JP2005075659A - Ceramic sintered compact, method for producing the same, and biomaterial - Google Patents

Ceramic sintered compact, method for producing the same, and biomaterial Download PDF

Info

Publication number
JP2005075659A
JP2005075659A JP2003305233A JP2003305233A JP2005075659A JP 2005075659 A JP2005075659 A JP 2005075659A JP 2003305233 A JP2003305233 A JP 2003305233A JP 2003305233 A JP2003305233 A JP 2003305233A JP 2005075659 A JP2005075659 A JP 2005075659A
Authority
JP
Japan
Prior art keywords
mass
sintered body
ceramic sintered
tio
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003305233A
Other languages
Japanese (ja)
Inventor
Usou Ou
雨叢 王
Hiroaki Seno
裕明 瀬野
Kunihide Yomo
邦英 四方
Shugo Onizuka
修吾 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003305233A priority Critical patent/JP2005075659A/en
Priority to US10/927,266 priority patent/US7148167B2/en
Priority to EP04255176A priority patent/EP1510509B1/en
Priority to DE602004014689T priority patent/DE602004014689D1/en
Publication of JP2005075659A publication Critical patent/JP2005075659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high hardness and high strength ceramic sintered compact. <P>SOLUTION: The ceramic sintered compact is the one comprising Al<SB>2</SB>O<SB>3</SB>, ZrO<SB>2</SB>, SiO<SB>2</SB>, TiO<SB>2</SB>, and MgO, wherein the Al<SB>2</SB>O<SB>3</SB>content is 65 to 96 mass%, the Zr<SB>2</SB>O<SB>2</SB>content is 4 to 34.4 mass%, the SiO<SB>2</SB>content is 0.20 mass% or higher, the TiO<SB>2</SB>content is 0.22 mass% or higher, the MgO content is 0.12 mass% or higher, and the total content of SiO<SB>2</SB>, TiO<SB>2</SB>, and MgO is 0.6 to 4.5 mass%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、抗折強度を向上させたセラミックス焼結体に関するものであって、特に種々の構造部材、切削工具、医療用器具、生体用材料に好適に使用されるセラミックス焼結体およびその製法を提供する。   The present invention relates to a ceramic sintered body with improved bending strength, and particularly a ceramic sintered body suitably used for various structural members, cutting tools, medical instruments, and biomaterials, and a method for producing the same. I will provide a.

近年、アルミナ、ジルコニア系の酸化物セラミックスは、高強度、耐摩耗性及び耐食性が要求される構造部材として広く利用されている。特に、アルミナとジルコニアを一定の比率で複合化する場合は、結晶粒の微細化効果によりそれぞれの単体よりも高い強度が得られることが注目されている(例えば非特許文献1参照)。
また、上記複合材の製造コスト低減若しくは特性改善の目的で、更に種々の添加物を少量に複合化する研究が行われている。例えば、アルミナが70質量%以上の組成範囲でSiO、MgO、及びCaOを添加することにより低温での緻密化焼結を実現し、低い製造コストで耐摩耗性に優れた材料が開示されている(例えば特許文献1、特許文献2参照)。
更に、周期律表5A族金属酸化物とSiOを同時に添加して、異方性成長促進する効果による高靭性アルミナ、ジルコニア複合材料が開示されている(例えば特許文献3参照)。
In recent years, alumina and zirconia-based oxide ceramics have been widely used as structural members that require high strength, wear resistance, and corrosion resistance. In particular, when alumina and zirconia are compounded at a certain ratio, it has been noticed that a higher strength than each simple substance can be obtained due to the effect of crystal grain refinement (see, for example, Non-Patent Document 1).
In addition, for the purpose of reducing the manufacturing cost or improving the characteristics of the composite material, studies have been conducted to further compound various additives into small amounts. For example, a material that realizes densification and sintering at low temperature by adding SiO 2 , MgO, and CaO in a composition range of 70% by mass or more of alumina, and that is excellent in wear resistance at a low manufacturing cost is disclosed. (For example, refer to Patent Document 1 and Patent Document 2).
Furthermore, a high toughness alumina and zirconia composite material by the effect of simultaneously adding a group 5A metal oxide and SiO 2 in the periodic table to promote anisotropic growth is disclosed (for example, see Patent Document 3).

特開平5−206514号公報Japanese Patent Laid-Open No. 5-206514 特開平9−221354号公報Japanese Patent Laid-Open No. 9-221354 特開2000−159568号公報JP 2000-159568 A 四方良一他、「粉体および粉末冶金」、社団法人粉体粉末冶金協会、1991年4月10日、第38巻、第3号 p.57−61Ryoichi Shikata et al., “Powder and Powder Metallurgy”, Association of Powder and Powder Metallurgy, April 10, 1991, Vol. 38, No. 3 p. 57-61

しかし、前記特許文献1では、アルミナの量が60%以上になると強度が急激に低下し、高い硬度と耐摩耗性が要求される高アルミナ含有量の組成域では強度が低い問題があった。また、前記特許文献1及び特許文献2で開示した耐磨耗性アルミナ質セラミックスは液相焼結による焼結欠陥減少で耐摩耗性の改善が見られるが、強度と硬度が低いという問題があった。さらに、前記特許文献3では、アルミナの異方性成長により靭性改善効果が見られたものの、三点曲げ強度が1000MPa以下で、特許文献1で開示されたセラミックスより低く、切削工具、産業機械、医療器具用の高特性が要求される部材には満足しうる曲げ強度ではない。   However, in Patent Document 1, when the amount of alumina is 60% or more, the strength sharply decreases, and there is a problem that the strength is low in a composition region having a high alumina content that requires high hardness and wear resistance. Further, the wear-resistant alumina ceramics disclosed in Patent Document 1 and Patent Document 2 show improved wear resistance due to a reduction in sintering defects due to liquid phase sintering, but there is a problem that strength and hardness are low. It was. Further, in Patent Document 3, although an effect of improving toughness was observed by the anisotropic growth of alumina, the three-point bending strength is 1000 MPa or less, which is lower than the ceramic disclosed in Patent Document 1, cutting tools, industrial machines, It is not a satisfactory bending strength for members requiring high properties for medical devices.

本発明者らは、アルミアを主体としたAlとZrOからなる原料に一定量のSiO、TiOおよびMgOを添加して、1300℃〜1500℃という比較的低い温度範囲で焼結させることにより、結晶粒成長を効果的に抑制でき、得られた焼結体は従来の材料を超える高強度材料を得られることを見出し、本発明に至った。 The present inventors added a certain amount of SiO 2 , TiO 2 and MgO to a raw material composed mainly of aluminum and consisting of Al 2 O 3 and ZrO 2 , and baked in a relatively low temperature range of 1300 ° C. to 1500 ° C. As a result, it has been found that crystal grain growth can be effectively suppressed, and that the obtained sintered body can obtain a high-strength material that exceeds conventional materials, and has led to the present invention.

すなわち、本発明は、Al及びZrOと、添加剤であるSiO、TiO及びMgOを含むセラミックス焼結体であって、Alを65〜96質量%、ZrOを4〜34.4質量%含有して、SiOを0.20質量%以上、TiOを0.22質量%以上、及びMgOを0.12質量%以上含有し、かつSiO、TiO及びMgOの合計の含有割合が0.6〜4.5質量%であることを特徴とするセラミックス焼結体に関する発明である。 That is, the present invention is a ceramic sintered body containing Al 2 O 3 and ZrO 2 and additives SiO 2 , TiO 2, and MgO, wherein Al 2 O 3 is 65 to 96% by mass and ZrO 2 is ZrO 2 . 4 to 34.4% by mass, SiO 2 is 0.20% by mass or more, TiO 2 is 0.22% by mass or more, and MgO is 0.12% by mass or more, and SiO 2 , TiO 2 and It is an invention relating to a ceramic sintered body characterized in that the total content of MgO is 0.6 to 4.5% by mass.

本発明においては、更に
(1)前記Alの平均粒径が3μm以下、及びZrOの平均粒径が0.5μm以下であること、
(2)前記セラミックス焼結体におけるZrOの20%以上が正方晶であること、
(3)前記TiOとMgOの原子比Ti/Mgが0.5〜1.2の範囲であること、
(4)前記TiOとMgOの少なくとも一部がAl結晶に溶解して固溶体結晶を形成しており、その溶解量が合わせて該Alの0.1質量%以上に相当する量であること、
(5)前記Alの少なく一部の結晶粒内にTiとMgの酸化物若しくはこれらを含む複合酸化物粒子が分散して存在すること
が望ましい。
In the present invention, (1) the average particle diameter of the Al 2 O 3 is 3 μm or less, and the average particle diameter of ZrO 2 is 0.5 μm or less.
(2) 20% or more of ZrO 2 in the ceramic sintered body is tetragonal,
(3) The atomic ratio Ti / Mg of TiO 2 and MgO is in the range of 0.5 to 1.2,
(4) At least a part of the TiO 2 and MgO is dissolved in an Al 2 O 3 crystal to form a solid solution crystal, and the combined amount corresponds to 0.1% by mass or more of the Al 2 O 3 The amount to be
(5) It is desirable that oxides of Ti and Mg or composite oxide particles containing these are present in a small part of the crystal grains of Al 2 O 3 .

また、本発明は、Al、Zr、Si、Ti及びMgを金属として、又はこれらの金属化合物として含む原料を、これらの金属又は金属化合物を金属酸化物に換算して、セラミックス焼結体中でAlを65〜96質量%、ZrOを4〜34.4質量%含有し、更にSiO、TiO及びMgOの含有割合がそれぞれ0.20質量%以上、0.22質量%以上、及び0.12質量%以上であって、かつSiO、TiO及びMgOの合計の含有割合が0.6〜4.5質量%となるように混合して、所定形状に成形後、1300〜1500℃で焼成することを特徴とするセラミックス焼結体の製法に関する発明である。
本発明においては、1300〜1500℃での焼成を酸化雰囲気で行い、更に前記焼成温度よりも60℃以上低い温度で還元雰囲気において熱処理する工程を有することが望ましい。
Further, the present invention provides a raw material containing Al, Zr, Si, Ti and Mg as metals or these metal compounds, in a ceramic sintered body by converting these metals or metal compounds into metal oxides. Al 2 O 3 is contained in an amount of 65 to 96% by mass, ZrO 2 is contained in an amount of 4 to 34.4% by mass, and the content ratios of SiO 2 , TiO 2 and MgO are 0.20% by mass or more and 0.22% by mass or more, respectively. And 0.12% by mass or more, and the total content of SiO 2 , TiO 2, and MgO is mixed so as to be 0.6 to 4.5% by mass, and after forming into a predetermined shape, 1300 It is invention regarding the manufacturing method of the ceramic sintered compact characterized by baking at -1500 degreeC.
In the present invention, it is desirable to have a step of performing firing at 1300 to 1500 ° C. in an oxidizing atmosphere, and further heat-treating in a reducing atmosphere at a temperature lower than the firing temperature by 60 ° C. or more.

更に、本発明は、Al及びZrOと、添加剤であるSiO、TiO及びMgOからなるセラミックス焼結体であって、Alを65〜96質量%、ZrOを4〜34.4質量%含有し、更にSiO、TiO及びMgOをそれぞれ0.20質量%以上、0.22質量%以上、及び0.12質量%以上含有して、かつSiO、TiO及びMgOの合計の含有割合が0.6〜4.5質量%であるセラミックス焼結体より作製された生体用材料に関する発明である。 Furthermore, the present invention is a ceramic sintered body comprising Al 2 O 3 and ZrO 2 and additives SiO 2 , TiO 2 and MgO, wherein Al 2 O 3 is 65 to 96% by mass and ZrO 2 is ZrO 2 . 4 to 34.4% by mass, SiO 2 , TiO 2 and MgO are further contained by 0.20% by mass, 0.22% by mass and 0.12% by mass, respectively, and SiO 2 , TiO It is an invention relating to a biomaterial manufactured from a ceramic sintered body having a total content ratio of 2 and MgO of 0.6 to 4.5% by mass.

本発明のセラミックス焼結体は、Alの含有割合が65〜96質量%、ZrOの含有割合が4〜34.4質量%であり、更にSiOの含有割合が0.20質量%以上、TiOの含有割合が0.22質量%以上、及びMgOの含有割合が0.12質量%以上であって、かつSiO、TiO及びMgOの合計の含有割合が0.6〜4.5質量%であることを特徴とする。
本発明のセラミックス焼結体は、上記組成範囲のAlとZrOに添加剤としてSiO、TiOおよびMgOを一定割合含有させることにより、焼結の際にAlとZrOの結晶粒成長を抑制しながら、低い温度条件で焼結体を緻密化でき、微粒、高密度の組織形成により高強度化の実現が可能となる。
In the ceramic sintered body of the present invention, the content ratio of Al 2 O 3 is 65 to 96 mass%, the content ratio of ZrO 2 is 4 to 34.4 mass%, and the content ratio of SiO 2 is 0.20 mass%. %, The content ratio of TiO 2 is 0.22 mass% or more, and the content ratio of MgO is 0.12 mass% or more, and the total content ratio of SiO 2 , TiO 2 and MgO is 0.6 to It is 4.5 mass%.
Ceramics sintered body of the present invention, by the SiO 2, TiO 2 and MgO is constant percentage contained as an additive to Al 2 O 3 and ZrO 2 in the above composition range, Al 2 O 3 during sintering and ZrO The sintered body can be densified under a low temperature condition while suppressing the growth of crystal grains 2 and high strength can be realized by forming fine grains and a high-density structure.

本発明のセラミックス焼結体は、その焼結体におけるAlの平均粒径が3μm以下で、ZrOの平均粒径が0.5μm以下であることが好ましい。また、ZrO総量の少なくとも20%以上が正方晶である焼結体であることが好ましい。これらにより相変態強化効果を有効に発現することができる。
また、前記添加剤の中でTiOとMgOの原子比(Ti/Mg)が0.5〜1.2の範囲のものが好ましい。これにより、強度低下の原因となる化合物の形成を抑制でき、より高強度化の焼結体を得ることが可能となる。
更に、前記TiOとMgOの少なくとも一部がAl結晶に溶解して固溶体結晶を形成しており、その溶解量が合わせて該Alの0.1質量%以上に相当する量とすることが望ましい。これによりAl結晶が固溶体形成により強化される。
更にまた、前記Alの少なく一部の結晶粒内にTiあるいはMgの酸化物若しくは複合酸化物粒子が分散して存在することが望ましい。
TiあるいはMgの酸化物若しくは複合酸化物粒子の分散強化効果によりセラミックス焼結体の強度と靭性を一層向上させることが可能となる。
The ceramic sintered body of the present invention preferably has an average particle diameter of Al 2 O 3 of 3 μm or less and an average particle diameter of ZrO 2 of 0.5 μm or less. Moreover, it is preferable that it is a sintered body in which at least 20% or more of the total amount of ZrO 2 is tetragonal. By these, the phase transformation strengthening effect can be expressed effectively.
Among the additives, those having an atomic ratio (Ti / Mg) of TiO 2 to MgO in the range of 0.5 to 1.2 are preferable. Thereby, formation of the compound causing the strength reduction can be suppressed, and a sintered body with higher strength can be obtained.
Furthermore, at least a part of the TiO 2 and MgO is dissolved in the Al 2 O 3 crystal to form a solid solution crystal, and the combined amount corresponds to 0.1% by mass or more of the Al 2 O 3. The amount is desirable. Thereby, the Al 2 O 3 crystal is strengthened by solid solution formation.
Furthermore, it is desirable that Ti or Mg oxide or composite oxide particles be dispersed in a small part of the crystal grains of Al 2 O 3 .
The strength and toughness of the ceramic sintered body can be further improved by the dispersion strengthening effect of Ti or Mg oxide or composite oxide particles.

本発明のセラミックス焼結体の製法は、Al、Zr、Si、Ti及びMgを金属として、又はこれらの金属化合物として含む原料を、これらの金属又は金属化合物を金属酸化物に換算して、セラミックス焼結体中でAlを65〜96質量%、ZrOを4〜34.4質量%含有し、更にSiO、TiO及びMgOの含有割合がそれぞれ0.20質量%以上、0.22質量%以上、及び0.12質量%以上であって、SiO、TiO及びMgOの合計の含有割合が0.6〜4.5質量%となるように混合して、所定形状に成形後、1300〜1500℃で焼成することを特徴とする。
本発明においては特に、前記酸化雰囲気で得られた上記焼結体を、更に前記焼成温度よりも60℃以上低い温度で還元雰囲気において熱処理する工程を有することが望ましい。このような条件で焼結することにより、TiとMgの酸化物がAlでその溶解度が変化し、Alとは異なる化合物粒子がAlの結晶粒内に析出することが可能となる。
本発明のセラミックス焼結体は、人工骨頭のような、高強度が要求される無毒で生体になじみやすく、拒否反応を起こさない人工材料として人工骨、人工歯根などの生体用材料に好適に使用される。
The method for producing a ceramic sintered body according to the present invention is obtained by converting a raw material containing Al, Zr, Si, Ti, and Mg as a metal or these metal compounds into a ceramic by converting these metals or metal compounds into metal oxides. The sintered body contains 65 to 96% by mass of Al 2 O 3 and 4 to 34.4% by mass of ZrO 2 , and the content ratio of SiO 2 , TiO 2 and MgO is 0.20% by mass or more, 0 .22 mass% or more, and 0.12 mass% or more, and the total content of SiO 2 , TiO 2 and MgO is mixed so as to be 0.6 to 4.5 mass% to obtain a predetermined shape It is characterized by firing at 1300-1500 ° C. after molding.
In the present invention, in particular, it is desirable to further include a step of heat-treating the sintered body obtained in the oxidizing atmosphere in a reducing atmosphere at a temperature lower than the firing temperature by 60 ° C. or more. By sintering under such conditions, oxides of Ti and Mg whose solubility is changed by Al 2 O 3, different compound particles are precipitated in the crystal grains of Al 2 O 3 is the Al 2 O 3 It becomes possible.
The ceramic sintered body of the present invention is suitably used as a biomaterial such as an artificial bone and an artificial tooth root as an artificial material such as an artificial bone head, which is non-toxic and easily adaptable to a living body, which does not cause a rejection reaction. Is done.

本発明により、組織微細化、高緻密化、相変態強化に加えて、固溶強化、粒子分散強化の効果をAl−ZrO系複合材で発現でき、高硬度、高強度のセラミックス焼結体の提供が可能となる。 According to the present invention, the effect of solid solution strengthening and particle dispersion strengthening can be expressed by Al 2 O 3 —ZrO 2 composite material in addition to refinement of structure, densification, and phase transformation strengthening, and high hardness and high strength ceramics A sintered body can be provided.

通常Al−ZrO系複合系では、Alの含有量が多いほどヤング率、硬度が高くなる反面、焼成温度が高いことによる粒成長が材料の強度を低下させる。しかし、Al−ZrO系原料粉末にSiO、TiO及びMgO原料粉末を添加して焼成すると、共晶点が1300℃以下になり、材料の焼結が大きく促進され、従来行われていた温度よりも低い温度でも組織が微細に保たれながら高い緻密性の焼結体が得られるようになる。
上記高強度を得る特徴は、Al65質量%以上の高ヤング率、高硬度の組成において効果的に発現される。
従って、本発明のセラミックス焼結体において、Alの含有割合は65質量%以上、好ましくは70%質量以上であり、一方、Alの含有割合は96質量%以下、好ましくは90質量%以下、特に好ましくは85質量%以下である。上記65〜96質量%の範囲とすることにより、高強度かつ高硬度という効果が得られる。
また、ZrOの含有割合は4質量%以上、好ましくは10質量%以上、特に好ましくは15質量%以上であり、一方、ZrOの含有割合は34.4質量%以下、好ましくは30質量%以下、特に好ましくは25質量%以下である。上記4〜34.4質量%の範囲とすることにより、粒径微細化という効果が得られる。
Usually, in the Al 2 O 3 —ZrO 2 -based composite system, the higher the content of Al 2 O 3 , the higher the Young's modulus and hardness, but the grain growth due to the high firing temperature reduces the strength of the material. However, when SiO 2 , TiO 2 and MgO raw material powders are added to the Al 2 O 3 —ZrO 2 raw material powder and fired, the eutectic point becomes 1300 ° C. or less, and the sintering of the material is greatly promoted. A highly dense sintered body can be obtained while maintaining a fine structure even at a temperature lower than the known temperature.
The characteristics for obtaining the high strength are effectively expressed in a composition having a high Young's modulus and a high hardness of 65% by mass or more of Al 2 O 3 .
Therefore, in the ceramic sintered body of the present invention, the content ratio of Al 2 O 3 is 65% by mass or more, preferably 70% by mass or more, while the content ratio of Al 2 O 3 is 96% by mass or less, preferably It is 90 mass% or less, Most preferably, it is 85 mass% or less. By setting the content in the range of 65 to 96% by mass, the effects of high strength and high hardness can be obtained.
The content ratio of ZrO 2 is 4% by mass or more, preferably 10% by mass or more, particularly preferably 15% by mass or more, while the content ratio of ZrO 2 is 34.4% by mass or less, preferably 30% by mass. Hereinafter, it is particularly preferably 25% by mass or less. By setting the content in the range of 4 to 34.4% by mass, the effect of reducing the particle size can be obtained.

また、上記したように、例えばAlとZrO原料にSiO、TiO及びMgO原料を添加して焼成する際の共晶点を1300℃以下とするには、前記SiOの含有割合は、0.20質量%以上、好ましくは0・4質量%以上、TiOの含有割合は、0.22質量%以上、好ましくは0.3質量%以上、及びMgOの含有割合は、0.12質量%以上、好ましくは0.2質量%以上である。
SiO、TiO及びMgOの含有割合がそれぞれ前記0.20質量%未満、0.22質量%未満、及び0.12質量%未満では、焼結温度で形成された液相の粘度が高くなる為焼結促進効果が小さくなる。
尚、SiO、TiO及びMgOの合計の含有割合が0.6〜4.5質量%、好ましくは1.0〜3.0質量%である。
該範囲とすることにより、高緻密化と微粒組織形成という効果が得られる。
Further, as described above, for example, the eutectic point of time of firing by adding SiO 2, TiO 2 and MgO raw material Al 2 O 3 and ZrO 2 raw material 1300 ° C. or less, the content of the SiO 2 The ratio is 0.20 mass% or more, preferably 0.4 mass% or more, the content ratio of TiO 2 is 0.22 mass% or more, preferably 0.3 mass% or more, and the content ratio of MgO is 0 .12% by mass or more, preferably 0.2% by mass or more.
When the content ratio of SiO 2 , TiO 2 and MgO is less than 0.20% by mass, less than 0.22% by mass and less than 0.12% by mass, respectively, the viscosity of the liquid phase formed at the sintering temperature becomes high. Therefore, the sintering promotion effect is reduced.
Incidentally, SiO 2, total content ratio of the TiO 2 and MgO are 0.6 to 4.5 wt%, preferably from 1.0 to 3.0 wt%.
By setting it as this range, the effect of high densification and fine grain formation can be obtained.

本発明のセラミック焼結体は、上記組成中のAlの一部をCrによって置換して固溶体を形成するもしくはZrOの一部をHfOによって置換して固溶体を形成することにより硬度を改善することも可能である。また、粒成長抑制する目的、若しくは結晶の形状異方性成長を促進する目的で他の化合物を添加することも可能である。 Ceramic sintered body of the present invention forms a solid solution with part of that or ZrO 2 form a solid solution by substituting part of Al 2 O 3 by Cr 2 O 3 in the composition was replaced by HfO 2 Therefore, it is possible to improve the hardness. It is also possible to add other compounds for the purpose of suppressing grain growth or promoting the shape anisotropic growth of crystals.

次に、本発明のセラミックス焼結体の好ましい形態について説明する。
(1)セラミック焼結体の高強度特性を得るには、上記焼結体中のAlの平均粒径は好ましくは3μm以下、特に好ましくは2μm以下、ZrOの平均粒径は好ましくは0.5μm以下、特に好ましくは0.3μm以下である。このような平均粒径とすることにより微粒化による強度向上だけでなく、ZrOの微細、均一分散により相変態強化効果を大きくすることが可能となる。
(2)本発明のセラミックス焼結体中で、前記ZrO粒子の20%以上、好ましくは40%以上を正方晶とすることが好ましい。ZrOに、Y、Ce、Mg、Caなど種々の安定化剤を添加して、正方晶を室温においても準安定化の状態で存在させることは可能ではある。特にこれらの安定化剤を少量添加した場合、例えば、ZrOに対して、2mol%以下のYを添加すると、組織微粒化により単斜晶への相変態を抑制し、応力下での相変態発生のポテシャルが高く、相変態強化効果が大きくなる。
Next, the preferable form of the ceramic sintered compact of this invention is demonstrated.
(1) In order to obtain high strength characteristics of the ceramic sintered body, the average particle diameter of Al 2 O 3 in the sintered body is preferably 3 μm or less, particularly preferably 2 μm or less, and the average particle diameter of ZrO 2 is preferably Is 0.5 μm or less, particularly preferably 0.3 μm or less. By setting such an average particle size, not only the strength improvement by atomization but also the effect of strengthening the phase transformation can be increased by the fine and uniform dispersion of ZrO 2 .
(2) In the ceramic sintered body of the present invention, 20% or more, preferably 40% or more of the ZrO 2 particles are preferably tetragonal. Various stabilizers such as Y, Ce, Mg, and Ca can be added to ZrO 2 so that the tetragonal crystals can exist in a metastable state even at room temperature. In particular, when a small amount of these stabilizers are added, for example, when 2 mol% or less of Y 2 O 3 is added to ZrO 2 , the phase transformation to monoclinic crystals is suppressed by the atomization of the structure, and under stress The phase transformation occurrence potential is high, and the effect of strengthening the phase transformation is increased.

(3)本発明のセラミックス焼結体は、前記組成範囲で、TiOとMgOの組成比は原子比(Ti/Mg)で0.5〜1.2の範囲とすることが好ましい。原子比(Ti/Mg)が前記0.5以上のときに焼成温度で液相の粘度が高くなるのをより効果的に抑制でき、良好な焼結促進効果が得られる。また、原子比(Ti/Mg)が前記1.2以下のときにTiOとAlとが反応し熱膨張係数の異方性が大きいAlTiO相が生成するのを抑制し、強度低下を防止できる。材料の焼結性向上およびAlTiO相生成を抑える見地から、原子比(Ti/Mg)が0.7〜1.0の範囲であることが特に好ましい。
TiとMgの原子比が前記範囲であるときに、同時にAl結晶により効果的に固溶するという効果も得られる。
(4)前記TiOとMgOがAl結晶に溶解して固溶体結晶を形成することにより、焼結後の粒界相を減少して硬度を上げるとともに、Al結晶を強化し、強度を向上することは本発明のセラミックス焼結体の好ましい形態の1つである。該Al結晶へのTiOとMgOの溶解量が少なければ上記効果が小さいので、前記組成中TiOとMgOが合わせて該Alの0.1質量%以上に相当する量がAl結晶に溶解していることが好ましい。この場合、該Alの0.5質量%以上に相当する量が該Al結晶に溶解していることが特に好ましい。
(3) In the ceramic sintered body of the present invention, the composition ratio of TiO 2 and MgO is preferably in the range of 0.5 to 1.2 in terms of atomic ratio (Ti / Mg). When the atomic ratio (Ti / Mg) is 0.5 or more, an increase in the viscosity of the liquid phase at the firing temperature can be more effectively suppressed, and a good sintering acceleration effect can be obtained. Further, when the atomic ratio (Ti / Mg) is 1.2 or less, TiO 2 and Al 2 O 3 react with each other to suppress the formation of an Al 2 TiO 5 phase having a large thermal expansion coefficient anisotropy. , Strength reduction can be prevented. From the viewpoint of suppressing the sinterability of the material and suppressing the generation of Al 2 TiO 5 phase, the atomic ratio (Ti / Mg) is particularly preferably in the range of 0.7 to 1.0.
When the atomic ratio of Ti and Mg is within the above range, the effect of effective solid solution with the Al 2 O 3 crystal is also obtained.
(4) The TiO 2 and MgO dissolve in the Al 2 O 3 crystal to form a solid solution crystal, thereby reducing the grain boundary phase after sintering and increasing the hardness, and strengthening the Al 2 O 3 crystal. Improving the strength is one of the preferred forms of the ceramic sintered body of the present invention. Since the Al 2 O 3 TiO 2 and the dissolved amount is less if the effect of MgO on the crystal is small, the amount of said TiO 2 and MgO in the composition is combined equivalent to more than 0.1% by weight of the Al 2 O 3 Is preferably dissolved in the Al 2 O 3 crystal. In this case, it is particularly preferred that an amount equivalent to more than 0.5% by weight of the Al 2 O 3 is dissolved in the Al 2 O 3 crystal.

(5)本発明の好ましい他の態様は、前記Alの少なく一部の結晶粒内にTiとMgの酸化物若しくはこれらを含む複合酸化物粒子を分散させることである。前記TiとMgの酸化物若しくはこれらを含む複合酸化物がAl結晶に溶解して形成した固溶体を、溶解量が少ない条件下では析出し、例えば、TiO、MgAlの微粒子がAlの結晶粒内に分散した組織を形成する。これにより、微粒子分散の強化効果で材料の強度を大幅に向上できる。上記微粒子のサイズについては、長軸0.2μm以下が好ましく、0.1μm以下が特に好ましい。 (5) Another preferable aspect of the present invention is to disperse oxides of Ti and Mg or composite oxide particles containing these in a small part of the crystal grains of Al 2 O 3 . The solid solution formed by dissolving the oxide of Ti and Mg or a composite oxide containing these in an Al 2 O 3 crystal is precipitated under a condition where the amount of dissolution is small. For example, fine particles of TiO 2 and MgAl 2 O 4 Forms a structure dispersed in the crystal grains of Al 2 O 3 . Thereby, the intensity | strength of material can be improved significantly by the reinforcement effect of microparticle dispersion | distribution. The size of the fine particles is preferably 0.2 [mu] m or less, and particularly preferably 0.1 [mu] m or less.

本発明のセラミックス焼結体は、種々の公知のセラミックス原料を用いて作製することができる。本発明のセラミックス焼結体の製法は、先ず、原料を所定の割合で混合し、所定形状に成形する。ここでいう原料とは、酸化物、金属、炭酸塩、水酸化物などの塩類等を粉末あるは水溶液等して使用することが可能である。
粉末として使用する場合その平均粒径は、1.0μm以下が好ましい。
また、成形には、プレス成形、鋳込み、冷間静水圧成形、或いは冷間静水圧処理などの成形法を使用可能である。次に、本発明によれば、1300〜1500の温度範囲で焼成することが重要である。上記焼結温度が1300℃未満であると緻密な焼結体が得られず、また1500℃を超えると、結晶粒成長が発生するため、いずれの場合も高強度の焼結体は得られにくい。上記の見地から、本発明の焼結体は特に1350〜1450℃で焼成されることが望ましい。また、本発明では、この焼成後に、上記焼成温度(1350〜1450℃)よりも60℃以上低い温度で熱間静水圧焼成を行うことが望ましい。更には、この熱間静水圧焼成後に、更に前記焼成温度(1350〜1450℃)よりも60℃以上低い温度で還元雰囲気において熱処理することが好ましい。
The ceramic sintered body of the present invention can be produced using various known ceramic raw materials. In the method for producing a ceramic sintered body of the present invention, first, raw materials are mixed at a predetermined ratio and formed into a predetermined shape. The raw material here can be used as a powder or an aqueous solution of salts such as oxides, metals, carbonates and hydroxides.
When used as a powder, the average particle size is preferably 1.0 μm or less.
For the molding, a molding method such as press molding, casting, cold isostatic pressing, or cold isostatic pressing can be used. Next, according to the present invention, it is important to bake in a temperature range of 1300 to 1500. If the sintering temperature is less than 1300 ° C., a dense sintered body cannot be obtained, and if it exceeds 1500 ° C., crystal grain growth occurs, and in either case, a high-strength sintered body is difficult to obtain. . From the above viewpoint, the sintered body of the present invention is particularly preferably fired at 1350 to 1450 ° C. Moreover, in this invention, after this baking, it is desirable to perform hot isostatic baking at the temperature lower 60 degreeC or more than the said baking temperature (1350-1450 degreeC). Furthermore, after this hot isostatic firing, it is preferable to perform heat treatment in a reducing atmosphere at a temperature lower by 60 ° C. or more than the firing temperature (1350 to 1450 ° C.).

上記の焼成は酸化性雰囲気、例えば大気中、或いは一定の酸素分圧を有する混合ガス雰囲気で行うと、TiOとMgがAl結晶粒内に溶解する。
本発明によれば、このようにして得られた焼結体を、好ましくは前記焼成温度よりも60℃以上低い温度、特に好ましくは1100〜1350℃で還元雰囲気において熱処理することにより、Tiの原子価が4価から3価に変化してTiOの溶解度が増加し、その結果Mgの溶解度が減少するため、Alの結晶粒内にMgが含まれた化合物、MgAlが析出する。これにより本発明の微粒子分散強化のセラミックス焼結体が得られる。
本発明のセラミックス焼結体は、高硬度及び高強度という特性を有するので、種々の構造部材、摺動部材、切削工具に使用できる。特に、人工骨頭のような、安定性、高強度、耐磨耗性が要求される生体用材料に好適に使用される。
When the above baking is performed in an oxidizing atmosphere, for example, the air or a mixed gas atmosphere having a constant oxygen partial pressure, TiO 2 and Mg are dissolved in the Al 2 O 3 crystal grains.
According to the present invention, the thus obtained sintered body is preferably heat-treated in a reducing atmosphere at a temperature lower than the firing temperature by 60 ° C. or more, particularly preferably 1100 to 1350 ° C. Since the solubility of TiO 2 increases and the solubility of Mg decreases as a result of the change from tetravalent to trivalent, the MgAl 2 O 4 compound, MgAl 2 O 4 , is included in the Al 2 O 3 crystal grains. Precipitate. As a result, the ceramic sintered body with enhanced dispersion of fine particles of the present invention can be obtained.
Since the ceramic sintered body of the present invention has characteristics of high hardness and high strength, it can be used for various structural members, sliding members, and cutting tools. In particular, it is suitably used for biomaterials that require stability, high strength, and wear resistance, such as artificial bone heads.

純度が99.9質量%で平均結晶粒径0.5μmのAl粉末と、純度が99.9質量%で平均粒径0.2μmのZrO粉末、Yの含有割合がそれぞれ0、1.5、2、3mol%の準安定化ZrO、および純度99.5質量%以上で、平均粒径0.5〜1.0μmのSiO、TiOおよびMg(OH)を表1に示す割合でイソプロピルアルコールの溶媒混合後、圧力100MPaで成形し、その後300MPaで冷間静水圧処理した。これを表1に示す温度で大気中5時間焼成し、一部の試料については更に表1に示す温度(HIP温度)でAr−O(O濃度:20容積%)混合ガス雰囲気中で200MPaの熱間静水圧処理を行った。更に、1部の試料については表1に示す温度(水素処理温度)下に水素雰囲気中で5時間熱処理した。 Al 2 O 3 powder having a purity of 99.9% by mass and an average crystal grain size of 0.5 μm, a ZrO 2 powder having a purity of 99.9% by mass and an average grain size of 0.2 μm, and a content ratio of Y 2 O 3 Metastable ZrO 2 of 0 , 1.5, 2 and 3 mol%, respectively, and SiO 2 , TiO 2 and Mg (OH) 2 having a purity of 99.5% by mass or more and an average particle size of 0.5 to 1.0 μm. After mixing the solvent of isopropyl alcohol at the ratio shown in Table 1, it was molded at a pressure of 100 MPa, and then cold isostatically treated at 300 MPa. This was baked in the air at the temperature shown in Table 1 for 5 hours, and some samples were further heated at the temperature shown in Table 1 (HIP temperature) in an Ar—O 2 (O 2 concentration: 20% by volume) mixed gas atmosphere. A hot isostatic pressure treatment of 200 MPa was performed. Further, one part of the sample was heat-treated for 5 hours in a hydrogen atmosphere at the temperature shown in Table 1 (hydrogen treatment temperature).

得られた焼結体の破断面の走査型電子顕微鏡写真よりAlとZrOの結晶粒径を測定した。
また、X線回折強度より全ZrO中の正方晶ZrOの比率を計算した。計算方法を以下に示す。
正方晶比率(%)=I/(Im1+Im2+I
ここで、I:正方晶(111)面のX線回折強度
m1:単斜晶(111)面のX線回折強度
m2:単斜晶(−11−1)面のX線回折強度
なお、一部の試料に対し、Alの格子定数測定によりTiOとMgOの溶解量を推定した。また、水素雰囲気で熱処理した試料を透過型電子顕微鏡でMgAl微粒子が結晶粒内に析出分散していることを確認した。
上記の試料を三点曲げ試験およびビッカース硬度を測定し、上記組織構造解析の結果と合わせて表2に示した。
The crystal grain sizes of Al 2 O 3 and ZrO 2 were measured from scanning electron micrographs of the fracture surface of the obtained sintered body.
Moreover, to calculate the tetragonal ZrO 2 in the ratio of the total ZrO 2 from X-ray diffraction intensity. The calculation method is shown below.
Tetragonal ratio (%) = I t / (I m1 + I m2 + I t )
Here, I t : X-ray diffraction intensity of tetragonal (111) plane I m1 : X-ray diffraction intensity of monoclinic (111) plane I m2 : X-ray diffraction intensity of monoclinic (-11-1) plane For some samples, the dissolved amounts of TiO 2 and MgO were estimated by measuring the lattice constant of Al 2 O 3 . Moreover, it was confirmed that the MgAl 2 O 4 fine particles were precipitated and dispersed in the crystal grains of the sample heat-treated in a hydrogen atmosphere using a transmission electron microscope.
The sample was measured for a three-point bending test and Vickers hardness, and the results are shown in Table 2 together with the results of the structure analysis.

Figure 2005075659
Figure 2005075659

Figure 2005075659
Figure 2005075659

表1,2から分かるように、本発明に基いたセラミックス焼結体は、抗折強度が1300MPa以上、ビッカース硬度が1700Hv以上の高強度、高硬度を示した。特に、試料No.20〜23は、微粒子分散強化の効果が加わり、抗折強度が1700MPa以上、ビッカース硬度が1800Hv以上の優れた特性を示した。
これに対して試料No.6は、SiO、TiOおよびMgOを添加せず、試料No.7は上記添加量が本発明より少なく、試料No.8はSiOの量が少ないため、何れも焼成温度が高くなり、結晶粒成長により強度と硬度が低下した。また、試料No.13は上記添加量が多すぎたため、粒界相が多く形成することにより低強度、低硬度であった。
As can be seen from Tables 1 and 2, the ceramic sintered body based on the present invention exhibited a high strength and a high hardness with a bending strength of 1300 MPa or more and a Vickers hardness of 1700 Hv or more. In particular, sample no. Nos. 20 to 23 exhibited an excellent characteristic that the effect of strengthening the fine particle dispersion was added, the bending strength was 1700 MPa or more, and the Vickers hardness was 1800 Hv or more.
In contrast, sample no. No. 6 does not add SiO 2 , TiO 2, and MgO. No. 7 has a smaller amount of addition than the present invention. In No. 8, since the amount of SiO was small, the firing temperature was high, and the strength and hardness were lowered due to crystal grain growth. Sample No. No. 13 had a low strength and a low hardness due to the formation of a large number of grain boundary phases because the addition amount was too large.

表1示すNo.6、16と21の材料を用い、人工骨頭を作製した。60回転/min、荷重50kgの条件で同材質の臼との1000h摩耗試験の結果を表3に示す。本発明以外の試料No.6に比べ、本発明の試料No.16と21は摩耗量が小さく、摩耗後の表面状態良好であることが分かる。   No. shown in Table 1. Artificial bone heads were prepared using materials 6, 16, and 21. Table 3 shows the result of a 1000 h wear test with a mortar made of the same material under the conditions of 60 rotations / min and a load of 50 kg. Sample No. other than the present invention. Compared to sample No. 6, sample No. 16 and 21 show that the amount of wear is small and the surface condition after wear is good.

Figure 2005075659
Figure 2005075659

本発明で得られるセラミックス焼結体は、種々の構造部材、切削工具、生体用材料に好適に使用される。   The ceramic sintered body obtained by the present invention is suitably used for various structural members, cutting tools, and biomaterials.

Claims (9)

Al及びZrOと、添加剤であるSiO、TiO及びMgOからなるセラミックス焼結体であって、Alを65〜96質量%、ZrOを4〜34.4質量%含有して、SiOを0.20質量%以上、TiOを0.22質量%以上、及びMgOを0.12質量%以上含有し、かつSiO、TiO及びMgOの合計の含有割合が0.6〜4.5質量%であることを特徴とするセラミックス焼結体。 A ceramic sintered body comprising Al 2 O 3 and ZrO 2 and additives SiO 2 , TiO 2 and MgO, 65 to 96% by mass of Al 2 O 3 and 4 to 34.4% by mass of ZrO 2. %, SiO 2 is 0.20% by mass or more, TiO 2 is 0.22% by mass or more, and MgO is 0.12% by mass or more, and the total content of SiO 2 , TiO 2 and MgO Is a ceramic sintered body characterized by being 0.6 to 4.5 mass%. 前記Alの平均粒径が3μm以下、及びZrOの平均粒径が0.5μm以下であることを特徴とする請求項1記載のセラミックス焼結体。 2. The ceramic sintered body according to claim 1, wherein the average particle diameter of the Al 2 O 3 is 3 μm or less and the average particle diameter of ZrO 2 is 0.5 μm or less. 前記セラミックス焼結体におけるZrOの20%以上が正方晶であることを特徴とする請求項1又は2記載のセラミックス焼結体。 The ceramic sintered body according to claim 1 or 2, wherein 20% or more of ZrO 2 in the ceramic sintered body is a tetragonal crystal. 前記TiOとMgOの原子比Ti/Mgが0.5〜1.2の範囲であることを特徴とする請求項1乃至3記載のセラミックス焼結体。 4. The ceramic sintered body according to claim 1, wherein the atomic ratio Ti / Mg of TiO 2 and MgO is in the range of 0.5 to 1.2. 5. 前記TiOとMgOの少なくとも一部がAl結晶に溶解して固溶体結晶を形成しており、その溶解量が合計で該Alの0.1質量%以上に相当する量であることを特徴とする請求項1乃至4記載のセラミックス焼結体。 At least a part of the TiO 2 and MgO is dissolved in an Al 2 O 3 crystal to form a solid solution crystal, and the total dissolved amount is equivalent to 0.1% by mass or more of the Al 2 O 3. The ceramic sintered body according to claim 1, wherein the ceramic sintered body is provided. 前記Alの少なく一部の結晶粒内にTiとMgの酸化物若しくはこれらが含まれる複合酸化物粒子が分散して存在することを特徴とする請求項1乃至4記載のセラミックス焼結体。 5. The ceramic sintered body according to claim 1, wherein Ti and Mg oxides or composite oxide particles containing these are dispersed in at least some of the crystal grains of Al 2 O 3. body. Al、Zr、Si、Ti及びMgを金属として、又はこれらの金属化合物として含む原料を、これらの金属又は金属化合物を金属酸化物に換算して、セラミックス焼結体中でAlを65〜96質量%、ZrOを4〜34.4質量%含有し、更にSiO、TiO及びMgOの含有割合がそれぞれ0.20質量%以上、0.22質量%以上、及び0.12質量%以上であって、かつSiO、TiO及びMgOの合計の含有割合が0.6〜4.5質量%となるように混合して、所定形状に成形後、1300〜1500℃で焼成することを特徴とするセラミックス焼結体の製法。 A raw material containing Al, Zr, Si, Ti and Mg as a metal or these metal compounds is converted into a metal oxide of these metals or metal compounds, and Al 2 O 3 is 65 in a ceramic sintered body. 96 wt%, a ZrO 2 containing from 4 to 34.4 wt%, further SiO 2, TiO 2 and MgO in the proportion respectively 0.20 wt% or more, 0.22 mass% or more, and 0.12 wt. %, And the total content of SiO 2 , TiO 2 and MgO is mixed so as to be 0.6 to 4.5% by mass, molded into a predetermined shape, and then fired at 1300 to 1500 ° C. A method for producing a ceramic sintered body characterized by the above. 1300〜1500℃での焼成を酸化雰囲気で行い、更に前記焼成温度よりも60℃以上低い温度で還元雰囲気において熱処理する工程を有することを特徴とする請求項7記載のセラミックス焼結体の製法。   The method for producing a ceramic sintered body according to claim 7, further comprising a step of performing firing at 1300 to 1500 ° C in an oxidizing atmosphere, and further heat-treating in a reducing atmosphere at a temperature lower by 60 ° C or more than the firing temperature. Al及びZrOと、添加剤であるSiO、TiO及びMgOからなるセラミックス焼結体であって、Alを65〜96質量%、ZrOを4〜34.4質量%含有し、更にSiO、TiO及びMgOをそれぞれ0.20質量%以上、0.22質量%以上、及び0.12質量%以上含有して、かつSiO、TiO及びMgOの合計の含有割合が0.6〜4.5質量%であるセラミックス焼結体より作製された生体用材料。 A ceramic sintered body comprising Al 2 O 3 and ZrO 2 and additives SiO 2 , TiO 2 and MgO, 65 to 96% by mass of Al 2 O 3 and 4 to 34.4% by mass of ZrO 2. Further, SiO 2 , TiO 2 and MgO are contained in an amount of 0.20% by mass or more, 0.22% by mass or more, and 0.12% by mass or more, respectively, and the total of SiO 2 , TiO 2 and MgO A biomaterial prepared from a ceramic sintered body having a content ratio of 0.6 to 4.5% by mass.
JP2003305233A 2003-08-28 2003-08-28 Ceramic sintered compact, method for producing the same, and biomaterial Pending JP2005075659A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003305233A JP2005075659A (en) 2003-08-28 2003-08-28 Ceramic sintered compact, method for producing the same, and biomaterial
US10/927,266 US7148167B2 (en) 2003-08-28 2004-08-26 Alumina/zirconia ceramics and method of producing the same
EP04255176A EP1510509B1 (en) 2003-08-28 2004-08-27 Alumina/zirconia ceramics and method of producing the same
DE602004014689T DE602004014689D1 (en) 2003-08-28 2004-08-27 Alumina-zirconia ceramic and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003305233A JP2005075659A (en) 2003-08-28 2003-08-28 Ceramic sintered compact, method for producing the same, and biomaterial

Publications (1)

Publication Number Publication Date
JP2005075659A true JP2005075659A (en) 2005-03-24

Family

ID=34408707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003305233A Pending JP2005075659A (en) 2003-08-28 2003-08-28 Ceramic sintered compact, method for producing the same, and biomaterial

Country Status (1)

Country Link
JP (1) JP2005075659A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095018A (en) * 2004-09-29 2006-04-13 Kyocera Corp Biological member and joint prosthesis using the same
JP2006122634A (en) * 2003-12-25 2006-05-18 Kyocera Corp Biological member, artificial joint employing the same, and method for manufacture the member
JP2007209912A (en) * 2006-02-10 2007-08-23 Sage Corporation Manufacturing method of ceramics particles for improving quality of chlorine treated water and quality improving method of chlorine treated water
JP2009056458A (en) * 2007-08-06 2009-03-19 Sage Corporation Washing water making apparatus, washing water, water making apparatus and water making method
JP2010229570A (en) * 2009-03-26 2010-10-14 Kyocera Corp Fiber guide
JP2013501121A (en) * 2009-08-05 2013-01-10 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Melted alumina-zirconia grit
JP2013199415A (en) * 2012-03-26 2013-10-03 Kyocera Corp Ceramic sintered compact, electronic component mounting substrate using the same, and electronic device
KR101322442B1 (en) 2006-02-17 2013-10-25 생-고뱅 생트레 드 레체르체 에 데투드 유로삐엔 Alumina - titanium oxide - zirconia fused grain
US9550169B2 (en) 2014-09-08 2017-01-24 Denso Corporation Honeycomb structure body and method of producing the same
WO2020022425A1 (en) * 2018-07-27 2020-01-30 京セラ株式会社 Aluminous porcelain and ceramic heater
JP2020147822A (en) * 2019-03-15 2020-09-17 株式会社高純度化学研究所 MANUFACTURING METHOD OF MgO-TiO-BASED SPUTTERING TARGET

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122634A (en) * 2003-12-25 2006-05-18 Kyocera Corp Biological member, artificial joint employing the same, and method for manufacture the member
JP2006095018A (en) * 2004-09-29 2006-04-13 Kyocera Corp Biological member and joint prosthesis using the same
JP2007209912A (en) * 2006-02-10 2007-08-23 Sage Corporation Manufacturing method of ceramics particles for improving quality of chlorine treated water and quality improving method of chlorine treated water
KR101322442B1 (en) 2006-02-17 2013-10-25 생-고뱅 생트레 드 레체르체 에 데투드 유로삐엔 Alumina - titanium oxide - zirconia fused grain
JP2009056458A (en) * 2007-08-06 2009-03-19 Sage Corporation Washing water making apparatus, washing water, water making apparatus and water making method
JP2010229570A (en) * 2009-03-26 2010-10-14 Kyocera Corp Fiber guide
JP2013501121A (en) * 2009-08-05 2013-01-10 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Melted alumina-zirconia grit
JP2013199415A (en) * 2012-03-26 2013-10-03 Kyocera Corp Ceramic sintered compact, electronic component mounting substrate using the same, and electronic device
US9550169B2 (en) 2014-09-08 2017-01-24 Denso Corporation Honeycomb structure body and method of producing the same
WO2020022425A1 (en) * 2018-07-27 2020-01-30 京セラ株式会社 Aluminous porcelain and ceramic heater
CN112739661A (en) * 2018-07-27 2021-04-30 京瓷株式会社 Alumina ceramic and ceramic heater
JPWO2020022425A1 (en) * 2018-07-27 2021-08-12 京セラ株式会社 Alumina porcelain and ceramic heaters
JP7148613B2 (en) 2018-07-27 2022-10-05 京セラ株式会社 Alumina porcelain and ceramic heater
JP2020147822A (en) * 2019-03-15 2020-09-17 株式会社高純度化学研究所 MANUFACTURING METHOD OF MgO-TiO-BASED SPUTTERING TARGET
JP7178707B2 (en) 2019-03-15 2022-11-28 株式会社高純度化学研究所 Method for manufacturing MgO-TiO-based sputtering target

Similar Documents

Publication Publication Date Title
JP5366398B2 (en) Composite ceramics and manufacturing method thereof
EP1510509B1 (en) Alumina/zirconia ceramics and method of producing the same
JP4428267B2 (en) Zirconia-alumina composite ceramic material and method for producing the same
JP6637956B2 (en) Sintered ceramic material, powder composition for obtaining sintered ceramic material, method for producing the same, and ceramic component
EP1514856B1 (en) Alumina/zirconia ceramics and method of producing the same
WO2005042047A1 (en) Biological member and method for manufacture thereof
JP2005075659A (en) Ceramic sintered compact, method for producing the same, and biomaterial
JP4589642B2 (en) Alumina / zirconia ceramics and process for producing the same
JP4883885B2 (en) Biomaterial, method for manufacturing the same, and artificial joint
CN100435860C (en) Biological member and method for manufacture thereof
JP4761749B2 (en) Biomaterial and artificial joint using the same
JP4831945B2 (en) Zirconia-alumina ceramics and process for producing the same
JP4601304B2 (en) Alumina / zirconia ceramics and process for producing the same
JP4601303B2 (en) Alumina / zirconia ceramics and process for producing the same
JP3488350B2 (en) Alumina sintered body and method for producing the same
JP3559413B2 (en) Alumina sintered body and method for producing the same
JP3145597B2 (en) Alumina sintered body and method for producing the same
JP3121996B2 (en) Alumina sintered body
JP4514563B2 (en) Alumina / zirconia ceramics and process for producing the same
JP2005008435A (en) Composite ceramic and method for preparing the same
JP2010248051A (en) Alumina-zirconia composite sintered compact
JP4612358B2 (en) Alumina / zirconia ceramics and production method thereof
JP4460918B2 (en) Alumina / zirconia ceramics and process for producing the same
JP4243514B2 (en) Composite ceramics and manufacturing method thereof
JP2005211253A (en) Biological member, method for manufacture thereof and artificial joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201