WO2021070502A1 - High-ductility molybdenum alloy material - Google Patents

High-ductility molybdenum alloy material Download PDF

Info

Publication number
WO2021070502A1
WO2021070502A1 PCT/JP2020/032395 JP2020032395W WO2021070502A1 WO 2021070502 A1 WO2021070502 A1 WO 2021070502A1 JP 2020032395 W JP2020032395 W JP 2020032395W WO 2021070502 A1 WO2021070502 A1 WO 2021070502A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
alloy material
mass
molybdenum alloy
content
Prior art date
Application number
PCT/JP2020/032395
Other languages
French (fr)
Japanese (ja)
Inventor
一平 安達
瀧田 朋広
角倉 孝典
正寛 長江
Original Assignee
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アライドマテリアル filed Critical 株式会社アライドマテリアル
Priority to JP2021550436A priority Critical patent/JPWO2021070502A1/ja
Publication of WO2021070502A1 publication Critical patent/WO2021070502A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder

Definitions

  • the molybdenum alloy material contains molybdenum, zirconia (ZrO 2 ) and yttria (Y 2 O 3 ), and the content of zirconia is 0.7% by mass or more and 13.6% by mass or less, and the content of yttria is that of zirconia.
  • the content is 0.03 times or more and 0.08 times or less, and in X-ray diffraction, the peak height of the (11-1) plane of the zirconia tetragonal T and the peak of the (111) plane of the zirconia tetragonal M
  • the ratio to height (11-1) / (111) is 10 or more.
  • FIG. 1 is a diagram showing a sintered body 200 and a test piece 100 extending in the x direction cut out from the sintered body 200.
  • FIG. 2 is a diagram showing a sintered body 200 and a test piece 100 extending in the y direction cut out from the sintered body 200.
  • FIG. 3 is a diagram showing a sintered body 200 and a test piece 100 extending in the z direction cut out from the sintered body 200.
  • Patent Document 1 describes in paragraphs [0110] to [0113] that a molybdenum plate having a thickness of 0.2 mm, an outer shape of 2.1 mm, a length of 7 mm, and a cup shape having good drawability was obtained. The elongation of this molybdenum alloy material is small.
  • Paragraph number [0127] discloses that the elongation is 10-12% when the angle with respect to the elongation direction is 0 °, 16-18% when it is 45 °, and 6.0-8.0% when it is 90 °. Has been done.
  • Patent Document 1 the plastic working of Patent Document 1 is cold working. As a result, the slip surfaces of the (111) plane are accumulated. Then, ductility anisotropy occurs, and the elongation in a certain direction is enhanced, but the problem that the elongation in the direction orthogonal to it is small remains, and the improvement in ductility cannot be overcome.
  • the present inventor has found that ductility is improved by dispersing a large amount of zirconia (ZrO 2 ) in a molybdenum alloy in a tetragonal state.
  • the conventional molybdenum alloy material cannot disperse a large amount of tetragonal zirconia in the Mo alloy.
  • the Mo alloy material has a problem that the elongation at room temperature is small, or the elongation in one direction is high but the elongation in the other direction is small. In rolled materials, the elongation in one direction is high, but the elongation in the other direction is small. The elongation of the molybdenum alloy material in which unstabilized or partially stabilized zirconia is dispersed is small.
  • the highly ductile molybdenum alloy material can be used for plastic working of complicated shapes.
  • a molybdenum alloy material having high ductility is desired as a measure against cracking of a holder for a hot extrusion die, a cold extrusion die, and the like.
  • Ceria (CeO 2 ), Calcia (CaO), and Magnesia (MgO) also show the same effect as yttria. Therefore, yttria may be replaced with at least one of ceria, calcia and magnesia.
  • the content of zirconia is 0.7% by mass or more and 13.6% by mass or less. Within this range, high elongation (the average value in the X, Y, and Z directions is 30% or more) can be obtained.
  • the content of zirconia is 1.3% by mass or more and 8.2% by mass or less. More preferably, it is 1.3% by mass or more and 5% by mass or less.
  • the average value of elongation in the X, Y, and Z directions is preferably 35% or more, more preferably 40% or more. If the content of zirconia is less than 0.7% by mass, the amount of zirconia is small and the transformation strengthening is difficult to function. When the content of zirconia exceeds 13.6% by mass, zirconia aggregates and becomes a base point of cracks.
  • the coefficient a is 0.03 or more and 0.08 or less. When the coefficient a is less than 0.03, a part of zirconia becomes monoclinic. When the coefficient a exceeds 0.08, a part of zirconia becomes cubic.
  • the total amount is preferably 0.01% by mass or less. If it exceeds 0.01% by mass, impurities may be the starting point of fracture and the mechanical properties may be deteriorated.
  • Zirconia is measured by the ICP (Inductively Coupled Plasma) method.
  • Zirconium in the molybdenum alloy was measured using ICPS-8100 type (Shimadzu Corporation), and the converted value was obtained assuming that the total amount of zirconium was zirconia.
  • Yttria is measured by the ICP method. Y in the Mo alloy was measured using ICPS-8100 type (Shimadzu Corporation), and the converted value was obtained assuming that Y was totally yttria.
  • Molybdenum was obtained according to the analysis method for molybdenum materials (JIS H 1404: 2001), and from the whole, aluminum, calcium, chromium, copper, iron, magnesium, manganese, nickel, lead, tin, silicon, sodium, It excludes the contents of potassium, ittoria and zirconia.
  • the ratio (11-1) / (111) of the peak height of the (11-1) plane of the zirconia tetragonal T to the peak height of the (111) plane of the zirconia monoclinic crystal M is 10 or more. Within this range, the room temperature elongation can be increased.
  • the shape of the measurement sample is a rectangular parallelepiped of 10 x 20 x 2 mm. This rectangular parallelepiped is cut out from the sintered body, and the measurement surface is electropolished by the following method, and then XRD (X-ray difficulty) measurement is performed.
  • XRD X-ray difficulty
  • the method of electropolishing is as follows. A mixed solution of methyl alcohol (95%) 100 cm 3 , sulfuric acid (1.84 g / cm 3 ) 10 cm 3 , and hydrofluoric acid (40%) 1 cm 3 is used as the electrolytic solution. A stainless steel cathode was used as the electrode, and a DC current of 50-60 V was passed through 10-20 Sec.
  • the XRD measurement method is as follows.
  • the setting conditions are X-ray tube: Cu tube, primary side optical system (solar slit 0.04 rad, PDS fixed 1/2 °, mask 15 mm, ASS 1 °), light receiving side optical system (FASS 8 mm, solar slit 0.04 rad, Filter Ni, X-ray detector PIXcel), X-ray output was set to 50 mA, 40 kV.
  • the measurement conditions were start angle 20 °, end angle 70 °, step size 0.02, and time per step 20s.
  • the average value of elongation of the molybdenum alloy material in the three directions is preferably 30% or more. It is more preferably 35% or more, still more preferably 40% or more. Within this range, forging and drawing workability to complicated shapes are improved.
  • FIG. 1 is a diagram showing a sintered body 200 and a test piece 100 extending in the x direction cut out from the sintered body 200.
  • FIG. 2 is a diagram showing a sintered body 200 and a test piece 100 extending in the y direction cut out from the sintered body 200.
  • FIG. 3 is a diagram showing a sintered body 200 and a test piece 100 extending in the z direction cut out from the sintered body 200. As shown in FIGS. 1 to 3, the test piece 100 was cut out from a substantially central portion of the cubic sintered body 200.
  • each test piece 100 After polishing the surface of each test piece 100 with # 800 SiC abrasive paper, it is set in an Instron universal testing machine (model number 5867 type), and the crosshead speed is 0 at room temperature (20 degrees) in the atmospheric atmosphere. A tensile test was performed at .32 mm / min. The maximum stress and elongation at break were determined from the stress-strain diagram obtained by the tensile test.
  • the average tensile strength of the Mo alloy material in the three directions is preferably 650 MPa or more. Within this range, it can be used for members that require strength, such as holders for hot extrusion dies.
  • the density of the Mo alloy material is preferably 95% or more. If the density is less than 95%, the void becomes the starting point and cracks occur, so that the ductility may not be improved.
  • Manufacturing method of Mo alloy material (1) Refer to sample 3 and other sample conditions (Table 1).
  • the mixed slurry was dried using a hot plate at 80-100 ° C. in an air atmosphere with stirring. This step from weighing to drying was repeated "number of times" in Table 1 to obtain a predetermined amount of powder. For sample numbers 2, 4 to 23, the same steps from weighing to drying were repeated "number of times" in Table 1 to obtain a predetermined amount of powder. For sample number 1, only Mo was weighed according to Table 1.
  • the sintering temperature is preferably 1700-1900 ° C. If it exceeds this, the crystal grains may become coarse and the ductility may decrease.
  • YSZ As YSZ, YSZ (TZ-3YS-E) powder manufactured by Tosoh Co., Ltd. having a surface area of 7 m 2 / g was used. [mixture] 985.7 g of Mo powder and 14.3 g of YSZ powder were weighed.
  • the sintering temperature is preferably 1700-1900 ° C. If it exceeds this, the crystal grains may become coarse and the ductility may decrease.
  • a zirconia powder manufactured by Nippon Kagaku Ceramics Co., Ltd. with an Fsss particle size of 20 nm by the Fisher method was used.
  • Ball mill mixing was performed using a planetary ball mill manufactured by FRITSCH. Weighed powder, balls (material: cemented carbide, ⁇ 8 mm balls 160 g, ⁇ 40 mm balls 737 g) and alcohol were put into a pot and mixed in an air atmosphere for 50 hours. After mixing, it was naturally dried in the air. This weighing and mixing step was repeated for the “number of ball mills” in Table 3 to obtain a predetermined amount of powder.
  • the powder compact was sintered in a hydrogen atmosphere at a temperature of 1000 ° C. for 2 hours. Furthermore the green compact H 2 -Ar gas mixture (H 2: 10vol%) atmosphere, and sintered for 1 hour at a temperature 1600 ° C..
  • the sintered body was pressurized by HIP (Hot Isostatic Pressing) under the conditions of an argon atmosphere, a temperature of 1500 ° C., and a pressure of 100 MPa for 1 hour. Then, the sintered body was heat-treated in a hydrogen-argon mixed gas at a temperature of 1400 ° C. for 1 hour. As a result, a molybdenum alloy material was obtained.
  • Molybdenum alloy materials were obtained for Sample Nos. 24 to 27 and 29 by the same method.
  • YSZ was used instead of zirconia.
  • YSZ YSZ (TZ-3YS-E) powder manufactured by Tosoh Co., Ltd. having a surface area of 7 m 2 / g was used.
  • T / M ratio (XRD peak intensity ratio of alloy) means the peak height of the (11-1) plane of the zirconia tetragonal T and the peak of the (111) plane of the zirconia monoclinic crystal M. The ratio to the height (11-1) / (111) is shown.
  • the molybdenum alloys of sample numbers 1 to 30 were used as sintered bodies 200 as shown in FIGS. 1 to 3, and a test piece 100 was cut out from the sintered body 200, and the elongation at break and the maximum stress were measured. The results are shown in Tables 7 to 9.
  • the content of zirconia is 0.7% by mass or more and 13.6% by mass or less
  • the content of yttria is 0.03 times or more and 0.08 times or less of the content of zirconia
  • X the ratio (11-1) / (111) of the peak height of the (11-1) plane of the zirconia tetragonal T to the peak height of the (111) plane of the zirconia monoclinic crystal M is 10 or more. It was found that there was an excellent elongation at break and a high level of maximum stress.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A molybdenum alloy material according to the present invention contains molybdenum, zirconia, and yttria, wherein: the zirconia content is 0.7% by mass to 13.6% by mass; the yttria content is 0.03 times to 0.08 times the zirconia content; and the ratio (11-1)/(111) of the ratio of the peak height of an (11-1) plane of tetragonal zirconia T and the peak height of a (111) plane of monoclinic zirconia M in X-ray diffraction is 10 or greater.

Description

高延性モリブデン合金材High ductility molybdenum alloy material
 この開示はモリブデン合金材に関する。本出願は、2019年10月8日に出願した日本特許出願である特願2019-185321号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 This disclosure relates to molybdenum alloy materials. This application claims priority based on Japanese Patent Application No. 2019-185321, which is a Japanese patent application filed on October 8, 2019. All the contents of the Japanese patent application are incorporated herein by reference.
 従来、モリブデン合金材は、たとえば特開2010-215933号公報(特許文献1)、日本金属学会誌第52巻第8号(1988)803-809「HIP処理したMo-ZrO系焼結材の組織および機械的性質」(非特許文献1)および日本金属学会誌第50巻第9号(1986)828-833「Mo-ZrO系焼結材におけるZrOのt→m変態および正方晶ZrOの残留について」(非特許文献2)に開示されている。 Conventionally, the molybdenum alloy material has been described, for example, in JP-A-2010-215933 (Patent Document 1), Journal of the Japan Institute of Metals, Vol. 52, No. 8 (1988), 803-809, "HIP-treated Mo-ZrO 2- based sintered material. "Structure and Mechanical Properties" (Non-Patent Document 1) and Journal of the Japan Institute of Metals, Vol. 50, No. 9 (1986) 828-833 "t → m transformation of ZrO 2 and tetragonal ZrO in Mo-ZrO 2- based sintered materials" About the residue of 2 ”(Non-Patent Document 2).
特開2010-215933号公報Japanese Unexamined Patent Publication No. 2010-215933
 モリブデン合金材は、モリブデン、ジルコニア(ZrO)およびイットリア(Y)を含み、ジルコニアの含有率は0.7質量%以上13.6質量%以下であり、イットリアの含有率はジルコニアの含有率の0.03倍以上0.08倍以下であり、X線回折において、ジルコニアの正方晶Tの(11-1)面のピーク高さとジルコニアの単斜晶Mの(111)面のピーク高さとの比(11-1)/(111)は10以上である。 The molybdenum alloy material contains molybdenum, zirconia (ZrO 2 ) and yttria (Y 2 O 3 ), and the content of zirconia is 0.7% by mass or more and 13.6% by mass or less, and the content of yttria is that of zirconia. The content is 0.03 times or more and 0.08 times or less, and in X-ray diffraction, the peak height of the (11-1) plane of the zirconia tetragonal T and the peak of the (111) plane of the zirconia tetragonal M The ratio to height (11-1) / (111) is 10 or more.
図1は、焼結体200および焼結体200から切り出されるx方向に延びる試験片100を示す図である。FIG. 1 is a diagram showing a sintered body 200 and a test piece 100 extending in the x direction cut out from the sintered body 200. 図2は、焼結体200および焼結体200から切り出されるy方向に延びる試験片100を示す図である。FIG. 2 is a diagram showing a sintered body 200 and a test piece 100 extending in the y direction cut out from the sintered body 200. 図3は、焼結体200および焼結体200から切り出されるz方向に延びる試験片100を示す図である。FIG. 3 is a diagram showing a sintered body 200 and a test piece 100 extending in the z direction cut out from the sintered body 200.
[本開示が解決しようとする課題]
 しかしながら、従来は延性が高いモリブデン合金材を製造することができなかった。
[本開示の効果]
 上記のモリブデン合金材は、高い延性を有する。
[Issues to be resolved by this disclosure]
However, conventionally, it has not been possible to produce a molybdenum alloy material having high ductility.
[Effect of this disclosure]
The above molybdenum alloy material has high ductility.
 <本発明者の知見>
 本発明者は、モリブデン合金材の延性を高めるための検討を重ねた。特許文献1には、厚み0.2mmの外形2.1mm長さ7mmカップ形状への絞り加工性の良いモリブデン板を得たことが段落番号〔0110〕から〔0113〕に記載されている。このモリブデン合金材の延びは小さい。段落番号[0127]では、伸びは、伸長方向に対する角度が0°のとき10~12%、45°のとき16~18%、90°のとき6.0~8.0%であることが開示されている。
<Knowledge of the present inventor>
The present inventor has repeated studies for improving the ductility of the molybdenum alloy material. Patent Document 1 describes in paragraphs [0110] to [0113] that a molybdenum plate having a thickness of 0.2 mm, an outer shape of 2.1 mm, a length of 7 mm, and a cup shape having good drawability was obtained. The elongation of this molybdenum alloy material is small. Paragraph number [0127] discloses that the elongation is 10-12% when the angle with respect to the elongation direction is 0 °, 16-18% when it is 45 °, and 6.0-8.0% when it is 90 °. Has been done.
 モリブデン焼結材は粒界が脆く、かつ等軸組織であるので、亀裂が伝播しやすく、延性が低い。特許文献1では、低延性を克服すべく、塑性加工の工夫による延性改善の試みがおこなわれた。その結果、繊維組織となり、粒界の脆さが改善して、亀裂が伝播しにくくなり、延性が高くなる圧延材が得られた。 Since the molybdenum sintered material has a brittle grain boundary and an equiaxed structure, cracks easily propagate and ductility is low. In Patent Document 1, an attempt was made to improve ductility by devising plastic working in order to overcome low ductility. As a result, a rolled material having a fibrous structure, improved brittleness at grain boundaries, less likely to propagate cracks, and higher ductility was obtained.
 しかし、特許文献1の塑性加工は、冷間加工である。これにより、(111)面のすべり面が集積する。すると、延性の異方性が生じ、ある方向の伸びは高められるが、それと直交する方向の伸びは小さいという問題が残っており、延性改善は克服できていない。 However, the plastic working of Patent Document 1 is cold working. As a result, the slip surfaces of the (111) plane are accumulated. Then, ductility anisotropy occurs, and the elongation in a certain direction is enhanced, but the problem that the elongation in the direction orthogonal to it is small remains, and the improvement in ductility cannot be overcome.
 本発明者は、モリブデン合金中にジルコニア(ZrO)を正方晶の状態で多く分散させることで、延性が改善することを見いだした。従来のモリブデン合金材は、Mo合金中に正方晶ジルコニアを多く分散させることができなかった。 The present inventor has found that ductility is improved by dispersing a large amount of zirconia (ZrO 2 ) in a molybdenum alloy in a tetragonal state. The conventional molybdenum alloy material cannot disperse a large amount of tetragonal zirconia in the Mo alloy.
 これにより、X、Y、Z方向に延性の高いモリブデン合金材を得ることができた。モリブデン合金中で変態強化機構を発現させる正方晶のジルコニアの存在量が多いため、延性が改善されたと考えられる。従来、Mo合金材は室温での伸びが小さい、もしくは、ある方向の伸びは高いが他の方向の伸びが小さい、という問題点があった。圧延材では、ある方向の伸びは高いが他の方向の伸びは小さい。非安定化または部分安定化ジルコニアが分散したモリブデン合金材の伸びは小さい。 As a result, a molybdenum alloy material having high ductility in the X, Y, and Z directions could be obtained. It is considered that the ductility was improved because the abundance of tetragonal zirconia that expresses the transformation strengthening mechanism in the molybdenum alloy is large. Conventionally, the Mo alloy material has a problem that the elongation at room temperature is small, or the elongation in one direction is high but the elongation in the other direction is small. In rolled materials, the elongation in one direction is high, but the elongation in the other direction is small. The elongation of the molybdenum alloy material in which unstabilized or partially stabilized zirconia is dispersed is small.
 延性の高いモリブデン合金材は、複雑形状の塑性加工に対応できる。熱間押出ダイスのホルダー、冷間押出しダイスなどの割れ対策として延性の高いモリブデン合金材が望まれている。 The highly ductile molybdenum alloy material can be used for plastic working of complicated shapes. A molybdenum alloy material having high ductility is desired as a measure against cracking of a holder for a hot extrusion die, a cold extrusion die, and the like.
 <本開示のモリブデン合金材>
 [組成]
 モリブデン合金材の組成は、ジルコニア=0.7質量%以上13.6質量%以下、イットリア濃度=ジルコニア濃度×a、残部は、0.01質量%以下の不純物と、モリブデンである。セリア(CeO)、カルシア(CaO)、マグネシア(MgO)もイットリアと同様の効果を示す。そのため、イットリアをセリア、カルシアおよびマグネシアの少なくとも一つと置き換えてもよい。
<Molybdenum alloy material of the present disclosure>
[composition]
The composition of the molybdenum alloy material is zirconia = 0.7% by mass or more and 13.6% by mass or less, yttria concentration = zirconia concentration × a, and the balance is impurities of 0.01% by mass or less and molybdenum. Ceria (CeO 2 ), Calcia (CaO), and Magnesia (MgO) also show the same effect as yttria. Therefore, yttria may be replaced with at least one of ceria, calcia and magnesia.
 ジルコニアの含有率は0.7質量%以上13.6質量%以下である。この範囲とすることで高い伸び(X、Y、Z方向の平均値が30%以上)が得られる。 The content of zirconia is 0.7% by mass or more and 13.6% by mass or less. Within this range, high elongation (the average value in the X, Y, and Z directions is 30% or more) can be obtained.
 好ましくは、ジルコニアの含有率は1.3質量%以上8.2質量%以下である。より好ましくは1.3質量%以上、5質量%以下である。この範囲とすることで、X、Y、Z方向の伸びの平均値が好ましくは35%以上、より好ましくは40%以上となる。ジルコニアの含有率が0.7質量%未満であれば、ジルコニアの量が少なく変態強化が機能し難い。ジルコニアの含有率が13.6質量%を超えると、ジルコニアが凝集し亀裂の基点となる。 Preferably, the content of zirconia is 1.3% by mass or more and 8.2% by mass or less. More preferably, it is 1.3% by mass or more and 5% by mass or less. Within this range, the average value of elongation in the X, Y, and Z directions is preferably 35% or more, more preferably 40% or more. If the content of zirconia is less than 0.7% by mass, the amount of zirconia is small and the transformation strengthening is difficult to function. When the content of zirconia exceeds 13.6% by mass, zirconia aggregates and becomes a base point of cracks.
 係数aは0.03以上0.08以下である。係数aが0.03未満では、ジルコニアの一部が単斜晶となる。係数aが0.08を超えると、ジルコニアの一部が立方晶となる。 The coefficient a is 0.03 or more and 0.08 or less. When the coefficient a is less than 0.03, a part of zirconia becomes monoclinic. When the coefficient a exceeds 0.08, a part of zirconia becomes cubic.
 不純物(アルミニウム(Al)、クロム(Cr)、銅(Cu)、鉄(Fe)、マンガン(Mn)、ニッケル(Ni)、鉛(Pb)、スズ(Sn)、シリコン(Si)、ナトリウム(Na)、カリウム(K)、のうち少なくとも1種類)の総量は、0.01質量%以下が好ましい。0.01質量%を超えると、不純物が破壊の起点となるため機械特性が低下するおそれがある。 Accessories (Aluminum (Al), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni), Lead (Pb), Tin (Sn), Silicon (Si), Sodium (Na) ) And potassium (K)), the total amount is preferably 0.01% by mass or less. If it exceeds 0.01% by mass, impurities may be the starting point of fracture and the mechanical properties may be deteriorated.
 [組成の測定]
 組成の測定方法は、以下の通りである。
[Measurement of composition]
The method for measuring the composition is as follows.
 ジルコニアは、ICP(Inductively Coupled Plasma)法により測定する。ICPS-8100型(島津製作所)を用いてモリブデン合金中のジルコニウムを測定し、ジルコニウムが全量ジルコニアであるものとして換算値を求めた。 Zirconia is measured by the ICP (Inductively Coupled Plasma) method. Zirconium in the molybdenum alloy was measured using ICPS-8100 type (Shimadzu Corporation), and the converted value was obtained assuming that the total amount of zirconium was zirconia.
 イットリアは、ICP法により測定する。ICPS-8100型(島津製作所)を用いてMo合金中のYを測定し、Yが全量イットリアであるものとして換算値を求めた。 Yttria is measured by the ICP method. Y in the Mo alloy was measured using ICPS-8100 type (Shimadzu Corporation), and the converted value was obtained assuming that Y was totally yttria.
 不純物は、ICP法によりアルミニウム、カルシウム、クロム、銅、鉄、マグネシウム、マンガン、ニッケル、鉛、スズ、シリコン、ナトリウム、カリウムを、ICPS-8100型(島津製作所)を用いて測定した。 For impurities, aluminum, calcium, chromium, copper, iron, magnesium, manganese, nickel, lead, tin, silicon, sodium, and potassium were measured by the ICP method using ICPS-8100 type (Shimadzu Corporation).
 モリブデンはモリブデン材料の分析方法(JIS H 1404:2001)に準じて得られたものであり、全体からアルミニウム、カルシウム、クロム、銅、鉄、マグネシウム、マンガン、ニッケル、鉛、スズ、シリコン、ナトリウム、カリウム、イットリアおよびジルコニアの含有率を除いたものである。 Molybdenum was obtained according to the analysis method for molybdenum materials (JIS H 1404: 2001), and from the whole, aluminum, calcium, chromium, copper, iron, magnesium, manganese, nickel, lead, tin, silicon, sodium, It excludes the contents of potassium, ittoria and zirconia.
 [X線回折強度]
 ジルコニアの正方晶Tの(11-1)面のピーク高さとジルコニアの単斜晶Mの(111)面のピーク高さとの比(11-1)/(111)は10以上である。この範囲とすることで、室温伸びを高めることができる。
[X-ray diffraction intensity]
The ratio (11-1) / (111) of the peak height of the (11-1) plane of the zirconia tetragonal T to the peak height of the (111) plane of the zirconia monoclinic crystal M is 10 or more. Within this range, the room temperature elongation can be increased.
 測定試料の形状は10×20×2mmの直方体である。焼結体からこの直方体を切り出し、測定面を下記の方法で電解研磨の後、XRD(X‐ray diffraction)測定を行う。 The shape of the measurement sample is a rectangular parallelepiped of 10 x 20 x 2 mm. This rectangular parallelepiped is cut out from the sintered body, and the measurement surface is electropolished by the following method, and then XRD (X-ray difficulty) measurement is performed.
 電解研磨の方法は、以下の通りである。
 電解液にメチルアルコール(95%)100cm、硫酸(1.84g/cm)10cm、弗酸(40%)1cmの混合液を用いる。電極はステンレス陰極を用い、50-60Vの直流電流を10-20Sec流して行った。
The method of electropolishing is as follows.
A mixed solution of methyl alcohol (95%) 100 cm 3 , sulfuric acid (1.84 g / cm 3 ) 10 cm 3 , and hydrofluoric acid (40%) 1 cm 3 is used as the electrolytic solution. A stainless steel cathode was used as the electrode, and a DC current of 50-60 V was passed through 10-20 Sec.
 [XRDの測定]
 XRDの測定方法は、以下の通りである。
[Measurement of XRD]
The XRD measurement method is as follows.
 PHILIPS製 X’Partを用いて測定した。セッティング条件はX線管球:Cu管球、一次側光学系(ソーラースリット0.04rad、PDS固定1/2°、マスク15mm、ASS1°)、受光側光学系(FASS8mm、ソーラースリット0.04rad、フィルタNi、X線検出装置PIXcel)、X線出力を50mA,40kVとした。測定条件は、start angle 20°、end angle 70°、step size 0.02、time per step 20sとした。 Measured using X'Part manufactured by PHILIPS. The setting conditions are X-ray tube: Cu tube, primary side optical system (solar slit 0.04 rad, PDS fixed 1/2 °, mask 15 mm, ASS 1 °), light receiving side optical system (FASS 8 mm, solar slit 0.04 rad, Filter Ni, X-ray detector PIXcel), X-ray output was set to 50 mA, 40 kV. The measurement conditions were start angle 20 °, end angle 70 °, step size 0.02, and time per step 20s.
 データ処理は、HighScore Plus Ver.3(PANalytical)を用いて、バックグラウンド指定(最小有意度1.00、最小ピークチップ0.01、最大ピークチップ1.00、ピークベース幅2.00、方法 2次微分の最小値)の後、ピークサーチ、K-Alpha2分離、自動バックグラウンド指定を行い、プロファイルフィッティングを行う。得られたバックグラウンドを取り除いたピーク強度曲線より、ジルコニアの正方晶Tの(11-1)面とジルコニアの単斜晶Mの(111)面のピーク高さ強度を読み取り、比を算出した。 For data processing, use HighScore Plus Ver.3 (PANalytical) and specify the background (minimum significance 1.00, minimum peak chip 0.01, maximum peak chip 1.00, peak base width 2.00, method 2). After the minimum value of the next derivative), peak search, K-Alpha2 separation, automatic background specification, and profile fitting are performed. From the obtained peak intensity curve from which the background was removed, the peak height intensity of the (11-1) plane of the zirconia tetragonal crystal T and the (111) plane of the zirconia monoclinic crystal M was read, and the ratio was calculated.
 [伸び]
 3つ方向(任意の1方向が、他に対して90°となるように設定)のモリブデン合金材の伸びの平均値は30%以上が好ましい。より好ましくは35%以上、更に好ましくは40%以上となる。この範囲とすることで、複雑な形状への鍛造性や絞り加工性が改善される。
[Growth]
The average value of elongation of the molybdenum alloy material in the three directions (one direction is set to be 90 ° with respect to the other) is preferably 30% or more. It is more preferably 35% or more, still more preferably 40% or more. Within this range, forging and drawing workability to complicated shapes are improved.
 伸びの測定方法は、以下の通りである。
 得られた焼結体から、厚さ2mm、標点間距離8mm、幅3mmの引張試験片を切り出した。図1は、焼結体200および焼結体200から切り出されるx方向に延びる試験片100を示す図である。図2は、焼結体200および焼結体200から切り出されるy方向に延びる試験片100を示す図である。図3は、焼結体200および焼結体200から切り出されるz方向に延びる試験片100を示す図である。図1から図3で示すように、立方体の焼結体200のほぼ中央部分から試験片100を切り出した。
The method for measuring the elongation is as follows.
From the obtained sintered body, a tensile test piece having a thickness of 2 mm, a distance between reference points of 8 mm, and a width of 3 mm was cut out. FIG. 1 is a diagram showing a sintered body 200 and a test piece 100 extending in the x direction cut out from the sintered body 200. FIG. 2 is a diagram showing a sintered body 200 and a test piece 100 extending in the y direction cut out from the sintered body 200. FIG. 3 is a diagram showing a sintered body 200 and a test piece 100 extending in the z direction cut out from the sintered body 200. As shown in FIGS. 1 to 3, the test piece 100 was cut out from a substantially central portion of the cubic sintered body 200.
 各々の試験片100の表面を#800のSiC研磨紙を用いて研磨後、インストロン製万能試験機(型番5867型)にセットし、大気雰囲気における室温(20度)にて、クロスヘッドスピード0.32mm/minで引張試験を行った。引張試験によって得られる応力-ひずみ線図から、最大応力、破断伸びを求めた。 After polishing the surface of each test piece 100 with # 800 SiC abrasive paper, it is set in an Instron universal testing machine (model number 5867 type), and the crosshead speed is 0 at room temperature (20 degrees) in the atmospheric atmosphere. A tensile test was performed at .32 mm / min. The maximum stress and elongation at break were determined from the stress-strain diagram obtained by the tensile test.
 3つ方向(任意の1方向が、他に対して90°となるように設定)のMo合金材の引っ張り強度の平均値は650MPa以上が好ましい。この範囲とすることで、熱間押出ダイスのホルダーなど強度が必要な部材に用いることができる。Mo合金材の密度は95%以上であることが好ましい。密度が95%未満であればボイドが起点となり、割れが生じるため、延性が改善しないおそれがある。 The average tensile strength of the Mo alloy material in the three directions (one direction is set to be 90 ° with respect to the other) is preferably 650 MPa or more. Within this range, it can be used for members that require strength, such as holders for hot extrusion dies. The density of the Mo alloy material is preferably 95% or more. If the density is less than 95%, the void becomes the starting point and cracks occur, so that the ductility may not be improved.
 [相対密度の測定]
 相対密度の測定方法は、以下の通りである。
[Measurement of relative density]
The method for measuring the relative density is as follows.
 液中秤量法(JIS Z 8804:2012)により測定した。
 <本開示のモリブデン合金材の製造方法>
 以下、本開示の製造条件を説明する。
It was measured by the in-liquid weighing method (JIS Z 8804: 2012).
<Manufacturing method of molybdenum alloy material of the present disclosure>
Hereinafter, the manufacturing conditions of the present disclosure will be described.
 Mo合金材の製造法(その1): 試料3、他試料の条件(表1)参照 Manufacturing method of Mo alloy material (1) : Refer to sample 3 and other sample conditions (Table 1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (1)Mo合金材の粉末混合工程
 [原料粉末]
 フィッシャー法によるFsss粒径が5μm、純度99.9%であるアライドマテリアル製のMo粉末を用いた。
(1) Powder mixing process of Mo alloy material [raw material powder]
Mo powder manufactured by Allied Material having a Fsss particle size of 5 μm and a purity of 99.9% by the Fisher method was used.
 和光純薬製ジルコニウム(IV)ブトキシド(約85%1-ブタノール溶液)とシグマアルドリッチ製イットリウム(III)ブトキシド溶液の状態でMoに添加した。 It was added to Mo in the form of zirconium (IV) butoxide (about 85% 1-butanol solution) manufactured by Wako Pure Chemical Industries, and yttrium (III) butoxide solution manufactured by Sigma-Aldrich.
 [秤量・混合]
 Moを50.0g、ジルコニウム(IV)ブトキシドを1.28g、イットリウム(III)ブトキシドを0.19g、溶媒:和光純薬製ブタノール溶液(99.0%)を20cm秤量し、次の方法で湿式混合した。グローブボックス内(湿度20%以下)で、ジルコニウム(IV)ブトキシド、イットリウム(III)ブトキシドをブタノールで希釈した。アルミナ製の乳鉢にMoと作製した溶液を投入し、アルミナ製の乳棒で5-10分手動混合した。
[Weighing / mixing]
Weigh 50.0 g of Mo, 1.28 g of zirconium (IV) butoxide, 0.19 g of yttrium (III) butanol, and 20 cm 3 of solvent: Wako Pure Chemical's butanol solution (99.0%), and use the following method. Wet mixed. Zirconium (IV) butoxide and yttrium (III) butoxide were diluted with butanol in a glove box (humidity of 20% or less). The solution prepared with Mo was put into an alumina mortar and manually mixed with an alumina pestle for 5 to 10 minutes.
 混合後のスラリーを、ホットプレートを用いて、80-100℃、大気雰囲気で攪拌しながら乾燥させた。この秤量から乾燥までの工程を表1における「回数」だけ繰り返し、所定量の粉末を得た。試料番号2,4から23についても同様の秤量から乾燥までの工程を表1における「回数」だけ繰り返して所定量の粉末を得た。試料番号1については表1に従ってMoのみを秤量した。 The mixed slurry was dried using a hot plate at 80-100 ° C. in an air atmosphere with stirring. This step from weighing to drying was repeated "number of times" in Table 1 to obtain a predetermined amount of powder. For sample numbers 2, 4 to 23, the same steps from weighing to drying were repeated "number of times" in Table 1 to obtain a predetermined amount of powder. For sample number 1, only Mo was weighed according to Table 1.
 (2)Mo合金材の成型~焼結工程
 [成型・焼結]
 倉田技研製のホットプレスを用いて、30mm×30mmの金型に試料番号1から23のそれぞれの乾燥粉末300gを投入し、1900℃×1hr、窒素雰囲気、49kN/cmにて成型・焼結した。
(2) Mo alloy material molding-sintering process [molding / sintering]
Using a hot press manufactured by Kurata Giken, 300 g of each of the dry powders of sample numbers 1 to 23 was put into a mold of 30 mm × 30 mm, and molded / sintered at 1900 ° C × 1 hr, nitrogen atmosphere, 49 kN / cm 2. did.
 焼結温度は1700-1900℃が好ましい。これを超えると結晶粒が粗大化し、延性が低下するおそれがある。 The sintering temperature is preferably 1700-1900 ° C. If it exceeds this, the crystal grains may become coarse and the ductility may decrease.
 Mo合金材の製造法(その2):試料30(表2参照) Manufacturing method of Mo alloy material (Part 2) : Sample 30 (see Table 2)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (1)Mo合金材の粉末混合工程
 [原料粉末]
 フィッシャー法によるFsss粒径が5μm、純度99.9%であるアライドマテリアル社製のMo粉末を用いた。
(1) Powder mixing process of Mo alloy material [raw material powder]
Mo powder manufactured by Allied Materials Co., Ltd. having an Fsss particle size of 5 μm and a purity of 99.9% by the Fisher method was used.
 YSZは、表面積7m/gの東ソー製YSZ(TZ-3YS-E)粉末を用いた。
 [混合]
 Mo粉末985.7g、YSZ粉末14.3gを秤量した。
As YSZ, YSZ (TZ-3YS-E) powder manufactured by Tosoh Co., Ltd. having a surface area of 7 m 2 / g was used.
[mixture]
985.7 g of Mo powder and 14.3 g of YSZ powder were weighed.
 日陶科学製自動乳鉢ANM-1000型(乳鉢材質:アルミナ)を用い、Mo粉末300gとYSZ14.3gを1h混合した。その後、三田村理研工業製インバーシナシェーカーミキサーでMo粉末685.7gと混合粉末を1h混合した。試料番号30の粉末を得た。 Using an automatic mortar ANM-1000 type (mortar material: alumina) manufactured by Nikko Kagaku, 300 g of Mo powder and 14.3 g of YSZ were mixed for 1 h. Then, 685.7 g of Mo powder and the mixed powder were mixed for 1 hour with an Invar China shaker mixer manufactured by Mitamura RIKEN INDUSTRY. The powder of sample number 30 was obtained.
 (2)Mo合金材の成型~焼結工程
 [成型・焼結]
 倉田技研製のホットプレスを用いて、30mm×30mmの金型に試料番号30の乾燥粉末300gを投入し、1900℃×1hr、窒素雰囲気、49kN/cmにて成型・焼結した。
(2) Mo alloy material molding-sintering process [molding / sintering]
Using a hot press manufactured by Kurata Giken, 300 g of dry powder of sample number 30 was put into a mold of 30 mm × 30 mm, and molded and sintered at 1900 ° C. × 1 hr, nitrogen atmosphere, 49 kN / cm 2.
 焼結温度は1700-1900℃が好ましい。これを超えると結晶粒が粗大化し、延性が低下するおそれがある。 The sintering temperature is preferably 1700-1900 ° C. If it exceeds this, the crystal grains may become coarse and the ductility may decrease.
 Mo合金材の製造法(その3): 試料28、他試料の条件(表3参照) Manufacturing method of Mo alloy material (Part 3) : Conditions for sample 28 and other samples (see Table 3)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(1)Mo合金材の粉末混合工程
 フィッシャー法によるFsss粒径が0.9μm、純度99.9%であるアライドマテリアル社製TMO-10型のMo粉末を用いた。
(1) Powder Mixing Step of Mo Alloy Material TMO-10 type Mo powder manufactured by Allied Materials Co., Ltd. having an Fsss particle size of 0.9 μm and a purity of 99.9% by the Fisher method was used.
 フィッシャー法によるFsss粒径が20nm、日本科学陶業社製のジルコニア粉末を用いた。 A zirconia powder manufactured by Nippon Kagaku Ceramics Co., Ltd. with an Fsss particle size of 20 nm by the Fisher method was used.
 [混合]
 Mo粉末123.3g、ジルコニア粉末1.70gを秤量した。
[mixture]
123.3 g of Mo powder and 1.70 g of zirconia powder were weighed.
 FRITSCH製遊星ボールミルを用い、ボールミル混合を行った。秤量した粉末とボール(材質:超硬、φ8mmのボール160g、φ40mmのボール737g)とアルコールをポットに投入し、大気雰囲気で50h混合した。混合後、大気中で自然乾燥した。この秤量および混合工程を表3における「ボールミル回数」だけ繰り返し、所定量の粉末を得た。
(2)Mo合金材の成型~焼結工程
 [成型]
 30mm×30mmの金型を用い、200MPaで圧粉成型した。これにより圧粉成型体を得た。
Ball mill mixing was performed using a planetary ball mill manufactured by FRITSCH. Weighed powder, balls (material: cemented carbide, φ8 mm balls 160 g, φ40 mm balls 737 g) and alcohol were put into a pot and mixed in an air atmosphere for 50 hours. After mixing, it was naturally dried in the air. This weighing and mixing step was repeated for the “number of ball mills” in Table 3 to obtain a predetermined amount of powder.
(2) Mo alloy material molding-sintering process [molding]
Using a 30 mm × 30 mm mold, powder molding was performed at 200 MPa. As a result, a powder compact was obtained.
 [焼結]
 圧粉成型体を、水素雰囲気中、温度1000℃で2時間焼結した。さらに圧粉成形体をH-Ar混合ガス(H:10vol%)雰囲気、温度1600℃で1時間焼結した。焼結体をHIP(Hot Isostatic Pressing、熱間等方圧加圧法)でアルゴン雰囲気、温度1500℃、圧力100MPaの条件で1時間加圧した。その後、焼結体を水素-アルゴン混合ガス中、温度1400℃で1時間熱処理した。これによりモリブデン合金材を得た。
[Sintering]
The powder compact was sintered in a hydrogen atmosphere at a temperature of 1000 ° C. for 2 hours. Furthermore the green compact H 2 -Ar gas mixture (H 2: 10vol%) atmosphere, and sintered for 1 hour at a temperature 1600 ° C.. The sintered body was pressurized by HIP (Hot Isostatic Pressing) under the conditions of an argon atmosphere, a temperature of 1500 ° C., and a pressure of 100 MPa for 1 hour. Then, the sintered body was heat-treated in a hydrogen-argon mixed gas at a temperature of 1400 ° C. for 1 hour. As a result, a molybdenum alloy material was obtained.
 試料番号24から27および29についても、同様の手法でモリブデン合金材を得た。なお、試料番号24から26ではジルコニアではなくYSZを用いた。YSZは、表面積7m/gの東ソー製YSZ(TZ-3YS-E)粉末を用いた。 Molybdenum alloy materials were obtained for Sample Nos. 24 to 27 and 29 by the same method. In Sample Nos. 24 to 26, YSZ was used instead of zirconia. As YSZ, YSZ (TZ-3YS-E) powder manufactured by Tosoh Co., Ltd. having a surface area of 7 m 2 / g was used.
 [合金組成、合金密度およびXRD特性の評価]
 表1から3で製造した試料番号1から30のモリブデン合金材の合金組成、合金密度およびXRDの特性を上記の[組成の測定]、[相対密度の測定]および[XRDの測定]の段落の記載に従って測定した。その結果を表4から6に示す。
[Evaluation of alloy composition, alloy density and XRD characteristics]
The alloy composition, alloy density and XRD characteristics of the molybdenum alloy materials of sample numbers 1 to 30 produced in Tables 1 to 3 are described in the paragraphs of [Measurement of composition], [Measurement of relative density] and [Measurement of XRD] above. Measured according to description. The results are shown in Tables 4 to 6.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4中「T/Mの比率(合金のXRDピーク強度比)」とは、ジルコニアの正方晶Tの(11-1)面のピーク高さとジルコニアの単斜晶Mの(111)面のピーク高さとの比(11-1)/(111)を示す。 In Table 4, "T / M ratio (XRD peak intensity ratio of alloy)" means the peak height of the (11-1) plane of the zirconia tetragonal T and the peak of the (111) plane of the zirconia monoclinic crystal M. The ratio to the height (11-1) / (111) is shown.
 試料番号1から30のモリブデン合金を図1から3で示すように焼結体200とし、そこから試験片100を切り出し、破断伸び、最大応力を測定した。その結果を表7から表9に示す。 The molybdenum alloys of sample numbers 1 to 30 were used as sintered bodies 200 as shown in FIGS. 1 to 3, and a test piece 100 was cut out from the sintered body 200, and the elongation at break and the maximum stress were measured. The results are shown in Tables 7 to 9.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表7から9において、ジルコニアの含有率は0.7質量%以上13.6質量%以下であり、イットリアの含有率はジルコニアの含有率の0.03倍以上0.08倍以下であり、X線回折において、ジルコニアの正方晶Tの(11-1)面のピーク高さとジルコニアの単斜晶Mの(111)面のピーク高さとの比(11-1)/(111)は10以上であると、優れた破断伸びを示し、かつ、最大応力も高い水準を示すことがわかった。 In Tables 7 to 9, the content of zirconia is 0.7% by mass or more and 13.6% by mass or less, the content of yttria is 0.03 times or more and 0.08 times or less of the content of zirconia, and X. In line diffraction, the ratio (11-1) / (111) of the peak height of the (11-1) plane of the zirconia tetragonal T to the peak height of the (111) plane of the zirconia monoclinic crystal M is 10 or more. It was found that there was an excellent elongation at break and a high level of maximum stress.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are exemplary in all respects and are not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the claims.
 100 試験片、200 焼結体。 100 test pieces, 200 sintered body.

Claims (5)

  1.  高延性モリブデン合金材は、モリブデン、ジルコニアおよびイットリアを含み、
     ジルコニアの含有率は0.7質量%以上13.6質量%以下であり、イットリアの含有率はジルコニアの含有率の0.03倍以上0.08倍以下であり、
     X線回折において、ジルコニアの正方晶Tの(11-1)面のピーク高さとジルコニアの単斜晶Mの(111)面のピーク高さとの比(11-1)/(111)は10以上である、高延性モリブデン合金材。
    High ductile molybdenum alloys include molybdenum, zirconia and yttria.
    The content of zirconia is 0.7% by mass or more and 13.6% by mass or less, and the content of yttria is 0.03 times or more and 0.08 times or less of the content of zirconia.
    In X-ray diffraction, the ratio (11-1) / (111) of the peak height of the (11-1) plane of the zirconia tetragonal T to the peak height of the (111) plane of the zirconia monoclinic crystal M is 10 or more. High ductility molybdenum alloy material.
  2.  ジルコニアの含有率は1.3質量%以上8.2質量%以下である、請求項1に記載の高延性モリブデン合金材。 The highly ductile molybdenum alloy material according to claim 1, wherein the content of zirconia is 1.3% by mass or more and 8.2% by mass or less.
  3.  ジルコニアの含有率は1.3質量%以上、5質量%以下である、請求項2に記載の高延性モリブデン合金材。 The highly ductile molybdenum alloy material according to claim 2, wherein the content of zirconia is 1.3% by mass or more and 5% by mass or less.
  4.  不純物を含み、不純物の総量は、0.01質量%以下である、請求項1から3のいずれか1項に記載の高延性モリブデン合金材。 The highly ductile molybdenum alloy material according to any one of claims 1 to 3, which contains impurities and the total amount of impurities is 0.01% by mass or less.
  5.  不純物は、アルミニウム、クロム、銅、鉄、マンガン、ニッケル、鉛、スズ、シリコン、ナトリウム、およびカリウムのうち少なくとも1種類を含む、請求項4に記載の高延性モリブデン合金材。 The highly ductile molybdenum alloy material according to claim 4, wherein the impurities include at least one of aluminum, chromium, copper, iron, manganese, nickel, lead, tin, silicon, sodium, and potassium.
PCT/JP2020/032395 2019-10-08 2020-08-27 High-ductility molybdenum alloy material WO2021070502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021550436A JPWO2021070502A1 (en) 2019-10-08 2020-08-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-185321 2019-10-08
JP2019185321 2019-10-08

Publications (1)

Publication Number Publication Date
WO2021070502A1 true WO2021070502A1 (en) 2021-04-15

Family

ID=75437128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032395 WO2021070502A1 (en) 2019-10-08 2020-08-27 High-ductility molybdenum alloy material

Country Status (2)

Country Link
JP (1) JPWO2021070502A1 (en)
WO (1) WO2021070502A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718151A (en) * 2021-08-09 2021-11-30 西安交通大学 Nano composite oxide dispersion strengthening molybdenum alloy and preparation method thereof
CN114277274A (en) * 2021-12-28 2022-04-05 河南科技大学 Preparation method of bimodal grain molybdenum alloy
CN115505809A (en) * 2022-10-25 2022-12-23 如皋市电光源钨钼制品有限公司 High-strength durable molybdenum wire for linear cutting and production process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199843A (en) * 1987-02-13 1988-08-18 Natl Res Inst For Metals Composite molded body of molybdenum or its alloy and zirconia and its production
JPH06316705A (en) * 1993-01-27 1994-11-15 Toho Kinzoku Kk Jig for firing
WO2018056330A1 (en) * 2016-09-20 2018-03-29 クラレノリタケデンタル株式会社 Zirconia composition, calcined object and sintered compact, and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199843A (en) * 1987-02-13 1988-08-18 Natl Res Inst For Metals Composite molded body of molybdenum or its alloy and zirconia and its production
JPH06316705A (en) * 1993-01-27 1994-11-15 Toho Kinzoku Kk Jig for firing
WO2018056330A1 (en) * 2016-09-20 2018-03-29 クラレノリタケデンタル株式会社 Zirconia composition, calcined object and sintered compact, and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718151A (en) * 2021-08-09 2021-11-30 西安交通大学 Nano composite oxide dispersion strengthening molybdenum alloy and preparation method thereof
CN114277274A (en) * 2021-12-28 2022-04-05 河南科技大学 Preparation method of bimodal grain molybdenum alloy
CN115505809A (en) * 2022-10-25 2022-12-23 如皋市电光源钨钼制品有限公司 High-strength durable molybdenum wire for linear cutting and production process thereof

Also Published As

Publication number Publication date
JPWO2021070502A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2021070502A1 (en) High-ductility molybdenum alloy material
Wang et al. Grain boundary films in rare‐earth‐glass‐based silicon nitride
US5591685A (en) Superplastic silicon carbide sintered body
JP6400478B2 (en) Wear-resistant material
JP6637956B2 (en) Sintered ceramic material, powder composition for obtaining sintered ceramic material, method for producing the same, and ceramic component
Li et al. Microstructure and mechanical properties of ZrO2 (Y2O3)–Al2O3 nanocomposites prepared by spark plasma sintering
Thavorniti et al. Microstructural characterization of superplastic SiO2‐doped TZP with a small amount of oxide addition
CN112552041B (en) Composition for preparing zirconia ceramic, zirconia ceramic and preparation method and application thereof
CN112537956A (en) Black zirconia ceramic and preparation method and application thereof
JP4254222B2 (en) Zirconia powder
CN112537957B (en) Zirconia ceramic and preparation method and application thereof
CN115073186B (en) Silicon nitride ceramic sintered body and preparation method thereof
JP6160986B1 (en) Ceramic sintered body
Abden et al. Microstructure and mechanical properties of ZrO2–40 wt% Al2O3 composite ceramics
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
Łada et al. Microstructure Characterization of Composite from ZrO2–Ti System
US20240190774A1 (en) Ceramic sintered body and ceramic powder
JPH07157362A (en) Aluminum oxide-based ceramic having high strength and high toughness
WO2022176766A1 (en) Tungsten wire, tungsten wire processing method using same, and electrolysis wire
JPH05319910A (en) Ceramic composite material and its production
JPH11278928A (en) Composite-based ceramic material
JP2001114555A (en) Thermal shock-resistant alumina sintered compact and member for heat treatment composed of the same
JPH0558742A (en) Production of silicon nitride ceramic
WO2010024171A1 (en) Zirconia raw material, sintered zirconia compact, and cutting tool
JP4443187B2 (en) Alumina porcelain and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875514

Country of ref document: EP

Kind code of ref document: A1