JP2000144301A - Tungsten carbide sintered body and its production - Google Patents

Tungsten carbide sintered body and its production

Info

Publication number
JP2000144301A
JP2000144301A JP10332037A JP33203798A JP2000144301A JP 2000144301 A JP2000144301 A JP 2000144301A JP 10332037 A JP10332037 A JP 10332037A JP 33203798 A JP33203798 A JP 33203798A JP 2000144301 A JP2000144301 A JP 2000144301A
Authority
JP
Japan
Prior art keywords
sintered body
tungsten carbide
sintering
raw material
mixed raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10332037A
Other languages
Japanese (ja)
Inventor
Tamotsu Akashi
保 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Coal Mining Co Ltd
Original Assignee
Sumitomo Coal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Coal Mining Co Ltd filed Critical Sumitomo Coal Mining Co Ltd
Priority to JP10332037A priority Critical patent/JP2000144301A/en
Publication of JP2000144301A publication Critical patent/JP2000144301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the wear resistance, corrosion resistance and strength of a sintered body by allowing a sintered body to contain at least one or more kinds of VC and Cr3C2 by a specified amt., allowing the balance tungsten carbide to have the specified particle size and composing it of WC single phase having a stoichiometric compsn. SOLUTION: This sintered body contains at least one or more kinds of VC and Cr3C2 by 0.1 to 2 wt.%, and the balance tungsten carbide with <=1 μm average particle size and is composed of WC single phase having a stoichiometric compsn. In the production of the sintered body, a lower punch 3 is set to a molding outer frame 1 made of graphite and is filled with mixed raw material powder 4, and an upper punch 2 is set to assemble a sintering assembly. The mixed raw material powder 4 is formed by mixing WC powder with <=0.8 μm average particle size with one or more kinds of VC and Cr3C2 by 0.1 to 2 wt.%. The sintering assembly is charged to a conductive sintering machine, the atmosphere of the periphery of a graphite mold 5 is controlled to the vacuum or inert gas one, after that, energizing is executed, and the mixed raw material powder 4 is subjected to press sintering.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化タングステン
焼結体及びその製造方法に関するものである。特に、下
記の諸点に適したものである。本発明は、耐摩耗性、耐
食性ともに優れた高密度、高強度な炭化タングステン焼
結体に係わり、厳しい摩耗と腐食環境で使用される、メ
カニカルシール、ノズル、金型などの耐摩耗材、摺動部
品として好適な炭化タングステン焼結体に関するもので
ある。
TECHNICAL FIELD The present invention relates to a tungsten carbide sintered body and a method for producing the same. In particular, it is suitable for the following points. The present invention relates to a high-density, high-strength tungsten carbide sintered body excellent in both wear resistance and corrosion resistance, and used in severe wear and corrosive environments, such as mechanical seals, nozzles, molds, and other wear-resistant materials, sliding. The present invention relates to a tungsten carbide sintered body suitable as a part.

【0002】[0002]

【従来の技術】厳しい摩耗と腐食環境で使用されるメカ
ニカルシール、ノズル、金型用材料として、硬さの高
い、耐食性に優れた材料が必要である。また、これらの
材料の多くは一つの機械部品として組み込まれて使用さ
れることが多く、硬さ、耐食性の他に優れた機械的性質
も要求される。これまで、これらの必要特性を備えた材
料を開発するため、主に、二つの方向からの開発が進め
られてきている。一つは、耐食性を重視したセラミック
ス系からのアプローチであり、もう一つは機械的性質、
特に強度と硬さを重視した超硬合金からのアプローチが
ある。セラミック材料は周知の通り、硬さは高く、耐食
性は素材の中でも特に優れているが、アブレッシブ摩耗
には極端に弱い。硬いが脆いため、硬質粒子によるミク
ロな破壊の集積で起きるこの種の摩耗には適さない。ま
た、衝撃を受けるような機械部品への適用も難しい。こ
れに対し、超硬合金は機械的性質に優れ、その利用範囲
も広い。超硬合金は炭化タングステン(以下WC)を鉄
族金属を結合材として焼結した素材であり、この結合材
の種類とその量を制御することにより、耐食性をある程
度まで改善することができる。しかし、WC粒子を焼結
して固めるための結合材の量を少なくしていくと、WC
粒子間に均一に結合材を分散することができず、焼結が
難しくなる。特に、WC粒子が1μm以下まで小さくな
り、WC粒子の表面積が著しく大きくなると、緻密な焼
結体を得ることができなかった。
2. Description of the Related Art Materials having high hardness and excellent corrosion resistance are required as materials for mechanical seals, nozzles and molds used in severe wear and corrosive environments. In addition, many of these materials are often used by being incorporated as one mechanical part, and are required to have excellent mechanical properties in addition to hardness and corrosion resistance. Until now, in order to develop a material having these necessary properties, development has mainly been carried out in two directions. One is an approach from ceramics that emphasizes corrosion resistance, and the other is mechanical properties,
In particular, there is an approach from cemented carbide which emphasizes strength and hardness. As is well known, ceramic materials have a high hardness and are particularly excellent in corrosion resistance among materials, but are extremely weak to abrasive wear. Hard but brittle, they are not suitable for this type of wear caused by the accumulation of microscopic fractures by hard particles. Further, it is difficult to apply the method to mechanical parts that receive an impact. On the other hand, cemented carbide has excellent mechanical properties and its use is wide. Cemented carbide is a material obtained by sintering tungsten carbide (hereinafter, WC) using an iron group metal as a binder. By controlling the type and amount of the binder, the corrosion resistance can be improved to some extent. However, as the amount of binder for sintering and solidifying WC particles is reduced,
The binder cannot be uniformly dispersed between the particles, and sintering becomes difficult. In particular, when the WC particles were reduced to 1 μm or less and the surface area of the WC particles was significantly increased, a dense sintered body could not be obtained.

【0003】そこで、このような問題を解決するため幾
つかの改善策が開示されている。特願平3−25043
7号においては、超硬合金中の結合材であるCo量を減
らし、そこでの焼結性を改善するためMoまたはMo2
Cを添加した、WC−Mo2 C−VC−Co系超硬合金
を提案している。また、特開平5−230588号公報
には、Co量2%以下、MoまたはMo 2 Cを添加し
た、CoxWyCzを含有することを特徴とする硬質合
金が提案されている。一方、特開平6−329427号
公報には結合材金属を全く含有しない、WC−TiC−
TaC系バインダレス超硬合金の光学素子成型材が提案
され、平均粒径0.7μm以下のWC粒子を用い、これ
にTiC,TaC0.1〜5重量%、さらに、炭化クロ
ム(Cr32 )、炭化バナジウム(VC)を0.1〜
2重量%添加することが開示されている。
[0003] In order to solve such a problem, several approaches have been taken.
Several remedies are disclosed. Japanese Patent Application 3-25043
In No. 7, the amount of Co, the binder in the cemented carbide, was reduced.
Mo or Mo in order to improve the sinterability thereTwo 
WC-Mo with C addedTwo C-VC-Co cemented carbide
Has been proposed. Also, JP-A-5-230588
Contains 2% or less of Co, Mo or Mo Two Add C
A hard alloy containing CoxWyCz.
Gold has been proposed. On the other hand, JP-A-6-329427
The publication contains no binder metal, WC-TiC-
Proposal of optical element molding material of TaC binderless cemented carbide
WC particles having an average particle size of 0.7 μm or less
0.1 to 5% by weight of TiC and TaC, and
(CrThree CTwo ), Vanadium carbide (VC) 0.1 ~
It is disclosed that 2% by weight is added.

【0004】[0004]

【発明が解決しようとする課題】従来の技術で述べたも
のにあっては、下記のような問題点を有していた。しか
し、上記特願平3−250437号、特開平5−230
588号公報とも、目的とした硬質合金は得られるもの
の、その合金中に少量ながら金属結合材を含有し、か
つ、耐食性の劣るMo2 CあるいはCoxWyCzが含
有されており、耐食性の要求される環境では使用できな
かった。また、Mo2 CやCoxWyCzの含有により
合金の硬さは改善されるものの、合金の靭性は著しく損
なわれ、強度の要求される機械部品としての使用に耐え
ないという問題があった。さらに、上記特開平6−32
9427号公報にあるWC−TiC−TaC系バインダ
レス超硬合金は、金属結合材を含まず、強度が低いた
め、ガラス光学素子のプレス成形型にその用途が限られ
ていた。この種の合金には耐酸化性を改善する目的でT
iC、TaCが添加されているが、これらの添加が超硬
合金の強度を損なうという問題があった。この種の合金
には、その使用環境上要求される(空気中高温で使用さ
れる)耐酸化性を改善する目的でTiC、TaCが添加
されているが、これらの添加材はWCの粒成長抑制材と
しても知られている材料であり、これにCr32 、V
Cが更に添加されており、得られる合金の機械的強度は
著しく損なわれるという問題があった。このような金属
結合材を含まない合金ではその焼結温度が高くなるた
め、粒成長抑制材の添加は必要不可欠かもしれないが、
その量が多くなると、微粒で焼結できても、その強度が
劣化しては実用的な機械部品として使用できない。本発
明は上記のような課題に鑑みなされたもので、金属結合
材を全く含有せず、また、必要最小限の粒成長抑制材し
か含有しない、優れた耐摩耗性と耐食性を兼ね備えた高
強度な炭化タングステン焼結体と、その製造方法を提供
することを目的とする。
The above-mentioned prior art has the following problems. However, the above-mentioned Japanese Patent Application No. Hei 3-250437 and Japanese Patent Application Laid-Open No. Hei 5-230
No. 588, the intended hard alloy can be obtained, but the alloy contains Mo 2 C or CoxWyCz, which contains a small amount of a metal binder and has poor corrosion resistance, in an environment where corrosion resistance is required. Could not be used. Further, although the hardness of the alloy is improved by the inclusion of Mo 2 C or CoxWyCz, the toughness of the alloy is significantly impaired, and there is a problem that the alloy cannot be used as a mechanical component requiring high strength. Further, Japanese Patent Application Laid-Open No.
The WC-TiC-TaC binderless cemented carbide disclosed in No. 9427 does not include a metal binder and has a low strength, so that its use has been limited to a press mold for a glass optical element. This type of alloy has a T value to improve oxidation resistance.
Although iC and TaC are added, there is a problem that these additions impair the strength of the cemented carbide. TiC and TaC are added to this type of alloy for the purpose of improving the oxidation resistance required in the use environment (used at a high temperature in the air), and these additives are used for grain growth of WC. It is a material also known as an inhibitor, which contains Cr 3 C 2 , V
Since C is further added, there is a problem that the mechanical strength of the obtained alloy is significantly impaired. Since the sintering temperature of alloys that do not include such a metal binder increases, the addition of a grain growth inhibitor may be indispensable,
If the amount is large, even if it can be sintered in fine particles, its strength is deteriorated and it cannot be used as a practical machine part. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and does not contain any metal binder and contains only a minimum necessary grain growth suppressing material, and has high strength having excellent wear resistance and corrosion resistance. It is an object of the present invention to provide a novel tungsten carbide sintered body and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者は、上
記のような課題を解決するため、WC微粉末の焼結につ
いて鋭意研究を重ねた結果、焼結中の型内部の雰囲気が
CO雰囲気となりやすい黒鉛型を用い、WC微粉末にも
同時に通電しながら加圧焼結することにより、必要最小
限の粒成長抑制材の添加で、化学量論組成のWC単一相
からなる炭化タングステン焼結体が得られることを見い
だし、本発明をなすに至った。すなわち、平均粒径0.
8μm以下の炭化タングステン粉末に、VC、Cr32
の少なくとも1種以上を0.1重量%以上、2重量%
以下となるように混合して混合原料粉末をつくる工程
と、該混合原料粉末を黒鉛製の型に充填する工程と、該
混合原料粉末を充填した黒鉛型を通電焼結機に装入し、
該混合原料粉末を通電加熱により加圧焼結することを特
徴とする炭化タングステン焼結体の製造方法と、この方
法による炭化タングステン焼結体を提供するものであ
る。ここで、該VC、Cr32 の全部またはその1部
を炭化タングステンとの複合炭化物として添加すること
もできる。
In order to solve the above-mentioned problems, the present inventor has conducted intensive studies on sintering of WC fine powder. By using a graphite mold that tends to become an atmosphere and sintering under pressure while simultaneously energizing WC fine powder, tungsten carbide consisting of a stoichiometric WC single phase with the addition of a minimum necessary grain growth inhibitor The inventors have found that a sintered body can be obtained, and have accomplished the present invention. That is, the average particle size is 0.
VC, Cr 3 C 2 on tungsten carbide powder of 8 μm or less
0.1% by weight or more and 2% by weight or more
A step of preparing a mixed raw material powder by mixing as follows, a step of filling the mixed raw material powder into a graphite mold, and loading the graphite mold filled with the mixed raw material powder into an electric sintering machine,
It is intended to provide a method for producing a tungsten carbide sintered body, which comprises sintering the mixed raw material powder under pressure by electric heating, and a tungsten carbide sintered body produced by this method. Here, all or part of the VC and Cr 3 C 2 may be added as a composite carbide with tungsten carbide.

【0006】金属結合材を含む超硬合金の焼結では、加
熱過程で液相が生成され、WC粒子間に液相の介在した
粒子相互の再配列や液相を介した拡散による物質移動を
主体にした焼結が起きる。一方、液相を含まない系での
焼結では、固相反応主体の緻密化機構が主体となる。本
発明に係わるWC微粉末の焼結は、この後者の液相の関
与しない、固相反応による緻密化機構が考えられる。こ
のような液相の関与しない焼結では、焼結対象粉末の粉
末性状(粒径、形状など)、機械的性質、特に高温強
度、加圧力の有無が、焼結の可不可を決める重要な因子
となる。WCを始めとする周期律表のIVb、Vb、V
Ibの遷移金属の炭化物は一般に、高強度または高硬度
材の典型として知られているが、高温下ではその強度は
急激に低下する。融点の1/2以上の温度で、室温での
銅の強度に相当するところまで軟化するものも多い。室
温に近い温度下では、結晶格子の転位に対する抵抗力が
極端に大きく、変形しづらいが、高温下では結晶を構成
する金属原子の移動度が急激に高くなるためと言われて
いる。従って、この種の材料粉末の固相焼結では、圧力
は緻密化促進の重要な役割を果たす因子であり、必要不
可欠と思われる。
[0006] In the sintering of a cemented carbide containing a metal binder, a liquid phase is generated during the heating process, and rearrangement of the WC particles with the liquid phase interposed therebetween and mass transfer by diffusion through the liquid phase occur. Mainly sintering occurs. On the other hand, in sintering in a system that does not include a liquid phase, a densification mechanism mainly comprising a solid phase reaction is mainly used. In the sintering of the WC fine powder according to the present invention, a densification mechanism by a solid phase reaction not involving the liquid phase is considered. In such sintering not involving the liquid phase, the powder properties (particle size, shape, etc.) and mechanical properties of the powder to be sintered, particularly high-temperature strength and the presence of pressure, are important factors that determine whether sintering is possible. A factor. IVb, Vb, V in the periodic table including WC
The transition metal carbide of Ib is generally known as a typical example of a high-strength or high-hardness material, but at a high temperature, its strength rapidly decreases. In many cases, the material softens at a temperature equal to or higher than half the melting point to a position corresponding to the strength of copper at room temperature. At a temperature close to room temperature, the resistance to dislocation of the crystal lattice is extremely large, and it is difficult to deform. However, at a high temperature, it is said that the mobility of metal atoms constituting the crystal sharply increases. Therefore, in solid-phase sintering of this type of material powder, pressure is a factor that plays an important role in accelerating densification, and seems to be essential.

【0007】ここで、本発明の目的を達成するために
は、この圧力条件の他に、実際には、幾つかの制約が加
わる。それは、強度低下を来さない粒成長抑制材の最低
必要量、粒成長がなく、緻密化の達成できる最低温度条
件、黒鉛型の型強度を超えない、緻密化の達成できる圧
力条件である。本発明は、これらの制約、必要条件の中
で許される最良の焼結条件の範囲を提供するものであ
る。通電焼結は、焼結しようとする試料、一般的には導
電性材料粉末を、中央部にパンチの入る孔の明いた成形
外枠に充填し、その上下に導電性のパンチをセットし、
これを通電焼結機に入れて所定圧力まで加圧後、上下パ
ンチを介して通電加熱する。ここで、導電性の成形外枠
を使用する場合、電流は主に二つの経路を取って流れ
る。一つは上下パンチを介して試料部分を流れ、もう一
つは成形外枠を流れる。この前者の試料部分を流れる電
流の作用によって、通電焼結では、通常の外熱式のホッ
トプレス法では得られない幾つかの特異な効果が発揮で
きる。粒間におけるミクロな放電現象による粒子表面の
活性化もその一つである。通電焼結における雰囲気は真
空の他目的に応じて種々の雰囲気を選択できる。
Here, in order to achieve the object of the present invention, in addition to this pressure condition, there are actually some restrictions. These are the minimum required amount of the grain growth suppressing material that does not cause a decrease in strength, the minimum temperature condition under which there is no grain growth and densification can be achieved, and the pressure condition under which the densification can be achieved without exceeding the mold strength of the graphite mold. The present invention provides a range of the best sintering conditions allowed among these constraints and requirements. In the electric sintering, a sample to be sintered, generally a conductive material powder is filled in a molded outer frame having a hole into which a punch is inserted in the center, and conductive punches are set above and below the outer frame.
This is placed in an electric sintering machine, pressurized to a predetermined pressure, and then electrically heated through upper and lower punches. Here, when a conductive molded outer frame is used, the current mainly flows through two paths. One flows through the sample portion via the upper and lower punches, and the other flows through the molded outer frame. Due to the former effect of the current flowing through the sample portion, the electric current sintering can exhibit several unique effects that cannot be obtained by a normal external heat type hot press method. Activation of the particle surface by a micro-discharge phenomenon between grains is one of them. The atmosphere in the electric sintering can be selected from various atmospheres according to the purpose other than the vacuum.

【0008】本発明に係わる方法では、粒成長抑制材の
量を必要最小限にしたWC微粒子の焼結が可能である
が、その焼結機構は次のように考察される。WC微粉末
の個々の粒子表面は、WO3 のような酸化物の薄い膜で
覆われていると考えられる。市販の0.5μmWC微粉
末の購入時の酸素量は0.2〜0.3%であるが、その
後の取り扱いを経た焼結直前の酸素量は0.5%近くに
達している。これをWO3 に換算すると約2.4%とな
る。この粒子表面の酸化膜は、この還元の目的に加えら
れた炭素(C)或いは、焼結雰囲気中のCO(2CO→
CO2+Cとなって炭素を供給)により、還元、炭化さ
れWCに戻って焼結する。ここで、WC微粉末の平均粒
子径が0.8μm以下まで細かくなると、粒子表面の占
める割合が極端に大きくなり、この酸化膜の還元、炭化
反応がこの系の焼結機構に重要な、かつ、効果的な役割
を果たすようになる。WO3 の炭素(C)による直接炭
化反応は、化学式ではWO3 +4C→WC+3COと記
されるが、これを素反応に分解すると次のような過程を
経ることが報告されている。 WO3 →WO2.9 →WO2.7 →WO2 →W→W2 C→W
C この反応の左からWO2 までの結晶系は単斜晶、Wは立
方晶、W2 C、WCはいずれも六方晶構造をとる。ま
た、WO2.7 →WO2 の還元反応では核生成を伴う固相
間反応である。上記の一連の反応過程で注目すべき点は
還元反応の途中に、生成物の核生成と同時に粒子形状の
大きな変化を伴うような固相反応(WO2.7 →WO2
があることと、一連の反応が原子の再配列を伴う結晶構
造の変化が含まれている点にある。前者の反応は、この
反応に伴い比較的大きなオーダーでの構成原子の拡散や
移動が起きることを示しており、また、後者は、原子の
変位のオーダーは小さいが、原子単独または原子がクラ
スターとして変位することを示している。従って、液相
を含まない、本発明に係わるWC微粉末の焼結では、原
料の表面を覆う薄い酸化膜の還元、炭化反応が焼結に必
要な物質移動の重要な手段を提供していると考えられ
る。この反応に伴う物質移動は上記のように固相反応で
あるため、温度と時間を要するが、金属結合材を含有し
た系における液相と同様の作用を持つと考えられる。
In the method according to the present invention, sintering of WC fine particles with the necessary minimum amount of the grain growth suppressing material is possible. The sintering mechanism is considered as follows. It is considered that the surface of each particle of the WC fine powder is covered with a thin film of an oxide such as WO 3 . The amount of oxygen at the time of purchase of a commercially available 0.5 μm WC fine powder is 0.2 to 0.3%, but the amount of oxygen immediately before sintering after subsequent handling has reached nearly 0.5%. When this is converted to WO 3 becomes about 2.4%. The oxide film on the surface of the particles is formed by carbon (C) added for the purpose of the reduction or CO (2CO →
CO2 + C is supplied and carbon is supplied), reduced and carbonized to return to WC and sintered. Here, when the average particle diameter of the WC fine powder is reduced to 0.8 μm or less, the ratio occupied by the particle surface becomes extremely large, and the reduction and carbonization reaction of this oxide film is important for the sintering mechanism of this system, and , Will play an effective role. The direct carbonization reaction of WO 3 with carbon (C) is described as WO 3 + 4C → WC + 3CO in the chemical formula, but it is reported that when this is decomposed into elementary reactions, the following process is performed. WO 3 → WO 2.9 → WO 2.7 → WO 2 → W → W 2 C → W
C The crystal system from the left to WO 2 of this reaction is monoclinic, W is cubic, and W 2 C and WC all have a hexagonal structure. The reduction reaction of WO 2.7 → WO 2 is a solid-phase reaction involving nucleation. A point to be noted in the above series of reaction processes is a solid-phase reaction (WO 2.7 → WO 2 ) in which the nucleation of the product is accompanied by a large change in particle shape during the reduction reaction.
And that a series of reactions involves changes in crystal structure with rearrangement of atoms. The former reaction indicates that the diffusion and movement of the constituent atoms occur in a relatively large order accompanying this reaction, and the latter shows that the order of displacement of the atoms is small, but the atoms alone or as clusters. It shows that it is displaced. Therefore, in the sintering of the WC fine powder according to the present invention which does not contain a liquid phase, reduction and carbonization of a thin oxide film covering the surface of the raw material provide an important means of mass transfer necessary for sintering. it is conceivable that. Since the mass transfer involved in this reaction is a solid phase reaction as described above, it requires temperature and time, but is considered to have the same action as the liquid phase in the system containing the metal binder.

【0009】WC微粉末のみと、同様の微粉末に0.5
%Cr32 を添加して同条件で焼結し、得られた焼結
体内での粒成長を観察したところ、Cr32 添加あり
の方には粒成長は認められなかった。この結果は、WC
−Co系のような液相の関与した焼結における現象と同
様であった。WC−Co系におけるWCの粒成長機構
は、液相中へのWCの溶解と析出によるものであり、粒
成長抑制材はここでの液相中へのWCの溶解度を減じ、
結果的に粒成長を抑制すると考えられている。本発明に
係わる、液相の関与しない焼結においても同様のメカニ
ズムをもって粒成長が押さえられるのかどうかは不明で
あるが、少なくとも、Cr32 のような物質の微量添
加によって、上記物質移動の中のWまたはWCの移動度
にマイナスの影響を及ぼし、結果的に粒成長を抑制出来
ることが分かった。
WC fine powder alone and similar fine powder to 0.5
% Cr 3 C 2 was added, and sintering was performed under the same conditions. When the grain growth in the obtained sintered body was observed, no grain growth was observed in the case where Cr 3 C 2 was added. This result is
This was similar to the phenomenon in sintering involving a liquid phase such as -Co system. The mechanism of WC grain growth in the WC-Co system is due to the dissolution and precipitation of WC in the liquid phase, and the grain growth inhibitor reduces the solubility of WC in the liquid phase here.
As a result, it is considered that grain growth is suppressed. It is unclear whether grain growth is suppressed by the same mechanism in sintering not involving a liquid phase according to the present invention, but at least the addition of a small amount of a substance such as Cr 3 C 2 causes It was found that this had a negative effect on the mobility of W or WC in the medium, and as a result, grain growth could be suppressed.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を実施
例にもとづき図面を参照して説明する。図1は1実施例
を説明するための通電焼結方法の概略を示したものであ
る。本発明に係わる炭化タングステン焼結体の製造方法
においては、成形外枠1と上パンチ2及び下パンチ3を
黒鉛製とする。これは、混合原料粉末4の充填された部
分の加熱焼結中の雰囲気をCO雰囲気(還元,炭化雰囲
気)に調整するためであり、この雰囲気調整によりWC
微粉末中の酸化物の還元、炭化反応が起き、これにより
緻密化が促進される。この目的のために炭素粉末を別の
形で添加する方法もあるが、金属結合材を含まない組成
系では最適炭素量の調整が難しく、余剰となった場合の
炭素を固溶するものがなく、残留炭素となって強度を低
下させる。一方、炭素不足の場合、W2 Cのような有害
相を形成するため好ましくない。また、成形外枠と上下
パンチを黒鉛製とすることにより、原料粉末の均一加
熱、短時間焼結が可能となるほか、高温での型強度も確
保できる。成形外枠2及び混合原料粉末4の部分に同時
に電気を通じ、混合原料粉末部分での自己発熱を利用す
ることにより、急速な加熱と短時間の焼結が可能とな
り、WCの粒成長を抑えることができる。本発明の方法
に係わる製造方法では焼結の加熱時間、保持時間はでき
るだけ短い方が望ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on embodiments with reference to the drawings. FIG. 1 schematically shows an electric current sintering method for explaining one embodiment. In the method for manufacturing a tungsten carbide sintered body according to the present invention, the molded outer frame 1, the upper punch 2, and the lower punch 3 are made of graphite. This is for adjusting the atmosphere during the heating and sintering of the portion filled with the mixed raw material powder 4 to a CO atmosphere (reducing and carbonizing atmosphere).
Reduction and carbonization reactions of the oxides in the fine powder occur, which promotes densification. There is also a method of adding carbon powder in another form for this purpose, but it is difficult to adjust the optimal amount of carbon in a composition system that does not contain a metal binder, and there is no solid solution of carbon when it becomes excess , Resulting in residual carbon and lowering the strength. On the other hand, a carbon deficiency is not preferable because a harmful phase such as W 2 C is formed. In addition, since the molding outer frame and the upper and lower punches are made of graphite, uniform heating of the raw material powder and sintering for a short time can be performed, and mold strength at a high temperature can be secured. By simultaneously applying electricity to the molding outer frame 2 and the mixed raw material powder 4 and utilizing self-heating in the mixed raw material powder portion, rapid heating and short-time sintering become possible, thereby suppressing WC grain growth. Can be. In the manufacturing method according to the method of the present invention, it is desirable that the heating time and the holding time of sintering be as short as possible.

【0011】通電焼結では、まず、黒鉛製の成形外枠1
に下パンチ3をセットし、これに混合原料粉末4を充填
し、その上に上パンチ2をセットし、焼結アッセンブリ
ーを組み立てる。この焼結アッセンブリーを通電焼結機
に装入し、黒鉛型5の周囲の雰囲気を真空または不活性
ガス雰囲気に調整した後、通電を開始し、混合原料粉末
4を加圧焼結する。ここでの通電には直流、交流、直流
パルス、及びそれらの重畳した通電形態をとることがで
きる。図中、6は通電電源である。ここでの加圧力は、
本発明の目的を達成するためには少なくとも100kg
/cm2 以上が必要である。本発明に係わる炭化タング
ステン焼結体ではWCの粒子径は平均で1μm以下であ
ることが必要であり、焼結前の混合原料粉末でのWC粒
子の大きさは平均で0.8μm以下とすることが必要で
あった。原料のWC粒子の平均粒子径がこれ以上の大き
さでは、焼結後のWC粒子が大きくなりすぎ、焼結体の
強度と硬さが低下してしまう。焼結体の高密度化及び高
硬度化を達成するためには、混合原料粉末のWC粒子の
平均粒子径は0.2から0.5μmが望ましい。さら
に、炭化タングステン焼結体は、化学量論組成のWC単
一相よりなることが必要である。金属結合材なしの炭化
タングステン焼結体では、炭素不足やW過剰によるW2
Cを生成し易い。このW2 Cの生成により硬さ、強度と
も低下し、耐食性も劣り、本発明の目的を達成できな
い。
In the electric current sintering, first, a molded outer frame 1 made of graphite is used.
, A lower punch 3 is set therein, the mixed raw material powder 4 is filled therein, and an upper punch 2 is set thereon, thereby assembling a sintered assembly. The sintering assembly is charged into an electric sintering machine, the atmosphere around the graphite mold 5 is adjusted to a vacuum or an inert gas atmosphere, and then the energization is started, and the mixed raw material powder 4 is sintered under pressure. The energization here may be a direct current, an alternating current, a direct current pulse, or a superimposed energization form thereof. In the figure, reference numeral 6 denotes a power supply. The pressing force here is
At least 100 kg to achieve the purpose of the present invention
/ Cm 2 or more is required. In the tungsten carbide sintered body according to the present invention, the average particle size of WC needs to be 1 μm or less, and the average size of WC particles in the mixed raw material powder before sintering is 0.8 μm or less. It was necessary. If the average particle diameter of the raw WC particles is larger than this, the WC particles after sintering will be too large, and the strength and hardness of the sintered body will be reduced. In order to achieve high density and high hardness of the sintered body, the average particle diameter of the WC particles of the mixed raw material powder is desirably 0.2 to 0.5 μm. Furthermore, it is necessary that the tungsten carbide sintered body be composed of a stoichiometric WC single phase. In a tungsten carbide sintered body without a metal binder, W 2
C is easily generated. Due to the formation of W 2 C, both the hardness and the strength are reduced, the corrosion resistance is poor, and the object of the present invention cannot be achieved.

【0012】また、本発明に係わる炭化タングステン焼
結体は、VC、Cr32 の少なくとも1種以上を0.
1重量%以上、2重量%以下含有する。金属結合材を含
まない、0.5μmのWC微粉末に周期律表のIVb、
Vb、VIbの遷移金属の炭化物、窒化物及び炭窒化物
を添加し、それらの粒成長抑制効果を調査したところ、
VC、Cr32 及びこれらの同時添加について顕著な
効果が認められた。また、得られた焼結体の強度と耐食
性の評価結果より、その量を0.1%以上、2%以下と
した。0.1%以下では充分な粒成長抑制効果が得られ
ず、硬さと強度がともに低下する。さらに、2%以上で
は強度低下と共に、耐食性が低下する。ここでVC、C
32 の全部またはその一部をWCとの複合炭化物、
例えば、(W、Cr)C、(W、V)Cのような複合炭
化物として混合すると、粒成長抑制の効果が顕著であ
り、特に、微量でその効果を発揮できる。また、本発明
の目的の一つは、耐摩耗性と耐食性を兼ね備えた高密
度、高強度な炭化タングステン焼結体を提供することで
あり、このためには、本発明に係わるWC焼結体は相対
密度99%以上、マイクロビッカース硬さ2200kg
/mm2 以上が必要である。相対密度99%以下では残
留気孔が存在し、そこを起点とした腐食や摩耗が起きや
すく、耐摩耗性と耐食性を劣化させ、焼結体強度も低下
する。また、硬さ2200kg/mm2 以下では実用的
な耐摩耗性が得られない。
Further, the tungsten carbide sintered body according to the present invention is characterized in that at least one of VC and Cr 3 C 2 is used in 0.1%.
It contains 1% by weight or more and 2% by weight or less. IVb of the periodic table in 0.5 μm WC fine powder containing no metal binder,
Vb, VIb transition metal carbides, nitrides and carbonitrides were added, and their grain growth inhibiting effects were investigated.
A remarkable effect was observed with VC, Cr 3 C 2 and their simultaneous addition. Further, based on the evaluation results of the strength and corrosion resistance of the obtained sintered body, the amount was set to 0.1% or more and 2% or less. If it is 0.1% or less, a sufficient effect of suppressing grain growth cannot be obtained, and both hardness and strength decrease. Further, when the content is 2% or more, the corrosion resistance is reduced along with the strength. Where VC, C
a composite carbide of r 3 C 2 or a part thereof with WC,
For example, when mixed as a composite carbide such as (W, Cr) C and (W, V) C, the effect of suppressing grain growth is remarkable, and particularly, the effect can be exerted in a very small amount. Another object of the present invention is to provide a high-density, high-strength tungsten carbide sintered body having both wear resistance and corrosion resistance. For this purpose, a WC sintered body according to the present invention is provided. Has a relative density of 99% or more and a micro Vickers hardness of 2200 kg
/ Mm 2 or more is required. At a relative density of 99% or less, residual pores are present, and corrosion and abrasion starting from the pores are likely to occur, deteriorating abrasion resistance and corrosion resistance, and reducing the strength of the sintered body. If the hardness is 2200 kg / mm 2 or less, practical wear resistance cannot be obtained.

【0013】[0013]

【実施例】さらに、以下のような条件で実験した結果、
極めて良好な結果が得られた。 実施例1 表1に示す配合組成の混合原料粉末を、超硬製ボールミ
ルを用いた48時間混合により作成した。表1の試料番
号1〜5は、本発明の実施例であり、試料番号6,7
は、本発明の範囲外の比較例である。ここで使用した原
料粉末の平均粒径は、WC0.5μm、VC0.7μ
m、Cr32 1μmであった。これらの混合原料粉末
を個々に図1に示す黒鉛型5の混合原料粉末4の位置に
充填し、通電加圧焼結した。黒鉛型には成形外枠1とし
て、外径70mm、内径30mm、高さ60mmの円筒
状のものを、また、上下パンチ2,3として径30m
m、高さ30mmの円柱状のものを用いた。
EXAMPLES Further, as a result of an experiment under the following conditions,
Very good results were obtained. Example 1 A mixed raw material powder having the composition shown in Table 1 was prepared by mixing for 48 hours using a carbide ball mill. Sample Nos. 1 to 5 in Table 1 are Examples of the present invention, and Sample Nos.
Are comparative examples outside the scope of the present invention. The average particle size of the raw material powder used here is WC 0.5 μm, VC 0.7 μm
m, Cr 3 C 2 1 μm. These mixed raw material powders were individually filled into the positions of the mixed raw material powders 4 of the graphite mold 5 shown in FIG. The graphite mold is a cylindrical outer frame 1 having an outer diameter of 70 mm, an inner diameter of 30 mm, and a height of 60 mm. The upper and lower punches 2 and 3 have a diameter of 30 m.
m, a columnar shape having a height of 30 mm was used.

【0014】通電加圧焼結は次の手順で行った。まず、
混合原料粉末4を充填した黒鉛型5を通電焼結機にセッ
トし、真空排気した後、2.1トン(約300kg/m
2)まで加圧し、通電を開始した。温度測定はφ70m
mの成形外枠の外周面で行い、そこでの測温で1750
℃を焼結温度とした。この温度で3分保持し、通電を停
止した。そのまま500℃まで炉冷した後、空気中に取
り出し室温まで冷却した。その後、パンチを押して、中
の炭化タングステン焼結体を回収した。回収した焼結体
について、密度、硬さ、抗析力測定、更に組織観察、構
成相の分析を実施した。その結果の一部を表1に示す。
ここで得られた各焼結体の構成相は焼結体の研磨面での
X線回析、エッチング組織の観察結果より、いずれもW
C単一相よりなることを確認した。
The current pressure sintering was performed in the following procedure. First,
The graphite mold 5 filled with the mixed raw material powder 4 was set in an electric sintering machine, evacuated, and then 2.1 tons (about 300 kg / m
The pressure was increased to c 2 ), and energization was started. Temperature measurement is φ70m
m on the outer peripheral surface of the molding outer frame, and the temperature measurement there is 1750
C was taken as the sintering temperature. This temperature was maintained for 3 minutes, and the energization was stopped. After furnace cooling as it was to 500 ° C., it was taken out into the air and cooled to room temperature. Thereafter, a punch was pressed to collect the tungsten carbide sintered body therein. The collected sintered body was measured for density, hardness, and cohesive strength, further observed for structure, and analyzed for constituent phases. Table 1 shows some of the results.
From the observation results of X-ray diffraction and etching structure on the polished surface of the sintered body, the constituent phases of each sintered body obtained here
C was confirmed to consist of a single phase.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例6 原料粉末として平均粒径0.8μmのW粉末、平均粒径
1μmのCr32 粉末及び平均粒径0.1μmのカー
ボン粉末をW:Cr32 :C=93.12:0.8
0:6.08の配合組成で混合し、この混合粉末を水素
雰囲気中1550℃で30分間熱処理して、(W,C
r)Cの複合炭化物を得た。この複合炭化物を超硬製ボ
ールミルで40時間粉砕し、その平均粒径0.5μmと
したものをこの実施例の混合原料粉末とした。この混合
原料粉末のX線回析分析では単独のCr32 の回析線
は認められなかった。この混合原料粉末を実施例1と同
様の方法で通電加圧焼結して炭化タングステン焼結体を
得た。得られた焼結体には化学量論比からずれたW2
の存在は認められず、相対密度は100%であった。ま
た、この焼結体の硬さと抗折力はそれぞれ、2550k
g/mm2 、150kg/mm2 であった。Cr32
は得られた焼結体中においてもWCとの複合炭化物の形
で存在していることを確認した。
Example 6 W powder having an average particle diameter of 0.8 μm, Cr 3 C 2 powder having an average particle diameter of 1 μm, and carbon powder having an average particle diameter of 0.1 μm were used as raw material powders, with W: Cr 3 C 2 : C = 93. .12: 0.8
0: 6.08, and the mixed powder was heat-treated at 1550 ° C. for 30 minutes in a hydrogen atmosphere to obtain (W, C
r) A composite carbide of C was obtained. The composite carbide was pulverized by a carbide ball mill for 40 hours to obtain a mixed raw material powder having an average particle size of 0.5 μm. In the X-ray diffraction analysis of this mixed raw material powder, no single diffraction line of Cr 3 C 2 was observed. This mixed raw material powder was subjected to current pressure sintering in the same manner as in Example 1 to obtain a tungsten carbide sintered body. The obtained sintered body has W 2 C shifted from the stoichiometric ratio.
Was not recognized, and the relative density was 100%. The hardness and bending strength of this sintered body were 2550 k, respectively.
g / mm 2 and 150 kg / mm 2 . Cr 3 C 2
Has been confirmed to be present in the form of a composite carbide with WC also in the obtained sintered body.

【0017】[0017]

【発明の効果】本発明は、上述の通り構成されているの
で次に記載する効果を奏する。本発明の方法により、従
来の超硬合金以上の耐摩耗性と耐食性を兼ね備えた高強
度な炭化タングステン焼結体を製造することができ、こ
の焼結体は耐摩耗性、特に、耐摺動摩耗性、耐アブレッ
シブ摩耗性、及び耐エロージョン摩耗性等の要求される
ウォータージェット、各種ノズル、金型を始めとする各
種機械部品として広い範囲の用途に利用できる。
Since the present invention is configured as described above, the following effects can be obtained. According to the method of the present invention, it is possible to produce a high-strength tungsten carbide sintered body having both wear resistance and corrosion resistance higher than conventional cemented carbide, and this sintered body has abrasion resistance, especially sliding resistance. It can be used for a wide range of applications as various mechanical parts such as water jets, various nozzles and dies, which require abrasion resistance, abrasive wear resistance, and erosion wear resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法に用いる通電焼結方法を説明
する概略図である。
FIG. 1 is a schematic diagram illustrating an electric current sintering method used in a production method of the present invention.

【符号の説明】[Explanation of symbols]

1 成形外枠 2 上パンチ 3 下パンチ 4 混合原料粉末 5 黒鉛型 6 通電電源 DESCRIPTION OF SYMBOLS 1 Forming outer frame 2 Upper punch 3 Lower punch 4 Mixed raw material powder 5 Graphite type 6 Power supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 VC、Cr32 の少なくとも1種以上
を0.1重量%以上、2重量%以下含有し、残りが平均
粒径1μm以下の炭化タングステンであって、該炭化タ
ングステンが化学量論組成のWC単一相よりなることを
特徴とする炭化タングステン焼結体。
1. A tungsten carbide containing at least one of VC and Cr 3 C 2 in an amount of 0.1% by weight or more and 2% by weight or less, the balance being tungsten carbide having an average particle size of 1 μm or less, wherein the tungsten carbide is chemically A tungsten carbide sintered body comprising a stoichiometric WC single phase.
【請求項2】 VC、Cr32 の全部またはその一部
が炭化タングステンと複合炭化物を形成している請求項
1項記載の炭化タングステン焼結体。
2. The tungsten carbide sintered body according to claim 1, wherein all or a part of VC and Cr 3 C 2 form a composite carbide with tungsten carbide.
【請求項3】 炭化タングステン焼結体の相対密度が9
9%以上、マイクロビッカース硬さが2200kg/m
2 以上である請求項1記載の炭化タングステン焼結
体。
3. The relative density of the tungsten carbide sintered body is 9
9% or more, micro Vickers hardness is 2200kg / m
2. The tungsten carbide sintered body according to claim 1, which has a m 2 or more.
【請求項4】 平均粒径0.8μm以下の炭化タングス
テン粉末に、VC、Cr32 の少なくとも1種以上を
0.1重量%以上、2重量%以下となるように混合して
混合原料粉末をつくる工程と、該混合原料粉末を黒鉛製
の型に充填する工程と、該混合原料粉末を充填した黒鉛
型を通電焼結機に装入し、該混合原料粉末を通電加熱に
より加圧焼結することを特徴とする炭化タングステン焼
結体の製造方法。
4. A mixed raw material obtained by mixing at least one of VC and Cr 3 C 2 with a tungsten carbide powder having an average particle size of 0.8 μm or less so as to be 0.1% by weight or more and 2% by weight or less. A step of producing powder; a step of filling the mixed raw material powder into a graphite mold; a step of charging the graphite mold filled with the mixed raw material powder into an electric sintering machine; and pressing the mixed raw material powder by electric heating. A method for producing a tungsten carbide sintered body, comprising sintering.
【請求項5】 VC、Cr32 の全部または一部を炭
化タングステンとの複合炭化物として混合する請求項4
記載の炭化タングステン焼結体の製造方法。
5. The method according to claim 4, wherein all or part of VC and Cr 3 C 2 are mixed as a composite carbide with tungsten carbide.
A method for producing the tungsten carbide sintered body according to the above.
JP10332037A 1998-11-06 1998-11-06 Tungsten carbide sintered body and its production Pending JP2000144301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10332037A JP2000144301A (en) 1998-11-06 1998-11-06 Tungsten carbide sintered body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10332037A JP2000144301A (en) 1998-11-06 1998-11-06 Tungsten carbide sintered body and its production

Publications (1)

Publication Number Publication Date
JP2000144301A true JP2000144301A (en) 2000-05-26

Family

ID=18250441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10332037A Pending JP2000144301A (en) 1998-11-06 1998-11-06 Tungsten carbide sintered body and its production

Country Status (1)

Country Link
JP (1) JP2000144301A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029845A (en) * 2000-07-07 2002-01-29 Sumitomo Electric Ind Ltd Super-hard sintered compact
JP2012077353A (en) * 2010-10-01 2012-04-19 Sumitomo Electric Hardmetal Corp Cemented carbide
KR101195066B1 (en) 2010-02-12 2012-10-29 한국과학기술원 Tungsten Nanocomposites Reinforced with Nitride Ceramic Nanoparticles and Fabrication Process Thereof
US8505654B2 (en) 2009-10-09 2013-08-13 Element Six Limited Polycrystalline diamond
US9394592B2 (en) 2009-02-27 2016-07-19 Element Six Gmbh Hard-metal body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029845A (en) * 2000-07-07 2002-01-29 Sumitomo Electric Ind Ltd Super-hard sintered compact
US9394592B2 (en) 2009-02-27 2016-07-19 Element Six Gmbh Hard-metal body
US8505654B2 (en) 2009-10-09 2013-08-13 Element Six Limited Polycrystalline diamond
KR101195066B1 (en) 2010-02-12 2012-10-29 한국과학기술원 Tungsten Nanocomposites Reinforced with Nitride Ceramic Nanoparticles and Fabrication Process Thereof
JP2012077353A (en) * 2010-10-01 2012-04-19 Sumitomo Electric Hardmetal Corp Cemented carbide

Similar Documents

Publication Publication Date Title
CN108060322B (en) Preparation method of hard high-entropy alloy composite material
KR100792190B1 (en) Solid-solution powder without core/rim structure, method to prepare the same, powder for cermet including said solid-solution powder, method to prepare the same and ceramics, cermet using said powder for solid-solution powder and cermet
EP2098482A1 (en) Silicon alloy and its powder, production apparatus, production process, and sinter
KR100882924B1 (en) Ti3alc2 composite materials with high strength and manufacturing process of the same
WO2006106873A1 (en) Titanium carbide powder and titanium carbide-ceramics composite powder and method for production thereof, and sintered compact from the titanium carbide powder and sintered compact from the titanium carbide/ceramics composite powders and method for production thereof
JP2539712B2 (en) Nitride powder
US20040067837A1 (en) Ceramic materials in powder form
JP4809096B2 (en) TiB2-based Ti-Si-C composite ceramics and method for producing sintered body thereof
JP2000144301A (en) Tungsten carbide sintered body and its production
JP2004142993A (en) Hexagonal composite carbide, and production method therefor
JP2007045670A (en) Manufacturing method of metal carbide
JP2004256863A (en) Cemented carbide, production method therefor, and rotary tool using the same
KR20120046488A (en) Process for composite materials of nanostructured metal carbides-intermetallic compounds
JP2012087042A (en) Titanium diboride-based sintered compact, and method for producing the same
JP2004091241A (en) Tungsten carbide type super-hard material and manufacturing method thereof
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JP3793813B2 (en) High strength titanium alloy and method for producing the same
JP2007261830A (en) Tic base ti-si-c-based composite ceramic and method of manufacturing the same
KR20060090937A (en) Method of tantalum carbide production for hard metals
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JPH11181540A (en) Hyperfine-grained cemented carbide
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
JPS5983701A (en) Preparation of high carbon alloyed steel powder having excellent sintering property
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
Olevsky et al. Field Effects on Reacting Systems