JPS63199843A - Composite molded body of molybdenum or its alloy and zirconia and its production - Google Patents

Composite molded body of molybdenum or its alloy and zirconia and its production

Info

Publication number
JPS63199843A
JPS63199843A JP2982087A JP2982087A JPS63199843A JP S63199843 A JPS63199843 A JP S63199843A JP 2982087 A JP2982087 A JP 2982087A JP 2982087 A JP2982087 A JP 2982087A JP S63199843 A JPS63199843 A JP S63199843A
Authority
JP
Japan
Prior art keywords
molybdenum
alloy
zirconia
composite molded
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2982087A
Other languages
Japanese (ja)
Other versions
JPH0325499B2 (en
Inventor
Yuji Muramatsu
村松 祐治
Yukiaki Harada
幸明 原田
Kazuyoshi Arai
新居 和嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP2982087A priority Critical patent/JPS63199843A/en
Publication of JPS63199843A publication Critical patent/JPS63199843A/en
Publication of JPH0325499B2 publication Critical patent/JPH0325499B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a composite molded body having high temp. characteristics by mixing a specific ratio of unstabilized zirconia particles into molybdenum powder and compressing the mixed powder at a specific temp. CONSTITUTION:5-25vol.% unstabilized zirconia particles are mixed and dispersed into molybdenyn or the alloy powder thereof. Said mixed powder is compressed at 1,100-1,700 deg.C as it is or after molding or sintering and the average crystal particle size of molybdenum or the alloy is regulated to >=6mu. The molybdenum group composite molded body having high temp. strength and ductility even after the use at high temps. is thus obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高温特性の優れた複合成形体およびその製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a composite molded article with excellent high-temperature properties and a method for producing the same.

各種の産業において、高温を使用する分野は極めて多い
が、近年、この分野における使用温度は益々上昇する傾
向にあり、これに伴い高温、高負荷に耐える超耐熱材料
の開発が要請されている。
In various industries, there are many fields in which high temperatures are used, and in recent years, the operating temperatures in these fields have tended to rise more and more, and as a result, there has been a demand for the development of super heat-resistant materials that can withstand high temperatures and high loads.

従来技術 従来金属系耐熱材料としては、鉄、ニッケル、コバルト
合金が良く知られているが、これら合金の構造材料とし
ての使用温度は1000℃が限度であり、これ以上の高
温においては、モリブデン、タングステン等の高融点金
属あるいはセラミックスを使用しなければならない。
Prior art Iron, nickel, and cobalt alloys are well known as conventional metallic heat-resistant materials, but the temperature at which these alloys can be used as structural materials is limited to 1000°C, and at higher temperatures, molybdenum, Refractory metals such as tungsten or ceramics must be used.

しかし、セラミックスは優れた耐熱性と耐食、耐酸化性
を有し、高温材料として魅力があるが、強度、靭性、耐
熱衝撃性などに問題があり、実用化されるまでには多く
の問題を解決しなけれ蚤よ?よりない。このため近年高
融点金属が超耐熱材料として注目されるようになった。
However, although ceramics have excellent heat resistance, corrosion resistance, and oxidation resistance and are attractive as high-temperature materials, they have problems with strength, toughness, thermal shock resistance, etc., and many problems must be overcome before they can be put to practical use. We need to solve this, flea? No more. For this reason, high-melting point metals have recently attracted attention as super heat-resistant materials.

高融点金属のうち、モリブデンは比較的資源があること
、またタングステン、タンタルなどに比べ軽量であるこ
となどから、古くより耐熱材料として期待されてきたが
、耐食性、耐酸化性が劣ること、および高温使用による
再結晶により脆くなるなどの理由により、その実用範囲
は著しく制限されていた。
Among high-melting point metals, molybdenum has long been expected to be a heat-resistant material because it is a relatively abundant resource and is lighter than tungsten, tantalum, etc. However, it has poor corrosion resistance, oxidation resistance, and Its practical range has been severely limited due to reasons such as embrittlement due to recrystallization caused by high-temperature use.

しかし、近年表面処理により耐食性、耐酸化性が改善さ
れたことと、合金化により再結晶温度と高温強度を高め
得たことにより、ロケットノズル、高温加工用ダイス、
高温加工用工具などの素材として実用化されるようにな
った。こ層増大するものと思われる。
However, in recent years, surface treatment has improved corrosion resistance and oxidation resistance, and alloying has made it possible to increase recrystallization temperature and high-temperature strength, so rocket nozzles, high-temperature processing dies,
It has come into practical use as a material for high-temperature machining tools. This layer is expected to increase.

モリブデンの再結晶温度と高温強度を高める方法として
合金化が試みられ、このようにして開発されたものにT
ZM合金がある。この合金は1100℃lこおける強度
がモリブデンの2倍にも達するが、この合金番こおいて
も長時間の使用温度は高々1200℃である。
Alloying was attempted as a way to increase the recrystallization temperature and high-temperature strength of molybdenum, and the material developed in this way was T
There is a ZM alloy. This alloy has twice the strength of molybdenum at 1100°C, but even with this alloy, the long-term operating temperature is at most 1200°C.

発明の目的 本発明は従来法の合金化の問題点をなくすべくなされた
もので、その目的は従来の合金化とは異なり、セラミッ
クス粒子分散により高温強度と高温使用後も延性を有す
るモリブデン基の複合成形体及びその製造法を提供する
にある。
Purpose of the Invention The present invention was made to eliminate the problems of conventional alloying.The purpose of the present invention is to create a molybdenum-based material that has high-temperature strength and ductility even after high-temperature use by dispersing ceramic particles, unlike conventional alloying. The present invention provides a composite molded article and a method for producing the same.

発明の構成 本発明者らは前記目的を達成すべく鋭意研究の結果、安
定化されていないジルコニア粒子の一定量を、モリブデ
ンまたはその合金中に分散させ、高温圧縮すると、ジル
コニア粒子はモリブデンまたはその合金の結晶粒界に内
蔵され、これ番こより、モリブデンまたはその合金の結
晶粒を平均で6μm以下の微細結晶粒となし得、また1
200℃以上の高温における長時間の使用に際してもそ
の結晶粒を維持し、延性と強度の低下を防止し得られる
知見を得た。この知見に基づいて本発明を完成した。
Structure of the Invention As a result of intensive research to achieve the above object, the present inventors have found that when a certain amount of unstabilized zirconia particles are dispersed in molybdenum or its alloy and compressed at high temperature, the zirconia particles become molybdenum or its alloy. It is incorporated in the grain boundaries of the alloy, and because of this, the crystal grains of molybdenum or its alloy can be made into fine grains with an average size of 6 μm or less, and 1
We have obtained the knowledge that even when used for a long time at high temperatures of 200°C or higher, the crystal grains can be maintained and a decrease in ductility and strength can be prevented. The present invention was completed based on this knowledge.

本発明の要旨は、モリブデンまたはその合金中に安定化
されていないジルコニア粒子を5〜25容景チ分散させ
、高温圧縮してモリブデンまたはその合金の平均結晶粒
径を6μm以下としたものからなるモリブデンまたはそ
の合金とジルコニアの複合成形体にある。
The gist of the present invention is that unstabilized zirconia particles are dispersed in molybdenum or its alloy in a volume of 5 to 25 volumes, and the molybdenum or its alloy is compressed at high temperature to have an average crystal grain size of 6 μm or less. It is a composite molded body of molybdenum or its alloy and zirconia.

本発明において言う安定化されていないジルコニアとは
、安定化させるために他の金属酸化物を添加しないジル
コニアを意味する。
In the present invention, unstabilized zirconia means zirconia to which no other metal oxide is added for stabilization.

本発明においては安定化されていないジルコニア粒子の
分散量は5〜25容t%であることが必要である。この
範囲のジルコニア粒子量では、微細結晶粒を有し、高い
強度と延性を維持する。
In the present invention, it is necessary that the amount of unstabilized zirconia particles dispersed is 5 to 25% by volume. The amount of zirconia particles in this range has fine grains and maintains high strength and ductility.

高い強度と延性の維持のためにはモリブデン結晶粒径が
平均で6μm以下、好ましくは5μm以下とする必要が
ある。安定化されていないジルコニア粒子量が5容ik
%より少ないと、焼結中の粒成長が甚だしく6μm以下
となし得ない。また25容量チを超えると、モリブデン
の結晶径は3〜4μmに維持できるが、ジルコニア粒子
間の合体による成長が顕著になり骨格を形成するため、
ジルコニア本来の低い強度と延性が現われ、成形体の物
性は純モリブデンの場合と同程度かそれ以下となる。こ
の現象はモリブデンの場合と同様モリブデン−タング、
ステン合金、モリブデン−クロム合金、モリブデン−レ
ニウム合金等においても現われる。また、この現象は上
記のモリブデン及びその合金の場合と同様に、モリブデ
ンにアルミナ、安定化ジルコニア、部亦安定化ジルコニ
ア、炭化チタン、窒化チタンなどの他の種のセラミック
スを20容量チ以内で配合したものにも現われる。
In order to maintain high strength and ductility, the average molybdenum crystal grain size must be 6 μm or less, preferably 5 μm or less. The amount of unstabilized zirconia particles is 5 volumes ik
If it is less than %, grain growth during sintering will be so severe that it will not be possible to achieve a particle size of 6 μm or less. Furthermore, when the capacity exceeds 25%, the crystal size of molybdenum can be maintained at 3 to 4 μm, but the growth due to the coalescence of zirconia particles becomes remarkable and forms a skeleton.
The inherent low strength and ductility of zirconia appears, and the physical properties of the molded product are comparable to or lower than those of pure molybdenum. This phenomenon is similar to the case of molybdenum and molybdenum-tung.
It also appears in stainless steel alloys, molybdenum-chromium alloys, molybdenum-rhenium alloys, etc. In addition, this phenomenon is similar to the case of molybdenum and its alloys mentioned above, when molybdenum is mixed with other types of ceramics such as alumina, stabilized zirconia, partially stabilized zirconia, titanium carbide, titanium nitride, etc. within 20 volumes. It also appears in things you do.

本発明の複合成形体は次の方法により製造し得られる。The composite molded article of the present invention can be produced by the following method.

モリブデンまたはその合金粉末と安定化されていないジ
ルコニア粒子を5〜25容黛qb舎混合した混合粉末を
、そのままあるいは成形または焼結後、1100〜17
00℃で圧縮する方法によって製造し得られる。
A mixed powder of 5 to 25 volumes of molybdenum or its alloy powder and unstabilized zirconia particles was mixed as it was or after molding or sintering, and the powder was mixed with 1100 to 17
It can be produced by a method of compression at 00°C.

従来のTZM合金においては、焼結材、溶解材れ、複雑
形状部品を作るには切削加工を必要とし、製造工程も複
雑で、高価となっていた。本発明の製造法は粉末冶金の
手法で、加工することなく、複雑形状部品も容易に作る
ことができる。
Conventional TZM alloys require sintered material, melted material, and cutting to produce parts with complex shapes, making the manufacturing process complicated and expensive. The manufacturing method of the present invention is a powder metallurgy technique, and can easily produce parts with complex shapes without machining.

本発明の方法における混合粉末、その成形物の加熱温度
は1100〜1700℃であることがよい。
The heating temperature of the mixed powder and molded product thereof in the method of the present invention is preferably 1100 to 1700°C.

1100℃より低いと高密度となり得す、17001:
を超えるとモリブデンまたはその合金の粒が成長して大
きな結晶粒を形成し、強度、延性が低下する。成形体の
空隙を除去するにはホットプレス、)(IP等による高
温高圧処理が好ましい。
Lower than 1100°C can result in high density, 17001:
If it exceeds this value, the grains of molybdenum or its alloy will grow to form large crystal grains, resulting in a decrease in strength and ductility. In order to remove voids in the molded body, high temperature and high pressure treatment by hot pressing, )(IP, etc.) is preferable.

実施例1 比較例1 第1表のモリブデン粉に第2表の安定化されていないジ
ルコニア粉をO〜30容素チを添加した。
Example 1 Comparative Example 1 To the molybdenum powder shown in Table 1, 0 to 30 volumes of the unstabilized zirconia powder shown in Table 2 was added.

第1衣 モリブデン粉の分析結果(重量%)及び平均粉
径(μm)該添加物をアルミナ製ボールミルによりアル
、 コールを添加し50時間混合し混合物を得た。混合
物中のアルミナを分析したところ0.064〜0.11
0重量%であった。該混合物を2t/−の圧力で成形し
、水素ガス(露点ニー35℃)中で2時間予備焼結した
。予備焼結後、アルゴンガスに水素ガスをIO容量チ添
加した混合ガス中で1600℃で1時間焼結し、更に熱
間静水圧プレスにより1500℃、1000気圧で1時
間高温圧縮した。この物性は第1図の線1の通りであっ
た。同様にして混合物を作り、成形、予備焼結、焼結し
て焼結材を製造した。その物性は第1図線2の通りであ
った。
First coating Molybdenum powder analysis results (% by weight) and average powder diameter (μm) Alcohol and alcohol were added to the additive using an alumina ball mill, and the mixture was mixed for 50 hours to obtain a mixture. Analysis of alumina in the mixture showed 0.064 to 0.11.
It was 0% by weight. The mixture was molded at a pressure of 2t/- and pre-sintered in hydrogen gas (dew point 35°C) for 2 hours. After preliminary sintering, it was sintered at 1,600°C for 1 hour in a mixed gas of argon gas and hydrogen gas added thereto in an amount of IO volume, and then high-temperature compressed at 1,500°C and 1,000 atm for 1 hour using a hot isostatic press. The physical properties were as shown in line 1 in FIG. A mixture was prepared in the same manner, molded, pre-sintered, and sintered to produce a sintered material. Its physical properties were as shown in Figure 1, line 2.

この第1図が示すように、本発明の安定化されていない
ジルコニアを5〜25容t%分散させた成形体は、純モ
リブデンからユ岨る遮−埋材及び1Fニー1娶1 ;I
Iしど、11 安定化されていないジルコニアを5容量チ未満、25容
1:チを超過した成形材に比べ、たわみ量、曲げ強さが
いずれも優れており、また焼結材に比べ高温圧縮材(H
IP材)の方が同様にたわみ量、曲げ強さが格段と優れ
たものとなる。
As shown in FIG. 1, the molded article in which 5 to 25 volume t% of unstabilized zirconia of the present invention is dispersed is made of pure molybdenum and an insulating material made of pure molybdenum.
However, 11. Compared to molded materials made of unstabilized zirconia with a volume of less than 5 cm and with a volume of over 25 cm, both the amount of deflection and bending strength are superior, and it can withstand high temperatures compared to sintered materials. Compressed material (H
Similarly, the amount of deflection and bending strength of the IP material are significantly superior.

実施例2 第1表のモリブデン粉に第2表の安定化されていないジ
ルコニア粉を10容量%添加し、実施例1と同様な方法
で混合物を作り、この混合物を成形、予備焼結、焼゛結
、高温圧縮して高温圧縮材を製造した。その物性は第2
図線3に示す通りであった。
Example 2 10% by volume of the unstabilized zirconia powder shown in Table 2 was added to the molybdenum powder shown in Table 1, a mixture was prepared in the same manner as in Example 1, and this mixture was molded, pre-sintered, and sintered. As a result, a high-temperature compressed material was produced by high-temperature compression. Its physical properties are second
It was as shown in Figure Line 3.

上記と同様にして、混合物を作り、成形、予備焼結、焼
結して焼結材を製造した。その物性は第2図線4に示す
通りであった。第2図に示すようJこ、焼結材に比べ、
高温圧縮材は曲げ強さのバラツキが少ない。
In the same manner as above, a mixture was prepared, molded, pre-sintered, and sintered to produce a sintered material. Its physical properties were as shown in Figure 2, line 4. As shown in Figure 2, compared to sintered material,
High-temperature compressed materials have little variation in bending strength.

実施例3 実施例2と同様に、安定化されていないジルコニア粉を
10容it %含有する混合物を作り、この混合物を水
素ガス中900℃で3時間熱処理した後、ホットプレス
により真空(X−空席〜1O−5Torr )中、14
50℃で30MPaの圧力を15分間かけホットプレス
し、高温圧縮材を製造した。その物性は第3図PI45
の通りであった。
Example 3 In the same manner as in Example 2, a mixture containing 10% by volume of unstabilized zirconia powder was prepared, and this mixture was heat-treated in hydrogen gas at 900°C for 3 hours, and then heated in a vacuum (X- Vacant seats ~ 10-5 Torr), 14
Hot pressing was performed at 50° C. under a pressure of 30 MPa for 15 minutes to produce a high-temperature compressed material. Its physical properties are shown in Figure 3 PI45
It was as follows.

−上記と同様にしてホットプレスにより高温圧縮材を製
造した後、アンボンガスに水素ガスをlO容t=S添加
した混合ガス中で、】600℃で1時間熱処理した。そ
の物性は第3図線6に示す通りであった。第3図が示す
ように、混合物を高温圧縮したものは、焼結材(第2図
線4)より高い強度のものとなり、さらに熱処理すると
一層強度が向上したものとなる。従って、高温圧縮後、
さらに熱処理することが好ましい。
- After producing a high-temperature compressed material by hot pressing in the same manner as above, it was heat-treated at 600° C. for 1 hour in a mixed gas prepared by adding 1O volume t=S of hydrogen gas to Ambon gas. Its physical properties were as shown in Figure 3, line 6. As shown in FIG. 3, the mixture obtained by high-temperature compression has a strength higher than that of the sintered material (line 4 in the second diagram), and further heat treatment further improves the strength. Therefore, after hot compression,
Further heat treatment is preferred.

発明の効果 本発明の複合成形体は次のような優れた効果を有する。Effect of the invention The composite molded article of the present invention has the following excellent effects.

(1)本発明の複合成形体は、従来の合金化とは異なり
、高温特性の優れた安定化されていないジルコニアとの
複合化により、モリブデンまたはその合金の高温使用に
よる脆化を防止し、高い強度と延性を有するものとなる
(1) Unlike conventional alloying, the composite molded body of the present invention prevents embrittlement due to high temperature use of molybdenum or its alloy by combining it with unstabilized zirconia, which has excellent high-temperature properties. It has high strength and ductility.

(2)  モリブデン、その合金粉は難焼結性であるが
、安定化されてI、zないジルコニア粉を添加すること
により、混合物の焼結性が著しく改善され、成形−焼結
のみの工程により密度比が95チ以上の焼結材を容易に
作ることができる。これにより熱間静水圧プレス等によ
る高温圧縮に際し、缶封じ込め(キャニング)などの面
倒な工程を省くことを可能にし、複雑形状部品の製造も
容易となる。
(2) Molybdenum and its alloy powder are difficult to sinter, but by adding stabilized zirconia powder, the sinterability of the mixture is significantly improved, making it possible to eliminate the process of forming and sintering only. Accordingly, a sintered material having a density ratio of 95 inches or more can be easily produced. This makes it possible to omit troublesome processes such as canning during high-temperature compression using hot isostatic pressing, etc., and facilitates the manufacture of complex-shaped parts.

(3)  TZMを初めとするモリブデン合金は、高温
加工用工具のように、耐熱性と耐摩耗性が同
(3) Molybdenum alloys such as TZM have the same heat resistance and wear resistance as tools for high temperature machining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は安定化されていないジルコニアの添加量と曲げ
強さ、及びそのたわみ量との関係図、第2図は安定化さ
れていないジルコニアを10容量チ含有させた成形体に
ついて、曲げ強さ−とその累!it頻度との関係図、第
3図は安定化されていないジルコニアを10容量チ含有
する複合成形体を熱処理した場合としない場合における
曲げ強さとその累積頻度との関係図。 135.6:本発明の複合成形体 44:従来法により得られたもの 特許出願人 科学技術庁金属材料技術研究所長中  川
  龍  − 聾1図 均ツ包イ聾ポていグいシ゛ル/+二γの謄炉豪(肴t%
) 1に1ヨ 0.8 1.0 1.2  1.4 1.6  1.8
 2.0 2.21−#J−丁’g*、v<cンPaン →−:Luら一為$f−協せ(HXF材)−〇−プを弁
り不才
Figure 1 shows the relationship between the amount of unstabilized zirconia added, bending strength, and the amount of deflection. Figure 2 shows the bending strength of a molded product containing 10 volumes of unstabilized zirconia. And all that! FIG. 3 is a diagram showing the relationship between the bending strength and the cumulative frequency when a composite molded body containing 10 volumes of unstabilized zirconia is heat-treated and not heat-treated. 135.6: Composite molded product of the present invention 44: Obtained by conventional method Patent applicant: Ryu Kawa, Director of the Metal Materials Technology Research Institute, Science and Technology Agency - Deaf 1 figure uniform package, Deaf point 2/+2 γ's hearth (snack t%
) 1 to 1 0.8 1.0 1.2 1.4 1.6 1.8
2.0 2.21-#J-Ding'g*, v<c-Pan →-: Lu et al.

Claims (1)

【特許請求の範囲】 1、モリブデンまたはその合金中に安定化されていない
ジルコニア粒子を5〜25容量%分散させ、高温圧縮し
てモリブデンまたはその合金の平均結晶粒径を6μm以
下としたものからなるモリブデンまたはその合金とジル
コニアの複合成形体。 2、モリブデンまたはその合金粉末と安定化されていな
いジルコニア粒子を5〜25容量%混合した混合粉末を
、そのままあるいは成形または焼結後、1100〜17
00℃で圧縮することを特徴とするモリブデンまたはそ
の合金とジルコニアの複合成形体の製造法。 3、高温圧縮後、熱処理を施す特許請求の範囲第2項の
製造法。
[Claims] 1. Molybdenum or its alloy in which unstabilized zirconia particles are dispersed in an amount of 5 to 25% by volume, and the molybdenum or its alloy is compressed at high temperature to have an average crystal grain size of 6 μm or less. A composite molded body of molybdenum or its alloy and zirconia. 2. Mixed powder of molybdenum or its alloy powder and unstabilized zirconia particles in an amount of 5 to 25% by volume, as it is or after molding or sintering, is heated to 1100 to 17
A method for producing a composite molded body of molybdenum or its alloy and zirconia, characterized by compressing at 00°C. 3. The manufacturing method according to claim 2, wherein heat treatment is performed after high-temperature compression.
JP2982087A 1987-02-13 1987-02-13 Composite molded body of molybdenum or its alloy and zirconia and its production Granted JPS63199843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2982087A JPS63199843A (en) 1987-02-13 1987-02-13 Composite molded body of molybdenum or its alloy and zirconia and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2982087A JPS63199843A (en) 1987-02-13 1987-02-13 Composite molded body of molybdenum or its alloy and zirconia and its production

Publications (2)

Publication Number Publication Date
JPS63199843A true JPS63199843A (en) 1988-08-18
JPH0325499B2 JPH0325499B2 (en) 1991-04-08

Family

ID=12286660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2982087A Granted JPS63199843A (en) 1987-02-13 1987-02-13 Composite molded body of molybdenum or its alloy and zirconia and its production

Country Status (1)

Country Link
JP (1) JPS63199843A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246553A (en) * 2007-03-30 2008-10-16 Tohoku Univ Stirring tool for friction stir welding
JP2010110652A (en) * 2002-03-22 2010-05-20 Boston Scientific Ltd Medical implant comprising molybdenum tzm alloy
CN111944334A (en) * 2019-05-14 2020-11-17 北京麦特斯普瑞防腐工程有限公司 Nano metal ceramic coating
WO2021059707A1 (en) * 2019-09-26 2021-04-01 新光機器株式会社 Contact tip
WO2021070502A1 (en) * 2019-10-08 2021-04-15 株式会社アライドマテリアル High-ductility molybdenum alloy material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139608A (en) * 1976-05-18 1977-11-21 Toho Kinzoku Kk Molybdenummzirconia composite alloy and protecting tube for temperatureemeasuring device
JPS572859A (en) * 1980-06-05 1982-01-08 Tokyo Tungsten Co Ltd Molybdenum substrate and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139608A (en) * 1976-05-18 1977-11-21 Toho Kinzoku Kk Molybdenummzirconia composite alloy and protecting tube for temperatureemeasuring device
JPS572859A (en) * 1980-06-05 1982-01-08 Tokyo Tungsten Co Ltd Molybdenum substrate and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110652A (en) * 2002-03-22 2010-05-20 Boston Scientific Ltd Medical implant comprising molybdenum tzm alloy
JP2008246553A (en) * 2007-03-30 2008-10-16 Tohoku Univ Stirring tool for friction stir welding
CN111944334A (en) * 2019-05-14 2020-11-17 北京麦特斯普瑞防腐工程有限公司 Nano metal ceramic coating
WO2021059707A1 (en) * 2019-09-26 2021-04-01 新光機器株式会社 Contact tip
WO2021070502A1 (en) * 2019-10-08 2021-04-15 株式会社アライドマテリアル High-ductility molybdenum alloy material

Also Published As

Publication number Publication date
JPH0325499B2 (en) 1991-04-08

Similar Documents

Publication Publication Date Title
US5486223A (en) Metal matrix compositions and method of manufacture thereof
CN110373561B (en) Method for preparing high-density fine-grain titanium alloy through powder forging
US5669059A (en) Metal matrix compositions and method of manufacturing thereof
CN110499442B (en) High-strength corrosion-resistant Cr3C2Light metal ceramic alloy and preparation method thereof
JP3056306B2 (en) Titanium-based composite material and method for producing the same
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
JPS60131943A (en) Heat-and wear-resistant aluminum alloy reinforced with dispersed particles and its manufacture
JPH08176695A (en) Production of titanium nitride sinter
JP3793813B2 (en) High strength titanium alloy and method for producing the same
ZA200405764B (en) Stabilized grain size refractory metal power metallurgy mill products.
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPH04224601A (en) Manufacture of titanium-based composite material
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JPS62263940A (en) Heat treatment of ti-fe sintered alloy
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JP2716886B2 (en) Method for producing Ti-Al intermetallic compound
JP3413921B2 (en) Method for producing Ti-Al based intermetallic compound sintered body
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
US4092156A (en) Process for preparing titanium carbide base powder for cemented carbide alloys
JPH06100969A (en) Production of ti-al intermetallic compound sintered body
JPH02258948A (en) Ceramic grain reinforced titanium composite material
JP2001107163A (en) METHOD FOR PRODUCING PARTICLE DISPERSION TYPE Ti ALLOY
JPH0559481A (en) Sintered hard alloy having high hardness
JPH0633165A (en) Manufacture of sintered titanium alloy
JPS5839704A (en) Production of ni-base sintered hard alloy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term