JP6182848B2 - Ball for ballpoint pen - Google Patents

Ball for ballpoint pen Download PDF

Info

Publication number
JP6182848B2
JP6182848B2 JP2012238442A JP2012238442A JP6182848B2 JP 6182848 B2 JP6182848 B2 JP 6182848B2 JP 2012238442 A JP2012238442 A JP 2012238442A JP 2012238442 A JP2012238442 A JP 2012238442A JP 6182848 B2 JP6182848 B2 JP 6182848B2
Authority
JP
Japan
Prior art keywords
ball
manufactured
sintering
ballpoint pen
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012238442A
Other languages
Japanese (ja)
Other versions
JP2014087953A (en
Inventor
元 小笠原
元 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP2012238442A priority Critical patent/JP6182848B2/en
Publication of JP2014087953A publication Critical patent/JP2014087953A/en
Application granted granted Critical
Publication of JP6182848B2 publication Critical patent/JP6182848B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pens And Brushes (AREA)

Description

本発明は、被筆記面に対して接触してインキ転写部材となるボールペン用ボールの製造方法に関するものである。
The present invention relates to a method for manufacturing a ballpoint pen ball comprising an ink transfer member in contact with the writing surface.

WC−Co系超硬ボールは、結合成分としてCoを含有するWCの焼結体であり、優れた機械的性質により、ボールペン用ボールとして広く用いられている。このWC−Co系超硬ボールは酸性および中性溶液中ではCoの結合成分が優先的に溶出するという性質があることから、インキや長期経時によりpHが低下したインキと接触することによって、ボール中の結合成分であるCoが溶出する所謂腐食が発生する。ボール中の結合成分であるCoが溶出すると、主成分であるWCの結晶粒子が脱落し、ボール表面が凹凸となり、書き味の滑らかさが失われる場合があった。   The WC-Co carbide ball is a sintered body of WC containing Co as a binding component, and is widely used as a ball for ballpoint pens due to its excellent mechanical properties. This WC-Co cemented carbide ball has the property of preferentially eluting Co binding components in acidic and neutral solutions, so that the ball can be brought into contact with ink or ink whose pH has decreased over time. So-called corrosion occurs in which Co as a binding component is eluted. When Co, which is a binding component in the ball, elutes, the WC crystal particles, which are the main component, drop off, the ball surface becomes uneven, and the writing smoothness may be lost.

これを防止するために、インキ中に一般的な金属防錆剤であるカルボキシベンゾトリアゾールを添加する例(特許文献1)、ボール表面に物理的蒸着にて層状に酸化アルミニウム等を被覆する例(特許文献2)が知られている。   In order to prevent this, an example of adding carboxybenzotriazole, which is a general metal rust preventive agent, to the ink (Patent Document 1), an example of coating the surface of the ball with aluminum oxide or the like by physical vapor deposition ( Patent document 2) is known.

特開平8−199107号公報JP-A-8-199107 特開2001−80262号公報JP 2001-80262 A

特許文献1に記載の発明では、インキ中に一般的な金属防錆剤であるカルボキシベンゾトリアゾールを添加する方法が記載されているが、インキ中に添加することで、長期経時においてインキ中の他成分と反応してし、インキpHが低下してしまうため、十分な腐食防止効果を得ることができなかった。
特許文献2に記載の発明では、ボール表面に物理的蒸着にて層状に酸化アルミニウム等を被覆する方法が記載されているが、ボールペンのボールのような小径の球状物質への均一な物理蒸着は困難であり、その結果被覆されていない場所が多数存在してしまうため、十分な腐食防止効果を得ることができなかった。
また、WC−Co系超硬は、Coの相内に不純物としてFe原子が含有されており、(Co,Fe)23や(Co,Fe)Cの炭化物が多く生じ易く、これら炭化物とCoとの電位の差から電流が流れて、ボールの結合成分であるCoが溶出する所謂腐食が発生することで主成分であるWCが脱落し、ボール表面が凹凸となり、書き味の滑らかさが失われてしまう問題がある。
The invention described in Patent Document 1 describes a method of adding carboxybenzotriazole, which is a general metal rust preventive agent, to the ink, but by adding it to the ink, Since it reacts with the components and the ink pH is lowered, a sufficient corrosion prevention effect could not be obtained.
In the invention described in Patent Document 2, a method of coating the surface of a ball with aluminum oxide or the like by physical vapor deposition is described, but uniform physical vapor deposition on a spherical material having a small diameter such as a ball of a ballpoint pen is performed. As a result, there are many uncovered places, so that a sufficient corrosion prevention effect could not be obtained.
WC-Co carbide contains Fe atoms as impurities in the Co phase, and a large amount of (Co, Fe) 23 C 6 and (Co, Fe) 3 C carbides are easily generated. The current flows from the potential difference between Co and Co, and so-called corrosion occurs in which Co, which is the ball binding component, elutes. As a result, WC, which is the main component, falls off, and the ball surface becomes uneven, resulting in smooth writing. There is a problem that will be lost.

本発明は、WC−Co系超硬ボールにおいて、焼結合金の表面を鏡面研磨した後、1100℃以上で加熱した後に徐冷して、ボール最表面から1μmの深さの範囲におけるCo原子に対するFe原子の割合0.5重量%以下としたボールペン用ボールの製造方法を要旨とする。
In the WC-Co based carbide ball, the surface of the sintered alloy is mirror-polished, heated at 1100 ° C. or higher, and then gradually cooled to cope with Co atoms in a depth range of 1 μm from the outermost surface of the ball. The gist of the present invention is a ballpoint pen manufacturing method in which the proportion of Fe atoms is 0.5 wt% or less.

WC−Co系超硬ボールにおいて、Coに対するFeの割合を0.5重量%以下にし、(Co,Fe)23C6または(Co,Fe)Cの炭化物を生じにくくすることで、ボール中の結合成分であるCoが溶出する所謂腐食、さらにはそこから生ずるWCの脱落を抑えることができ、良好な書き味を長期継続できるようになる。 In a WC-Co carbide ball, the ratio of Fe to Co is 0.5% by weight or less, and (Co, Fe) 23 C6 or (Co, Fe) 3 C carbides are less likely to be generated. It is possible to suppress so-called corrosion in which Co as a binding component elutes, and WC dropout resulting therefrom, and good writing quality can be maintained for a long time.

本発明のボールペン用ボールは、WCを主成分とし、Coをバインダー成分として焼結させた所謂WC−Co系超硬合金であり、WC粉体の形状は、焼結できるものであれば特に限定されない。また、粉体の平均粒子径も特に限定されないが、小球状の表面を研磨し、ナノスケールレベルの平滑性を要求されるボールペン用ボールにおいては、平均粒子径が10μm以下であることが望ましい。   The ball-point pen ball of the present invention is a so-called WC-Co cemented carbide obtained by sintering WC as a main component and Co as a binder component, and the shape of the WC powder is particularly limited as long as it can be sintered. Not. Also, the average particle size of the powder is not particularly limited. However, in a ball-point pen ball that requires polishing a small spherical surface and requires smoothness at the nanoscale level, the average particle size is desirably 10 μm or less.

バインダー成分として使用されるCo粉末は不純物としてのFeの量が0.5重量%以下のものであればそのまま使用できるが、0.5重量%を超えるものであっても、焼結後ボールペン用ボールが得られた後に、焼結合金の表面を研磨した後、1100℃以上で加熱した後に徐冷させることで、表面Co内のFe濃度を現象させることが可能である。また、前記Co粉体は超硬ボール全体に対して5重量%以上15重量%以下が好ましい。 Co powder used as a binder component can be used as it is as long as the amount of Fe as an impurity is 0.5% by weight or less. After the balls are obtained, the surface of the sintered alloy is polished , and then heated at 1100 ° C. or higher and then gradually cooled, whereby the Fe concentration in the surface Co can be caused to occur. The Co powder is preferably 5% by weight or more and 15% by weight or less with respect to the entire cemented carbide ball.

また、さらに耐食性を向上させる目的として、Crを添加することもできる。平均粒子径は特に限定されないが、超硬ボール全体に対して1重量%以上8重量%以下であることが好ましい。 Further, Cr 3 C 2 can be added for the purpose of further improving the corrosion resistance. The average particle size is not particularly limited, but it is preferably 1% by weight or more and 8% by weight or less with respect to the entire carbide ball.

超硬ボールを焼結させる方法としては、WC粉体とCo粉体、さらに必要であればCrを混合させた後、熱プラズマ焼結法やマイクロ波焼結法やミリ波焼結法などの無加圧焼結法、ホットプレス焼結法や放電プラズマ焼結法や超高電圧焼結や熱間等方加圧焼結法や高圧ガス反応焼結法などの加圧焼結法が用いることができる。焼結合金における欠陥を極力なくすためには加圧焼結法がよく、特に放電プラズマ焼結法は、粉体が自己発熱し表面の金属皮膜への熱の伝わりがよいことから好適に使用できる。 As a method of sintering the carbide ball, after mixing WC powder and Co powder, and further Cr 3 C 2 if necessary, thermal plasma sintering method, microwave sintering method, millimeter wave sintering Pressure sintering such as pressureless sintering such as hot pressing, hot press sintering, spark plasma sintering, ultra-high voltage sintering, hot isostatic pressing, and high pressure gas reaction sintering The method can be used. In order to eliminate defects in the sintered alloy as much as possible, the pressure sintering method is good. In particular, the discharge plasma sintering method can be suitably used because the powder self-heats and the heat transfer to the metal film on the surface is good. .

本発明に係るボールを使用したボールペンとしては、このボールをステンレスなどの合金を機械的に切削、圧延加工などすることによって形成したボールホルダーに、ボールの一部を突出した状態で抱持させてボールペンチップとし、このボールペンチップにインキ収容管を接続したものに好適に使用することができる。ボールホルダーの形態としては、棒材を削りだして作られるものの他に、パイプ材を加工して得られるパイプ式ボールペンチップを使用することもできる。更に、コイルスプリングなどを配置して、ボールをボールホルダーの開口部内縁に押し付ける構造のものとすることもできる。   As a ballpoint pen using the ball according to the present invention, a ball holder formed by mechanically cutting or rolling an alloy such as stainless steel is used to hold the ball with a part of the ball protruding. It can be suitably used for a ball-point pen tip, in which an ink storage tube is connected to the ball-point pen tip. As a form of the ball holder, a pipe-type ballpoint pen tip obtained by processing a pipe material can be used in addition to the one made by cutting a bar material. Further, a coil spring or the like may be arranged so that the ball is pressed against the inner edge of the opening of the ball holder.

筆跡・塗布跡を形成するインキとしては、水を主媒体とする所謂水性インキ、有機溶剤を主媒体とする所謂油性インキのいずれをも使用することができる。
溶剤としては、水の他に、エタノール、プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール、1,3−ブチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、エチレングリコールモノフェニルエーテル、ベンジルアルコール等の水溶性有機溶剤が使用できる。
着色剤としては、酸性染料、直接染料塩基性染料等の染料及び/又は各種のアゾ系顔料、ニトロソ系顔料、ニトロ系顔料、塩基性染料系顔料、酸性染料系顔料、建て染め染料系顔料、媒染染料系顔料、及び天然染料系顔料等の有機系顔料、黄土、バリウム黄、紺青、カドミウムレッド、硫酸バリウム、酸化チタン、弁柄、鉄黒、カーボンブラック等の無機顔料からなる着色剤が使用できる。その他に、ポリビニルピロリドン、ポリアクリル酸等の樹脂やヒドロキシプロピルセルロース、カルボキシメチルセルロース等のセルロース誘導体、ガーガム、キサンタンガム、ヒアルロン酸等の多糖類からなる粘度調整剤、界面活性剤、防錆剤、防黴・防腐剤、場合によっては、アスコルビン酸、コウジ酸やハイドロキノン、レゾルシン、カテコール、ピロガロール、タンニン酸、没食子酸等のポリフェノール類などの還元性を有する物質などが使用できる。
着色剤として顔料を用いた場合に、顔料を安定に分散させるために分散剤を使用することは差し支えない。分散剤として従来一般に用いられているスチレンアクリル酸塩やスチレンマレイン酸塩等の水溶性樹脂もしくは水可溶性樹脂や、アニオン系もしくはノニオン系の界面活性剤など、顔料の分散剤として用いられるものが使用できる。
As the ink for forming the handwriting / coating mark, either a so-called water-based ink having water as a main medium or a so-called oil-based ink having an organic solvent as a main medium can be used.
Solvents include water, water-soluble organic solvents such as ethanol, propanol, isopropanol, ethylene glycol, propylene glycol, 1,3-butylene glycol, diethylene glycol, triethylene glycol, glycerin, ethylene glycol monophenyl ether, and benzyl alcohol. Can be used.
Examples of the colorant include acid dyes, direct dyes, basic dyes, and / or various azo pigments, nitroso pigments, nitro pigments, basic dye pigments, acidic dye pigments, vat dyes, Uses organic pigments such as mordant dye-based pigments and natural dye-based pigments, and colorants composed of inorganic pigments such as ocher, barium yellow, bitumen, cadmium red, barium sulfate, titanium oxide, petal, iron black, carbon black, etc. it can. In addition, resins such as polyvinylpyrrolidone and polyacrylic acid, cellulose derivatives such as hydroxypropylcellulose and carboxymethylcellulose, viscosity modifiers consisting of polysaccharides such as gar gum, xanthan gum and hyaluronic acid, surfactants, rust inhibitors and mildewproofing -Preservatives, and in some cases, ascorbic acid, kojic acid, hydroquinone, resorcin, catechol, pyrogallol, tannic acid, gallic acid and other polyphenols can be used.
When a pigment is used as the colorant, a dispersant may be used to stably disperse the pigment. Used as dispersants for pigments, such as water-soluble resins or water-soluble resins such as styrene acrylate and styrene maleate that are conventionally used as dispersants, and anionic or nonionic surfactants it can.

インキの乾燥、逆流を防ぐ目的でインキ逆流防止体組成物を使用することもできる。基材としては、ワセリン、スピンドル油、ヒマシ油、オリーブ油、精製鉱油、流動パラフィン、ポリブテン、α−オレフィン、α−オレフィンのオリゴマーまたはコオリゴマー、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、アミノ変性シリコーンオイル、ポリエーテル変性シリコーンオイル、脂肪酸変性シリコーンオイル等の不揮発性液体又は難揮発性液体、ゲル化剤としては、表面を疎水処理したシリカ、表面をメチル化処理した微粒子シリカ、珪酸アルミニウム、膨潤性雲母、疎水処理を施したベントナイトやモンモリロナイトなどの粘土系増粘剤、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸亜鉛等の脂肪酸金属石鹸、トリベンジリデンソルビトール、脂肪酸アマイド、アマイド変性ポリエチレンワックス、水添ひまし油、脂肪酸デキストリン等のデキストリン系化合物、セルロース系化合物が挙げられる。その他、アルコール系溶剤やグリコール系溶剤、界面活性剤、樹脂、金属酸化物等の微粒子を添加してインキ逆流防止体に必要な機能(ゲル化、着色防止、逆流防止)を向上させることもできる。   An ink backflow preventive composition may be used for the purpose of preventing ink drying and backflow. Base materials include petroleum jelly, spindle oil, castor oil, olive oil, refined mineral oil, liquid paraffin, polybutene, α-olefin, α-olefin oligomer or co-oligomer, dimethyl silicone oil, methylphenyl silicone oil, amino-modified silicone oil, Non-volatile liquid or non-volatile liquid such as polyether-modified silicone oil, fatty acid-modified silicone oil, and gelling agent include silica whose surface is hydrophobically treated, fine-particle silica whose surface is methylated, aluminum silicate, swellable mica, Hydrophobic treated clay thickeners such as bentonite and montmorillonite, fatty acid metal soaps such as magnesium stearate, calcium stearate, aluminum stearate, zinc stearate, tribenzylidene sorbitol, fatty acid amateur And dextrin compounds such as id, amide-modified polyethylene wax, hydrogenated castor oil, and fatty acid dextrin, and cellulose compounds. In addition, fine functions such as alcohol solvents, glycol solvents, surfactants, resins, metal oxides, etc. can be added to improve the functions required for the ink backflow preventer (gelation, coloring prevention, backflow prevention). .

実施例1
炭化タングステン粉体(WC15;(株)アライドマテリアル製)89重量%とコバルト粉体(COE03PB;(株)高純度化学研究所製)8重量%と二炭化三クロム(三津和化学薬品(株)製)3重量%をステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を内部が球状の金型に投入し、放電プラズマ焼結法にて球状焼結合金を得た。なお、放電プラズマ焼結は、放電プラズマ焼結装置(SPS−1050;SPSシンテックス(株)製)を用いて、焼結圧力15MPa、on−off時間100ms、短形波直流パルス電流100Aの条件で900sの予備焼結を行った後、焼結圧力を40MPaに上げ焼結温度が1500℃になるように連続パルス通電を600s間行った。さらに前記球状焼結合金の表面を鏡面研磨し、φ0.7mmのボールペン用ボールを得た。
Example 1
Tungsten carbide powder (WC15; manufactured by Allied Material Co., Ltd.) 89% by weight, cobalt powder (COE03PB; manufactured by Kojundo Chemical Laboratory Co., Ltd.) 8% by weight, and trichromium dicarbide (Mitsuwa Chemical Co., Ltd.) 3% by weight was inserted into a stainless steel pot together with an acetone solvent and a cemented carbide ball, mixed and ground for 48 hours, and then dried to obtain a mixed powder. These mixed powders were put into a mold having a spherical inside, and a spherical sintered alloy was obtained by a discharge plasma sintering method. The discharge plasma sintering is performed under the conditions of a sintering pressure of 15 MPa, an on-off time of 100 ms, and a short wave DC pulse current of 100 A using a discharge plasma sintering apparatus (SPS-1050; manufactured by SPS Syntex Co., Ltd.). After presintering for 900 s, continuous pulse energization was performed for 600 s so that the sintering pressure was increased to 40 MPa and the sintering temperature was 1500 ° C. Further, the surface of the spherical sintered alloy was mirror-polished to obtain a ball for pen of φ0.7 mm.

実施例2
炭化タングステン粉体(WC15;(株)アライドマテリアル製)92重量%とコバルト粉体(COE03PB;(株)高純度化学研究所製)8重量%をステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を内部が球状の金型に投入し、放電プラズマ焼結法にて球状焼結合金を得た。なお、放電プラズマ焼結は、放電プラズマ焼結装置(SPS−1050;SPSシンテックス(株)製)を用いて、焼結圧力15MPa、on−off時間100ms、短形波直流パルス電流100Aの条件で900sの予備焼結を行った後、焼結圧力を40MPaに上げ焼結温度が1500℃になるように連続パルス通電を600s間行った。さらに前記球状焼結合金の表面を鏡面研磨し、φ0.7mmのボールペン用ボールを得た。
Example 2
Tungsten carbide powder (WC15; manufactured by Allied Material Co., Ltd.) 92% by weight and cobalt powder (COE03PB; manufactured by Kojundo Chemical Laboratory Co., Ltd.) 8% by weight in a stainless steel pot and acetone solvent and cemented carbide ball And mixed and ground for 48 hours, and then dried to obtain a mixed powder. These mixed powders were put into a mold having a spherical inside, and a spherical sintered alloy was obtained by a discharge plasma sintering method. The discharge plasma sintering is performed under the conditions of a sintering pressure of 15 MPa, an on-off time of 100 ms, and a short wave DC pulse current of 100 A using a discharge plasma sintering apparatus (SPS-1050; manufactured by SPS Syntex Co., Ltd.). After presintering for 900 s, continuous pulse energization was performed for 600 s so that the sintering pressure was increased to 40 MPa and the sintering temperature was 1500 ° C. Further, the surface of the spherical sintered alloy was mirror-polished to obtain a ball for pen of φ0.7 mm.

実施例3
炭化タングステン粉体(WC15;(株)アライドマテリアル製)90重量%とコバルト粉体(コバルト(高純度);三津和化学薬品(株)製)10重量%をステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を内部が球状の金型に投入し、放電プラズマ焼結法にて球状焼結合金を得た。なお、放電プラズマ焼結は、放電プラズマ焼結装置(SPS−1050;SPSシンテックス(株)製)を用いて、焼結圧力15MPa、on−off時間100ms、短形波直流パルス電流100Aの条件で900sの予備焼結を行った後、焼結圧力を40MPaに上げ焼結温度が1500℃になるように連続パルス通電を600s間行った。さらに前記球状焼結合金の表面を鏡面研磨し、φ0.7mmのボールペン用ボールを得た。
Example 3
90 wt% tungsten carbide powder (WC15; manufactured by Allied Material Co., Ltd.) and 10 wt% cobalt powder (cobalt (high purity); manufactured by Mitsuwa Chemicals Co., Ltd.) in a stainless steel pot and acetone solvent and carbide It was inserted with an alloy ball, mixed and ground for 48 hours, and then dried to obtain a mixed powder. These mixed powders were put into a mold having a spherical inside, and a spherical sintered alloy was obtained by a discharge plasma sintering method. The discharge plasma sintering is performed under the conditions of a sintering pressure of 15 MPa, an on-off time of 100 ms, and a short wave DC pulse current of 100 A using a discharge plasma sintering apparatus (SPS-1050; manufactured by SPS Syntex Co., Ltd.). After presintering for 900 s, continuous pulse energization was performed for 600 s so that the sintering pressure was increased to 40 MPa and the sintering temperature was 1500 ° C. Further, the surface of the spherical sintered alloy was mirror-polished to obtain a ball for pen of φ0.7 mm.

実施例4
炭化タングステン粉体(WC15;(株)アライドマテリアル製)90重量%とコバルト粉体(コバルト(高純度);三津和化学薬品(株)製)10重量%をステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を内部が球状の金型に投入し、放電プラズマ焼結法にて球状焼結合金を得た。なお、放電プラズマ焼結は、放電プラズマ焼結装置(SPS−1050;SPSシンテックス(株)製)を用いて、焼結圧力15MPa、on−off時間100ms、短形波直流パルス電流100Aの条件で900sの予備焼結を行った後、焼結圧力を40MPaに上げ焼結温度が1500℃になるように連続パルス通電を600s間行った。さらに前記球状焼結合金の表面を鏡面研磨し、φ0.7mmのボールペン用ボールを得た。
炭化タングステン粉体(WC15;(株)アライドマテリアル製)88重量%とコバルト粉体(高純度コバルト;日本重化学工業(株)製)12重量%をステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を内部が球状の金型に投入し、放電プラズマ焼結法にて球状焼結合金を得た。なお、放電プラズマ焼結は、放電プラズマ焼結装置(SPS−1050;SPSシンテックス(株)製)を用いて、焼結圧力15MPa、on−off時間100ms、短形波直流パルス電流100Aの条件で900sの予備焼結を行った後、焼結圧力を40MPaに上げ焼結温度が1500℃になるように連続パルス通電を600s間行った。さらに前記球状焼結合金の表面を鏡面研磨し、φ0.7mmのボールペン用ボールを得た。
Example 4
90 wt% tungsten carbide powder (WC15; manufactured by Allied Material Co., Ltd.) and 10 wt% cobalt powder (cobalt (high purity); manufactured by Mitsuwa Chemicals Co., Ltd.) in a stainless steel pot and acetone solvent and carbide It was inserted with an alloy ball, mixed and ground for 48 hours, and then dried to obtain a mixed powder. These mixed powders were put into a mold having a spherical inside, and a spherical sintered alloy was obtained by a discharge plasma sintering method. The discharge plasma sintering is performed under the conditions of a sintering pressure of 15 MPa, an on-off time of 100 ms, and a short wave DC pulse current of 100 A using a discharge plasma sintering apparatus (SPS-1050; manufactured by SPS Syntex Co., Ltd.). After presintering for 900 s, continuous pulse energization was performed for 600 s so that the sintering pressure was increased to 40 MPa and the sintering temperature was 1500 ° C. Further, the surface of the spherical sintered alloy was mirror-polished to obtain a ball for pen of φ0.7 mm.
Tungsten carbide powder (WC15; manufactured by Allied Material Co., Ltd.) 88 wt% and cobalt powder (high purity cobalt; manufactured by Nihon Heavy Chemical Co., Ltd.) 12 wt% in a stainless steel pot and acetone solvent and cemented carbide ball And mixed and ground for 48 hours, and then dried to obtain a mixed powder. These mixed powders were put into a mold having a spherical inside, and a spherical sintered alloy was obtained by a discharge plasma sintering method. The discharge plasma sintering is performed under the conditions of a sintering pressure of 15 MPa, an on-off time of 100 ms, and a short wave DC pulse current of 100 A using a discharge plasma sintering apparatus (SPS-1050; manufactured by SPS Syntex Co., Ltd.). After presintering for 900 s, continuous pulse energization was performed for 600 s so that the sintering pressure was increased to 40 MPa and the sintering temperature was 1500 ° C. Further, the surface of the spherical sintered alloy was mirror-polished to obtain a ball for pen of φ0.7 mm.

実施例5
炭化タングステン粉体(WC15;(株)アライドマテリアル製)92重量%とコバルト粉体(関東化学(株)製)8重量%をステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を内部が球状の金型に投入し、放電プラズマ焼結法にて球状焼結合金を得た。なお、放電プラズマ焼結は、放電プラズマ焼結装置(SPS−1050;SPSシンテックス(株)製)を用いて、焼結圧力15MPa、on−off時間100ms、短形波直流パルス電流100Aの条件で900sの予備焼結を行った後、焼結圧力を40MPaに上げ焼結温度が1500℃になるように連続パルス通電を600s間行った。さらに前記球状焼結合金の表面を鏡面研磨した後、1200℃で1時間熱処理をし、その後50℃/hで徐冷することでφ0.7mmのボールペン用ボールを得た。
Example 5
Tungsten carbide powder (WC15; manufactured by Allied Material Co., Ltd.) 92% by weight and cobalt powder (manufactured by Kanto Chemical Co., Ltd.) 8% by weight are inserted into a stainless steel pot together with acetone solvent and cemented carbide balls. After mixing and grinding for a period of time, it was dried to obtain a mixed powder. These mixed powders were put into a mold having a spherical inside, and a spherical sintered alloy was obtained by a discharge plasma sintering method. The discharge plasma sintering is performed under the conditions of a sintering pressure of 15 MPa, an on-off time of 100 ms, and a short wave DC pulse current of 100 A using a discharge plasma sintering apparatus (SPS-1050; manufactured by SPS Syntex Co., Ltd.). After presintering for 900 s, continuous pulse energization was performed for 600 s so that the sintering pressure was increased to 40 MPa and the sintering temperature was 1500 ° C. Further, the surface of the spherical sintered alloy was mirror-polished, heat-treated at 1200 ° C. for 1 hour, and then slowly cooled at 50 ° C./h to obtain a ball for pen of φ0.7 mm.

実施例6
炭化タングステン粉体(WC15;(株)アライドマテリアル製)92重量%とコバルト粉体(関東化学(株)製)8重量%をステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を内部が球状の金型に投入し、放電プラズマ焼結法にて球状焼結合金を得た。なお、放電プラズマ焼結は、放電プラズマ焼結装置(SPS−1050;SPSシンテックス(株)製)を用いて、焼結圧力15MPa、on−off時間100ms、短形波直流パルス電流100Aの条件で900sの予備焼結を行った後、焼結圧力を40MPaに上げ焼結温度が1500℃になるように連続パルス通電を600s間行った。さらに前記球状焼結合金の表面を鏡面研磨した後、1300℃で1時間熱処理をし、その後75℃/hで徐冷することでφ0.7mmのボールペン用ボールを得た。
Example 6
Tungsten carbide powder (WC15; manufactured by Allied Material Co., Ltd.) 92% by weight and cobalt powder (manufactured by Kanto Chemical Co., Ltd.) 8% by weight are inserted into a stainless steel pot together with acetone solvent and cemented carbide balls. After mixing and grinding for a period of time, it was dried to obtain a mixed powder. These mixed powders were put into a mold having a spherical inside, and a spherical sintered alloy was obtained by a discharge plasma sintering method. The discharge plasma sintering is performed under the conditions of a sintering pressure of 15 MPa, an on-off time of 100 ms, and a short wave DC pulse current of 100 A using a discharge plasma sintering apparatus (SPS-1050; manufactured by SPS Syntex Co., Ltd.). After presintering for 900 s, continuous pulse energization was performed for 600 s so that the sintering pressure was increased to 40 MPa and the sintering temperature was 1500 ° C. Further, the surface of the spherical sintered alloy was mirror-polished, heat-treated at 1300 ° C. for 1 hour, and then gradually cooled at 75 ° C./h to obtain a ball for pen of 0.7 mm.

実施例7
炭化タングステン粉体(WC15;(株)アライドマテリアル製)92重量%とコバルト粉体(関東化学(株)製)8重量%をステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を内部が球状の金型に投入し、放電プラズマ焼結法にて球状焼結合金を得た。なお、放電プラズマ焼結は、放電プラズマ焼結装置(SPS−1050;SPSシンテックス(株)製)を用いて、焼結圧力15MPa、on−off時間100ms、短形波直流パルス電流100Aの条件で900sの予備焼結を行った後、焼結圧力を40MPaに上げ焼結温度が1500℃になるように連続パルス通電を600s間行った。さらに前記球状焼結合金の表面を鏡面研磨した後、1120℃で1時間熱処理をし、その後25℃/hで徐冷することでφ0.7mmのボールペン用ボールを得た。
Example 7
Tungsten carbide powder (WC15; manufactured by Allied Material Co., Ltd.) 92% by weight and cobalt powder (manufactured by Kanto Chemical Co., Ltd.) 8% by weight are inserted into a stainless steel pot together with acetone solvent and cemented carbide balls. After mixing and grinding for a period of time, it was dried to obtain a mixed powder. These mixed powders were put into a mold having a spherical inside, and a spherical sintered alloy was obtained by a discharge plasma sintering method. The discharge plasma sintering is performed under the conditions of a sintering pressure of 15 MPa, an on-off time of 100 ms, and a short wave DC pulse current of 100 A using a discharge plasma sintering apparatus (SPS-1050; manufactured by SPS Syntex Co., Ltd.). After presintering for 900 s, continuous pulse energization was performed for 600 s so that the sintering pressure was increased to 40 MPa and the sintering temperature was 1500 ° C. Further, the surface of the spherical sintered alloy was mirror-polished, heat-treated at 1120 ° C. for 1 hour, and then slowly cooled at 25 ° C./h to obtain a ball for pen of φ0.7 mm.

比較例1
炭化タングステン粉体(WC15;(株)アライドマテリアル製)89重量%とコバルト粉体(関東化学(株)製)8重量%と二炭化三クロム(三津和化学薬品(株)製)3重量%をステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を内部が球状の金型に投入し、放電プラズマ焼結法にて球状焼結合金を得た。なお、放電プラズマ焼結は、放電プラズマ焼結装置(SPS−1050;SPSシンテックス(株)製)を用いて、焼結圧力15MPa、on−off時間100ms、短形波直流パルス電流100Aの条件で900sの予備焼結を行った後、焼結圧力を40MPaに上げ焼結温度が1500℃になるように連続パルス通電を600s間行った。さらに前記球状焼結合金の表面を鏡面研磨し、φ0.7mmのボールペン用ボールを得た。
Comparative Example 1
Tungsten carbide powder (WC15; manufactured by Allied Materials Co., Ltd.) 89% by weight, cobalt powder (manufactured by Kanto Chemical Co., Ltd.) 8% by weight, trichrome dicarbide (manufactured by Mitsuwa Chemicals Co., Ltd.) 3% by weight Was inserted into a stainless steel pot together with an acetone solvent and a cemented carbide ball, mixed and ground for 48 hours, and dried to obtain a mixed powder. These mixed powders were put into a mold having a spherical inside, and a spherical sintered alloy was obtained by a discharge plasma sintering method. The discharge plasma sintering is performed under the conditions of a sintering pressure of 15 MPa, an on-off time of 100 ms, and a short wave DC pulse current of 100 A using a discharge plasma sintering apparatus (SPS-1050; manufactured by SPS Syntex Co., Ltd.). After presintering for 900 s, continuous pulse energization was performed for 600 s so that the sintering pressure was increased to 40 MPa and the sintering temperature was 1500 ° C. Further, the surface of the spherical sintered alloy was mirror-polished to obtain a ball for pen of φ0.7 mm.

比較例2
炭化タングステン粉体(WC15;(株)アライドマテリアル製)92重量%とコバルト粉体(関東化学(株)製)8重量%をステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を内部が球状の金型に投入し、放電プラズマ焼結法にて球状焼結合金を得た。なお、放電プラズマ焼結は、放電プラズマ焼結装置(SPS−1050;SPSシンテックス(株)製)を用いて、焼結圧力15MPa、on−off時間100ms、短形波直流パルス電流100Aの条件で900sの予備焼結を行った後、焼結圧力を40MPaに上げ焼結温度が1500℃になるように連続パルス通電を600s間行った。さらに前記球状焼結合金の表面を鏡面研磨し、φ0.7mmのボールペン用ボールを得た。
Comparative Example 2
Tungsten carbide powder (WC15; manufactured by Allied Material Co., Ltd.) 92% by weight and cobalt powder (manufactured by Kanto Chemical Co., Ltd.) 8% by weight are inserted into a stainless steel pot together with acetone solvent and cemented carbide balls. After mixing and grinding for a period of time, it was dried to obtain a mixed powder. These mixed powders were put into a mold having a spherical inside, and a spherical sintered alloy was obtained by a discharge plasma sintering method. The discharge plasma sintering is performed under the conditions of a sintering pressure of 15 MPa, an on-off time of 100 ms, and a short wave DC pulse current of 100 A using a discharge plasma sintering apparatus (SPS-1050; manufactured by SPS Syntex Co., Ltd.). After presintering for 900 s, continuous pulse energization was performed for 600 s so that the sintering pressure was increased to 40 MPa and the sintering temperature was 1500 ° C. Further, the surface of the spherical sintered alloy was mirror-polished to obtain a ball for pen of φ0.7 mm.

比較例3
炭化タングステン粉体(WC15;(株)アライドマテリアル製)92重量%とコバルト粉体(関東化学(株)製)8重量%をステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を内部が球状の金型に投入し、放電プラズマ焼結法にて球状焼結合金を得た。なお、放電プラズマ焼結は、放電プラズマ焼結装置(SPS−1050;SPSシンテックス(株)製)を用いて、焼結圧力15MPa、on−off時間100ms、短形波直流パルス電流100Aの条件で900sの予備焼結を行った後、焼結圧力を40MPaに上げ焼結温度が1500℃になるように連続パルス通電を600s間行った。さらに前記球状焼結合金の表面を鏡面研磨した後、1000℃で1時間熱処理をし、その後50℃/hで徐冷することでφ0.7mmのボールペン用ボールを得た。
Comparative Example 3
Tungsten carbide powder (WC15; manufactured by Allied Material Co., Ltd.) 92% by weight and cobalt powder (manufactured by Kanto Chemical Co., Ltd.) 8% by weight are inserted into a stainless steel pot together with acetone solvent and cemented carbide balls. After mixing and grinding for a period of time, it was dried to obtain a mixed powder. These mixed powders were put into a mold having a spherical inside, and a spherical sintered alloy was obtained by a discharge plasma sintering method. The discharge plasma sintering is performed under the conditions of a sintering pressure of 15 MPa, an on-off time of 100 ms, and a short wave DC pulse current of 100 A using a discharge plasma sintering apparatus (SPS-1050; manufactured by SPS Syntex Co., Ltd.). After presintering for 900 s, continuous pulse energization was performed for 600 s so that the sintering pressure was increased to 40 MPa and the sintering temperature was 1500 ° C. Furthermore, after the surface of the spherical sintered alloy was mirror-polished, it was heat-treated at 1000 ° C. for 1 hour and then slowly cooled at 50 ° C./h to obtain a ball for pen of φ0.7 mm.

インキ1
WaterBlack256L(黒色染料の14%水溶液、オリエント化学工業(株)製) 40.0重量部
エチレングリコール 10.0重量部
グリセリン 8.0重量部
プロクセルGXL(1,2−ベンゾイソチアゾリン−3−オンの20%ジプロピレングリコール溶液、ICIジャパン製) 0.2重量部
ケルザンAR(キサンタンガム、三晶(株)製) 0.3重量部
水 41.5重量部
上記成分のうち、ケルザンARの全量を水5重量部に攪拌しながら加え1時間攪拌してケルザンARの溶液を得た。この液と残りの成分を混合し均一になるまで1時間攪拌して黒色水性インキを得た。このもののインキpHは8.5であった。
Ink 1
WaterBlack256L (14% aqueous solution of black dye, manufactured by Orient Chemical Co., Ltd.) 40.0 parts by weight ethylene glycol 10.0 parts by weight glycerin 8.0 parts by weight Proxel GXL (1,2-benzisothiazolin-3-one 20 % Dipropylene glycol solution, manufactured by ICI Japan) 0.2 parts by weight Kelzan AR (xanthan gum, manufactured by Sanki Co., Ltd.) 0.3 parts by weight water 41.5 parts by weight Of the above components, the total amount of Kelzan AR is 5 The mixture was added to parts by weight with stirring and stirred for 1 hour to obtain a solution of Kelzan AR. This liquid and the remaining components were mixed and stirred for 1 hour until uniform to obtain a black aqueous ink. The ink pH of this product was 8.5.

ボールペン1
実施例1のボールペン用ボールを、ぺんてる(株)製の水性ゲルインキボールペン、エナージェル(BL57)に組み込み、インキ1と組み合わせた。
Ballpoint pen 1
The ballpoint pen of Example 1 was incorporated into an aqueous gel ink ballpoint pen, Energel (BL57) manufactured by Pentel Co., Ltd., and combined with Ink1.

ボールペン2
実施例2のボールペン用ボールを、ぺんてる(株)製の水性ゲルインキボールペン、エナージェル(BL57)に組み込み、インキ1と組み合わせた。
Ballpoint pen 2
The ball-point pen ball of Example 2 was incorporated into Engel (BL57), a water-based gel ink ballpoint pen manufactured by Pentel Co., Ltd., and combined with ink 1.

ボールペン3
実施例3のボールペン用ボールを、ぺんてる(株)製の水性ゲルインキボールペン、エナージェル(BL57)に組み込み、インキ1と組み合わせた。
Ballpoint pen 3
The ball-point pen ball of Example 3 was incorporated into Engel (BL57), a water-based gel ink ballpoint pen manufactured by Pentel Co., Ltd., and combined with ink 1.

ボールペン4
実施例4のボールペン用ボールを、ぺんてる(株)製の水性ゲルインキボールペン、エナージェル(BL57)に組み込み、インキ1と組み合わせた。
Ballpoint pen 4
The ball-point pen ball of Example 4 was incorporated into Engel (BL57), a water-based gel ink ballpoint pen manufactured by Pentel Co., Ltd., and combined with ink 1.

ボールペン5
実施例5のボールペン用ボールを、ぺんてる(株)製の水性ゲルインキボールペン、エナージェル(BL57)に組み込み、インキ1と組み合わせた。
Ballpoint pen 5
The ballpoint pen ball of Example 5 was incorporated into Pengel's water-based gel ink ballpoint pen Energel (BL57) and combined with ink 1.

ボールペン6
実施例6のボールペン用ボールを、ぺんてる(株)製の水性ゲルインキボールペン、エナージェル(BL57)に組み込み、インキ1と組み合わせた。
Ballpoint pen 6
The ball-point pen ball of Example 6 was incorporated into Engel (BL57), a water-based gel ink ballpoint pen manufactured by Pentel Co., Ltd., and combined with ink 1.

ボールペン7
実施例7のボールペン用ボールを、ぺんてる(株)製の水性ゲルインキボールペン、エナージェル(BL57)に組み込み、インキ1と組み合わせた。
Ballpoint pen 7
The ball-point pen ball of Example 7 was incorporated into Engel (BL57), an aqueous gel ink ballpoint pen manufactured by Pentel Co., Ltd., and combined with ink 1.

ボールペン8(比較例)
比較例1のボールペン用ボールを、ぺんてる(株)製の水性ゲルインキボールペン、エナージェル(BL57)に組み込み、インキ1と組み合わせた。
Ballpoint pen 8 (comparative example)
The ballpoint pen of Comparative Example 1 was incorporated into an aqueous gel ink ballpoint pen, Energel (BL57) manufactured by Pentel Co., Ltd., and combined with Ink1.

ボールペン9(比較例)
比較例2のボールペン用ボールを、ぺんてる(株)製の水性ゲルインキボールペン、エナージェル(BL57)に組み込み、インキ1と組み合わせた。
Ballpoint pen 9 (comparative example)
The ballpoint ball of Comparative Example 2 was incorporated into an aqueous gel ink ballpoint pen, Energel (BL57) manufactured by Pentel Co., Ltd., and combined with Ink1.

ボールペン10(比較例)
比較例3のボールペン用ボールを、ぺんてる(株)製の水性ゲルインキボールペン、エナージェル(BL57)に組み込み、インキ1と組み合わせた。
Ballpoint pen 10 (comparative example)
The ballpoint ball of Comparative Example 3 was incorporated into an aqueous gel ink ballpoint pen, Energel (BL57) manufactured by Pentel Co., Ltd., and combined with Ink1.

ボール表面のCoに対するFeの割合の測定
実施例1〜7および比較例1〜3のボールペン用ボールのボール最表面から1μmの深さの中のCoに対するFeの割合を、レーザーアブレーション誘導結合プラズマ質量分析装置(LA/ICP−MS)(レーザー部;LSX−100、CEATAC Technologies社製)(ICP−MS部;HP−4500、横河アナリティカルシステムズ製)を用いて測定した。具体的にはレーザー1回照射あたりのスパッタ深さを0.02μmに設定し、ボールの任意位置50×50μmの領域を100回測定することで、各元素の割合を測定し、得られたCo量に対するFe量を算出した。
Measurement of the ratio of Fe to Co on the ball surface The ratio of Fe to Co in a depth of 1 μm from the ball outermost surface of the ball-point pen balls of Examples 1 to 7 and Comparative Examples 1 to 3 was determined by laser ablation inductively coupled plasma mass. It measured using the analyzer (LA / ICP-MS) (Laser part; LSX-100, the product made by CEATAC Technologies) (ICP-MS part; HP-4500, the product made by Yokogawa Analytical Systems). Specifically, the sputtering depth per one laser irradiation was set to 0.02 μm, and the area of an arbitrary position of 50 × 50 μm of the ball was measured 100 times to measure the ratio of each element. The amount of Fe relative to the amount was calculated.

ボール表面粗さ測定
実施例1〜7および比較例1〜3のボールペン用ボールの、ボール表面の粗さ(算術平均粗さ)の変化を原子間力顕微鏡にて測定した。具体的には走査型プローブ顕微鏡SPI−400((株)セイコーインスツルーメント製)を用いて、初期状態のボールと、経時後のボール(ボールペン1〜10のボールペンサンプルを50℃30%RHの高温槽に、ペン先を下向きにして90日間放置したボールペンのボール)の任意の20μm×20μmの表面粗さをそれぞれ測定した。
Ball Surface Roughness Measurement Changes in ball surface roughness (arithmetic average roughness) of the ballpoint pen balls of Examples 1 to 7 and Comparative Examples 1 to 3 were measured with an atomic force microscope. Specifically, using a scanning probe microscope SPI-400 (manufactured by Seiko Instruments Inc.), the ball in the initial state and the ball after aging (ballpoint pen samples of the ballpoint pens 1 to 10 at 50 ° C. and 30% RH). An arbitrary 20 μm × 20 μm surface roughness of a ballpoint pen ball left for 90 days in a high-temperature bath was measured.

書き味の軽さ、滑らかさ
ボールペン1〜10のボールペンサンプルを、初期と経時後(ボールペンサンプルを50℃30%RHの高温槽に、ペン先を下向きにして90日間放置したボールペン)のボールペンサンプルを、自動筆記機を用いて、筆記荷重100gf、筆記速度2mm/秒、筆記角度70条件で、直線筆記し、筆記方向にかかる荷重を測定し、筆記抵抗値を測定した。
Lightness and smoothness of writing Ballpoint pen samples of ballpoint pens 1 to 10 at the beginning and after the lapse of time (the ballpoint pen sample was left in a high-temperature bath at 50 ° C. and 30% RH for 90 days with the pen tip facing down). Using an automatic writing machine, straight writing was performed under the conditions of a writing load of 100 gf, a writing speed of 2 mm / sec, and a writing angle of 70, the load applied in the writing direction was measured, and the writing resistance value was measured.

Figure 0006182848
Figure 0006182848

実施例1〜4のボールペン用ボールは、バインダー成分として使用されるCo粉体内のFeの量が0.5重量%以下であることから、腐食発生の原因である(Co,Fe)23または(Co,Fe)Cの炭化物を生じにくくなるため、Coの溶出が発生しなくなり、良好な書き味を長期継続できた。 Since the amount of Fe in the Co powder used as the binder component in the ball for pens of Examples 1 to 4 is 0.5% by weight or less, it is a cause of corrosion (Co, Fe) 23 C 6 Or, since it becomes difficult to generate (Co, Fe) 3 C carbide, Co elution does not occur, and good writing quality can be maintained for a long time.

実施例5〜7のボールペン用ボールは、バインダー成分として使用されるCo粉体内のFeの量が0.5重量%を越えているが、焼結後ボールペン用ボールが得られた後に、1100℃以上で1時間加熱した後に徐冷させることで、表面Co内のFe濃度を減少させたため、腐食発生の原因である(Co,Fe)23または(Co,Fe)Cの炭化物を生じにくくなり、Coの溶出が発生しなくなることから、良好な書き味を長期継続できた。 In the ball-point pen balls of Examples 5 to 7, the amount of Fe in the Co powder used as the binder component exceeds 0.5% by weight. Since the Fe concentration in the surface Co is reduced by heating for 1 hour and then gradually cooling, (Co, Fe) 23 C 6 or (Co, Fe) 3 C carbides that cause corrosion are generated. Since it became difficult and no elution of Co occurred, good writing could be continued for a long time.

これに対して比較例1〜3のボールペン用ボールは、バインダー成分として使用されるCo粉体内のFeの量が0.5重量%を越えているため、腐食発生の原因である(Co,Fe)23または(Co,Fe)Cの炭化物が多く生じ、前記炭化物とCoとの炭化物の電位の差から電流が流れて腐食が発生しやすくなるめ、Coの溶出が発生し、WCの脱落が発生し、ボール表面が凸凹になってしまうので、長期経時により書き味の滑らかさが失われてしまう。 On the other hand, the ball for ballpoint pens of Comparative Examples 1 to 3 is a cause of corrosion because the amount of Fe in the Co powder used as the binder component exceeds 0.5% by weight (Co, Fe ) 23 C 6 or (Co, Fe) 3 C carbides are produced in a large amount, current flows due to the difference in potential between the carbides of the carbides and Co, and corrosion easily occurs, so that Co is eluted and WC is generated. Drop off and the ball surface becomes uneven, and the smoothness of the writing quality is lost over time.

Claims (1)

WC−Co系超硬ボールにおいて、焼結合金の表面を鏡面研磨した後、1100℃以上で加熱した後に徐冷して、ボール最表面から1μmの深さの範囲におけるCo原子に対するFe原子の割合0.5重量%以下としたボールペン用ボールの製造方法。
In a WC-Co carbide ball, the ratio of Fe atoms to Co atoms in a depth range of 1 μm from the outermost surface of the ball after mirror-polishing the surface of the sintered alloy and heating it at 1100 ° C. or higher. A method for producing a ball for a ballpoint pen with a content of 0.5 wt% or less .
JP2012238442A 2012-10-30 2012-10-30 Ball for ballpoint pen Expired - Fee Related JP6182848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012238442A JP6182848B2 (en) 2012-10-30 2012-10-30 Ball for ballpoint pen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238442A JP6182848B2 (en) 2012-10-30 2012-10-30 Ball for ballpoint pen

Publications (2)

Publication Number Publication Date
JP2014087953A JP2014087953A (en) 2014-05-15
JP6182848B2 true JP6182848B2 (en) 2017-08-23

Family

ID=50790312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238442A Expired - Fee Related JP6182848B2 (en) 2012-10-30 2012-10-30 Ball for ballpoint pen

Country Status (1)

Country Link
JP (1) JP6182848B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148084A (en) * 2013-01-31 2014-08-21 Pentel Corp Ball for ball-point pen
JP2016002698A (en) * 2014-06-17 2016-01-12 三菱鉛筆株式会社 Writing ball formed by powder sintering laminate shaping method, and writing instrument having the same

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB860387A (en) * 1957-04-29 1961-02-01 Parker Pen Co Improvements in writing instrument balls
JPS5216454A (en) * 1975-07-30 1977-02-07 Nippon Shinkinzoku Kk Method of manufacturing cobalt alloy powder for superrhard alloy
US4621936A (en) * 1983-10-14 1986-11-11 Corning Glass Works Zirconia pen balls
JP3341776B2 (en) * 1991-07-29 2002-11-05 三菱マテリアル株式会社 Super hard alloy
JP3127708B2 (en) * 1994-03-11 2001-01-29 住友電気工業株式会社 Coated cemented carbide for cutting tools
JP3230126B2 (en) * 1994-06-09 2001-11-19 三菱マテリアル株式会社 Internal-combustion engine tappet member having high joining strength with chip material
JP3310138B2 (en) * 1995-07-11 2002-07-29 ダイジ▲ェ▼ット工業株式会社 Sintered hard material
JPH10102160A (en) * 1996-09-27 1998-04-21 Chichibu Onoda Cement Corp Production of cobalt triantimonide type composite material
JP4140928B2 (en) * 1996-10-24 2008-08-27 株式会社タンガロイ Wear resistant hard sintered alloy
JPH1182515A (en) * 1997-09-02 1999-03-26 Nippon Tungsten Co Ltd Sliding member
JP4473970B2 (en) * 1998-08-19 2010-06-02 株式会社サクラクレパス Ballpoint ball and its manufacturing method
DE19907749A1 (en) * 1999-02-23 2000-08-24 Kennametal Inc Sintered hard metal body useful as cutter insert or throwaway cutter tip has concentration gradient of stress-induced phase transformation-free face-centered cubic cobalt-nickel-iron binder
JP4406120B2 (en) * 1999-09-02 2010-01-27 株式会社東芝 Tungsten carbide powder
JP4409061B2 (en) * 2000-07-11 2010-02-03 株式会社タンガロイ Cemented carbide penball and method for manufacturing the same
JP2002096591A (en) * 2000-07-19 2002-04-02 Tsubaki Nakashima Co Ltd Ball for ballpoint pen
JP4107908B2 (en) * 2002-08-06 2008-06-25 株式会社タンガロイ Corrosion-resistant cemented carbide penball
JP4471686B2 (en) * 2004-03-11 2010-06-02 株式会社タンガロイ Cemented carbide penball with excellent corrosion resistance
JP4647244B2 (en) * 2004-05-26 2011-03-09 株式会社アライドマテリアル Tungsten carbide powder and method for producing the same
JP2006015555A (en) * 2004-06-30 2006-01-19 Pentel Corp Writing utensil
JP2006037160A (en) * 2004-07-27 2006-02-09 Tungaloy Corp Sintered compact
JP4532343B2 (en) * 2005-05-27 2010-08-25 トーカロ株式会社 Carbide cermet sprayed coating member excellent in corrosion resistance and method for producing the same
JP4997561B2 (en) * 2005-08-04 2012-08-08 独立行政法人産業技術総合研究所 Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same
JP2007152601A (en) * 2005-11-30 2007-06-21 Pentel Corp Ball for ballpoint pen and manufacturing method thereof
JP2007269534A (en) * 2006-03-31 2007-10-18 Allied Material Corp Wc powder and its production method
JP5134217B2 (en) * 2006-07-07 2013-01-30 日本タングステン株式会社 Sintered hard material and mold using the same
CN101506096B (en) * 2006-09-15 2012-06-13 株式会社东芝 Carbonated tungsten powder, method for production of the same, and superhard material and tool using the same
JP5056646B2 (en) * 2008-07-25 2012-10-24 Dic株式会社 Plasticizer for polyarylene sulfide resin, polyarylene sulfide molded article, and method for increasing elongation of polyarylene sulfide resin
JP5195274B2 (en) * 2008-10-22 2013-05-08 新日鐵住金株式会社 Abrasion resistant screen and method of manufacturing the same
JP2011031510A (en) * 2009-08-03 2011-02-17 Pentel Corp Ballpoint pen chip and aqueous ink ballpoint pen with the same

Also Published As

Publication number Publication date
JP2014087953A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP6062748B2 (en) Water-based ballpoint pen
JP6182848B2 (en) Ball for ballpoint pen
JP6706107B2 (en) Oil-based ink composition for writing instruments, oil-based ballpoint pen refill using the same, and oil-based ballpoint pen
JP2014198757A (en) Ink composition for ball-point pen
JP6303276B2 (en) Ball for ballpoint pen
JP2015071828A (en) Aqueous slurry for making powder of hard material
JP5617497B2 (en) Ink composition for ballpoint pen
JP6186749B2 (en) Ball for ballpoint pen
CN108948871A (en) A kind of Neutral writing ink metal color paste composition
JP2010065086A (en) Ink composition for writing utensil and writing utensil having the same built-in
JP5520598B2 (en) Oil-based ballpoint pen ink composition
JP2013027999A (en) Ball for ball-point pen and ball-point pen using the same
JP2006206786A (en) Water-based ink for ballpoint pen
JP2018034443A (en) Ball for ballpoint pen
JP2016179684A (en) Ball for ball point pen
JP2007039512A (en) Ink composition for roller ball
JP2014148084A (en) Ball for ball-point pen
JP5043377B2 (en) Ballpoint pen
CN115667430B (en) Ink composition for water-based ballpoint pen
JP2003020434A (en) Ink composition and ball-point pen using the same
JP2012071500A (en) Ball for ball-point pen
JP2011012140A (en) Production method of oily ink for ballpoint pen
JP2005213413A (en) Oil-based ink composition for use in ballpoint pen and manufacturing method thereof
JP2006334862A (en) Ball-point pen and method for production thereof
JP5521748B2 (en) Ball for ballpoint pen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6182848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees