Ti)C、(W,Ti)(CN)、TiN、TiC、Ti(CN)、Zr(CN)、(W,Ti,Ta)C、(W,Ti,Ta,Nb)C、TaC、NbN、VCなどを挙げることができる。硬質相は、組成成分によって、硬さ上昇による耐摩耗性の向上と炭化タングステン粒子の粒成長抑制と分散相の凝集防止による強度の改善効果を発揮し、その含有量が30重量%を超え多くなると相対的に炭化タングステンの含有量が減少して強度・靱性が低下するため、30重量%以下と定めたものである。
【0014】
【作用】
本発明の耐摩耗性硬質焼結合金は、含有されたCo33C,Ni24Cなどの分散相が潤滑性を付加して耐摩耗性を顕著に高める作用をし、Wを多量に固溶させた結合相が耐腐食性を改善する作用をしているものである。
【0015】
【実施例】
まず、市販されている平均粒子径が0.5μmのW,1.2μmのCo,0.02μmのカーボン(表中に「C」と記す),1.7μmのCr32,1.5μmのNi,の各粉末を用い、表1に示す配合組成に秤量し、ステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入して24時間の混合粉砕後、乾燥して得た混合粉末をアルミナ製ルツボに挿入し、真空中で1200℃×1時間の加熱処理を施して、表1に併記した複合化合物の混在した混合粉末AおよびBを得た。このAおよびBの混合粉末のX線回折による組成,含有炭素量,平均粒子径を表1に併記した。
【0016】
次に、上記W,Co,C,Cr32,Ni,混合粉末AおよびB,市販されている平均粒子径が0.5μmのWC(表中に「WC/F」と記す),1.5μmのWC(表中に「WC/M」と記す),1.0μmの(W,Ti)Cの複合炭化物(重量比でWC/TiC=70/30),1.0μmのTaC,1.2μmのMoの各粉末を用いて、表2に示す配合組成に秤量し、ステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を金型に充填し、2ton/cm2の圧力でもって約5.5×9.5×29mmの圧粉成形体を作製し、アルミナとカーボン繊維からなるシート上に設置し、雰囲気圧力10Paの真空中で、表2に併記した温度でもって1時間加熱保持して、本発明品1〜7および比較品1〜6の焼結合金を得た。
【0017】
こうして得た焼結合金試料の1μmダイヤモンドペーストによるラップ加工面をX線回折法により成分を同定した後、電子顕微鏡にて組織写真を撮り、画像処理装置にて、結合相と、M6CおよびM12C化合物である分散相と、硬質相と、WCとの重量割合を求めて、その結果を表3に示した。さらに、X線マイクロアナライザーにより結合相中のW,Crの量を分析し、その結果を表3に併記した。一方、これらの試料を#230のダイヤモンド砥石で湿式研削加工し、4.0×8.0×25mmの形状に作製し、JIS規格による抗折力とHRA硬さを測定して、その結果を表4に示した。
【0018】
次に、本発明品1〜7および比較品1〜6のラップ加工試料をPH=4.0の塩酸水溶液とPH=3.0の硝酸水溶液の中に常温で24時間浸責した後、光学顕微鏡観察により腐食の有無を調査し、その結果を表4に併記した。この腐食試験における腐食程度の評価基準は、◎:全く腐食無し、○:僅かに腐食(やや曇り)、△:腐食有り(曇り)、×:著しい腐食(色調変化)で表示した。
【0019】
また、本発明品1〜7および比較品1〜6と同一組成の混合粉末を用い、プレス成形,焼結,研削加工の工程を経て、φ35×10mmの円板とφ5.64×20mmの丸棒を製作した。これらをピンオンディスク型の摩擦試験機に同種材質の組合わせ(同一番号の試料の組合わせ)の円板と丸棒を着装し、水に2.0重量%のステアリン酸と5重量%のアルミナ粉(0.5μm)を添加した分散液中で、摩擦速度:1.0m/s,面圧:1.0MPa,摩擦時間:10Hrの条件で摩擦試験を実施した。この摩擦試験により得られた摩耗体積と摩擦係数の測定結果を表5に示した。
【0020】
【表1】

Figure 0004140928
【0021】
【表2】
Figure 0004140928
【0022】
【表3】
Figure 0004140928
【0023】
【表4】
Figure 0004140928
【0024】
【表5】
Figure 0004140928
【0025】
【発明の効果】
本発明の耐摩耗性硬質焼結合金は、従来のNi−Cr−Mo合金を結合相としたWC基超硬合金およびCo33Cの複合化合物を含有したCo結合相でなるWC基超硬合金に対比して、耐腐食性および耐摩耗性が顕著にすぐれており、かつ摩擦係数が低い傾向にあることから、耐摩耗性を必要とし、かつ腐食が進行しやすい用途、具体的には、例えば化学プラント,汚泥処理装置,湿式粉砕装置などに用いられる溶液,気体または粉末の混在した溶液を吹き付けるためのノズル、メカニカルシールとしての効果、さらには樹脂やインキによる耐摩耗性と耐腐食性を必要とする射出成形用金型,ボールペン用ボールなどとしての効果が期待されるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hard sintered alloy having wear resistance, corrosion resistance and a low coefficient of friction, and specifically, wear resistance such as nozzles, mechanical seals, bearing parts, injection molds, ballpoint pen balls, etc. In addition, the present invention relates to a wear-resistant hard sintered alloy that is optimal for applications that require corrosion resistance and lubricity.
[0002]
[Prior art]
Among powder metallurgy products, WC- (Co-Cr) -based cemented carbide, WC-Ni-based cemented carbide, WC- (Ni-Cr) -based as hard sintered alloys that have both corrosion resistance and wear resistance. Cemented carbide is often used. In recent years, in various applications of these cemented carbides, there has been a demand for further improvement of corrosion resistance and reduction of friction and wear by imparting lubricity.
[0003]
Representative examples proposed to improve this problem include Japanese Patent Laid-Open Nos. 50-45708, 59-133346, and 62-112750.
[0004]
[Problems to be solved by the invention]
Among the prior arts focused on improving the wear resistance, Japanese Patent Application Laid-Open No. 50-45708 discloses Ni: 6 to 12% by weight, Cr: 1 to 4% by weight, Mo: 1 to 4% by weight, and remaining carbonization. A WC- (Ni-Cr-Mo) based cemented carbide made of tungsten is disclosed. Although the cemented carbide disclosed in the publication has improved corrosion resistance, there is a problem that friction and wear are not improved so much and cannot be satisfied.
[0005]
JP-A-59-133346 discloses W: 75 to 95% by weight, Ti and Ta or a part of Ta substituted with Nb, 0 to 5% by weight, and carbon: 3 to 8% by weight. And an ultra-hard sintered body in which Co 3 W 3 C is contained in the sintered body structure containing 2-20% by weight of iron group metal in the binder phase. The ultra-hard sintered body disclosed in the publication is improved in wear resistance as a cutting tool by incorporating Co 3 W 3 C in the structure. There is a problem that the reduction of the friction coefficient is not considered.
[0006]
Further, JP-A-62-112750 discloses a cemented carbide hot rolling comprising a dispersed phase made of tungsten carbide and a bonded phase made of a Co-based alloy in which Ni, Cr, W and C are dissolved in Co. A roll is disclosed. The hot rolling roll made of cemented carbide disclosed in the publication is a cemented carbide having excellent heat resistance because it uses a Co-based alloy made of superheat resistant alloy as a binder phase. There is a problem that improvement is not taken into consideration, particularly about a decrease in the coefficient of friction.
[0007]
The present invention has solved the above-described problems. Specifically, a dispersed phase of a composite compound represented by Co 3 W 3 C and Ni 2 W 4 C is dispersed in a cemented carbide, The purpose of this invention is to provide a wear-resistant hard sintered alloy that can greatly improve corrosion resistance and wear resistance by reducing W in the binder phase, and can reduce the friction coefficient. To do.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have been studying hard sintered alloys having both corrosion resistance and wear resistance for many years, and are represented by Co 3 W 3 C and Ni 2 W 4 C in cemented carbides. The present invention has been completed by obtaining the knowledge that the object is achieved by dispersing W in the binder phase and simultaneously dissolving W in the binder phase.
[0009]
The wear-resistant hard sintered alloy of the present invention comprises a composite phase containing 3 to 15% by weight of a binder phase containing Co and / or Ni and W as main components, and W and Co and / or Ni and carbon. Dispersed phase: 50% by weight or less, and the remainder consists of tungsten carbide and inevitable impurities.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The binder phase in the wear-resistant hard sintered alloy of the present invention is mainly composed of Co and / or Ni and W. Specifically, for example, a Co—W alloy, Ni—W alloy, Co—Ni— W alloy, Co-W-Cr alloy, Co-W-Cr-V alloy, Co-Ni-W-Cr alloy, Ni-W-Cr-Mo alloy can be mentioned. This binder phase preferably contains 70% by weight or more of Co and / or Ni and 5 to 30% by weight of W with respect to the binder phase, and further elements other than Co, Ni, W, such as Cr, V, Mo, etc. Is contained in an amount of 15% by weight or less, it is preferable because corrosion resistance and wear resistance are improved. When the amount of this binder phase is less than 3% by weight based on the whole alloy, sintering becomes difficult and the strength and hardness are reduced. Conversely, when it exceeds 15% by weight, the wear resistance is deteriorated due to the decrease in hardness. Is set to 3 to 15% by weight.
[0011]
Dispersed phase in the wear resistant hard sintered alloy of the present invention will become at M6C type complex compound and / or M 12 C type complex compound consisting of W and Co and / or Ni and carbon, specifically, for example, Co 3 W 3 C, Co 2 W 4 C, mention may be made of a case made of a Co 6 W 6 C, Ni 2 W 4 C , and the first complex compound consisting of one or more of these mutual solid solutions. Further, a composite compound in which a part of W or a part of Co and / or Ni in this composite compound is substituted with another element typified by Group 4a, 5a, 6a element of the periodic table, specifically For example, a case where the second composite compound is composed of at least one of (Co, Cr) 3 W 3 C, (Ni, Cr, Mo) 2 W 4 C, and (Co, Cr) 3 (W, Mo) 3 C Can be mentioned. When the amount of the dispersed phase exceeds 50% by weight with respect to the entire sintered alloy, the wear resistance is significantly deteriorated due to a decrease in strength and a decrease in hardness. In order to exhibit the lubricity characteristic of the dispersed phase as a sintered alloy, it is preferable to contain 5 to 50% by weight with respect to the entire sintered alloy.
[0012]
The dispersed phase may be composed of only the first composite compound, the second composite compound, or the first composite compound and the second composite compound. Of these, the first composite compound may be used. In this case, it is preferable to contain 5 to 45% by weight with respect to the whole sintered alloy, and in the case of the second composite compound, 5 to 30% by weight with respect to the whole sintered alloy. Among these, in the case of the second composite compound, a composite compound of W and Co and / or Ni and Cr and / or Mo and carbon, specifically, for example, (Co, Cr) 3 W 3 C, Co 3 ( Examples include W, Cr) 3 C, (Co, Ni) 3 (W, Mo) 3 C, (Ni, Mo) 3 W 3 C, and (Ni, Cr, Mo) 2 W 4 C. . Cr and / or Mo in the case of the second composite compound is preferable because it has a high effect of improving the corrosion resistance and wear resistance when 20% by weight or less is dissolved in the entire composite compound. .
[0013]
The wear-resistant hard sintered alloy of the present invention is substantially composed of a binder phase, a dispersed phase, and tungsten carbide as described above, or in addition to the binder phase, the dispersed phase, and tungsten carbide, in addition to the periodic table. 4a, 5a, and 6a element carbides, nitrides, and hard phases composed of one or more kinds of cubic crystal structure compounds among these solid solutions are contained in an amount of 30% by weight or less based on the entire sintered alloy. Even in such a case, the effects of the dispersed phase and the binder phase can be sufficiently exhibited, which is preferable. Specifically, this hard phase is, for example, (W, Ti) C, (W, Ti) (CN), TiN, TiC, Ti (CN), Zr (CN), (W, Ti, Ta) C, (W, Ti, Ta, Nb) C, TaC, NbN, VC and the like can be mentioned. Depending on the composition, the hard phase exhibits improved wear resistance due to increased hardness, improved grain strength of tungsten carbide particles, and improved strength by preventing aggregation of the dispersed phase, and its content exceeds 30% by weight. In this case, the content of tungsten carbide is relatively reduced and the strength and toughness are lowered. Therefore, the content is determined to be 30% by weight or less.
[0014]
[Action]
In the wear-resistant hard sintered alloy of the present invention, the dispersed phase such as Co 3 W 3 C, Ni 2 W 4 C and the like has an effect of remarkably enhancing wear resistance by adding lubricity. The binder phase that is dissolved in a large amount acts to improve the corrosion resistance.
[0015]
【Example】
First, commercially available W with an average particle size of 0.5 μm, Co with 1.2 μm, carbon with 0.02 μm (denoted as “C” in the table), 1.7 μm Cr 3 C 2 , 1.5 μm Each of the Ni powders was weighed to the composition shown in Table 1, inserted into a stainless steel pot with an acetone solvent and a cemented carbide ball, mixed and ground for 24 hours, and then dried to obtain a mixed powder. The mixture was inserted into an alumina crucible and subjected to heat treatment at 1200 ° C. for 1 hour in vacuum to obtain mixed powders A and B in which the composite compounds shown in Table 1 were mixed. Table 1 also shows the composition, carbon content, and average particle size of the mixed powder of A and B by X-ray diffraction.
[0016]
Next, W, Co, C, Cr 3 C 2 , Ni, mixed powders A and B, a commercially available WC having an average particle diameter of 0.5 μm (denoted as “WC / F” in the table), 1 0.5 μm WC (denoted as “WC / M” in the table), 1.0 μm (W, Ti) C composite carbide (WC / TiC = 70/30 by weight), 1.0 μm TaC, 1 Each powder of Mo of 2 μm was weighed into the composition shown in Table 2, inserted into a stainless steel pot with an acetone solvent and a cemented carbide ball, mixed and ground for 48 hours, dried and mixed powder Obtained. Filling the mold with these mixed powders, producing a compact of about 5.5 × 9.5 × 29 mm with a pressure of 2 ton / cm 2 , placing it on a sheet made of alumina and carbon fiber, In the vacuum of atmospheric pressure 10Pa, it heated and hold | maintained for 1 hour with the temperature written together in Table 2, and obtained the sintered alloy of this invention products 1-7 and the comparative products 1-6.
[0017]
After the components of the lapping surface of the sintered alloy sample thus obtained with 1 μm diamond paste were identified by X-ray diffraction, a structure photograph was taken with an electron microscope, and the binder phase, M 6 C and The weight ratio of the dispersed phase, which is the M 12 C compound, the hard phase, and WC was determined, and the results are shown in Table 3. Further, the amounts of W and Cr in the binder phase were analyzed by an X-ray microanalyzer, and the results are also shown in Table 3. On the other hand, these samples were wet-grinded with a # 230 diamond grindstone and fabricated into a 4.0 × 8.0 × 25 mm shape, and the bending strength and HRA hardness according to JIS standards were measured. It is shown in Table 4.
[0018]
Next, the lapped samples of the inventive products 1 to 7 and the comparative products 1 to 6 were immersed in a hydrochloric acid aqueous solution of PH = 4.0 and a nitric acid aqueous solution of PH = 3.0 at room temperature for 24 hours. The presence or absence of corrosion was examined by microscopic observation, and the results are also shown in Table 4. The evaluation criteria for the degree of corrosion in this corrosion test are indicated as follows: ◎: no corrosion, ◯: slight corrosion (slightly cloudy), △: corrosion (cloudy), ×: significant corrosion (color change).
[0019]
In addition, using mixed powders having the same composition as the inventive products 1 to 7 and comparative products 1 to 6, through a process of press molding, sintering and grinding, a φ35 × 10 mm disc and a φ5.64 × 20 mm round I made a stick. These are mounted on a pin-on-disk friction tester with discs and round bars of the same kind of material (combination of samples of the same number), and 2.0% by weight stearic acid and 5% by weight in water. A friction test was performed in a dispersion to which alumina powder (0.5 μm) was added under the conditions of friction speed: 1.0 m / s, surface pressure: 1.0 MPa, friction time: 10 Hr. Table 5 shows the measurement results of the wear volume and the friction coefficient obtained by this friction test.
[0020]
[Table 1]
Figure 0004140928
[0021]
[Table 2]
Figure 0004140928
[0022]
[Table 3]
Figure 0004140928
[0023]
[Table 4]
Figure 0004140928
[0024]
[Table 5]
Figure 0004140928
[0025]
【The invention's effect】
The wear-resistant hard sintered alloy of the present invention includes a WC-based cemented carbide containing a Ni-Cr-Mo alloy as a binder phase and a Co-bonded phase containing a Co 3 W 3 C composite compound. Compared to hard alloys, it has significantly better corrosion resistance and wear resistance, and its coefficient of friction tends to be low, so it requires wear resistance and is prone to corrosion. For example, nozzles for spraying solutions used in chemical plants, sludge treatment equipment, wet pulverization equipment, solutions mixed with gas or powder, effects as mechanical seals, and wear and corrosion resistance due to resin and ink It is expected to be effective as an injection mold that requires high performance and a ballpoint ball.

Claims (6)

Coおよび/またはNiとWとを主成分として含む結合相:3〜15重量%と、WとCoおよび/またはNiと炭素を含む複合化合物でなる分散相:5〜50重量%と、残りが炭化タングステンと不可避不純物からなることを特徴とする耐摩耗性硬質焼結合金。A binder phase containing Co and / or Ni and W as main components: 3 to 15% by weight, a dispersed phase composed of a composite compound containing W, Co and / or Ni and carbon: 5 to 50 % by weight, and the rest A wear-resistant hard sintered alloy comprising tungsten carbide and inevitable impurities. Coおよび/またはNiとWを主成分として含む結合相:3〜15重量%と、WとCoおよび/またはNiと炭素を含む複合化合物でなる分散相:5〜50重量%と、周期律表の4a,5a,6a元素の炭化物,窒化物およびこれらの相互固溶体の中の1種以上の立方晶結晶構造の化合物でなる硬質相:30重量%以下と、残りが炭化タングステンと不可避不純物からなることを特徴とする耐摩耗性硬質焼結合金。A bonded phase containing Co and / or Ni and W as main components: 3 to 15% by weight, a dispersed phase composed of a composite compound containing W, Co and / or Ni and carbon: 5 to 50 % by weight, and a periodic table of 4a, 5a, carbides 6a group element, nitrides and hard phase made of a compound of one or more cubic crystal structure in their mutual solid solutions: 30 wt% or less and the remainder is tungsten carbide and unavoidable impurities A wear-resistant hard sintered alloy characterized in that. 上記結合相は、該結合相に対してWを5〜30重量%含有していることを特徴とする請求項1または2記載の耐摩耗性硬質焼結合金。  The wear-resistant hard sintered alloy according to claim 1 or 2, wherein the binder phase contains 5 to 30 wt% of W with respect to the binder phase. 上記結合相は、該結合相に対してCrおよび/またはMoを15重量%以下含有し、残りがCoおよび/またはNiとWとを主成分とすることを特徴とする請求項1または2記載の耐摩耗性硬質焼結合金。  The said binder phase contains Cr and / or Mo 15 weight% or less with respect to this binder phase, and the remainder has Co and / or Ni and W as a main component. Wear-resistant hard sintered alloy. 上記分散相は、該硬質焼結合金全体に対し5〜45重量%含有し、かつWとCoおよび/またはNiと炭素との複合化合物でなることを特徴とする請求項1,2,3または4記載の耐摩耗性硬質焼結合金。  The dispersed phase is contained in an amount of 5 to 45% by weight based on the entire hard sintered alloy, and is composed of a composite compound of W and Co and / or Ni and carbon. 4. A wear-resistant hard sintered alloy according to 4. 上記分散相は、該硬質焼結合金全体に対し5〜30重量%含有し、かつWとCoおよび/またはNiとCrおよび/またはMoと炭素との複合化合物でなることを特徴とする請求項1,2,3または4記載の耐摩耗性硬質焼結合金。  The dispersed phase is contained in an amount of 5 to 30% by weight based on the entire hard sintered alloy, and is composed of a composite compound of W and Co and / or Ni and Cr and / or Mo and carbon. The wear-resistant hard sintered alloy according to 1, 2, 3 or 4.
JP29977396A 1996-10-24 1996-10-24 Wear resistant hard sintered alloy Expired - Fee Related JP4140928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29977396A JP4140928B2 (en) 1996-10-24 1996-10-24 Wear resistant hard sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29977396A JP4140928B2 (en) 1996-10-24 1996-10-24 Wear resistant hard sintered alloy

Publications (2)

Publication Number Publication Date
JPH10130771A JPH10130771A (en) 1998-05-19
JP4140928B2 true JP4140928B2 (en) 2008-08-27

Family

ID=17876792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29977396A Expired - Fee Related JP4140928B2 (en) 1996-10-24 1996-10-24 Wear resistant hard sintered alloy

Country Status (1)

Country Link
JP (1) JP4140928B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029193A (en) * 2000-07-18 2002-01-29 Mitsubishi Pencil Co Ltd Ball for ballpoint pen tip
NL1016811C2 (en) 2000-12-06 2002-06-13 Skf Ab Roller bearing comprising a part obtained with powder metallurgy technique.
JP5453727B2 (en) * 2008-03-31 2014-03-26 Jfeスチール株式会社 Hot rolling method for steel strip
JP6182848B2 (en) * 2012-10-30 2017-08-23 ぺんてる株式会社 Ball for ballpoint pen
JP2018001755A (en) * 2016-06-23 2018-01-11 株式会社パイロットコーポレーション Ball point pen
WO2024069774A1 (en) * 2022-09-28 2024-04-04 Tpr株式会社 Piston ring

Also Published As

Publication number Publication date
JPH10130771A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
EP0759480B1 (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
US5918103A (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
Becher et al. Properties of Ni3Al-bonded titanium carbide ceramics
JPH055152A (en) Hard heat resisting sintered alloy
US20040079191A1 (en) Hard alloy and W-based composite carbide powder used as starting material
US5905937A (en) Method of making sintered ductile intermetallic-bonded ceramic composites
JP4140928B2 (en) Wear resistant hard sintered alloy
JP4282298B2 (en) Super fine cemented carbide
JP2004142993A (en) Hexagonal composite carbide, and production method therefor
JP2006111947A (en) Ultra-fine particle of cermet
JPH07278719A (en) Particulate plate crystal cemented carbide containing wc and its production
JPH073357A (en) High hardness cemented carbide excellent in oxidation resistance
JP2802596B2 (en) Method for producing plate-shaped WC-containing cemented carbide
JP3341776B2 (en) Super hard alloy
JP6930051B2 (en) Coating tools and coating equipment
JP3474254B2 (en) High-strength tough cemented carbide and its coated cemented carbide
JP2802587B2 (en) Manufacturing method of plate-shaped WC-containing cemented carbide
JP2019123903A (en) Heat-resistant WC-based composite material having high thermal conductivity and method for producing the same
JP2978052B2 (en) Composition for powder metallurgy and method for producing the same
JP3107701B2 (en) High hardness cemented carbide
JP4540791B2 (en) Cermet for cutting tools
JP4165850B2 (en) Plate-like tungsten carbide-containing powder and method for producing the same
Zakhariev et al. Hard materials based on cemented TiB2-WC-Co alloys
JPH06340941A (en) Nano-phase composite hard material and its production
JPH07138691A (en) Sintered hard alloy for aluminum working

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees