JP4761715B2 - Biomaterial, method for manufacturing the same, and artificial joint - Google Patents
Biomaterial, method for manufacturing the same, and artificial joint Download PDFInfo
- Publication number
- JP4761715B2 JP4761715B2 JP2004022283A JP2004022283A JP4761715B2 JP 4761715 B2 JP4761715 B2 JP 4761715B2 JP 2004022283 A JP2004022283 A JP 2004022283A JP 2004022283 A JP2004022283 A JP 2004022283A JP 4761715 B2 JP4761715 B2 JP 4761715B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- alumina
- slurry
- magnesium
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000000034 method Methods 0.000 title description 14
- 239000012620 biological material Substances 0.000 title description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 64
- 239000011777 magnesium Substances 0.000 claims description 57
- 239000000843 powder Substances 0.000 claims description 52
- 239000002002 slurry Substances 0.000 claims description 30
- 239000002245 particle Substances 0.000 claims description 17
- 150000002681 magnesium compounds Chemical class 0.000 claims description 15
- 238000010304 firing Methods 0.000 claims description 12
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 10
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 9
- 239000000347 magnesium hydroxide Substances 0.000 claims description 9
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 7
- 239000000395 magnesium oxide Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 2
- 239000001095 magnesium carbonate Substances 0.000 claims description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 description 21
- 230000002776 aggregation Effects 0.000 description 20
- 238000004220 aggregation Methods 0.000 description 20
- 239000000523 sample Substances 0.000 description 17
- 238000005259 measurement Methods 0.000 description 14
- 239000000919 ceramic Substances 0.000 description 10
- 238000005245 sintering Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000005211 surface analysis Methods 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000011362 coarse particle Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 210000001624 hip Anatomy 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- -1 Polyethylene Polymers 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 2
- 210000004394 hip joint Anatomy 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012237 artificial material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000007723 die pressing method Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- UFZOPKFMKMAWLU-UHFFFAOYSA-N ethoxy(methyl)phosphinic acid Chemical compound CCOP(C)(O)=O UFZOPKFMKMAWLU-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
Images
Landscapes
- Materials For Medical Uses (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は、アルミナセラミック製の生体部材及びその製造方法並びに人工関節に関するものである。 The present invention relates to a biomaterial made of alumina ceramic, a method for producing the same, and an artificial joint.
アルミナセラミックスやジルコニアセラミックスは生体不活性な材料である上、機械的強度、耐摩耗性に優れることから人工関節や人工歯根といった医療用材料としての適用が進んでいる。例えば、人工股関節では、金属に比べ、アルミナもしくはジルコニアセラミックス/超高分子量ポリエチレンの組合せが摩耗しにくく、且つ欠陥も生じにくいとされていることから、骨頭にセラミックスが、臼蓋ソケットに超高分子ポリエチレンが採用されてきた(特許文献1参照)。 Alumina ceramics and zirconia ceramics are biologically inert materials, and are excellent in mechanical strength and wear resistance, and thus are being applied as medical materials such as artificial joints and artificial tooth roots. For example, in artificial hip joints, the combination of alumina or zirconia ceramics / ultra high molecular weight polyethylene is less likely to wear and defects than metal, so ceramic is used for the bone head and ultra high polymer is used for the acetabular socket. Polyethylene has been employed (see Patent Document 1).
さらに、アルミナセラミックス同士の摺動部を有した人工股関節も開発されている(特許文献2参照)。 Furthermore, an artificial hip joint having a sliding portion between alumina ceramics has been developed (see Patent Document 2).
一般に、アルミナは耐摩耗性や耐食性が高いため、単体で用いることがその性能を十分に発揮できるが、それ自体では焼結性が悪いため、緻密な焼結体を得るためには焼結助剤を最小限の量だけ加えて焼成することが行われている。 In general, alumina has high wear resistance and corrosion resistance, so its performance can be fully demonstrated when used alone. However, since sinterability itself is poor, sintering aid is necessary to obtain a dense sintered body. Baking is performed by adding a minimum amount of the agent.
例えば、アルミナ粉末に対して0.01〜0.2質量%のマグネシア粉末と0.01〜0.2質量%のイットリア粉末とを添加し、ポリビニルアルコールを用いて混合してアルミナ粉末中にマグネシアとイットリアを均一に分散させた原料粉末を用いて1600〜2000℃の高温で焼成して透光性を有するアルミナセラミックを作製することが提案されている(例えば、特許文献1参照)。 For example, 0.01 to 0.2% by mass of magnesia powder and 0.01 to 0.2% by mass of yttria powder are added to the alumina powder, mixed with polyvinyl alcohol, and mixed with magnesia in the alumina powder. It has been proposed to produce a translucent alumina ceramic by firing at a high temperature of 1600 to 2000 ° C. using a raw material powder in which yttria is uniformly dispersed (see, for example, Patent Document 1).
また、アルミナ粉末に対して0.7〜3質量%の酸化クロム粉末及び0.05質量%以下のマグネシア粉末を含む成形体を1280℃で焼成し、次いでこの焼結体を1300〜1310℃、1000〜2000atmの条件でHIP処理を行って、酸化クロムとマグネシアを固溶せしめ、4μm以上の粗大粒が存在しない透光性のルビーを作製する方法が提案されている。
しかしながら、特許文献3の方法で作製したアルミナセラミックは、透光性を有するという利点はあるものの、マグネシウム化合物は凝集しやすいため、アルミナセラミック中にMgが均一に分散しにくいという問題があった。 However, although the alumina ceramic produced by the method of Patent Document 3 has an advantage that it has translucency, the magnesium compound easily aggregates, so that there is a problem that Mg is difficult to uniformly disperse in the alumina ceramic.
また、特許文献4に記載のアルミナセラミックは、4μm以上の粗大粒は存在せず、透光性が得られるという利点があるものの、マグネシウム化合物が均一に分散されず、焼成後にHIP処理をしても欠陥が残存し、強度が低いという問題があった。 In addition, the alumina ceramic described in Patent Document 4 has the advantage that there is no coarse particle of 4 μm or more and translucency is obtained, but the magnesium compound is not uniformly dispersed, and the HIP treatment is performed after firing. However, the defects remained and the strength was low.
したがって、本発明は、Mgの分散性を改善したアルミナセラミックとその製造方法を提供することを目的とするものである。 Accordingly, an object of the present invention is to provide an alumina ceramic with improved Mg dispersibility and a method for producing the same.
本発明の生体部材は、アルミナ粉末の全量のうち一部の量と、水酸化マグネシウム、炭酸マグネシウムおよび酸化マグネシウムのうち少なくとも一種のマグネシウム化合物粉末の全量とを用いて、前記アルミナ粉末が60〜99体積%、前記マグネシウム化合物粉末が1〜40体積%の割合となるように混合して第一のスラリーを調製する工程と、この第一のスラリーに前記アルミナ粉末の残りの量を加えて第二のスラリーを調製する工程と、この第二のスラリーから成形体を作製する工程と、この成形体を焼成する工程とを含む製造方法によって得られた生体部材であって、マグネシウムの含有量が酸化物換算で0.5質量%以下である。 The biological member of the present invention uses a part of the total amount of alumina powder and the total amount of at least one magnesium compound powder among magnesium hydroxide, magnesium carbonate and magnesium oxide, and the alumina powder is 60 to 99. A step of preparing a first slurry by mixing so that the volume percentage of the magnesium compound powder is 1 to 40 volume%; and adding the remaining amount of the alumina powder to the first slurry a step of the slurry preparation, a process of forming a shaped body from the second slurry, and a step of firing the green body to a living body member obtained by including Manufacturing method, the content of magnesium There Ru der 0.5 mass% or less in terms of oxide.
前記マグネシウム化合物粉末が水酸化マグネシウム粉末であることが好ましい。 The magnesium compound powder is preferably magnesium hydroxide powder .
前記アルミナ粉末の平均粒径が、0.3〜0.7μmであることが好ましい。 It is preferable that the average particle diameter of the alumina powder is 0.3 to 0.7 μm.
前記水酸化マグネシウム粉末の平均粒径が0.5〜10μmであり、かつBET比表面積が10〜50m2/gであることが好ましい。 The magnesium hydroxide powder preferably has an average particle diameter of 0.5 to 10 μm and a BET specific surface area of 10 to 50 m 2 / g.
前記焼成後に、高温高圧処理を施すことが好ましい。 It is preferable to perform a high-temperature and high-pressure treatment after the firing.
前記セラミック焼結体を用いた本発明の生体部材としては、人工骨頭のような、高強度が要求される無毒で生体になじみやすく、拒否反応を起こさない人工材料として人工骨、人工歯根などがある。特に、前記セラミック焼結体は生体内環境でのセラミック−セラミック摩耗特性に優れており、前記セラミック焼結体を、セラミック−セラミックの摺動面を有する人工関節に用いることができる。 Examples of the biological member of the present invention using the ceramic sintered body include artificial bones, artificial tooth roots, and the like as artificial materials such as artificial bone heads, which are non-toxic and easily adaptable to living bodies that require high strength and do not cause rejection reactions. is there. In particular, the ceramic sintered body is excellent in ceramic-ceramic wear characteristics in an in vivo environment, and the ceramic sintered body can be used for an artificial joint having a ceramic-ceramic sliding surface.
本発明は、アルミナに対してMg化合物の量が少ない場合、例えば0.5質量%以下、特に0.2質量%以下の場合、Mg化合物の量が少ないため、スラリー中でMgが均一に分散することが難しいため、Mg化合物が凝集したスラリーが得られやすく、このスラリーを用いて作製したアルミナセラミックは、Mgの凝集領域と非凝集領域とを形成し、凝集領域がボイドを形成し、耐摩耗性への悪影響が出やすいとの新規な知見に基づくものである。 In the present invention, when the amount of Mg compound is small with respect to alumina, for example, when it is 0.5% by mass or less, particularly 0.2% by mass or less, the amount of Mg compound is small, so Mg is uniformly dispersed in the slurry. Therefore, it is easy to obtain a slurry in which the Mg compound is aggregated, and the alumina ceramic produced using this slurry forms an aggregated area and a non-aggregated area of Mg, and the aggregated area forms voids. This is based on a novel finding that the adverse effect on wearability tends to occur.
また、本発明は、アルミナ粉末に対してMg化合物粉末の比率の高めた混合粉末を混合した後に、アルミナ粉末を追加して本来の組成のスラリーを調製することによって、焼結助剤のマグネシウム化合物粉末をアルミナ粉末中に均一に分散させることが容易となり、その結果、Mgの凝集領域が少なく、高強度のアルミナセラミックを製造することができる、特に微量の焼結助剤を用いた場合に顕著な効果を示すものである。 The present invention also provides a magnesium compound as a sintering aid by mixing a mixed powder having a higher ratio of Mg compound powder to alumina powder and then adding alumina powder to prepare a slurry of the original composition. It becomes easy to uniformly disperse the powder in the alumina powder, and as a result, there is little aggregation area of Mg, and it is possible to produce a high-strength alumina ceramic, especially when a small amount of sintering aid is used. This shows the effect.
本発明におけるアルミナセラミックは、Mgを含むアルミナセラミックであって、該アルミナセラミックの表面を電子線プローブマイクロアナライザで面分析した際にMgの凝集領域と、該凝集領域に隣接する非凝集領域とが観察され、該凝集領域におけるMg濃度をC1、前記非凝集領域のMg濃度をC2、前記凝集領域の面積を円換算した場合の直径をRとした時、C1/C2≧2、且つ、R≧5μmを満たす凝集領域が、0.05mm2の測定領域内において5個以下であるため、マグネシウム化合物の凝集体粗粒により生成するボイド数が低減された結果、焼結体の機械的特性(曲げ強度、耐磨耗性)が向上するという効果がある。 The alumina ceramic in the present invention is an alumina ceramic containing Mg, and when the surface of the alumina ceramic is subjected to surface analysis with an electron beam probe microanalyzer, an Mg agglomerated region and a non-aggregated region adjacent to the agglomerated region are present. And C1 / C 2 ≧ 2, when the Mg concentration in the aggregated region is C 1 , the Mg concentration in the non-aggregated region is C 2 , and the diameter when the area of the aggregated region is converted into a circle is R. The number of voids generated by the aggregate coarse particles of the magnesium compound is reduced as a result of the aggregation region satisfying R ≧ 5 μm being 5 or less in the 0.05 mm 2 measurement region. It has the effect of improving the properties (bending strength, abrasion resistance).
また、Mgの含有量が酸化物換算で0.5質量%以下であることが好ましい。焼結助剤の含有量が少ないため、アルミナ自体の特性を発揮することができる。 Moreover, it is preferable that content of Mg is 0.5 mass% or less in conversion of an oxide. Since the content of the sintering aid is small, the characteristics of alumina itself can be exhibited.
また、本発明のアルミナセラミックの製造方法は、高純度アルミナ粉末に対して、Mg化合物粉末を1〜40質量%の割合で含む第一のスラリーを調製した後、該第一のスラリーに対して、Mgの含有量が、前記第一のスラリー内の濃度よりも低濃度となるように高純度アルミナ粉末を加え、これを混合して第二のスラリーを調製し、しかる後に該第二のスラリーを用いて成形体を作製し、該成形体を焼成するため、一度分散したMg化合物粉末が再凝集することなくさらに均一に分散できるという効果がある。 Moreover, the manufacturing method of the alumina ceramic of this invention prepares the 1st slurry which contains Mg compound powder in the ratio of 1-40 mass% with respect to high purity alumina powder, Then, with respect to this 1st slurry The high-purity alumina powder is added so that the Mg content is lower than the concentration in the first slurry, and this is mixed to prepare a second slurry, and then the second slurry Since the molded body is produced using the sinter and the molded body is fired, the Mg compound powder once dispersed can be dispersed more uniformly without re-aggregation.
前記Mg化合物がMg(OH)2であるため、塩化物や硝酸塩、硫酸塩などの場合のように、焼結過程で有害なガスを発生することがないという効果がある。 Since the Mg compound is Mg (OH) 2 , there is an effect that no harmful gas is generated during the sintering process as in the case of chlorides, nitrates, sulfates and the like.
前記アルミナ粉末の平均粒径が、0.3〜0.7μmであるため、結晶粒径が均質で緻密な焼結体ができ、研磨により粒子が取れることなく平滑な表面になるという効果がある。 Since the average particle diameter of the alumina powder is 0.3 to 0.7 μm, a dense sintered body having a uniform crystal particle diameter can be formed, and there is an effect that a smooth surface is obtained without removing particles by polishing. .
前記Mg化合物粉末の平均粒径が0.5〜10μmで、BET比表面積が10〜50m2/gであるため、高い比表面積を有しており、100時間程度の解砕により粗大粒子を無くし均一分散することが可能という効果がある。 Since the Mg compound powder has an average particle size of 0.5 to 10 μm and a BET specific surface area of 10 to 50 m 2 / g, it has a high specific surface area and eliminates coarse particles by crushing for about 100 hours. There is an effect that uniform dispersion is possible.
前記焼成後に、高温高圧処理を施すため、大きなボイドを低減でき、摩耗面を平滑に保持することが容易となり、摩耗量もより少なくすることが可能である。 Since high-temperature and high-pressure treatment is performed after the firing, large voids can be reduced, the wear surface can be easily maintained, and the wear amount can be reduced.
本発明を、図を用いて説明する。図1は、アルミナセラミックの表面を電子線プローブマイクロアナライザで面分析した結果を示し、(a)は測定領域内におけるMgの分布状態を示す模式図であり、(b)は凝集領域の形状を、その面積を円換算で直径を算出し、再表示した凝集領域を示す模式図である。 The present invention will be described with reference to the drawings. FIG. 1 shows the results of surface analysis of the surface of an alumina ceramic with an electron beam probe microanalyzer, (a) is a schematic diagram showing the distribution state of Mg in the measurement region, and (b) shows the shape of the aggregation region. FIG. 4 is a schematic diagram showing an agglomerated region in which the area is calculated in terms of a circle and the diameter is calculated and displayed again.
まず、本発明において用いる電子線プローブマイクロアナライザ(EPMA)について説明する。 First, an electron beam probe microanalyzer (EPMA) used in the present invention will be described.
電子物質(試料)に電子線を照射すると、各種X線や反射電子などの種々の信号を発生する。ここで発生する特性X線は、物質を構成する元素に固有な波長をもつX線である。この特性X線を測定することで構成元素が分かり、その強度から存在割合を知ることができる。EMPAはこの原理を応用したものである。 When an electronic material (sample) is irradiated with an electron beam, various signals such as various X-rays and reflected electrons are generated. The characteristic X-ray generated here is an X-ray having a wavelength unique to the element constituting the substance. By measuring this characteristic X-ray, the constituent elements can be determined, and the existence ratio can be determined from the intensity. EMPA is an application of this principle.
具体的には、試料に電子線を照射し、照射部位から各種の信号を励起する。励起された信号の中から、任意の設定波長のX線を分光結晶で選別し、検出器によって計測することによって、元素の種類とその濃度を算出するものである。 Specifically, the sample is irradiated with an electron beam, and various signals are excited from the irradiated part. The type and concentration of the element are calculated by selecting X-rays having an arbitrary set wavelength from the excited signal with a spectroscopic crystal and measuring it with a detector.
例えば、波長分散型X線分光器によって検出されたX線パルスをもとにCRT上に二次元の拡大された走査像、すなわちX線像を表示し、試料表面の状態を記録する。また、電子プローブを試料上のX方向(CRT上での水平方向に相当)に沿って線走査させ、そのとき発生するX線の強度変化をCRTの垂直方向の振幅の変化(振幅変調)として波形、すなわちX線ラインプロファイルを表示し、線走査した部分の(分析線上の)元素の濃度分布を記録する。 For example, a two-dimensional enlarged scan image, that is, an X-ray image is displayed on the CRT based on the X-ray pulse detected by the wavelength dispersion X-ray spectrometer, and the state of the sample surface is recorded. In addition, the electron probe is scanned in the X direction on the sample (corresponding to the horizontal direction on the CRT), and the intensity change of the X-ray generated at that time is defined as a change in the vertical direction of the CRT (amplitude modulation). The waveform, that is, the X-ray line profile is displayed, and the element concentration distribution (on the analysis line) in the line scanned portion is recorded.
このようにして、すべての分析領域を特定の波長のX線強度分布であらわすことにより、特定の元素の分布状態、即ち元素濃度をマップ状に表記させることが出来る。プローブ電流(感度)は1.0×10−7A、加速電圧15kV、分析領域200μm×200μmであった。 In this way, the distribution state of a specific element, that is, the element concentration can be expressed in a map form by representing all analysis regions with an X-ray intensity distribution of a specific wavelength. The probe current (sensitivity) was 1.0 × 10 −7 A, the acceleration voltage was 15 kV, and the analysis region was 200 μm × 200 μm.
本発明においては、日本電子製JXA−8600型装置を使用し、500倍の測定倍率で試料の200μm×200μmの領域を観察し、焼結体では3×10−7Aの電流値で、成形体では1×10−7Aの電流値で観察を行った。 In the present invention, a JXA-8600 type device manufactured by JEOL Ltd. is used, a 200 μm × 200 μm region of the sample is observed at a measurement magnification of 500 times, and a sintered body is molded at a current value of 3 × 10 −7 A. The body was observed at a current value of 1 × 10 −7 A.
このようにしてMgを含むアルミナセラミックをEPMA分析で面分析をすると、図1(a)に示したようなMgの濃度分布が表示される。 When the alumina ceramic containing Mg is subjected to surface analysis by EPMA analysis, the Mg concentration distribution as shown in FIG. 1A is displayed.
本発明によれば、このようなMgの面分析結果から、測定領域1内におけるMg濃度が周囲よりも2倍以上高い凝集領域2を特定し、その凝集領域2の面積を円換算した場合の直径をRとし、凝集領域2におけるMg濃度をC1、凝集領域2に隣接する非凝集領域3のMg濃度をC2、C1/C2≧2、且つ、R≧5μmを満たす凝集領域2の数を測定した時、その数が測定面積0.05mm2の測定領域内に5個以下であることが重要である。 According to the present invention, from such a surface analysis result of Mg, an aggregation region 2 in which the Mg concentration in the measurement region 1 is twice or more higher than the surroundings is specified, and the area of the aggregation region 2 is converted into a circle. Aggregation region 2 where diameter is R, Mg concentration in aggregation region 2 is C 1 , Mg concentration in non-aggregation region 3 adjacent to aggregation region 2 is C 2 , C 1 / C 2 ≧ 2, and R ≧ 5 μm It is important that the number is 5 or less in a measurement area having a measurement area of 0.05 mm 2 .
このように、本発明のアルミナセラミック表面のMg分布を示す図1(a)には、0.05mm2の測定領域1内に、上記条件を満たす凝集領域2を4個示しているが、本発明によれば、この数が5個以下であり、図1の4個に限定されるものではない。 As described above, FIG. 1A showing the Mg distribution on the surface of the alumina ceramic of the present invention shows four agglomeration regions 2 satisfying the above conditions in a measurement region 1 of 0.05 mm 2. According to the invention, this number is 5 or less and is not limited to 4 in FIG.
円換算した凝集領域2の直径Rの最大値は、摺動部材として用いた場合に大きなボイドとならないように、5μm以下、特に4μm以下、更には3μm以下、より好適には2μm以下であることが好ましい。このように凝集領域2が出現しても、その大きさが小さければ摺動部材として用いた場合、より平滑な表面を維持することができる。 The maximum value of the diameter R of the agglomerated region 2 in terms of a circle is 5 μm or less, particularly 4 μm or less, more preferably 3 μm or less, and more preferably 2 μm or less so as not to cause a large void when used as a sliding member. Is preferred. Thus, even if the aggregation region 2 appears, if the size is small, a smoother surface can be maintained when used as a sliding member.
Mgの凝集領域2には、しばしば粗大ボイドが存在するため、凝集領域2の数を低減することによって、破壊の原因となるボイドを低減し、その結果、強度低下を防止することが可能となる。 Since there are often coarse voids in the Mg agglomerated region 2, reducing the number of agglomerated regions 2 reduces the voids that cause fracture, and as a result, it is possible to prevent a decrease in strength. .
本発明によれば、Mgの含有量は、アルミナセラミックの特徴を十分に発揮させるため、酸化物換算で0.5質量%以下、特に0.2質量%以下、更には0.1質量%以下、より好適には0.05質量%が好ましい。Mgの含有量、即ち、焼結助剤の含有量が少ないと、アルミナ自体が有する機械的特性、電気的特性、熱的特性等の良好な特性を十分に発現することができる。また、Mg化合物が焼結助剤としての役割を果たすため、0.01質量%以上、特に0.01質量%以上含まれるのが好ましい。このような割合でMgが含まれると、焼結性を向上することができる。 According to the present invention, the Mg content is 0.5% by mass or less, particularly 0.2% by mass or less, more preferably 0.1% by mass or less in terms of oxide, in order to fully exhibit the characteristics of the alumina ceramic. More preferably, 0.05 mass% is preferable. When the content of Mg, that is, the content of the sintering aid is small, good properties such as mechanical properties, electrical properties, thermal properties, and the like that alumina itself has can be sufficiently expressed. Further, since the Mg compound plays a role as a sintering aid, it is preferably contained in an amount of 0.01% by mass or more, particularly 0.01% by mass or more. When Mg is contained at such a ratio, the sinterability can be improved.
また、Mg以外にはCa、Si、Fe、Na又はKという元素及びその化合物を含むことができるが、特にこれらの総量を0.1質量%以下、特に0.05質量%以下とすることが異常粒子成長を抑制し、ボイド生成を抑えることができるという点で好ましい。 In addition to Mg, elements such as Ca, Si, Fe, Na, or K and compounds thereof can be included. In particular, the total amount of these elements may be 0.1% by mass or less, particularly 0.05% by mass or less. It is preferable in that abnormal particle growth can be suppressed and void generation can be suppressed.
Mgはその一部が固溶していても良く、また、スピネル等の化合物としてアルミナの結晶粒界に存在していても良いが、破壊源になる可能性があるため、これらの化合物は無いのが最も好ましい。 Mg may be partly dissolved, or may exist in the crystal grain boundary of alumina as a compound such as spinel, but there is no such compound because it may be a source of destruction. Is most preferred.
アルミナセラミックの平均結晶粒径は、0.3〜2μm、特に0.3〜1.5μm、更には0.3〜1μmが好ましい。アルミナ結晶が小さな結晶からなり、均質且つ緻密な焼結体ができ、研磨により大きな結晶が脱粒して、脱粒した大きな粒子でアルミナセラミックを傷つけ、大きな摩耗が生じる異常摩耗を抑制し、平滑な表面を維持できるという効果がある。 The average crystal grain size of the alumina ceramic is preferably 0.3 to 2 μm, particularly preferably 0.3 to 1.5 μm, and more preferably 0.3 to 1 μm. Alumina crystals are composed of small crystals, and a homogeneous and dense sintered body is formed. Large crystals are crushed by polishing, and the alumina ceramic is damaged by the sized large particles, suppressing abnormal wear resulting in large wear, and a smooth surface. Can be maintained.
本発明のアルミナセラミックは、高純度アルミナで、均一で微細な粒径を用いており、緻密な焼結体が得られるという特徴を有するため、摺動部品、ベアリング又はメカニカルシールという分野で好適に用いることができる。 The alumina ceramic of the present invention is a high-purity alumina, uses a uniform and fine particle size, and has a feature that a dense sintered body can be obtained. Therefore, the alumina ceramic is suitable in the field of sliding parts, bearings or mechanical seals. Can be used.
本発明のアルミナセラミックの製造方法は、凝集領域を低減するために、マグネシウム化合物粉末を高濃度でアルミナ粉末と混合して第一のスラリーを予め作製し、しかる後に、第一のスラリーに、第一のスラリー内のMg濃度よりも小さくなるようにアルミナ粉末を追加して、マグネシウム化合物粉末をスラリー中に均一に分散するものである。 In the method for producing an alumina ceramic of the present invention, in order to reduce the agglomeration region, a magnesium compound powder is mixed with alumina powder at a high concentration to prepare a first slurry, and then the first slurry is mixed with the first slurry. Alumina powder is added so as to be smaller than the Mg concentration in one slurry, and the magnesium compound powder is uniformly dispersed in the slurry.
次に、本発明のアルミナセラミックの製造方法を、焼結過程で有害なガスを発生しないMg化合物として水酸化マグネシウムを用いた一実施例を例として取り上げて説明する。 Next, the method for producing an alumina ceramic according to the present invention will be described by taking as an example an example in which magnesium hydroxide is used as an Mg compound that does not generate harmful gas during the sintering process.
まず、純度99.99%、平均粒径が0.3〜0.7μm、BET比表面積が5〜6m2/g程度の高純度アルミナ粉末を準備する。この範囲の平均粒径を有するアルミナ粉末を用いると、均質で緻密な焼結体ができ、研磨により粗大粒子が脱粒して焼結体を傷つけて異常摩耗に発展することがなく平滑な表面を維持することができる。 First, a high-purity alumina powder having a purity of 99.99%, an average particle size of 0.3 to 0.7 μm, and a BET specific surface area of about 5 to 6 m 2 / g is prepared. Using alumina powder with an average particle size in this range, a homogeneous and dense sintered body can be obtained, and a coarse surface can be removed by polishing, resulting in damage to the sintered body and development of abnormal wear. Can be maintained.
また、純度60%以上、平均粒径が0.5〜10μm、特に1〜8μm、更には2〜5μmの水酸化マグネシウム粉末を準備する。Mg(OH)2の比表面積は、10〜50m2/g、特に15〜40m2/g、更には20〜30m2/gであることが好ましい。このような平均粒径と比表面積の粉末を用いることで、より細かく、且つより均一に分散でき、有害なガス発生も回避することができる。 Further, magnesium hydroxide powder having a purity of 60% or more and an average particle diameter of 0.5 to 10 μm, particularly 1 to 8 μm, and further 2 to 5 μm is prepared. The specific surface area of Mg (OH) 2 is, 10~50m 2 / g, especially 15~40m 2 / g, more preferably a 20 to 30 m 2 / g. By using a powder having such an average particle size and specific surface area, finer and more uniform dispersion can be achieved, and generation of harmful gas can be avoided.
Mg化合物としては、塩化物や硝酸塩、硫酸塩などの場合のように、焼結過程で有害なガスを発生することがないために安全に使用でき、また、焼成炉への損傷も低減し、低コストに寄与することが可能なMg(OH)2を用いることが好ましい。 Mg compounds can be used safely because they do not generate harmful gases during the sintering process, as in the case of chlorides, nitrates, sulfates, etc., and damage to the firing furnace is reduced, It is preferable to use Mg (OH) 2 that can contribute to low cost.
上記の原料粉末を、アルミナ粉末が60〜99体積%、Mg(OH)2が1〜40体積%の割合に調合し、純水を添加し、ボールを加えて混合する。Mg(OH)2をより均一に分散させるため、特にMg(OH)2が5〜35体積%、更には10〜30体積%の割合で混合するのが好ましい。ボールとして99%以上、特に99.9%以上の高純度アルミナボールを用いることにより、不純物の混入を抑制し、さらに混合効率を高めることができる。 The above raw material powder is prepared in a proportion of 60 to 99% by volume of alumina powder and 1 to 40% by volume of Mg (OH) 2 , pure water is added, and balls are added and mixed. In order to disperse Mg (OH) 2 more uniformly, it is particularly preferable that Mg (OH) 2 is mixed in a proportion of 5 to 35% by volume, more preferably 10 to 30% by volume. By using a high-purity alumina ball of 99% or more, especially 99.9% or more as a ball, mixing of impurities can be suppressed and mixing efficiency can be further increased.
混合方法は、回転ミル等の公知の手法にて行うことができる。このように、Mg化合物を高濃度で含むスラリーを予め作製することで、Mg化合物が効果的に混合できる。 The mixing method can be performed by a known method such as a rotary mill. Thus, the Mg compound can be effectively mixed by preparing a slurry containing the Mg compound at a high concentration in advance.
マグネシウム化合物は凝集しやすいため、0.5質量%以下、特に0.2質量%以下の低濃度のマグネシウム化合物をアルミナに直接混合しても、例えば24時間混合しても、凝集粒が残り、中には粗大凝集粒が存在する。マグネシウム化合物は焼成中にアルミナと反応してスピネルを形成し、体積減少を引き起こす。この体積減少がボイド形成につながり、ひいては機械的性質(曲げ強度、耐磨耗性)を劣化する原因となる。 Magnesium compounds easily aggregate, so even if a low concentration magnesium compound of 0.5% by mass or less, particularly 0.2% by mass or less is directly mixed with alumina, for example, for 24 hours, aggregated particles remain, There are coarse aggregated grains. The magnesium compound reacts with alumina during firing to form spinel, causing volume reduction. This volume reduction leads to void formation, which in turn degrades mechanical properties (bending strength, wear resistance).
次いで、得られた第一のスラリーに対して、所定の組成になるように、高純度アルミナ粉末を追加で添加し、再度混合して第二のスラリーを作製する。このように2段階で混合することにより、0.5質量%以下の添加量であっても、焼結助剤であるMg(OH)2粉末を均一に分散させることができる。 Next, a high-purity alumina powder is additionally added to the obtained first slurry so as to have a predetermined composition and mixed again to prepare a second slurry. Thus, by mixing in two steps, Mg (OH) 2 powder, which is a sintering aid, can be uniformly dispersed even with an addition amount of 0.5% by mass or less.
得られた第二のスラリーを用いて成形体を作製する。成形方法は、金型プレス法、冷間静水圧プレス(CIP)法、ドクターブレード法等のテープ成形法、押出し法、射出成形法等の周知の方法を使用することができる。 A molded object is produced using the obtained second slurry. As the molding method, a known method such as a die pressing method, a cold isostatic pressing (CIP) method, a tape molding method such as a doctor blade method, an extrusion method, or an injection molding method can be used.
次いで、所望により成形体を所定の形状に加工し、成形体を焼成する。焼成条件は、焼成温度は1200〜1700℃、特に1300〜1600℃が好ましい。 Next, the molded body is processed into a predetermined shape as desired, and the molded body is fired. As for the firing conditions, the firing temperature is preferably 1200 to 1700 ° C, particularly preferably 1300 to 1600 ° C.
また、焼成で得られた焼結体を、高温高圧で処理することが好ましい。即ち、焼成後に高温高圧処理を施すと、さらに緻密化を促進でき、大きなボイドを小さくすることが可能となり、耐摩耗材料として用いた時、摩耗面を平滑に保つことができ、摩耗量もより少なくすることが可能となる。 Moreover, it is preferable to process the sintered compact obtained by baking at high temperature and high pressure. That is, if high-temperature and high-pressure treatment is performed after firing, densification can be further promoted, large voids can be reduced, and when used as a wear-resistant material, the wear surface can be kept smooth and the wear amount can be further increased. It can be reduced.
まず、第一のスラリーを作製した。即ち、99.99%で表1の平均粒径の高純度アルミナ粉末と、60%で表1の平均粒径及び比表面積Sの水酸化マグネシウム粉末を表1の一次混合組成となるように調合し、混合粉末に対して、水150体積%を添加し、99.9%の高純度アルミナボールを400体積%入れて回転ミルで92時間粉砕して第一のスラリーを作製した。 First, a first slurry was prepared. That is, 99.99% of the high-purity alumina powder having the average particle size shown in Table 1 and 60% of the magnesium hydroxide powder having the average particle size and specific surface area S shown in Table 1 are mixed so as to have the primary mixed composition of Table 1. Then, 150% by volume of water was added to the mixed powder, 400% by volume of 99.9% high-purity alumina balls were added, and the mixture was pulverized for 92 hours with a rotary mill to prepare a first slurry.
次いで、表1の二次混合組成となるように、上記と同じアルミナ粉末を添加し、さらに24時間混合して、第二のスラリーを作製した。 Next, the same alumina powder as described above was added so as to have the secondary mixed composition of Table 1, and further mixed for 24 hours to prepare a second slurry.
得られた第二のスラリーを乾燥した後、メッシュサイズ開口径74μmのメッシュを用いてメッシュパスを施し、98MPaで一軸成形し、表1の焼成条件で焼成を行った。次いで、所望により、アルゴンガス中、196MPa(2000kg/cm2)の圧力、1350℃の温度の条件で、HIP処理を1時間行った。 After the obtained second slurry was dried, it was subjected to a mesh pass using a mesh having a mesh size opening diameter of 74 μm, uniaxially molded at 98 MPa, and fired under the firing conditions shown in Table 1. Then, if desired, HIP treatment was performed for 1 hour in argon gas under the conditions of a pressure of 196 MPa (2000 kg / cm 2 ) and a temperature of 1350 ° C.
また、この測定領域をEPMAにてMgドットマップ分析を実施した。このときの、EPMAのプローブ電流(感度)は3.0×10−7Aである。 In addition, Mg dot map analysis was performed on this measurement region with EPMA. At this time, the probe current (sensitivity) of EPMA is 3.0 × 10 −7 A.
得られた濃度マップから、各凝集領域の面積を円換算してその直径Rを算出するとともに、各凝集領域とそれに隣接する非凝集領域においてC1及びC2を測定し、C1/C2を算出し、C1/C2≧2、且つ、R≧5μmを満たす凝集領域の数を測定した。なお、測定範囲は0.05mm2であった。結果を表1に示した。
本発明の試料No.2〜8、10〜35は、凝集領域の数が0.05mm2の測定領域において、5個以下であった。 Sample No. of the present invention. 2 to 8 and 10 to 35 were 5 or less in the measurement region where the number of aggregation regions was 0.05 mm 2 .
一方、一次混合組成のMg化合物量が0.5体積%と小さく、二次混合を行わない本発明の試料No.1は、Mg化合物の分散状態が悪く、凝集領域の数が0.05mm2の測定領域において、27個と分散状態が悪く、またMg化合物の含有量が少なすぎて焼結性が悪いため、5μmを越える粗大ボイド数が55個あった。 On the other hand, the amount of Mg compound in the primary mixture composition is as small as 0.5% by volume, and the sample No. No. 1 has a poor dispersion state of the Mg compound, and in the measurement region where the number of aggregation regions is 0.05 mm 2 , the dispersion state is bad with 27, and the content of the Mg compound is too small, so the sinterability is poor. There were 55 coarse voids exceeding 5 μm.
また、一次混合組成のMg化合物量が50体積%と大きい本発明の試料No.9は、凝集領域の数が0.05mm2の測定領域において10個と分散状態が悪く、また、Mg化合物の含有量が多すぎて焼結性が悪いため、5μmを越える粗大ボイド数が22個あった。 Sample No. 1 of the present invention in which the amount of Mg compound in the primary mixed composition is as large as 50% by volume. No. 9 has a dispersion state as bad as 10 in the measurement region where the number of aggregation regions is 0.05 mm 2 , and the content of Mg compound is too high and the sinterability is poor, so the number of coarse voids exceeding 5 μm is 22. There were.
また、JIS−T0303に基づいて実施した比摩耗量では、粗大ボイドが多い試料No.1及び試料No.9が0.30×10−10mm2/Nを越えていた。 Moreover, in the specific abrasion amount implemented based on JIS-T0303, sample No. with many coarse voids. 1 and sample no. 9 exceeded 0.30 × 10 −10 mm 2 / N.
1・・・測定領域
2・・・凝集領域
3・・・非凝集領域
C1・・・凝集領域におけるMg濃度
C2・・・非凝集領域におけるMg濃度
R・・・凝集領域の面積を円換算した場合の半
DESCRIPTION OF SYMBOLS 1 ... Measurement area | region 2 ... Aggregation area | region 3 ... Non-aggregation area | region C 1 ... Mg density | concentration C 2 in an aggregation area | region ... Mg density | concentration R in a non-aggregation area | region ... Half when converted
Claims (6)
この第一のスラリーに前記アルミナ粉末の全量の残りの量を加えて第二のスラリーを調製する工程と、
この第二のスラリーから成形体を作製する工程と、
この成形体を焼成する工程とを含む製造方法によって得られた生体部材であって、
マグネシウムの含有量が酸化物換算で0.5質量%以下であることを特徴とするアルミナセラミックからなる生体部材。 A part of the total amount of alumina powder and the total amount of at least one magnesium compound powder among magnesium hydroxide, magnesium carbonate and magnesium oxide, the alumina powder is 60 to 99% by volume, the magnesium compound powder A step of preparing the first slurry by mixing so that the ratio is 1 to 40% by volume;
Adding the remaining amount of the total amount of the alumina powder to the first slurry to prepare a second slurry;
Producing a molded body from this second slurry;
A biological member obtained by a production method including a step of firing the molded body ,
Biological part material content of magnesium is made of alumina ceramic, characterized in that more than 0.5 wt% in terms of oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004022283A JP4761715B2 (en) | 2004-01-29 | 2004-01-29 | Biomaterial, method for manufacturing the same, and artificial joint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004022283A JP4761715B2 (en) | 2004-01-29 | 2004-01-29 | Biomaterial, method for manufacturing the same, and artificial joint |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005211354A JP2005211354A (en) | 2005-08-11 |
JP4761715B2 true JP4761715B2 (en) | 2011-08-31 |
Family
ID=34905676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004022283A Expired - Fee Related JP4761715B2 (en) | 2004-01-29 | 2004-01-29 | Biomaterial, method for manufacturing the same, and artificial joint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4761715B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5607319B2 (en) * | 2009-07-16 | 2014-10-15 | 住友化学株式会社 | Method for producing aluminum titanate-based fired body |
JP2021155250A (en) * | 2020-03-26 | 2021-10-07 | 京セラ株式会社 | Ceramic structure and member for liquid crystal panel manufacturing apparatus or member for semiconductor manufacturing apparatus |
CN112919888B (en) * | 2021-03-26 | 2022-06-14 | 华南理工大学 | Alumina ceramic with HA-coated surface and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0688832B2 (en) * | 1987-03-26 | 1994-11-09 | 東陶機器株式会社 | Polycrystalline ceramic product and manufacturing method thereof |
JPH0725657A (en) * | 1993-06-24 | 1995-01-27 | Hitachi Ltd | Production of slurry for green sheet |
JPH07285065A (en) * | 1994-04-14 | 1995-10-31 | Mitsubishi Materials Corp | Aluminous carrier plate |
JP3769427B2 (en) * | 1999-09-24 | 2006-04-26 | 京セラ株式会社 | Ceramic biomaterial |
-
2004
- 2004-01-29 JP JP2004022283A patent/JP4761715B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005211354A (en) | 2005-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2520555A1 (en) | Method for producing zirconia-alumina composite ceramic material, zirconia-alumina composite granulated powder, and zirconia beads | |
EP2263988A1 (en) | Light-transmitting sintered zirconia compact, process for producing the same, and use thereof | |
JP2023138969A (en) | Zirconia sintered body and manufacturing method therefor | |
JPWO2006080473A1 (en) | Composite ceramics and manufacturing method thereof | |
JP4465173B2 (en) | Composite ceramics and manufacturing method thereof | |
CN100522870C (en) | Composite ceramic and method for producing same | |
WO2005042047A1 (en) | Biological member and method for manufacture thereof | |
JP4761715B2 (en) | Biomaterial, method for manufacturing the same, and artificial joint | |
JP4254222B2 (en) | Zirconia powder | |
JP4398840B2 (en) | Zirconia composite sintered body and biomaterial using the same | |
JP2976226B2 (en) | Manufacturing method of alumina-zirconia sintered body | |
JP2005075659A (en) | Ceramic sintered compact, method for producing the same, and biomaterial | |
JP4721635B2 (en) | Biomaterial, artificial joint using the same, and method for producing biomaterial | |
JP4443187B2 (en) | Alumina porcelain and manufacturing method thereof | |
JP4383099B2 (en) | Manufacturing method of composite ceramics | |
JP4761749B2 (en) | Biomaterial and artificial joint using the same | |
Patel et al. | Comparison of sintering and mechanical properties of hydroxyapatite and silicon-substituted hydroxyapatite | |
JP4570348B2 (en) | Biomaterial manufacturing method, biomaterial and artificial joint using the same | |
JPH09268055A (en) | Bioceramic and its production | |
WO2023042893A1 (en) | Powder composition, calcined body, sintered body, and method for producing same | |
JP4514563B2 (en) | Alumina / zirconia ceramics and process for producing the same | |
JP2006062918A (en) | Zirconia-alumina-based ceramic and method of manufacturing the same | |
Caruso et al. | High pressure compaction and densification at 1200 ºC of nano-sized ZrO2-3 mol% Y2O3 powders obtained by sol-gel process | |
JP2011136878A (en) | Method for producing zirconia-alumina composite ceramic material | |
JP2005211253A (en) | Biological member, method for manufacture thereof and artificial joint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110607 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4761715 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |