JP4443187B2 - Alumina porcelain and manufacturing method thereof - Google Patents

Alumina porcelain and manufacturing method thereof Download PDF

Info

Publication number
JP4443187B2
JP4443187B2 JP2003368780A JP2003368780A JP4443187B2 JP 4443187 B2 JP4443187 B2 JP 4443187B2 JP 2003368780 A JP2003368780 A JP 2003368780A JP 2003368780 A JP2003368780 A JP 2003368780A JP 4443187 B2 JP4443187 B2 JP 4443187B2
Authority
JP
Japan
Prior art keywords
alumina
concentration region
high concentration
powder
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003368780A
Other languages
Japanese (ja)
Other versions
JP2005132655A (en
Inventor
修吾 鬼塚
邦英 四方
雨叢 王
裕明 瀬野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003368780A priority Critical patent/JP4443187B2/en
Publication of JP2005132655A publication Critical patent/JP2005132655A/en
Application granted granted Critical
Publication of JP4443187B2 publication Critical patent/JP4443187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、アルミナ磁器及びその製造方法に関し、特に、高強度で、ベアリング、メカニカルシールなど摺動部材の分野で好適に使用されるセラミック磁器およびその製造方法に関する。   The present invention relates to an alumina porcelain and a method for producing the same, and more particularly to a ceramic porcelain that has high strength and is suitably used in the field of sliding members such as bearings and mechanical seals, and a method for producing the same.

セラミックスは、耐摩耗性、耐食性において金属材料よりも優れていることが示され、従来の金属に代わる耐磨耗材として使用されてきている。この種のセラミクスとしては、通常アルミナ、ジルコニア、窒化珪素、炭化珪素などが知られているが、それらの中でも、硬度が高く、耐食性に優れ、安価であるアルミナを主体とするアルミナセラミックスが広く使用されている。   Ceramics have been shown to be superior to metal materials in wear resistance and corrosion resistance, and have been used as wear-resistant materials in place of conventional metals. As this type of ceramics, alumina, zirconia, silicon nitride, silicon carbide, etc. are usually known, but among them, alumina ceramics mainly composed of alumina, which is high in hardness, excellent in corrosion resistance and inexpensive, are widely used. Has been.

一般に、アルミナは耐摩耗性や耐食性が高いため、単体で用いることがその性能を十分に発揮できるが、それ自体では焼結性が悪いため、緻密な焼結体を得るためには焼結助剤を最小限の量だけ加えて焼成することが行われている。   In general, alumina has high wear resistance and corrosion resistance, so its performance can be fully demonstrated when used alone. However, since sinterability itself is poor, sintering aid is necessary to obtain a dense sintered body. Baking is performed by adding a minimum amount of the agent.

例えば、アルミナ粉末に対して0.01〜0.2質量%のマグネシア粉末と0.01〜0.2質量%のイットリア粉末とを添加し、ポリビニルアルコールを用いて混合してアルミナ粉末中にマグネシアとイットリアを均一に分散させた原料粉末を用いて1600〜2000℃の高温で焼成して透光性を有するアルミナ磁器を作製することが提案されている(例えば、特許文献1参照)。   For example, 0.01 to 0.2% by mass of magnesia powder and 0.01 to 0.2% by mass of yttria powder are added to the alumina powder, mixed with polyvinyl alcohol, and mixed with magnesia in the alumina powder. It is proposed to produce a translucent alumina porcelain by firing at a high temperature of 1600 to 2000 ° C. using a raw material powder in which yttria is uniformly dispersed (see, for example, Patent Document 1).

また、アルミナ粉末に対して0.7〜3質量%の酸化クロム粉末及び0.05質量%以下のマグネシア粉末を含む成形体を1280℃で焼成し、次いでこの焼結体を1300〜1310℃、1000〜2000atmの条件でHIP処理を行って、酸化クロムとマグネシアを固溶せしめ、4μm以上の粗大粒が存在しない透光性のルビーを作製する方法が提案されている。
特開平5−43308号公報請求項1 特公平5−83511号公報請求項1及び2
Further, a molded body containing 0.7 to 3% by mass of chromium oxide powder and 0.05% by mass or less of magnesia powder with respect to the alumina powder was fired at 1280 ° C., and then this sintered body was 1300 to 1310 ° C., A method has been proposed in which HIP treatment is performed under the condition of 1000 to 2000 atm to dissolve chromium oxide and magnesia in a solid solution, thereby producing a light-transmitting ruby free of coarse particles of 4 μm or more.
Japanese Patent Laying-Open No. 5-43308 Japanese Patent Publication No. 5-83511, claims 1 and 2

しかしながら、特許文献1の方法で作製したアルミナ磁器は、透光性を有するという利点はあるものの、マグネシウム化合物は凝集しやすいため、アルミナ磁器中にMgが均一に分散しにくいという問題があった。   However, although the alumina porcelain produced by the method of Patent Document 1 has an advantage that it has translucency, the magnesium compound easily aggregates, and therefore, there is a problem that Mg is difficult to uniformly disperse in the alumina porcelain.

また、特許文献2に記載のアルミナ磁器は、4μm以上の粗大粒は存在せず、透光性が得られるという利点があるものの、マグネシウム化合物が均一に分散されず、焼成後にHIP処理をしても欠陥が残存し、強度が低いという問題があった。   Moreover, although the alumina porcelain described in Patent Document 2 has the advantage that there is no coarse particle of 4 μm or more and translucency is obtained, the magnesium compound is not uniformly dispersed, and the HIP treatment is performed after firing. However, the defects remained and the strength was low.

したがって、本発明は、Mgの分散性を改善したアルミナ磁器とその製造方法を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide an alumina porcelain having improved Mg dispersibility and a method for producing the same.

本発明のアルミナ磁器は、Mgを酸化物換算で0.01〜0.5質量%含むアルミナ磁器であって、Mg化合物を含むアルミナ入り第一スラリー(以下、第一のスラリーということがある)にアルミナ粉末を添加、混合した第二スラリー(以下、第二のスラリーということがある)を用いて、成形体を作製し、該成形体を焼成してなり、前記アルミナ磁器の表面を電子線プローブマイクロアナライザで面分析した際にMgの高濃度領域と、該高濃度領域に隣接する低濃度領域とが観察され、該高濃度領域におけるMg濃度をC、前記低濃度領域におけるMg濃度をC、前記高濃度領域の面積を円換算した場合の直径をRとした時、C/C≧2、且つ、R≧5μmを満たす高濃度領域が、0.05mmの測定領域内において1〜5個であることを特徴とするものである。 The alumina porcelain of the present invention is an alumina porcelain containing 0.01 to 0.5% by mass of Mg in terms of oxide , and includes an alumina-containing first slurry (hereinafter sometimes referred to as a first slurry). Using a second slurry in which alumina powder is added and mixed (hereinafter sometimes referred to as a second slurry), a molded body is produced, and the molded body is fired. When a surface analysis is performed with a probe microanalyzer, a high concentration region of Mg and a low concentration region adjacent to the high concentration region are observed. The Mg concentration in the high concentration region is C 1 , and the Mg concentration in the low concentration region is C 2 , where R is the diameter when the area of the high concentration region is converted into a circle, the high concentration region satisfying C 1 / C 2 ≧ 2 and R ≧ 5 μm is within the measurement region of 0.05 mm 2 1 in It is characterized in that 5 a.

また、本発明のアルミナ磁器の製造方法は、高純度アルミナ粉末60〜99体積%、Mg化合物粉末を1〜40体積%の割合で混合して第一スラリーを調製した後、該第一スラリーに対して、Mgの含有量が、前記第一スラリー内の濃度よりも低濃度となるように高純度アルミナ粉末を加え、これを混合して第二スラリーを調製し、しかる後に該第二スラリーを用いて成形体を作製し、該成形体を焼成し、得られたアルミナ磁器の表面を電子線プローブマイクロアナライザで面分析した際にMgの高濃度領域と、該高濃度領域に隣接する低濃度領域とが観察され、該高濃度領域におけるMg濃度をC 、前記低濃度領域におけるMg濃度をC 、前記高濃度領域の面積を円換算した場合の直径をRとした時、C /C ≧2、且つ、R≧5μmを満たす高濃度領域が、0.05mm の測定領域内において1〜5個であるアルミナ磁器を得ることを特徴とするものである。
The manufacturing method of alumina ceramic according to the present invention, high-purity alumina powder 60-99% by volume, after the first Ichisu slurry was prepared by mixing Mg compound powder in a proportion of 1 to 40% by volume, said Ichisu against Larry, the Mg content, a high purity alumina powder as a concentration lower than the concentration in the first Ichisu Larry added, the first varnish slurry was prepared by mixing this said thereafter the compact was produced using the first varnish slurry, and firing the shaped body, and a high concentration region of Mg to the surface of the alumina porcelain upon surface analysis by electron probe microanalyzer obtained, the high concentration region The Mg concentration in the high concentration region is C 1 , the Mg concentration in the low concentration region is C 2 , and the diameter when the area of the high concentration region is converted into a circle is R. when, C 1 / C 2 ≧ 2 , and, R High concentration region satisfying 5μm is characterized in Rukoto obtain alumina porcelain is 1-5 in the measurement area of 0.05 mm 2.

前記Mg化合物がMg(OH)であることが好ましい。 The Mg compound is preferably Mg (OH) 2 .

前記アルミナ粉末の平均粒径が、0.3〜0.7μmであることが好ましい。   It is preferable that the average particle diameter of the alumina powder is 0.3 to 0.7 μm.

前記Mg化合物粉末の平均粒径が0.5〜10μmで、BET比表面積が10〜50m/gであることが好ましい。 The Mg compound powder preferably has an average particle size of 0.5 to 10 μm and a BET specific surface area of 10 to 50 m 2 / g.

前記焼成後に、高温高圧処理を施すことが好ましい。   It is preferable to perform a high-temperature and high-pressure treatment after the firing.

本発明は、アルミナに対してMg化合物の量が少ない場合、例えば0.5質量%以下、特に0.2質量%以下の場合、Mg化合物の量が少ないため、スラリー中でMgが均一に分散することが難しいため、Mg化合物が凝集したスラリーが得られやすく、このスラリーを用いて作製したアルミナ磁器は、Mgの高濃度領域と低濃度領域とを形成し、高濃度領域が破壊源になりやすいとの新規な知見に基づくものである。   In the present invention, when the amount of Mg compound is small with respect to alumina, for example, when it is 0.5% by mass or less, particularly 0.2% by mass or less, the amount of Mg compound is small, so Mg is uniformly dispersed in the slurry. It is difficult to obtain a slurry in which Mg compounds are aggregated. Alumina porcelain produced using this slurry forms a high concentration region and a low concentration region of Mg, and the high concentration region becomes a source of destruction. It is based on the new knowledge that it is easy.

また、本発明は、アルミナ粉末に対してMg化合物粉末の比率の高めた混合粉末を混合した後に、アルミナ粉末を追加して本来の組成のスラリーを調製することによって、焼結助剤のマグネシウム化合物粉末をアルミナ粉末中に均一に分散させることが容易となり、その結果、Mgの高濃度領域が少なく、高強度のアルミナ磁器を製造することができる、特に微量の焼結助剤を用いた場合に顕著な効果を示すものである。   The present invention also provides a magnesium compound as a sintering aid by mixing a mixed powder having a higher ratio of Mg compound powder to alumina powder and then adding alumina powder to prepare a slurry of the original composition. It becomes easy to uniformly disperse the powder in the alumina powder, and as a result, there are few high concentration areas of Mg, and high strength alumina porcelain can be manufactured, especially when a small amount of sintering aid is used. It shows a remarkable effect.

本発明のアルミナ磁器は、Mgを酸化物換算で0.01〜0.5質量%含むアルミナ磁器であって、該アルミナ磁器の表面を電子線プローブマイクロアナライザで面分析した際にMgの高濃度領域と、該高濃度領域に隣接する低濃度領域とが観察され、該高濃度領域におけるMg濃度をC、前記低濃度領域におけるMg濃度をC、前記高濃度領域の面積を円換算した場合の直径をRとした時、C/C≧2、且つ、R≧5μmを満たす高濃度領域が、0.05mmの測定領域内において1〜個であるため、マグネシウム化合物の凝集体粗粒により生成するボイド数が低減された結果、焼結体の機械的特性(曲げ強度、耐磨耗性)が向上するという効果がある。焼結助剤の含有量が少ないため、アルミナ自体の特性を発揮することができる。 The alumina porcelain of the present invention is an alumina porcelain containing 0.01 to 0.5% by mass of Mg in terms of oxide , and a high concentration of Mg when the surface of the alumina porcelain is analyzed by an electron beam probe microanalyzer. A region and a low concentration region adjacent to the high concentration region are observed, the Mg concentration in the high concentration region is C 1 , the Mg concentration in the low concentration region is C 2 , and the area of the high concentration region is converted into a circle when the diameter of the case and the R, C 1 / C 2 ≧ 2, and, for high-concentration region satisfying R ≧ 5 [mu] m is a five 1 in the 0.05 mm 2 measurement region, coagulation of the magnesium compound As a result of the reduction in the number of voids generated by the aggregated coarse particles, there is an effect that the mechanical properties (bending strength, wear resistance) of the sintered body are improved. Since the content of the sintering aid is small, the characteristics of alumina itself can be exhibited.

また、本発明のアルミナ磁器の製造方法は、高純度アルミナ粉に対して、Mg化合物粉を1〜40質量%の割合で含む第一のスラリーを調製した後、該第一のスラリーに対して、Mgの含有量が、前記第一のスラリー内の濃度よりも低濃度となるように高純度アルミナ粉を加え、これを混合して第二のスラリーを調製し、しかる後に該第二のスラリーを用いて成形体を作製し、該成形体を焼成するため、一度分散したMg化合物粉が再凝集することなくさらに均一に分散できるという効果がある。 The manufacturing method of alumina ceramic according to the present invention, the high purity alumina powder powder, after the preparation of the first slurry containing the Mg compound Powder at the rate of 1 to 40% by weight, the said first slurry in contrast, the content of Mg is, the high-purity alumina powder powder added to a concentration lower than the concentration of the first in the slurry to prepare a second slurry by mixing it, said thereafter the molded body produced using the second slurry, for firing the molded body, there is an effect that can be further uniformly dispersed without once dispersed Mg compound powder is re-aggregation.

前記Mg化合物がMg(OH)であるため、塩化物や硝酸塩、硫酸塩などの場合のように、焼結過程で有害なガスを発生することがないという効果がある。 Since the Mg compound is Mg (OH) 2 , there is an effect that no harmful gas is generated during the sintering process as in the case of chlorides, nitrates, sulfates and the like.

前記アルミナ粉末の平均粒径が、0.3〜0.7μmであるため、結晶粒径が均質で緻密な焼結体ができ、研磨により粒子が取れることなく平滑な表面になるという効果がある。   Since the average particle diameter of the alumina powder is 0.3 to 0.7 μm, a dense sintered body having a uniform crystal particle diameter can be formed, and there is an effect that a smooth surface is obtained without removing particles by polishing. .

前記Mg化合物粉末の平均粒径が0.5〜10μmで、BET比表面積が10〜50m/gであるため、高い比表面積を有しており、100時間程度の解砕により粗大粒子を無くし均一分散することが可能という効果がある。 Since the Mg compound powder has an average particle size of 0.5 to 10 μm and a BET specific surface area of 10 to 50 m 2 / g, it has a high specific surface area and eliminates coarse particles by crushing for about 100 hours. There is an effect that uniform dispersion is possible.

前記焼成後に、高温高圧処理を施すため、大きなボイドを低減でき、摩耗面を平滑に保持することが容易となり、摩耗量もより少なくすることが可能である。   Since high-temperature and high-pressure treatment is performed after the firing, large voids can be reduced, the wear surface can be easily maintained, and the wear amount can be reduced.

本発明を、図を用いて説明する。図1は、アルミナ磁器の表面を電子線プローブマイクロアナライザで面分析した結果を示し、(a)は測定領域内におけるMgの分布状態を示す模式図であり、(b)は高濃度領域の形状を、その面積を円換算で直径を算出し、再表示した高濃度領域を示す模式図である。   The present invention will be described with reference to the drawings. FIG. 1 shows the results of surface analysis of the surface of an alumina porcelain using an electron beam probe microanalyzer, (a) is a schematic diagram showing the distribution state of Mg in the measurement region, and (b) is the shape of the high concentration region. Is a schematic diagram showing a high-concentration region in which the diameter is calculated by converting the area into a circle and redisplayed.

まず、本発明において用いる電子線プローブマイクロアナライザ(EPMA)について説明する。   First, an electron beam probe microanalyzer (EPMA) used in the present invention will be described.

電子物質(試料)に電子線を照射すると、各種X線や反射電子などの種々の信号を発生する。ここで発生する特性X線は、物質を構成する元素に固有な波長をもつX線である。この特性X線を測定することで構成元素が分かり、その強度から存在割合を知ることができる。EMPAはこの原理を応用したものである。   When an electronic material (sample) is irradiated with an electron beam, various signals such as various X-rays and reflected electrons are generated. The characteristic X-ray generated here is an X-ray having a wavelength unique to the element constituting the substance. By measuring this characteristic X-ray, the constituent elements can be determined, and the existence ratio can be determined from the intensity. EMPA is an application of this principle.

具体的には、試料に電子線を照射し、照射部位から各種の信号を励起する。励起された信号の中から、任意の設定波長のX線を分光結晶で選別し、検出器によって計測することによって、元素の種類とその濃度を算出するものである。   Specifically, the sample is irradiated with an electron beam, and various signals are excited from the irradiated part. The type and concentration of the element are calculated by selecting X-rays having an arbitrary set wavelength from the excited signal with a spectroscopic crystal and measuring it with a detector.

例えば、波長分散型X線分光器によって検出されたX線パルスをもとにCRT上に二次元の拡大された走査像、すなわちX線像を表示し、試料表面の状態を記録する。また、電子プローブを試料上のX方向(CRT上での水平方向に相当)に沿って線走査させ、そのとき発生するX線の強度変化をCRTの垂直方向の振幅の変化(振幅変調)として波形、すなわちX線ラインプロファイルを表示し、線走査した部分の(分析線上の)元素の濃度分布を記録する。   For example, a two-dimensional enlarged scanning image, that is, an X-ray image is displayed on the CRT based on the X-ray pulse detected by the wavelength dispersion X-ray spectrometer, and the state of the sample surface is recorded. Further, the electron probe is scanned in the X direction on the sample (corresponding to the horizontal direction on the CRT), and the intensity change of the X-rays generated at that time is regarded as a change in amplitude (amplitude modulation) in the vertical direction of the CRT. The waveform, that is, the X-ray line profile is displayed, and the element concentration distribution (on the analysis line) in the line scanned portion is recorded.

このようにして、すべての分析領域を特定の波長のX線強度分布であらわすことにより、特定の元素の分布状態、即ち元素濃度をマップ状に表記させることが出来る。プローブ電流(感度)は1.0×10−7A、加速電圧15kV、分析領域200μm×200μmであった。 In this way, the distribution state of a specific element, that is, the element concentration can be expressed in a map form by representing all analysis regions with an X-ray intensity distribution of a specific wavelength. The probe current (sensitivity) was 1.0 × 10 −7 A, the acceleration voltage was 15 kV, and the analysis region was 200 μm × 200 μm.

本発明においては、日本電子製JXA−8600型装置を使用し、500倍の測定倍率で試料の200μm×200μmの領域を観察し、焼結体では3×10−7Aの電流値で、成形体では1×10−7Aの電流値で観察を行った。 In the present invention, a JXA-8600 type device manufactured by JEOL Ltd. is used, a 200 μm × 200 μm region of the sample is observed at a measurement magnification of 500 times, and a sintered body is molded at a current value of 3 × 10 −7 A. The body was observed at a current value of 1 × 10 −7 A.

このようにしてMgを含むアルミナ磁器をEPMA分析で面分析をすると、図1(a)に示したようなMgの濃度分布が表示される。   When the alumina porcelain containing Mg is subjected to surface analysis by EPMA analysis, the Mg concentration distribution as shown in FIG. 1A is displayed.

本発明によれば、このようなMgの面分析結果から、測定領域1内におけるMg濃度が周囲よりも2倍以上高い高濃度領域2を特定し、その高濃度領域2の面積を円換算した場合の直径をRとし、高濃度領域2におけるMg濃度をC、高濃度領域2に隣接する低濃度領域3のMg濃度をC、C/C≧2、且つ、R≧5μmを満たす高濃度領域2の数を測定した時、その数が測定面積0.05mmの測定領域内に1〜個であることが重要である。 According to the present invention, from such a surface analysis result of Mg, the high concentration region 2 in which the Mg concentration in the measurement region 1 is twice or more higher than the surroundings is specified, and the area of the high concentration region 2 is converted into a circle. The diameter of the case is R, the Mg concentration in the high concentration region 2 is C 1 , the Mg concentration in the low concentration region 3 adjacent to the high concentration region 2 is C 2 , C 1 / C 2 ≧ 2, and R ≧ 5 μm. When the number of high concentration regions 2 to be filled is measured , it is important that the number is 1 to 5 in a measurement region having a measurement area of 0.05 mm 2 .

このように、本発明のアルミナ磁器表面のMg分布を示す図1(a)には、0.05mmの測定領域1内に、上記条件を満たす高濃度領域2を4個示しているが、本発明によれば、この数が1〜個であり、図1の4個に限定されるものではない。 As described above, FIG. 1A showing the Mg distribution on the surface of the alumina porcelain of the present invention shows four high-concentration regions 2 satisfying the above conditions in the measurement region 1 of 0.05 mm 2 . According to the present invention, this number is 1 to 5 , and is not limited to 4 in FIG.

円換算した高濃度領域2の直径Rの最大値は、摺動部材として用いた場合に大きなボイドとならないように、5μm以下、特に4μm以下、更には3μm以下、より好適には2μm以下であることが好ましい。このように高濃度領域2が出現しても、その大きさが小さければ摺動部材として用いた場合、より平滑な表面を維持することができる。   The maximum value of the diameter R of the high-concentration region 2 converted into a circle is 5 μm or less, particularly 4 μm or less, more preferably 3 μm or less, and more preferably 2 μm or less so as not to cause a large void when used as a sliding member. It is preferable. Even when the high concentration region 2 appears in this way, a smoother surface can be maintained when used as a sliding member if its size is small.

Mgの高濃度領域2には、しばしば粗大ボイドが存在するため、高濃度領域2の数を低減することによって、破壊の原因となるボイドを低減し、その結果、強度低下を防止することが可能となる。   Since there are often coarse voids in the high-concentration region 2 of Mg, reducing the number of high-concentration regions 2 can reduce voids that cause destruction, and as a result, prevent a decrease in strength. It becomes.

本発明によれば、Mgの含有量は、アルミナ磁器の特徴を十分に発揮させるため、酸化物換算で0.5質量%以下であり、特に0.2質量%以下、更には0.1質量%以下、より好適には0.05質量%が好ましい。Mgの含有量、即ち、焼結助剤の含有量が少ないと、アルミナ自体が有する機械的特性、電気的特性、熱的特性等の良好な特性を十分に発現することができる。また、Mg化合物が焼結助剤としての役割を果たすため、0.01質量%以上である。このような割合でMgが含まれると、焼結性を向上することができる。 According to the present invention, the content of Mg is, in order to sufficiently exhibit the characteristics of the alumina porcelain is 0.5 mass% or less in terms of oxide, in particular 0.2 wt% or less, even 0.1 % Or less, more preferably 0.05% by mass. When the content of Mg, that is, the content of the sintering aid is small, good properties such as mechanical properties, electrical properties, thermal properties, and the like that alumina itself has can be sufficiently expressed. Moreover, since Mg compound plays the role as a sintering auxiliary agent, it is 0.01 mass% or more. When Mg is contained at such a ratio, the sinterability can be improved.

また、Mg以外にはCa、Si、Fe、Na又はKという元素及びその化合物を含むことができるが、特にこれらの総量を0.1質量%以下、特に0.05質量%以下とすることが異常粒子成長を抑制し、ボイド生成を抑えることができるという点で好ましい。   In addition to Mg, elements such as Ca, Si, Fe, Na, or K and compounds thereof can be included. In particular, the total amount of these elements may be 0.1% by mass or less, particularly 0.05% by mass or less. It is preferable in that abnormal particle growth can be suppressed and void generation can be suppressed.

Mgはその一部が固溶していても良く、また、スピネル等の化合物としてアルミナの結晶粒界に存在していても良いが、破壊源になる可能性があるため、これらの化合物は無いのが最も好ましい。   Part of Mg may be in solid solution, or may exist in the crystal grain boundary of alumina as a compound such as spinel, but there is no such compound because it may be a source of destruction Is most preferred.

アルミナ磁器の平均結晶粒径は、0.3〜2μm、特に0.3〜1.5μm、更には0.3〜1μmが好ましい。アルミナ結晶が小さな結晶からなり、均質且つ緻密な焼結体ができ、研磨により大きな結晶が脱粒して、脱粒した大きな粒子でアルミナ磁器を傷つけ、大きな摩耗が生じる異常摩耗を抑制し、平滑な表面を維持できるという効果がある。   The average crystal grain size of the alumina porcelain is preferably 0.3 to 2 μm, particularly preferably 0.3 to 1.5 μm, and more preferably 0.3 to 1 μm. Alumina crystals are composed of small crystals, and a homogeneous and dense sintered body is formed. Large crystals are crushed by polishing, and the alumina porcelain is damaged by the sized large particles, suppressing abnormal wear resulting in large wear, and a smooth surface. Can be maintained.

本発明のアルミナ磁器は、高純度アルミナで、均一で微細な粒径を用いており、緻密な焼結体が得られるという特徴を有するため、摺動部品、ベアリング又はメカニカルシールという分野で好適に用いることができる。   The alumina porcelain of the present invention is a high-purity alumina, has a feature that a uniform and fine particle size is used, and a dense sintered body can be obtained. Therefore, the alumina porcelain is suitably used in the field of sliding parts, bearings or mechanical seals. Can be used.

本発明のアルミナ磁器の製造方法は、高濃度領域を低減するために、マグネシウム化合物粉末を高濃度でアルミナ粉末と混合して第一のスラリーを予め作製し、しかる後に、第一のスラリーに、第一のスラリー内のMg濃度よりも小さくなるようにアルミナ粉末を追加して、マグネシウム化合物粉末をスラリー中に均一に分散するものである。   In order to reduce the high concentration region, the production method of the alumina porcelain of the present invention mixes the magnesium compound powder with the alumina powder at a high concentration to prepare the first slurry in advance, and then, into the first slurry, Alumina powder is added so as to be smaller than the Mg concentration in the first slurry, and the magnesium compound powder is uniformly dispersed in the slurry.

次に、本発明のアルミナ磁器の製造方法を、焼結過程で有害なガスを発生しないMg化合物として水酸化マグネシウムを用いた一実施例を例として取り上げて説明する。   Next, the method for producing an alumina porcelain of the present invention will be described by taking as an example one embodiment in which magnesium hydroxide is used as the Mg compound that does not generate harmful gas during the sintering process.

まず、純度99.99%、平均粒径が0.3〜0.7μm、BET比表面積が5〜6m/g程度の高純度アルミナ粉末を準備する。この範囲の平均粒径を有するアルミナ粉末を用いると、均質で緻密な焼結体ができ、研磨により粗大粒子が脱粒して焼結体を傷つけて異常摩耗に発展することがなく平滑な表面を維持することができる。 First, a high-purity alumina powder having a purity of 99.99%, an average particle size of 0.3 to 0.7 μm, and a BET specific surface area of about 5 to 6 m 2 / g is prepared. Using alumina powder with an average particle size in this range, a homogeneous and dense sintered body can be obtained, and a coarse surface can be removed by polishing, resulting in damage to the sintered body and development of abnormal wear. Can be maintained.

また、純度60%以上、平均粒径が0.5〜10μm、特に1〜8μm、更には2〜5μmの水酸化マグネシウム粉末を準備する。Mg(OH)の比表面積は、10〜50m/g、特に15〜40m/g、更には20〜30m/gであることが好ましい。このような平均粒径と比表面積の粉末を用いることで、より細かく、且つより均一に分散でき、有害なガス発生も回避することができる。 Further, magnesium hydroxide powder having a purity of 60% or more and an average particle diameter of 0.5 to 10 μm, particularly 1 to 8 μm, and further 2 to 5 μm is prepared. The specific surface area of Mg (OH) 2 is, 10~50m 2 / g, especially 15~40m 2 / g, more preferably a 20 to 30 m 2 / g. By using a powder having such an average particle size and specific surface area, finer and more uniform dispersion can be achieved, and generation of harmful gas can be avoided.

Mg化合物としては、塩化物や硝酸塩、硫酸塩などの場合のように、焼結過程で有害なガスを発生することがないために安全に使用でき、また、焼成炉への損傷も低減し、低コストに寄与することが可能なMg(OH)を用いることが好ましい。 Mg compounds can be used safely because they do not generate harmful gases during the sintering process, as in the case of chlorides, nitrates, sulfates, etc., and damage to the firing furnace is reduced, It is preferable to use Mg (OH) 2 that can contribute to low cost.

上記の原料粉末を、アルミナ粉末が60〜99体積%、Mg(OH)が1〜40体積%の割合に調合し、純水を添加し、ボールを加えて混合する。Mg(OH)をより均一に分散させるため、特にMg(OH)が5〜35体積%、更には10〜30体積%の割合で混合するのが好ましい。ボールとして99%以上、特に99.9%以上の高純度アルミナボールを用いることにより、不純物の混入を抑制し、さらに混合効率を高めることができる。 The above raw material powder is prepared in a proportion of 60 to 99% by volume of alumina powder and 1 to 40% by volume of Mg (OH) 2 , pure water is added, and balls are added and mixed. In order to disperse Mg (OH) 2 more uniformly, it is particularly preferable that Mg (OH) 2 is mixed in a proportion of 5 to 35% by volume, more preferably 10 to 30% by volume. By using a high-purity alumina ball of 99% or more, especially 99.9% or more as a ball, mixing of impurities can be suppressed and mixing efficiency can be further increased.

混合方法は、回転ミル等の公知の手法にて行うことができる。このように、Mg化合物を高濃度で含むスラリーを予め作製することで、Mg化合物が効果的に混合できる。   The mixing method can be performed by a known method such as a rotary mill. Thus, the Mg compound can be effectively mixed by preparing a slurry containing the Mg compound at a high concentration in advance.

マグネシウム化合物は凝集しやすいため、0.5質量%以下、特に0.2質量%以下の低濃度のマグネシウム化合物をアルミナに直接混合しても、例えば24時間混合しても、凝集粒が残り、中には粗大凝集粒が存在する。マグネシウム化合物は焼成中にアルミナと反応してスピネルを形成し、体積減少を引き起こす。この体積減少がボイド形成につながり、ひいては機械的性質(曲げ強度、耐磨耗性)を劣化する原因となる。   Magnesium compounds easily aggregate, so even if a low concentration magnesium compound of 0.5% by mass or less, particularly 0.2% by mass or less is directly mixed with alumina, for example, for 24 hours, aggregated particles remain, There are coarse aggregated grains. The magnesium compound reacts with alumina during firing to form spinel, causing volume reduction. This volume reduction leads to void formation, which in turn causes the mechanical properties (bending strength, wear resistance) to deteriorate.

次いで、得られた第一のスラリーに対して、所定の組成になるように、高純度アルミナ粉末を追加で添加し、再度混合して第二のスラリーを作製する。このように2段階で混合することにより、0.5質量%以下の添加量であっても、焼結助剤であるMg(OH)粉末を均一に分散させることができる。 Next, a high-purity alumina powder is additionally added to the obtained first slurry so as to have a predetermined composition and mixed again to prepare a second slurry. Thus, by mixing in two steps, Mg (OH) 2 powder, which is a sintering aid, can be uniformly dispersed even with an addition amount of 0.5% by mass or less.

得られた第二のスラリーを用いて成形体を作製する。成形方法は、金型プレス法、冷間静水圧プレス(CIP)法、ドクターブレード法等のテープ成形法、押出し法、射出成形法等の周知の方法を使用することができる。   A molded object is produced using the obtained second slurry. As the molding method, a known method such as a die pressing method, a cold isostatic pressing (CIP) method, a tape molding method such as a doctor blade method, an extrusion method, or an injection molding method can be used.

次いで、所望により成形体を所定の形状に加工し、成形体を焼成する。焼成条件は、焼成温度は1200〜1700℃、特に1300〜1600℃が好ましい。   Next, the molded body is processed into a predetermined shape as desired, and the molded body is fired. As for the firing conditions, the firing temperature is preferably 1200 to 1700 ° C, particularly preferably 1300 to 1600 ° C.

また、焼成で得られた焼結体を、高温高圧で処理することが好ましい。即ち、焼成後に高温高圧処理を施すと、さらに緻密化を促進でき、大きなボイドを小さくすることが可能となり、耐摩耗材料として用いた時、摩耗面を平滑に保つことができ、摩耗量もより少なくすることが可能となる。   Moreover, it is preferable to process the sintered compact obtained by baking at high temperature and high pressure. That is, if high-temperature and high-pressure treatment is performed after firing, densification can be further promoted, large voids can be reduced, and when used as a wear-resistant material, the wear surface can be kept smooth and the wear amount can be further increased. It can be reduced.

まず、第一のスラリーを作製した。即ち、99.99%で表1の平均粒径の高純度アルミナ粉末と、60%で表1の平均粒径及び比表面積Sの水酸化マグネシウム粉末を表1の一次混合組成となるように調合し、混合粉末に対して、水150体積%を添加し、99.9%の高純度アルミナボールを400体積%入れて回転ミルで92時間粉砕して第一のスラリーを作製した。   First, a first slurry was prepared. In other words, 99.99% of the high-purity alumina powder having the average particle size shown in Table 1 and 60% of the magnesium hydroxide powder having the average particle size and specific surface area S shown in Table 1 were prepared so as to have the primary mixed composition of Table 1. Then, 150% by volume of water was added to the mixed powder, 400% by volume of 99.9% high-purity alumina balls were added, and the mixture was pulverized for 92 hours with a rotary mill to prepare a first slurry.

次いで、表2の二次混合組成となるように、上記と同じアルミナ粉末を添加し、さらに24時間混合して、第二のスラリーを作製した。   Next, the same alumina powder as described above was added so as to have the secondary mixed composition shown in Table 2, and further mixed for 24 hours to prepare a second slurry.

得られた第二のスラリーを乾燥した後、メッシュサイズ開口径74μmのメッシュを用いてメッシュパスを施し、98MPaで一軸成形し、表1の焼成条件で焼成を行った。次いで、所望により、アルゴンガス中、196MPa(2000kg/cm)の圧力、1350℃の温度の条件で、HIP処理を1時間行った。 After the obtained second slurry was dried, it was subjected to a mesh pass using a mesh having a mesh size opening diameter of 74 μm, uniaxially molded at 98 MPa, and fired under the firing conditions shown in Table 1. Then, if desired, HIP treatment was performed for 1 hour in argon gas under the conditions of a pressure of 196 MPa (2000 kg / cm 2 ) and a temperature of 1350 ° C.

また、この測定領域をEPMAにてMgドットマップ分析を実施した。このときの、EPMAのプローブ電流(感度)は3.0×10−7Aである。 In addition, Mg dot map analysis was performed on this measurement region with EPMA. At this time, the probe current (sensitivity) of EPMA is 3.0 × 10 −7 A.

得られた濃度マップから、各高濃度領域の面積を円換算してその直径Rを算出するとともに、各高濃度領域とそれに隣接する低濃度領域においてC及びCを測定し、C/Cを算出し、C/C≧2、且つ、R≧5μmを満たす高濃度領域の数を測定した。なお、測定範囲は0.05mmであった。結果を表1に示した。なお、試料No.15は参考試料である。

Figure 0004443187
本発明の試料No.2〜8、10〜14、16〜29は、高濃度領域の数が0.05mmの測定領域において、1〜個であった。
From the obtained concentration map, the area of each high concentration region is converted into a circle to calculate its diameter R, and C 1 and C 2 are measured in each high concentration region and the low concentration region adjacent thereto, and C 1 / C 2 was calculated, and the number of high concentration regions satisfying C 1 / C 2 ≧ 2 and R ≧ 5 μm was measured. The measurement range was 0.05 mm 2 . The results are shown in Table 1. Sample No. Reference numeral 15 is a reference sample.
Figure 0004443187
Sample No. of the present invention. 2~8,10~ 14,16~29 the number of high-concentration region is in the measurement region of 0.05 mm 2, it was 5 1.

一方、一次混合組成のMg化合物量が0.5体積%と小さく、二次混合を行わない本発明の試料No.1は、Mg化合物の分散状態が悪く、高濃度領域の数が0.05mmの測定領域において、27個と分散状態が悪く、またMg化合物の含有量が少なすぎて焼結性が悪いため、5μmを越える粗大ボイド数が55個あった。 On the other hand, the amount of Mg compound in the primary mixture composition is as small as 0.5% by volume, and the sample No. No. 1 is in a poorly dispersed state of the Mg compound, and in the measurement region where the number of high concentration regions is 0.05 mm 2 , the dispersion state is poor at 27, and the content of the Mg compound is too small and the sinterability is poor. There were 55 coarse voids exceeding 5 μm.

また、一次混合組成のMg化合物量が50体積%と大きい本発明の試料No.9は、高濃度領域の数が0.05mmの測定領域において10個と分散状態が悪く、また、Mg化合物の含有量が多すぎて焼結性が悪いため、5μmを越える粗大ボイド数が22個あった。 Sample No. 1 of the present invention in which the amount of Mg compound in the primary mixed composition is as large as 50% by volume. No. 9 has a dispersion state as bad as 10 in the measurement area where the number of high concentration areas is 0.05 mm 2 , and the content of Mg compound is too high and the sinterability is poor, so the number of coarse voids exceeding 5 μm There were 22 pieces.

アルミナ磁器の表面を電子線プローブマイクロアナライザで面分析した結果を示し、(a)は測定領域内におけるMgの分布状態を示す模式図であり、(b)は高濃度領域の形状を、その面積を円換算で直径を算出し、再表示した高濃度領域を示す模式図である。The surface analysis result of the surface of the alumina porcelain with an electron beam probe microanalyzer is shown, (a) is a schematic diagram showing the distribution state of Mg in the measurement region, (b) is the shape of the high concentration region, its area It is a schematic diagram which shows the high concentration area | region which calculated the diameter by converting into circle and redisplayed.

符号の説明Explanation of symbols

1・・・測定領域
2・・・高濃度領域
3・・・低濃度領域
・・・高濃度領域におけるMg濃度
・・・低濃度領域におけるMg濃度
R・・・高濃度領域の面積を円換算した場合の半
DESCRIPTION OF SYMBOLS 1 ... Measurement area | region 2 ... High concentration area | region 3 ... Low concentration area | region C 1 ... Mg density | concentration C in a high concentration area | region 2 ... Mg density | concentration R in a low concentration area | region ... High concentration area | region Half of the area converted to yen

Claims (6)

Mgを酸化物換算で0.01〜0.5質量%含むアルミナ磁器であって、Mg化合物を含むアルミナ入り第一スラリーにアルミナ粉末を添加、混合した第二スラリーを用いて、成形体を作製し、該成形体を焼成してなり、前記アルミナ磁器の表面を電子線プローブマイクロアナライザで面分析した際にMgの高濃度領域と、該高濃度領域に隣接する低濃度領域とが観察され、該高濃度領域におけるMg濃度をC、前記低濃度領域におけるMg濃度をC、前記高濃度領域の面積を円換算した場合の直径をRとした時、C/C≧2、且つ、R≧5μmを満たす高濃度領域が、0.05mmの測定領域内において1〜5個であることを特徴とするアルミナ磁器。 Alumina porcelain containing 0.01 to 0.5% by mass of Mg in terms of oxide , and forming a molded body using a second slurry obtained by adding and mixing alumina powder to an alumina-containing first slurry containing an Mg compound Then, the compact is fired, and when the surface of the alumina porcelain is subjected to surface analysis by an electron beam probe microanalyzer, a high concentration region of Mg and a low concentration region adjacent to the high concentration region are observed, When the Mg concentration in the high concentration region is C 1 , the Mg concentration in the low concentration region is C 2 , and the diameter when the area of the high concentration region is converted into a circle is R, C 1 / C 2 ≧ 2, and The alumina porcelain is characterized in that the number of high concentration regions satisfying R ≧ 5 μm is 1 to 5 in a measurement region of 0.05 mm 2 . 高純度アルミナ粉末60〜99体積%、Mg化合物粉末を1〜40体積%の割合で混合して第一スラリーを調製した後、該第一スラリーに対して、Mgの含有量が、前記第一スラリー内の濃度よりも低濃度となるように高純度アルミナ粉末を加え、これを混合して第二スラリーを調製し、しかる後に該第二スラリーを用いて成形体を作製し、該成形体を焼成し、得られたアルミナ磁器の表面を電子線プローブマイクロアナライザで面分析した際にMgの高濃度領域と、該高濃度領域に隣接する低濃度領域とが観察され、該高濃度領域におけるMg濃度をC 、前記低濃度領域におけるMg濃度をC 、前記高濃度領域の面積を円換算した場合の直径をRとした時、C /C ≧2、且つ、R≧5μmを満たす高濃度領域が、0.05mm の測定領域内において1〜5個であるアルミナ磁器を得ることを特徴とするアルミナ磁器の製造方法。 High purity alumina powder 60-99% by volume, after the preparation of the first Ichisu slurry by mixing a Mg compound powder in a proportion of 1 to 40% by volume, relative to said Ichisu rally, the content of Mg, the high purity alumina powder as a concentration lower than the concentration in the Ichisu rally added, which the first varnish slurry was prepared by mixing, to prepare a molded body with said varnish slurry and thereafter When the surface of the resulting alumina porcelain is fired with an electron probe microanalyzer, a high concentration region of Mg and a low concentration region adjacent to the high concentration region are observed, When the Mg concentration in the high concentration region is C 1 , the Mg concentration in the low concentration region is C 2 , and the diameter when the area of the high concentration region is converted into a circle is R, C 1 / C 2 ≧ 2, and High concentration region satisfying R ≧ 5 μm is 0.05 mm Method for producing an alumina ceramic, wherein Rukoto obtain alumina porcelain is 1-5 in 2 measurement area. 前記Mg化合物がMg(OH)であることを特徴とする請求項2記載のアルミナ磁器の製造方法。 The method for producing an alumina porcelain according to claim 2 , wherein the Mg compound is Mg (OH) 2 . 前記アルミナ粉末の平均粒径が、0.3〜0.7μmである請求項2又は3に記載のアルミナ磁器の製造方法。   The method for producing an alumina porcelain according to claim 2 or 3, wherein the alumina powder has an average particle size of 0.3 to 0.7 µm. 前記Mg化合物粉末の平均粒径が0.5〜10μmで、BET比表面積が10〜50m/gであることを特徴とする請求項2〜4のいずれかに記載のアルミナ磁器の製造方法。 The method for producing an alumina porcelain according to any one of claims 2 to 4, wherein the Mg compound powder has an average particle size of 0.5 to 10 µm and a BET specific surface area of 10 to 50 m 2 / g. 前記焼成後に、高温高圧処理を施すことを特徴とする請求項2〜5のいずれかに記載のアルミナ磁器の製造方法。   The method for producing an alumina porcelain according to any one of claims 2 to 5, wherein a high-temperature and high-pressure treatment is performed after the firing.
JP2003368780A 2003-10-29 2003-10-29 Alumina porcelain and manufacturing method thereof Expired - Fee Related JP4443187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368780A JP4443187B2 (en) 2003-10-29 2003-10-29 Alumina porcelain and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368780A JP4443187B2 (en) 2003-10-29 2003-10-29 Alumina porcelain and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005132655A JP2005132655A (en) 2005-05-26
JP4443187B2 true JP4443187B2 (en) 2010-03-31

Family

ID=34646339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368780A Expired - Fee Related JP4443187B2 (en) 2003-10-29 2003-10-29 Alumina porcelain and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4443187B2 (en)

Also Published As

Publication number Publication date
JP2005132655A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
EP2674408B1 (en) Translucent zirconia sintered body and use of the same
KR101590429B1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JP6322584B2 (en) Ceramic sintered compact composed of Y2O3 stabilized zirconium oxide and method for producing ceramic sintered compact composed of Y2O3 stabilized zirconium oxide
JP4424659B2 (en) Aluminum nitride material and member for semiconductor manufacturing equipment
WO2021070502A1 (en) High-ductility molybdenum alloy material
EP3560904B1 (en) Oriented aln sintered body, and production method therefor
WO2020189480A1 (en) Tungsten oxide sputtering target
JP2976226B2 (en) Manufacturing method of alumina-zirconia sintered body
JP4443187B2 (en) Alumina porcelain and manufacturing method thereof
JP4761715B2 (en) Biomaterial, method for manufacturing the same, and artificial joint
Kim et al. Mechanochemical synthesis and pressureless sintering of TiB2–AlN composites
JP2004323261A (en) Zirconium oxide powder, sintered compact of the same and method of manufacturing the same
JP5403851B2 (en) Method for producing sintered zirconium silicate
JPWO2017098937A1 (en) Ceramic sintered body
WO2020189428A1 (en) Tungsten oxide sputtering target
Liliang et al. Spark plasma sintering of high-toughness ZrO2 materials doped with yttrium
JP3121996B2 (en) Alumina sintered body
WO2023042893A1 (en) Powder composition, calcined body, sintered body, and method for producing same
JP4004024B2 (en) Titanium carbide based ceramic tool and manufacturing method thereof
JP2020153014A (en) Tungsten oxide sputtering target
JP2020153015A (en) Tungsten oxide sputtering target
JP2006062918A (en) Zirconia-alumina-based ceramic and method of manufacturing the same
KR20230152676A (en) Cordierite sintered body and manufacturing method thereof
US20120318132A1 (en) Ceramic Composite Materials and Their Production
JP2011219279A (en) Zirconia raw material, sintered zirconia compact, cutter, and hand cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

R150 Certificate of patent or registration of utility model

Ref document number: 4443187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees