JP4997561B2 - Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same - Google Patents

Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same Download PDF

Info

Publication number
JP4997561B2
JP4997561B2 JP2005226124A JP2005226124A JP4997561B2 JP 4997561 B2 JP4997561 B2 JP 4997561B2 JP 2005226124 A JP2005226124 A JP 2005226124A JP 2005226124 A JP2005226124 A JP 2005226124A JP 4997561 B2 JP4997561 B2 JP 4997561B2
Authority
JP
Japan
Prior art keywords
hard
film
alloy
aluminum
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005226124A
Other languages
Japanese (ja)
Other versions
JP2007039752A (en
Inventor
章宏 松本
慶三 小林
節男 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005226124A priority Critical patent/JP4997561B2/en
Publication of JP2007039752A publication Critical patent/JP2007039752A/en
Application granted granted Critical
Publication of JP4997561B2 publication Critical patent/JP4997561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、高硬度皮膜形成用硬質合金と硬質皮膜からなる硬質複合材料に関するものであり、更に詳しくは、母材である特定の高硬度皮膜形成用硬質合金の表面に高硬度の硬質皮膜を高い密着性で形成した硬質複合材料からなる、耐摩耗性や耐食性を改善した工具あるいは金型材料及び工具あるいは金型等の硬質部材に関するものである。   The present invention relates to a hard composite material composed of a hard alloy for forming a high-hardness film and a hard film. More specifically, the present invention relates to a surface of a specific hard alloy for forming a high-hardness film that is a base material. The present invention relates to a tool or mold material having improved wear resistance and corrosion resistance, and a hard member such as a tool or a mold, which is made of a hard composite material formed with high adhesion.

本発明に係る工具あるいは金型材料は、耐摩耗性を向上するために特定の硬質合金表面に高硬度の硬質皮膜を高い密着性で形成することにより該硬質皮膜の剥離を抑えることを可能にして、部材の長寿命化を可能とするものであり、例えば、該材料を工具などへ応用した場合には、高速な加工条件や重切削条件に対応した効率的な機械加工を実現することが可能となる。また、本発明は、硬質皮膜の固体潤滑性を利用した無油潤滑を実現することが可能であり、それにより、環境に考慮した新規硬質複合材料及び高度硬質部材の提供及び利用を実現するものである。   The tool or mold material according to the present invention makes it possible to suppress peeling of a hard film by forming a hard film with a high hardness on a specific hard alloy surface with high adhesion in order to improve wear resistance. For example, when the material is applied to a tool or the like, efficient machining corresponding to high-speed machining conditions or heavy cutting conditions can be realized. It becomes possible. In addition, the present invention can realize oil-free lubrication utilizing the solid lubricity of a hard coating, thereby realizing provision and use of a new hard composite material and highly rigid member considering the environment. It is.

従来、硬質なWC粒子をコバルトで結合させた超硬合金や、TiC粒子をニッケルで結合させたサーメット合金などの硬質合金は、耐摩耗性に優れる上に放電加工や研削により成形ができるため、工具材料や金型材料として広く利用されている。しかし、近年の機械加工における効率性重視の観点から、切削速度の高速化や重切削が行われている。そのため、硬質合金だけでは対応が不十分となり、硬質合金の表面に更に硬質な皮膜を形成することが行われている。しかし、従来の硬質合金では、純金属と硬質粒子の複合材料であるため、高温での変形量が多く、また、硬質な皮膜と結合相である金属との化学反応が進行して皮膜の剥離を生じるという問題点があった。   Conventionally, hard alloys such as cemented carbide in which hard WC particles are bonded with cobalt and cermet alloy in which TiC particles are bonded with nickel are excellent in wear resistance and can be formed by electric discharge machining or grinding. Widely used as tool material and mold material. However, from the viewpoint of emphasizing efficiency in recent machining, high cutting speed and heavy cutting are performed. For this reason, the response is insufficient only with the hard alloy, and a harder film is formed on the surface of the hard alloy. However, since conventional hard alloys are a composite material of pure metal and hard particles, there is a large amount of deformation at high temperatures, and the chemical reaction between the hard film and the metal that is the binder phase proceeds and the film peels off. There was a problem of producing.

このような硬質な皮膜の剥離に対しては、皮膜と母材である硬質合金の間に熱的安定性の高いインサート材をはさむ方法などによって改善を図ってきており、例えば、硬質炭素皮膜基板及び形成方法(特許文献1)のような技術開発がなされている。しかし、これらの方法においても、硬質な皮膜と母材となる硬質合金との高温における物性の違いから、密着性の高い硬質な皮膜を形成することはできていないのが実情であり、当技術分野においては、硬質合金表面に密着性の高い硬質皮膜を形成することが可能な新しい技術の開発が強く要請されていた。   In order to remove such a hard film, improvements have been made by a method in which an insert material having high thermal stability is sandwiched between the film and the hard alloy as a base material. For example, a hard carbon film substrate And the technical development like the formation method (patent document 1) is made | formed. However, even in these methods, it is a fact that a hard film with high adhesion cannot be formed due to the difference in physical properties at high temperatures between the hard film and the hard alloy as a base material. In the field, there has been a strong demand for the development of a new technique capable of forming a hard film with high adhesion on the surface of a hard alloy.

特開平10−130865号公報Japanese Patent Laid-Open No. 10-130865

このような状況の中で、本発明者らは、上記従来技術に鑑みて、従来技術における問題点を解決することが可能な新しい材料を開発することを目標として鋭意研究を重ねた結果、硬質合金の結合相を純金属から耐酸化性に優れる金属間化合物に変更し、焼結の過程で緻密化させることにより、高温でのガスの発生や吸着を抑制できることを見出し、更に研究を重ねて、本発明を完成した。すなわち、本発明は、硬質な皮膜を形成する母材となる硬質合金に着目し、高温における酸化特性や機械的特性を改良した新しい硬質合金を利用して、硬質な皮膜の密着性を高めるためになされたものである。   Under such circumstances, the present inventors have conducted intensive research with the goal of developing a new material capable of solving the problems in the prior art in view of the above-described prior art. We have discovered that it is possible to suppress the generation and adsorption of gases at high temperatures by changing the binder phase of the alloy from pure metal to an intermetallic compound with excellent oxidation resistance and densifying it during the sintering process. The present invention has been completed. That is, the present invention focuses on a hard alloy as a base material for forming a hard film, and uses a new hard alloy with improved oxidation characteristics and mechanical characteristics at high temperatures to increase the adhesion of the hard film. It was made.

本発明は、硬質な皮膜を密着よく形成させるために、膜を形成するプロセスで発生する熱によって膜の剥離が生じないように母材表面を清浄にするとともに、変形を抑制することで、母材である高硬度皮膜形成用合金の表面に高硬度の皮膜を形成し、耐摩耗性や耐食性を改善した工具あるいは金型材料を提供することを目的とするものである。   In order to form a hard film with good adhesion, the present invention cleans the surface of the base material so that the film is not peeled off by heat generated in the process of forming the film, and suppresses deformation, thereby An object of the present invention is to provide a tool or mold material in which a high hardness film is formed on the surface of a high hardness film forming alloy, which is a material, and the wear resistance and corrosion resistance are improved.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)母材である硬質合金と、該硬質合金の表面に硬質皮膜を形成した構造を有する、皮膜の剥離の問題がない高密着性硬質複合材料であって、
前記硬質合金が、炭化物からなる硬質粒子を、鉄とアルミニウムを主成分とする鉄−アルミニウム合金の結合相にて結合した高硬度皮膜形成用硬質合金からなり、前記硬質皮膜が、炭素を含有する硬質皮膜からなり、前記高硬度皮膜形成用硬質合金における、結合相である鉄−アルミニウム合金が、加圧焼結時に燃焼合成されたものであ鉄−アルミニウム合金に対するアルミニウムの量が、12重量%から37重量%であ、高硬度皮膜形成用硬質合金が、前記加圧焼結により空隙率5%又はそれより小さい空隙率に緻密化されていることを特徴とする硬質複合材料。
(2)硬質皮膜が、ダイヤモンド、ダイヤモンドライクカーボン、硼化炭素、炭化珪素、炭化チタン、炭窒化チタン、炭窒化ジルコニウムのうちから選択される少なくとも一つからなる前記(1)に記載の硬質複合材料。
(3)前記(1)又は(2)に記載の硬質複合材料からなることを特徴とする硬質部材。
(4)硬質部材が工具あるいは金型である前記(3)に記載の硬質部材。
(5)炭化物からなる硬質粒子と鉄粉末、アルミニウム粉末を混合し、これを加圧焼結することにより高硬度皮膜形成用硬質合金を作製し、該硬質合金の表面炭素を含有する硬質皮膜を形成して、皮膜の剥離の問題がない高密着性硬質複合材料を作製する硬質複合材料の製造方法であって、
高硬度皮膜形成用硬質合金における、鉄−アルミニウム合金の結合相を、加圧焼結時にこれらを燃焼合成させることにより形成鉄−アルミニウム合金に対するアルミニウムの量が、12重量%から37重量%であ、前記加圧焼結により空隙率5%又はそれより小さい空隙率に緻密化することを特徴とする硬質複合材料の製造方法。
)上記硬質合金の表面に、ダイヤモンド、ダイヤモンドライクカーボン、硼化炭素、炭化珪素、炭化チタン、炭窒化チタン、炭窒化ジルコニウムのうちから選択される少なくとも一つからなる硬質皮膜を形成する前記(5)に記載の方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A hard-adhesive composite material having a hard alloy as a base material and a structure in which a hard film is formed on the surface of the hard alloy and having no problem of film peeling,
The hard alloy, the hard particles consisting of carbide, iron and aluminum iron as a main component - made of a high hardness coating forming hard alloy bonded by an aluminum alloy binder phase, said hard coating, containing-carbon Ri Do a hard coating that, in the high-hardness film forming hard alloy, iron binding phase - aluminum alloy state, and are not burned synthesized during pressurization sintering, iron - the amount of aluminum to aluminum alloy , Ri 37 wt% der from 12 wt%, hard high hardness film forming hard alloy, characterized in that you have been densified to the 5% porosity by pressure sintering or smaller porosity Composite material.
(2) hard coating, diamond, diamond-like carbon, boride carbon, silicon carbide, titanium carbide, titanium carbonitride, hard according to at least one consists of the to be inner shell selected carbonitride zirconium beam (1) Composite material.
(3) A hard member comprising the hard composite material according to (1) or (2).
(4) The hard member according to (3), wherein the hard member is a tool or a mold.
(5) hard and hard particles consisting of carbide, iron powder, aluminum powder were mixed by pressure sintering it to form a high hardness film forming hard alloy, containing carbon on the surface of the hard alloy A method for producing a hard composite material that forms a film and produces a highly adhesive hard composite material that has no problem of peeling of the film ,
In the high-hardness film forming hard alloy, iron - a binding phase of aluminum alloy, these during pressure sintering to form by combustion synthesis, iron - the amount of aluminum to aluminum alloy, 12 wt% to 37 wt% der is, the production method of the hard composite material characterized the densification child in the 5% porosity by pressure sintering or smaller porosity.
(6) to the surface of the hard metal to form a diamond, diamond-like carbon, boride carbon, silicon carbide, titanium carbide, titanium carbonitride, a hard film comprising at least one is inner shell selected carbonitride zirconium arm The method according to (5) above.

次に、本発明について更に詳細に説明する。本発明は、母材である硬質合金の表面に、硬質皮膜を形成した硬質複合材料であって、前記硬質合金が、炭化物、窒化物、硼化物、酸化物のうち少なくとも1種以上の硬質粒子を、鉄とアルミニウムを主成分とする合金にて結合した高硬度皮膜形成用硬質合金からなり、前記硬質皮膜が、炭素、窒素、硼素、酸素のうち少なくとも1種類以上の元素を含有する硬質皮膜からなることを特徴とするものである。   Next, the present invention will be described in more detail. The present invention relates to a hard composite material in which a hard film is formed on the surface of a hard alloy as a base material, and the hard alloy is at least one hard particle selected from carbide, nitride, boride, and oxide. Is made of a hard alloy for forming a high-hardness film that is bonded with an alloy mainly composed of iron and aluminum, and the hard film contains at least one element selected from the group consisting of carbon, nitrogen, boron, and oxygen. It is characterized by comprising.

先ず、硬質皮膜及びその製膜方法について説明する。本発明で使用する高硬度の硬質合金に形成する皮膜としては、炭素、窒素、硼素、酸素のうち少なくとも1種類以上の元素を含有する硬質皮膜であって、一般に、硬質な無機材料として知られる材料を利用することができる。   First, the hard coating and the film forming method will be described. The film formed on the hard alloy having high hardness used in the present invention is a hard film containing at least one element of carbon, nitrogen, boron, and oxygen, and is generally known as a hard inorganic material. Materials can be used.

これらの無機材料は、耐熱性に優れる材料であるため、皮膜を形成するには、高エネルギーを利用した製膜プロセスを利用する必要がある。本発明では、例えば、高周波を利用してアルゴンをイオン化して無機材料ターゲットに衝突させて膜を形成するスパッタリング、電子ビームやアークなどの高熱源により金属を蒸発させて雰囲気ガスと反応させる反応性スパッタリング、反応性ガスを熱で分解させて目的の無機物を合成しながら堆積させるCVD法などの方法を利用して膜を作製することが可能である。   Since these inorganic materials are excellent in heat resistance, it is necessary to use a film forming process using high energy in order to form a film. In the present invention, for example, sputtering that ionizes argon using high frequency and collides with an inorganic material target to form a film, reactivity that evaporates metal by a high heat source such as an electron beam or an arc and reacts with an atmospheric gas It is possible to produce a film using a method such as sputtering or a CVD method in which a reactive gas is decomposed with heat to deposit while synthesizing a target inorganic substance.

一般に、母材となる硬質合金との密着性に優れる皮膜を作製するためには、高温で母材表面に膜を形成することが有効であることが知られている。また、母材との密着性を改善するために、母材表面に金属を含有する皮膜を形成することが有効であるが、本発明においては、金属、有機物あるいは無機物を製膜助剤として用いることができる。   In general, it is known that it is effective to form a film on the surface of a base material at a high temperature in order to produce a film having excellent adhesion to a hard alloy as a base material. In order to improve the adhesion to the base material, it is effective to form a film containing a metal on the surface of the base material. In the present invention, a metal, an organic substance or an inorganic substance is used as a film forming aid. be able to.

硬質皮膜の材料としては、具体的には、例えば、ダイヤモンド、ダイヤモンドライクカーボン、硼化炭素、炭化珪素、炭化チタン、炭窒化チタン、炭窒化ジルコニウム、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化チタンアルミニウム、酸化アルミニウムのうちから選択される1種以上が例示される。しかし、これらに制限されるものではなく、これらと同効のものであれば同様に使用することができる。   Specific examples of the material for the hard coating include diamond, diamond-like carbon, carbon boride, silicon carbide, titanium carbide, titanium carbonitride, zirconium carbonitride, titanium nitride, zirconium nitride, hafnium nitride, and titanium nitride aluminum. One or more selected from aluminum oxide are exemplified. However, it is not limited to these, and can be used in the same manner as long as they have the same effect.

次に、高硬度皮膜形成用硬質合金及びその製造方法について説明する。本発明で使用する硬質合金としては、硬質粒子として、炭化物、窒化物、硼化物、酸化物のうち少なくとも1種以上の硬質粒子を含有したものを利用することができる。一般に、これらの硬質粒子は、コバルトやニッケルなどの純金属あるいはこれらの固溶体により結合されて硬質合金として利用されている。しかし、純金属あるいはこれらの固溶体では、高温になると硬質粒子を構成する軽元素である炭素や窒素、硼素、酸素と反応し、脆弱な相を生成する。また、高硬度の皮膜を形成するプロセスにおいては部分的な高温が発生するため、皮膜を構成する軽元素と硬質合金の結合相との反応が発生する。   Next, a hard alloy for forming a high hardness film and a method for producing the same will be described. As the hard alloy used in the present invention, those containing at least one kind of hard particles among carbide, nitride, boride and oxide can be used as the hard particles. In general, these hard particles are used as a hard alloy by being bonded by a pure metal such as cobalt or nickel or a solid solution thereof. However, pure metals or their solid solutions react with carbon, nitrogen, boron, and oxygen, which are light elements constituting the hard particles, at high temperatures to generate a fragile phase. Further, in the process of forming a high hardness film, a partial high temperature is generated, so that a reaction between the light element constituting the film and the binder phase of the hard alloy occurs.

そのため、本発明では、硬質粒子を結合する金属として、鉄にアルミニウムを添加した合金を利用することが不可欠である。鉄は、コバルトやニッケルに比べて、軽元素との結合力が大きいため、硬質な皮膜と結合相との化学反応が進行して化合物を生成しやすく、鉄を硬質合金の結合相に用いると高硬度の皮膜を形成することはできない。また、アルミニウムは、硬質粒子との結合強度が低いため、緻密で高強度の硬質合金を作製することができない。しかし、鉄とアルミニウムの合金は、皮膜を構成する軽元素との高い結合力を保持したまま、上記化学反応による化合物の形成を抑制することができるため、これらの問題点を解決することができ、これにより、炭素、窒素、硼素、酸素を含む硬質皮膜と高い密着性を有する工具あるいは金型材料を作製することが可能となる。   Therefore, in the present invention, it is indispensable to use an alloy obtained by adding aluminum to iron as a metal for bonding hard particles. Since iron has a stronger binding force with light elements than cobalt and nickel, the chemical reaction between the hard coating and the binder phase proceeds easily to produce a compound. When iron is used as the binder phase of a hard alloy, A high hardness film cannot be formed. Moreover, since aluminum has a low bonding strength with hard particles, it is impossible to produce a dense and high-strength hard alloy. However, an alloy of iron and aluminum can suppress the formation of the compound by the above chemical reaction while maintaining a high bonding force with the light element constituting the film, and thus can solve these problems. This makes it possible to produce a tool or mold material having high adhesion to a hard film containing carbon, nitrogen, boron, and oxygen.

硬質合金の材料である硬質粒子としては、上述のように、炭化物、窒化物、硼化物、酸化物のうち少なくとも1種以上の硬質粒子、具体的には、例えば、炭化タングステン、炭化タンタル、炭化チタン、炭化クロム、炭化バナジウム、炭化ジルコニウム、炭化珪素、窒化珪素、硼化チタン、酸化アルミニウムが例示される。しかし、これらに制限されるものではなく、これらと同効のものであれば同様に使用することができる。   As described above, the hard particles that are the material of the hard alloy include at least one kind of hard particles of carbide, nitride, boride, and oxide, specifically, for example, tungsten carbide, tantalum carbide, carbonized Examples include titanium, chromium carbide, vanadium carbide, zirconium carbide, silicon carbide, silicon nitride, titanium boride, and aluminum oxide. However, it is not limited to these, and can be used in the same manner as long as they have the same effect.

硬質合金の作製は、上記硬質粒子と鉄粉末、アルミニウム粉末を均質に混合し、加圧焼結することで行うことができる。硬質粒子、鉄粉末、アルミニウム粉末の大きさは特に限定しないが、鉄粉末は、できるだけ微細な粉末が好ましい。例えば、1〜10マイクロメートル程度の微細な粉末が好ましい。また、これらの粉末の混合方法は、特に指定しないが、例えば、乳鉢混合や振動ボールミル、転動型ボールミル、遊星型ボールミル、アトライターなどの一般的な混合方法を利用することができる。   The hard alloy can be produced by homogeneously mixing the hard particles, iron powder, and aluminum powder, followed by pressure sintering. The sizes of the hard particles, iron powder, and aluminum powder are not particularly limited, but the iron powder is preferably as fine as possible. For example, a fine powder of about 1 to 10 micrometers is preferable. The mixing method of these powders is not particularly specified, but general mixing methods such as mortar mixing, vibration ball mill, rolling ball mill, planetary ball mill, and attritor can be used.

成形方法については、特に限定しないが、黒鉛製あるいはセラミックス製のジグを用いた加圧成形を利用することができる。加熱方法についても、特に限定しないが、加熱中にアルミニウムが溶解するため、緻密な成形体を作製するには、加圧下で加熱することが好ましい。アルミニウムは、酸化されやすいため、加熱は真空中が好ましく、黒鉛製のジグを用いた加圧下での通電加熱は、より好適な焼結方法である。加熱温度は、均質な鉄アルミニウム化合物にするために、900〜1300℃が好ましい。アルミニウムが溶解した直後、鉄とアルミニウムが反応し、鉄アルミニウム化合物が合成され、更に加熱することにより、規則化した合金相となり、より強固な結合相を形成する。   The molding method is not particularly limited, and pressure molding using a graphite or ceramic jig can be used. The heating method is not particularly limited, but since aluminum dissolves during heating, it is preferable to heat under pressure in order to produce a dense molded body. Since aluminum is easily oxidized, heating is preferably performed in a vacuum, and current heating under pressure using a graphite jig is a more preferable sintering method. The heating temperature is preferably 900 to 1300 ° C. in order to obtain a homogeneous iron aluminum compound. Immediately after aluminum is dissolved, iron and aluminum react to synthesize an iron-aluminum compound, which is further heated to form an ordered alloy phase and form a stronger bonded phase.

上記加熱工程では、5%以下に緻密化させた硬質合金を作製する。また、結合相である鉄−アルミニウム合金は、焼結時に燃焼合成することで形成される。これらにより、皮膜を構成する軽元素との高い結合力を保持したまま、化合物の生成を抑制し、緻密で高強度で、硬質皮膜と高い密着性を有する硬質合金を作製することが可能となる。   In the heating step, a hard alloy densified to 5% or less is produced. Moreover, the iron-aluminum alloy which is a binder phase is formed by combustion synthesis at the time of sintering. As a result, it is possible to produce a hard alloy having high adhesion with the hard coating, while suppressing the formation of the compound while maintaining a high binding force with the light elements constituting the coating. .

結合相となる鉄−アルミニウム合金は、アルミニウム量により強度、硬度、磁性の変化が生じる。母材となる硬質合金の表面に高硬度の皮膜を密着させるためには、母材の熱膨張率、耐食性、硬度などを制御する必要があり、鉄−アルミニウム合金のアルミニウム含有量を12重量%から37重量%に調整することで制御することが可能である。12重量%以下のアルミニウム量では、耐食性が悪く、高硬度の皮膜を形成するプロセスにおいて脆弱な相が生成し、一方、37重量%以上のアルミニウム量では、焼結体中に気孔が残存して膜の密着性が低下する。   An iron-aluminum alloy serving as a binder phase changes in strength, hardness, and magnetism depending on the amount of aluminum. In order to adhere a high hardness film to the surface of the hard alloy as the base material, it is necessary to control the coefficient of thermal expansion, corrosion resistance, hardness, etc. of the base material, and the aluminum content of the iron-aluminum alloy is 12% by weight. It is possible to control by adjusting to 37% by weight. If the amount of aluminum is 12% by weight or less, the corrosion resistance is poor, and a fragile phase is generated in the process of forming a high hardness film. On the other hand, if the amount of aluminum is 37% by weight or more, pores remain in the sintered body. The adhesion of the film decreases.

従来の硬質材料では、硬質合金の表面に更に硬質な皮膜を形成した複合材料の作製が種々試みられていたが、硬質合金は金属と硬質粒子の複合材料であるため、高温での変形量が多く、また、硬質な皮膜と硬質合金中の結合相である金属との化学反応が進行して皮膜の剥離が不可避的に生じるという問題点があった。これに対し、本発明では、硬質合金の結合相として、鉄−アルミニウム合金を用いるため、皮膜を構成する軽元素との高い結合力を保持したまま、硬質皮膜と結合相との化学反応を抑制することができるため、硬質皮膜と高い密着性を有し、皮膜の剥離の問題点がない高密着性硬質複合材料及び硬質部材を作製し、提供することが可能となる。   In the conventional hard materials, various attempts have been made to produce composite materials in which a hard film is further formed on the surface of the hard alloy. However, since hard alloys are composite materials of metal and hard particles, the amount of deformation at high temperatures is low. In addition, the chemical reaction between the hard film and the metal that is the binder phase in the hard alloy has progressed, and there has been a problem that the film is inevitably peeled off. In contrast, in the present invention, since an iron-aluminum alloy is used as the binder phase of the hard alloy, the chemical reaction between the hard coat and the binder phase is suppressed while maintaining a high binding force with the light elements constituting the coat. Therefore, it is possible to produce and provide a high-adhesion hard composite material and a hard member that have high adhesion to a hard film and have no problem of film peeling.

本発明により、次のような効果が得られる。
(1)硬質合金表面に高い密着性を以て硬質皮膜を形成した硬質複合材料を提供することができる。
(2)耐摩耗性や耐食性を改善した工具あるいは金型材料を提供することができる。
(3)耐摩耗性を向上するために形成した硬質皮膜の剥離を抑えることにより、部材の長寿命化を達成することができる。
(4)上記硬質複合材料を工具や金型などに応用することで、高速な加工条件や重切削条件に対応した効率的な機械加工を実現することができる。
(5)硬質皮膜の固体潤滑性を利用した無油潤滑を実現することができる。
(6)硬質皮膜の剥離の問題を改善することが可能な硬質材料及び硬質部材に関する新技術を提供することができる。
(7)硬質合金の研削加工時に発生する研削液を環境に優しくすることができる。
(8)磁性、非磁性を制御することにより加工屑の工具や金型への付着を防止あるいは促進することができる。
According to the present invention, the following effects can be obtained.
(1) A hard composite material in which a hard film is formed on the surface of a hard alloy with high adhesion can be provided.
(2) A tool or mold material with improved wear resistance and corrosion resistance can be provided.
(3) Longer life of the member can be achieved by suppressing the peeling of the hard coating formed to improve the wear resistance.
(4) By applying the hard composite material to a tool or a die, it is possible to realize efficient machining corresponding to high-speed machining conditions or heavy cutting conditions.
(5) Oil-free lubrication utilizing the solid lubricity of the hard coating can be realized.
(6) It is possible to provide a new technology relating to a hard material and a hard member capable of improving the problem of peeling of the hard film.
(7) The grinding fluid generated during grinding of the hard alloy can be made environmentally friendly.
(8) By controlling magnetism and non-magnetism, it is possible to prevent or promote the attachment of machining waste to a tool or a mold.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

(1)硬質合金の作製
鉄粉末((株)高純度化学研究所製、99.9重量%)、アルミニウム粉末((株)高純度科学研究所製、99.9重量%)、コバルト粉末((株)高純度科学研究所製、99.9重量%)及びタングステンカーバイド粉末(日本新金属(株)製、99%、2.5ミクロン)を、FeAl(24.4重量%Al)−75体積%WC、Co−75体積%WCとなるように配合し、自動乳鉢にて混合して混合物を作製した後、黒鉛製のジグ中に混合物を充填し、次いでこれを、通電加圧焼結装置にて焼結温度1200℃にて焼結した。得られた焼結体の気孔率はいずれも2%以下であった。
(1) Preparation of hard alloy Iron powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., 99.9% by weight), aluminum powder (manufactured by Kojundo Kagaku Kenkyusho Co., Ltd., 99.9 wt%), cobalt powder ( High Purity Science Laboratory Co., Ltd., 99.9% by weight) and tungsten carbide powder (Nippon Shin Metal Co., Ltd., 99%, 2.5 microns) were mixed with FeAl (24.4% by weight Al) -75. After blending to make volume% WC and Co-75 volume% WC, mixing in an automatic mortar to make a mixture, filling the mixture in a graphite jig, then, this is electrified pressure sintering Sintering was performed at 1200 ° C. in the apparatus. The porosity of the obtained sintered body was 2% or less.

(2)硬質皮膜の形成
これらの焼結体の表面を鏡面仕上げし、CVDにてDLCコーティングを行った。得られたDLCの膜厚は、いずれも0.5ミクロンであり、ラマン分光により形成された膜を測定したところ、いずれも典型的なDLCを示すプロファイルであることが確認された(図1)。また、走査型電子顕微鏡により界面付近を観察したところ、いずれも反応生成物と思われる相は観察されなかった(図2)。
(2) Formation of hard film The surface of these sintered bodies was mirror-finished, and DLC coating was performed by CVD. The film thicknesses of the obtained DLCs were all 0.5 microns, and when the films formed by Raman spectroscopy were measured, it was confirmed that all the profiles showed typical DLC (FIG. 1). . Further, when the vicinity of the interface was observed with a scanning electron microscope, no phase that was considered to be a reaction product was observed (FIG. 2).

(3)密着性の評価
これらの材料について、母材と硬質皮膜との密着性を評価するために、スクラッチテストを行った。FeAlを母材とする材料を用いた場合の臨界荷重は、88.2mNであり、Coを母材とする材料に比べて、約1.3倍の値が得られた(図3)。Fe−C系及びCo−C系にて、元素間の結びつき(あるいは合金化)のしやすさの程度を表す形成エンタルピーの値(ΔH)は、ΔHFe−C=+6(kJ/mol)、ΔHCo−C=+16(kJ/mol)であり、Fe−C間の方が結合力が大きい。したがって、皮膜との密着強度が大きい結果となったと考えられる。
(3) Evaluation of adhesion A scratch test was performed on these materials in order to evaluate the adhesion between the base material and the hard film. The critical load in the case of using a material containing FeAl as a base material was 88.2 mN, which was about 1.3 times that of a material containing Co as a base material (FIG. 3). In the Fe—C system and the Co—C system, the value of formation enthalpy (ΔH) representing the degree of ease of bonding (or alloying) between elements is ΔH Fe—C = + 6 (kJ / mol), ΔH Co-C = + 16 (kJ / mol), and the binding force is larger between Fe-C. Therefore, it is considered that the adhesion strength with the film was large.

上記実施例と同様に通電加圧焼結における焼結温度を1100℃として、FeAl(24.4重量%Al)−75体積%WCを作製した。その結果、得られた焼結体の空隙率は8%であった(図4)。次いで、本焼結体の表面に、DLCコーティングを行い、硬質合金の表面に膜厚0.5ミクロンの硬質皮膜を形成した硬質複合材料を作製した。皮膜と母材との密着性をスクラッチテストにて評価したところ、臨界荷重は34.1mNの値が得られた。このように、緻密化した材料より皮膜との密着強度が小さくなったのは、母材と皮膜との接着面積が小さいこと、及び空隙にて吸着していたガスが界面に拡散し、密着性を低下させたためと考えられる。本発明では、好適には、空隙率5%以下に緻密化した材料が特に高い密着強度が期待できるものとして用いられることが分かった。   FeAl (24.4 wt% Al) -75 vol% WC was prepared at a sintering temperature of 1100 ° C. in the same manner as in the above example. As a result, the porosity of the obtained sintered body was 8% (FIG. 4). Next, DLC coating was performed on the surface of the sintered body to prepare a hard composite material in which a hard film having a thickness of 0.5 microns was formed on the surface of the hard alloy. When the adhesion between the film and the base material was evaluated by a scratch test, a critical load of 34.1 mN was obtained. In this way, the adhesion strength to the film was smaller than that of the densified material because the adhesion area between the base material and the film was small, and the gas adsorbed in the voids diffused to the interface, resulting in adhesion. This is thought to be due to a decrease in. In the present invention, it has been found that a material densified to a porosity of 5% or less is preferably used as a material that can be expected to have a particularly high adhesion strength.

以上詳述したように、本発明は、高硬度皮膜形成用硬質合金上に硬質皮膜を形成した工具あるいは金型材料及びその製造方法に係るものであり、本発明に係る工具あるいは金型材料は、耐摩耗性を向上するために形成された高硬度の皮膜の剥離を抑えることにより、部材の長寿命化に貢献するものであり、例えば、工具などへ応用した場合には、高速な加工条件や重切削条件に対応した効率的な機械加工を実現することができる。また、本発明は、硬質皮膜の固体潤滑性を利用した無油潤滑を実現することが可能であり、環境に考慮した部材を提供することができる。   As described above in detail, the present invention relates to a tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the tool or mold material. , Which contributes to the extension of the service life of the material by suppressing the peeling of the hard coating formed to improve wear resistance. For example, when applied to tools, high-speed machining conditions And efficient machining corresponding to heavy cutting conditions. Further, the present invention can realize oil-free lubrication utilizing the solid lubricity of the hard coating, and can provide a member that takes the environment into consideration.

FeAl―75体積%WC基材及びCo−75体積%WC基材上に作製したDLC膜のラマン分光分析結果を示す。The Raman spectroscopic analysis result of the DLC film produced on the FeAl-75 volume% WC base material and the Co-75 volume% WC base material is shown. DLC膜と基材の走査型電子顕微鏡による断面観察の結果であり、(a)はFeAl―75体積%WC基材、(b)はCo−75体積%WC基材を示す。It is the result of the cross-sectional observation of a DLC film and a base material with the scanning electron microscope, (a) shows a FeAl-75 volume% WC base material, (b) shows a Co-75 volume% WC base material. FeAl―75体積%WC基材及びCo−75体積%WC基材上に作製したDLC膜に対するスクラッチ試験の結果を示す。The result of the scratch test with respect to the DLC film produced on the FeAl-75 volume% WC base material and the Co-75 volume% WC base material is shown. 十分に緻密化していないFeAl―75体積%WC基材上に作製したDLC膜に対するスクラッチ試験の結果を示す。The result of the scratch test with respect to the DLC film produced on the FeAl-75 volume% WC base material which is not fully densified is shown.

Claims (6)

母材である硬質合金と、該硬質合金の表面に硬質皮膜を形成した構造を有する、皮膜の剥離の問題がない高密着性硬質複合材料であって、
前記硬質合金が、炭化物からなる硬質粒子を、鉄とアルミニウムを主成分とする鉄−アルミニウム合金の結合相にて結合した高硬度皮膜形成用硬質合金からなり、前記硬質皮膜が、炭素を含有する硬質皮膜からなり、前記高硬度皮膜形成用硬質合金における、結合相である鉄−アルミニウム合金が、加圧焼結時に燃焼合成されたものであ鉄−アルミニウム合金に対するアルミニウムの量が、12重量%から37重量%であ、高硬度皮膜形成用硬質合金が、前記加圧焼結により空隙率5%又はそれより小さい空隙率に緻密化されていることを特徴とする硬質複合材料。
A hard alloy that is a base material, and a hard adhesive material having a structure in which a hard film is formed on the surface of the hard alloy and having no problem of film peeling,
The hard alloy, the hard particles consisting of carbide, iron and aluminum iron as a main component - made of a high hardness coating forming hard alloy bonded by an aluminum alloy binder phase, said hard coating, containing-carbon Ri Do a hard coating that, in the high-hardness film forming hard alloy, iron binding phase - aluminum alloy state, and are not burned synthesized during pressurization sintering, iron - the amount of aluminum to aluminum alloy , Ri 37 wt% der from 12 wt%, hard high hardness film forming hard alloy, characterized in that you have been densified to the 5% porosity by pressure sintering or smaller porosity Composite material.
硬質皮膜が、ダイヤモンド、ダイヤモンドライクカーボン、硼化炭素、炭化珪素、炭化チタン、炭窒化チタン、炭窒化ジルコニウムのうちから選択される少なくとも一つからなる請求項1に記載の硬質複合材料。 Hard film, diamond, diamond-like carbon, boride carbon, silicon carbide, titanium carbide, titanium carbonitride, hard composite material according to claim 1 comprising at least one member inner shell selected carbonitride zirconium beam. 請求項1又は2に記載の硬質複合材料からなることを特徴とする硬質部材。   A hard member made of the hard composite material according to claim 1. 硬質部材が工具あるいは金型である請求項3に記載の硬質部材。   The hard member according to claim 3, wherein the hard member is a tool or a mold. 炭化物からなる硬質粒子と鉄粉末、アルミニウム粉末を混合し、これを加圧焼結することにより高硬度皮膜形成用硬質合金を作製し、該硬質合金の表面炭素を含有する硬質皮膜を形成して、皮膜の剥離の問題がない高密着性硬質複合材料を作製する硬質複合材料の製造方法であって、
高硬度皮膜形成用硬質合金における、鉄−アルミニウム合金の結合相を、加圧焼結時にこれらを燃焼合成させることにより形成鉄−アルミニウム合金に対するアルミニウムの量が、12重量%から37重量%であ、前記加圧焼結により空隙率5%又はそれより小さい空隙率に緻密化することを特徴とする硬質複合材料の製造方法。
Forming a hard particles consisting of carbide, iron powder, aluminum powder were mixed, which was prepared high hardness film forming hard alloy by pressure sintering, the hard film containing carbon on the surface of the hard alloy A method of manufacturing a hard composite material for producing a highly adhesive hard composite material that does not have a problem of film peeling ,
In the high-hardness film forming hard alloy, iron - a binding phase of aluminum alloy, these during pressure sintering to form by combustion synthesis, iron - the amount of aluminum to aluminum alloy, 12 wt% to 37 wt% der is, the production method of the hard composite material characterized the densification child in the 5% porosity by pressure sintering or smaller porosity.
上記硬質合金の表面に、ダイヤモンド、ダイヤモンドライクカーボン、硼化炭素、炭化珪素、炭化チタン、炭窒化チタン、炭窒化ジルコニウムのうちから選択される少なくとも一つからなる硬質皮膜を形成する請求項5に記載の方法。 The surface of the hard alloy, diamond, diamond-like carbon, boride carbon, silicon carbide, claim forms titanium carbide, titanium carbonitride, a hard film comprising at least one is inner shell selected carbonitride zirconium arm 5 The method described in 1.
JP2005226124A 2005-08-04 2005-08-04 Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same Expired - Fee Related JP4997561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005226124A JP4997561B2 (en) 2005-08-04 2005-08-04 Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226124A JP4997561B2 (en) 2005-08-04 2005-08-04 Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same

Publications (2)

Publication Number Publication Date
JP2007039752A JP2007039752A (en) 2007-02-15
JP4997561B2 true JP4997561B2 (en) 2012-08-08

Family

ID=37798017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226124A Expired - Fee Related JP4997561B2 (en) 2005-08-04 2005-08-04 Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same

Country Status (1)

Country Link
JP (1) JP4997561B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228307A (en) * 2009-03-27 2010-10-14 Citizen Holdings Co Ltd Decorative member
CN102134663B (en) * 2011-03-04 2012-07-25 株洲硬质合金集团有限公司 Hard alloy with iron-aluminum intermetallic compound as main binding phase and preparation method of hard alloy
JP5760197B2 (en) * 2011-05-27 2015-08-05 国立研究開発法人産業技術総合研究所 Hard material with embedded heating element and its manufacturing method
JP5756928B2 (en) * 2011-05-27 2015-07-29 国立研究開発法人産業技術総合研究所 Hard mold suitable for electric heating and its material
JP6182848B2 (en) * 2012-10-30 2017-08-23 ぺんてる株式会社 Ball for ballpoint pen
JP2014148084A (en) * 2013-01-31 2014-08-21 Pentel Corp Ball for ball-point pen
WO2018087945A1 (en) 2016-11-09 2018-05-17 株式会社Ihi Sliding member with abrasion-resistant coating film, and method for forming abrasion-resistant coating film
JP7307930B2 (en) * 2018-01-16 2023-07-13 国立研究開発法人産業技術総合研究所 Heat-resistant WC-based composite material with high thermal conductivity and method for producing the same
CN109972017B (en) * 2019-04-24 2020-11-24 上海大学 Cemented carbide tool material for high-speed cutting and method for manufacturing cemented carbide tool

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921387B2 (en) * 1978-03-03 1984-05-19 三菱マテリアル株式会社 Coated cemented carbide parts
JPS5891145A (en) * 1981-11-24 1983-05-31 Toshiba Tungaloy Co Ltd Titanium oxide-base colored sintered alloy
JPS59107060A (en) * 1982-12-09 1984-06-21 Toshiba Tungaloy Co Ltd Composite sintered body and its production
JPS59110776A (en) * 1982-12-15 1984-06-26 Sumitomo Electric Ind Ltd Surface coated sintered hard alloy
JPH0776405B2 (en) * 1986-02-25 1995-08-16 東芝タンガロイ株式会社 Solid lubricious composite material and method for producing the same
JP2643230B2 (en) * 1988-02-24 1997-08-20 三菱マテリアル株式会社 Surface-coated cermet end mill
JP2000226262A (en) * 1998-12-04 2000-08-15 Sumitomo Electric Ind Ltd High-hardness and high-strength sintered compact
JP2003113438A (en) * 2001-10-05 2003-04-18 Ngk Spark Plug Co Ltd Die made from sintered hard metal alloy
DE10225521A1 (en) * 2002-06-10 2003-12-18 Widia Gmbh Hard tungsten carbide substrate with surface coatings, includes doped metallic binder
JP2005097646A (en) * 2003-09-22 2005-04-14 Tungaloy Corp Sintered alloy with gradient structure, and its production method

Also Published As

Publication number Publication date
JP2007039752A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4997561B2 (en) Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same
EP1801248B1 (en) Wear resistant low friction coating composition and method for coating
JP4020169B2 (en) Electrode rod for spark welding using combustion synthesis reaction, its production method, and spark-welded metal coating method using this electrode
US7226671B2 (en) Use of powder metal sintering/diffusion bonding to enable applying silicon carbide or rhenium alloys to face seal rotors
TWI259849B (en) Porous metal, metallic composite using it and method for manufacturing the same
JP2011524466A (en) Metal-infiltrated silicon titanium and aluminum carbide bodies
KR101361986B1 (en) Rotation tool
JP2008502576A (en) Consolidation method for hard coated hard powder
ZA200304755B (en) Abrasive diamond composite and method of making thereof.
FR2715929A1 (en) Polycrystalline cubic boron nitride sintered compact mfr
CN101591194B (en) Composite material for superhard cutting tool
CN1929991B (en) High-abrasive material
Hsieh et al. Pressureless sintering of metal-bonded diamond particle composite blocks
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JP5371102B2 (en) Method for modifying cemented carbide and cemented carbide modified by the method
JP2006001829A (en) Titanium carbide sintered compact or titanium silicon carbide sintered compact, its manufacturing method, its processing method or coating method and substrate for the same
Miyamoto et al. Fabrication of new cemented carbide containing diamond coated with nanometer‐sized SiC particles
JP2000328170A (en) Cubic boron nitride-containing hard member and its production
JP2014122425A (en) Method of compacting hard coated hard powder
JPH093618A (en) Production of titanium boride coated article thus produced
WO2013179773A1 (en) Molybdenum heat-resistant alloy, friction stir welding tool, and manufacturing method
EP1709137A1 (en) Coated abrasives
JP2992166B2 (en) Method of forming sprayed carbide film
JP2000144301A (en) Tungsten carbide sintered body and its production
JP5771853B2 (en) WC-based W-Mo-Si-C composite ceramics and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100927

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4997561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees