JP2013199415A - Ceramic sintered compact, electronic component mounting substrate using the same, and electronic device - Google Patents

Ceramic sintered compact, electronic component mounting substrate using the same, and electronic device Download PDF

Info

Publication number
JP2013199415A
JP2013199415A JP2012069577A JP2012069577A JP2013199415A JP 2013199415 A JP2013199415 A JP 2013199415A JP 2012069577 A JP2012069577 A JP 2012069577A JP 2012069577 A JP2012069577 A JP 2012069577A JP 2013199415 A JP2013199415 A JP 2013199415A
Authority
JP
Japan
Prior art keywords
ceramic sintered
sintered body
mass
electronic component
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012069577A
Other languages
Japanese (ja)
Other versions
JP5836862B2 (en
Inventor
Shunji Migaki
俊二 三垣
Kenji Tanda
健二 反田
Kazuhito Uchino
和仁 内野
Kunihide Yomo
邦英 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012069577A priority Critical patent/JP5836862B2/en
Publication of JP2013199415A publication Critical patent/JP2013199415A/en
Application granted granted Critical
Publication of JP5836862B2 publication Critical patent/JP5836862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic sintered compact having high reflectance both in a long wavelength region and in a short wavelength region, and to provide an electronic component mounting substrate using the same.SOLUTION: This ceramic sintered compact contains alumina as a main component, contains zirconia including a stabilizer, and contains ≥0.05 to ≤0.5 mass% titanium in terms of oxides. The ceramic sintered compact is excellent in image recognition, since a reflectance in a short wavelength region can be heightened, while keeping a reflectance in a long wavelength region high, because alumina and zirconia present white color.

Description

本発明は、セラミック焼結体およびこれを用いた電子部品実装用基板ならびに電子装置に関する。   The present invention relates to a ceramic sintered body, an electronic component mounting board using the same, and an electronic device.

電子部品を実装するための基板として、セラミック焼結体が広く用いられている。中でもジルコニア強化型アルミナ基板(ZTA基板)が、配線層,電極層または放熱部材として金属層を形成することによって高い出力の半導体などを実装できる電子部品実装用基板として使用されている。   Ceramic sintered bodies are widely used as substrates for mounting electronic components. Among them, a zirconia reinforced alumina substrate (ZTA substrate) is used as an electronic component mounting substrate on which a high output semiconductor or the like can be mounted by forming a metal layer as a wiring layer, an electrode layer, or a heat dissipation member.

例えば、特許文献1には、主成分としてのアルミナと、ジルコニアとを含有し、これにイットリア,カルシア,マグネシア,セリアからなる群より選択された1種以上の添加剤を添加して作製したセラミックス焼成体よりなる電子部品実装用基板が開示されている。   For example, Patent Document 1 contains alumina and zirconia as main components, and ceramics prepared by adding one or more additives selected from the group consisting of yttria, calcia, magnesia, and ceria to this. An electronic component mounting substrate made of a fired body is disclosed.

特開平8−195450号公報JP-A-8-195450

近年、電子部品実装用基板の分野において、配線層,電極層,放熱部材等の微細化が進み、画像認識による断線や短絡などの検査精度の向上が求められている。そこで、配線層,電極層,放熱部材等に用いられる銅や金などの金属層が、短い波長領域において反射率が極端に低くなることに着目し、青色のLED照明装置を用いて、基板と金属層とを濃淡で区別する検査方法が行なわれている。しかしながら、特許文献1に開示された電子部品実装用基板は、短い波長領域での反射率が低いことから、基板と金属層との境界の画像認識が不明瞭となることがあった。   In recent years, in the field of electronic component mounting substrates, wiring layers, electrode layers, heat dissipation members, and the like have been miniaturized, and improvement in inspection accuracy such as disconnection and short circuit due to image recognition has been demanded. Therefore, paying attention to the fact that the metal layer such as copper or gold used for the wiring layer, electrode layer, heat dissipation member, etc. has an extremely low reflectance in a short wavelength region, using a blue LED lighting device, An inspection method for distinguishing a metal layer from light and shade has been performed. However, since the electronic component mounting substrate disclosed in Patent Document 1 has low reflectance in a short wavelength region, image recognition at the boundary between the substrate and the metal layer may be unclear.

本発明は、上記課題を解決するために案出されたものであり、短い波長領域の反射率を向上したセラミック焼結体およびそれを用いた電子部品実装用基板を提供することを目的とするものである。   The present invention has been devised in order to solve the above-described problems, and an object of the present invention is to provide a ceramic sintered body having improved reflectance in a short wavelength region and an electronic component mounting substrate using the same. Is.

本発明のセラミック焼結体は、アルミナを主成分とし、安定化剤を含むジルコニアを含有するとともに、チタンを酸化物換算で0.05質量%以上0.5質量%以下で含有することを
特徴とするものである。
The ceramic sintered body of the present invention comprises alumina as a main component and zirconia containing a stabilizer, and contains titanium in an amount of 0.05% by mass or more and 0.5% by mass or less in terms of oxide. is there.

また、本発明の電子部品実装用基板は、上記構成のセラミック焼結体の少なくとも一方の主面に金属層が形成されてなることを特徴とする。   The electronic component mounting substrate of the present invention is characterized in that a metal layer is formed on at least one main surface of the ceramic sintered body having the above-described configuration.

また、本発明の電子装置は、上記構成の電子部品実装用基板に電子部品が実装されてなることを特徴とする。   The electronic device according to the present invention is characterized in that an electronic component is mounted on the electronic component mounting board having the above-described configuration.

本発明のセラミック焼結体は、アルミナを主成分とし、安定化剤を含むジルコニアを含有するとともに、チタンを酸化物換算で0.05質量%以上0.5質量%以下で含有することか
ら、アルミナとジルコニアとが白色を呈することで長い波長領域における反射率を高く維持しつつ、酸化チタンが不可避不純物としての遷移金属と電荷移動を起こすことによって、3価のチタンイオンとなり、青紫色を呈することから、短い波長領域における反射率を高くすることができる。それにより、画像認識に優れたセラミック焼結体とすることができる。
Since the ceramic sintered body of the present invention contains alumina as a main component and zirconia containing a stabilizer, and contains titanium in an amount of 0.05% by mass or more and 0.5% by mass or less in terms of oxide, alumina and zirconia Since titanium exhibits a white color while maintaining a high reflectance in a long wavelength region, titanium oxide becomes a trivalent titanium ion by causing a charge transfer with a transition metal as an unavoidable impurity, and exhibits a blue-violet color. The reflectance in the wavelength region can be increased. Thereby, it can be set as the ceramic sintered compact excellent in image recognition.

また、本発明の電子部品実装用基板によれば、上記構成のセラミック焼結体に金属層が形成されてなることにより、断線や短絡などの検査精度が向上した基板とすることができる。   In addition, according to the electronic component mounting substrate of the present invention, a metal layer is formed on the ceramic sintered body having the above-described configuration, whereby a substrate with improved inspection accuracy such as disconnection and short circuit can be obtained.

また、本発明の電子装置は、上記構成の電子部品実装用基板に電子部品が実装されてなることにより、信頼性の高い電子装置とすることができる。   The electronic device of the present invention can be a highly reliable electronic device by mounting the electronic component on the electronic component mounting board having the above-described configuration.

本実施形態のセラミック焼結体に金属層が形成された電子部品実装用基板の一例を示す断面図である。It is sectional drawing which shows an example of the board | substrate for electronic component mounting by which the metal layer was formed in the ceramic sintered compact of this embodiment. 本実施形態の電子部品実装用基板を備える電子装置の一例を示す断面図である。It is sectional drawing which shows an example of an electronic apparatus provided with the board | substrate for electronic component mounting of this embodiment.

以下、本発明のセラミック焼結体およびこれを用いた電子部品実装用基板ならびに電子装置の実施の形態の例を説明する。   Hereinafter, examples of embodiments of the ceramic sintered body of the present invention, an electronic component mounting substrate using the ceramic sintered body, and an electronic device will be described.

図1は本実施形態のセラミック焼結体に金属層が形成されてなる電子部品実装用基板の構成の一例を示す断面図である。   FIG. 1 is a cross-sectional view showing an example of a configuration of an electronic component mounting substrate in which a metal layer is formed on a ceramic sintered body according to this embodiment.

本実施形態の電子部品実装用基板10(以下、基板10ともいう。)は、電子部品が搭載されるセラミック焼結体1に金属層2が形成されたものである。金属層2は電気的に接続される配線層や電極層としてもよいが、電子部品から発する熱を放熱するための放熱部材として用いても良い。   An electronic component mounting substrate 10 (hereinafter also referred to as a substrate 10) of this embodiment is obtained by forming a metal layer 2 on a ceramic sintered body 1 on which electronic components are mounted. The metal layer 2 may be an electrically connected wiring layer or electrode layer, but may be used as a heat dissipation member for radiating heat generated from the electronic component.

また、金属層2は、セラミック焼結体1の少なくとも一方の主面に形成すれば良く、両方の主面に形成しても良い。そして、本実施形態のセラミック焼結体1は、アルミナを主成分とし、安定化剤を含むジルコニアを含有するとともに、チタンを酸化物換算で0.05質量%以上0.5質量%以下で含有することを特徴とする。   Moreover, the metal layer 2 should just be formed in at least one main surface of the ceramic sintered compact 1, and may be formed in both main surfaces. And the ceramic sintered body 1 of this embodiment contains alumina as a main component, and contains zirconia containing a stabilizer, and contains titanium in an amount of 0.05% by mass to 0.5% by mass in terms of oxide. And

セラミック焼結体1が、主成分としてのアルミナと、安定化剤を含むジルコニアとを含有することから、アルミナとジルコニアとが白色を呈することで長い波長領域における反射率を高く維持することができる。   Since the ceramic sintered body 1 contains alumina as a main component and zirconia containing a stabilizer, the alumina and zirconia are white and can maintain a high reflectance in a long wavelength region. .

また、セラミック焼結体1が、チタンを酸化物換算で0.05質量%以上0.5質量%以下で
含有することによって、酸化チタンが不可避不純物としての遷移金属と電荷移動を起こすことによって、無色を呈する4価のチタンイオンから青紫色を呈する3価のチタンイオンとなる。それにより、セラミック焼結体1の色合いが、JIS Z8730−2009に規定する
L*・a*・b*表色系の明度指数の中のb*を負の方向にシフトすることができ、短い波長領域における光の反射を向上することができる。
In addition, when the ceramic sintered body 1 contains titanium in an amount of 0.05% by mass or more and 0.5% by mass or less in terms of oxide, the titanium oxide exhibits colorlessness by causing charge transfer with a transition metal as an inevitable impurity. From trivalent titanium ions to trivalent titanium ions exhibiting a bluish purple color. As a result, the color of the ceramic sintered body 1 can be shifted in the negative direction in the lightness index of the L * • a * • b * color system defined in JIS Z8730-2009, and is short. Light reflection in the wavelength region can be improved.

それゆえ、長い波長領域における反射率を高く維持しつつ、短い波長領域における反射率を高くすることができるので、画像認識に優れたセラミック焼結体1とすることができ、青色のLED照明装置を使って検査を行なう場合に、特に有用なセラミック焼結体1と
することができる。
Therefore, since the reflectance in the short wavelength region can be increased while maintaining the reflectance in the long wavelength region high, the ceramic sintered body 1 excellent in image recognition can be obtained, and the blue LED illumination device When the inspection is carried out using, a particularly useful ceramic sintered body 1 can be obtained.

ここで、L*は反射(輝き)を示し、この値が高いほど良好な輝きを放つものである。a*は、プラス(+)方向に値が大きくなると赤い色調を示し、逆にマイナス(−)方向に値が大きくなると緑色の色調を示す。また、b*は、プラス(+)方向に値が大きくなると黄色い色調になり、逆にマイナス(−)方向に値が大きくなると青色の色調を示す。   Here, L * indicates reflection (brightness), and the higher this value, the better the brilliance. a * indicates a red color tone when the value increases in the plus (+) direction, and conversely indicates a green color tone when the value increases in the minus (−) direction. Further, b * shows a yellow color tone when the value increases in the plus (+) direction, and conversely shows a blue color tone when the value increases in the minus (−) direction.

酸化チタンは屈折率が2.7程度と高いため、セラミック焼結体の光の反射率をより向上
することができる。これによって、セラミック焼結体1はJIS Z8730−2009に規定す
るL*・a*・b*表色系の値が、L*=92〜94、a*=−0.3〜−0.1、b*=−0.7〜0.1の値となる。
Since titanium oxide has a high refractive index of about 2.7, the light reflectance of the ceramic sintered body can be further improved. As a result, the ceramic sintered body 1 has L * = a * • b * color system values defined in JIS Z8730-2009 such that L * = 92 to 94, a * = − 0.3 to −0.1, b * =. The value is -0.7 to 0.1.

なお、上記L*・a*・b*の測定は、測定器として分光測色計(ミノルタ製CM−3700D)を使用し、基準光源をD65、波長範囲を360〜740nm、視野を10゜、正反射光を含んだ状態(SCI)で測定できる。   The measurement of L *, a *, and b * above uses a spectrocolorimeter (Minolta CM-3700D) as a measuring device, the reference light source is D65, the wavelength range is 360 to 740 nm, the field of view is 10 °, It can be measured in a state including specularly reflected light (SCI).

また、本実施形態のセラミック焼結体1において、アルミナを70.8質量%以上93.8質量%以下、安定化剤を含むジルコニアを5質量%以上28質量%以下、チタンを酸化物換算で0.05質量%以上0.5質量%以下でそれぞれ含有することが好ましい。この範囲ならば、ジ
ルコニアよりも大きな結晶粒径を持つアルミナが高い熱伝導性を示すので、放熱特性を高く維持することができる。
Further, in the ceramic sintered body 1 of the present embodiment, alumina is 70.8 mass% to 93.8 mass%, zirconia containing a stabilizer is 5 mass% to 28 mass%, and titanium is 0.05 mass% or more in terms of oxide. It is preferable to contain each at 0.5 mass% or less. Within this range, alumina having a crystal grain size larger than that of zirconia exhibits high thermal conductivity, so that heat dissipation characteristics can be maintained high.

また、本実施形態のセラミック焼結体1において、不可避不純物としての遷移金属は、酸化物換算での合計含有量が100ppm以上400ppm以下であることが好ましい。この範囲ならば、長い波長領域における反射率を高く維持したまま、酸化チタンと不可避不純物としての遷移金属とで、電荷移動が生じることによって、4価のチタンイオンが3価のチタンイオンになり、短い波長領域における反射率を向上することができる。ここで、不可避不純物としての遷移金属とは、意図的添加であるチタン、ジルコニウム、ジルコニアの安定化剤(例えば、イットリウムやセリウムなど)、そしてジルコニアの原料に含有されるハフニウムを除いた遷移金属のことを指す。そして、その遷移金属の中で、最もチタンイオンと電荷移動しやすいのは、鉄やマンガンなどである。   Moreover, in the ceramic sintered body 1 of this embodiment, it is preferable that the transition metal as an inevitable impurity has a total content in terms of oxide of 100 ppm or more and 400 ppm or less. If it is this range, a tetravalent titanium ion will turn into a trivalent titanium ion by carrying out a charge transfer with titanium oxide and a transition metal as an unavoidable impurity while maintaining a high reflectance in a long wavelength region, The reflectance in a short wavelength region can be improved. Here, transition metals as unavoidable impurities are intentional additions of titanium, zirconium, zirconia stabilizers (for example, yttrium and cerium), and transition metals excluding hafnium contained in zirconia raw materials. Refers to that. Among the transition metals, iron, manganese, etc. are most likely to transfer charges with titanium ions.

ここで、セラミック焼結体1における構成元素の含有割合は、公知のXRF(蛍光X線分析)法、ICP発光分光法等で測定された元素の含有割合を酸化物に換算することによって求めることができる。   Here, the content ratio of the constituent elements in the ceramic sintered body 1 is obtained by converting the content ratio of the elements measured by a known XRF (fluorescence X-ray analysis) method, ICP emission spectroscopy or the like into an oxide. Can do.

また、本実施形態のセラミック焼結体1の表面において、ジルコニア結晶は、正方晶、立方晶および単斜晶の合計量に対する単斜晶の割合が3%以上6%以下であることが好ましい。   Further, on the surface of the ceramic sintered body 1 of the present embodiment, it is preferable that the ratio of the monoclinic crystal to the total amount of tetragonal, cubic and monoclinic crystals is 3% or more and 6% or less.

本実施形態のセラミック焼結体1の表面において、ジルコニア結晶が、正方晶、立方晶および単斜晶の合計量に対する単斜晶の割合が3%以上6%以下であれば、屈折率の違いにより、正方晶および立方晶と、単斜晶との界面で反射が起こりやすくなり、より反射率を向上することができる。なお、セラミック焼結体1の表面とは、金属層が形成される面のことを言う。   If the ratio of the monoclinic crystal to the total amount of tetragonal, cubic and monoclinic crystals is 3% or more and 6% or less on the surface of the ceramic sintered body 1 of the present embodiment, the difference in refractive index Thus, reflection is likely to occur at the interface between the tetragonal and cubic crystals and the monoclinic crystal, and the reflectance can be further improved. In addition, the surface of the ceramic sintered compact 1 means the surface in which a metal layer is formed.

ここで、ジルコニアにおける単斜晶の割合は、X線回折(XRD)法を用いることによって得られたX線回折強度より以下の計算式で求めることができる。   Here, the ratio of the monoclinic crystal in zirconia can be obtained from the X-ray diffraction intensity obtained by using the X-ray diffraction (XRD) method by the following calculation formula.

単斜晶割合(%)=(Im1+Im2)/(Im1+Im2+It+Ic)
It :正方晶(111)面のX線回折強度
Ic :立方晶(111)面のX線回折強度
Im1:単斜晶(111)面のX線回折強度
Im2:単斜晶(11−1)面のX線回折強度
また、ジルコニアの安定化剤としては、カルシア(CaO),マグネシア(MgO),ストロンチア(SrO),イットリア(Y)およびセリア(CeO)などを挙げることができ、これらの中から1種類もしくは2種類を選択して用いれば良い。特に、安定化剤としてイットリアを用いれば、正方晶および立方晶の割合が高く、ジルコニアの機械的強度が高くなり、セラミック焼結体1の機械的強度が向上する。なお、安定化剤の含有割合は、ジルコニア全量を100モル%としたとき、安定化剤を1モル%以上5モル%以
下とすれば良い。
Monoclinic crystal ratio (%) = (Im1 + Im2) / (Im1 + Im2 + It + Ic)
It: Tetragonal (111) plane X-ray diffraction intensity Ic: Cubic (111) plane X-ray diffraction intensity Im1: Monoclinic (111) plane X-ray diffraction intensity Im2: Monoclinic crystal (11-1) X-ray diffraction intensity of the surface Further, examples of the zirconia stabilizer include calcia (CaO), magnesia (MgO), strontia (SrO), yttria (Y 2 O 3 ), and ceria (CeO 2 ). One or two of these may be selected and used. In particular, when yttria is used as a stabilizer, the ratio of tetragonal crystals and cubic crystals is high, the mechanical strength of zirconia is increased, and the mechanical strength of the ceramic sintered body 1 is improved. In addition, the content rate of a stabilizer should just be 1 mol% or more and 5 mol% or less of a stabilizer, when the whole amount of zirconia is 100 mol%.

また、本実施形態のセラミック焼結体1においては、珪素を酸化物換算で0.3質量%以
上0.9質量%以下の範囲で含有することが好ましい。それにより、焼成温度を低下するこ
とができるので機械的強度を向上することができ、ガラス相として結晶と結晶との粒子間に存在するため反射率を向上することができる。あわせて、金属層2を形成する際にガラス成分を含有する金属層2とセラミック焼結体1との濡れ性を良くし、セラミック焼結体1と金属層2との密着強度を向上することができる。
Moreover, in the ceramic sintered compact 1 of this embodiment, it is preferable to contain silicon in 0.3 to 0.9 mass% in conversion of an oxide. As a result, the firing temperature can be lowered, so that the mechanical strength can be improved, and the reflectance can be improved because the glass phase exists between the crystal and crystal particles. In addition, when the metal layer 2 is formed, the wettability between the metal layer 2 containing the glass component and the ceramic sintered body 1 is improved, and the adhesion strength between the ceramic sintered body 1 and the metal layer 2 is improved. Can do.

また、本実施形態のセラミック焼結体1において、マグネシウムを酸化物換算で0.2質
量%以上0.5質量%以下の範囲で含有することが好ましい。それにより、さらに焼成温度
を低下することができるので機械的強度を向上することができる。さらにマグネシウムが、焼結体に含まれるアルミナと反応して結晶粒界にスピネル(MgAl)を形成することから、セラミック焼結体1のアルミナの粒成長を妨げるので、結晶粒径を小さくすることができ、結晶の粒界を増やすことができ、セラミック焼結体1に照射された光が乱反射する機会が増えとともに、結晶に吸収される光を少なくすることができるので、短い波長領域から長い波長領域における反射率をさらに向上することもできる。また、結晶粒径を小さくすることによって、機械的強度を向上することができる。
Moreover, in the ceramic sintered body 1 of this embodiment, it is preferable to contain magnesium in the range of 0.2 mass% or more and 0.5 mass% or less in terms of oxide. Thereby, the firing temperature can be further lowered, so that the mechanical strength can be improved. Furthermore, since magnesium reacts with alumina contained in the sintered body to form spinel (MgAl 2 O 4 ) at the grain boundary, the grain growth of alumina in the ceramic sintered body 1 is hindered. Since the crystal grain boundary can be increased, the crystal grain boundary can be increased, the chance that the light irradiated to the ceramic sintered body 1 is irregularly reflected, and the light absorbed by the crystal can be reduced, the short wavelength It is also possible to further improve the reflectance in a long wavelength region from the region. Further, the mechanical strength can be improved by reducing the crystal grain size.

ここで、セラミック焼結体1に含有されるスピネルを確認する方法は、公知のXRD法を用いて、セラミック焼結体1を構成する化合物を検出することで求めることができる。   Here, the method of confirming the spinel contained in the ceramic sintered body 1 can be determined by detecting a compound constituting the ceramic sintered body 1 using a known XRD method.

また、セラミック焼結体1に含有されるアルミナの平均結晶粒径は1μm以上5μm以下であることが好ましい。この範囲ならば、放熱特性を高く維持できるとともに、短い波長領域における反射率を向上することができる。   The average crystal grain size of alumina contained in the ceramic sintered body 1 is preferably 1 μm or more and 5 μm or less. If it is this range, while being able to maintain a thermal radiation characteristic high, the reflectance in a short wavelength range can be improved.

結晶粒径の測定は、セラミック焼結体の表面を鏡面加工し、焼成温度から50〜100℃低
い温度の範囲でファイヤーエッチングをし、走査型電子顕微鏡(例えば日本電子製のJSM-7001F)で1000〜3000倍の倍率で撮影して画像データを作成し、画像解析装置(例えば三
谷商事製のWin ROOF)を用いて各結晶粒の面積を求め、その面積から各結晶の円相当径を算出して結晶粒径を求めればよい。
The crystal grain size is measured by mirror-finishing the surface of the ceramic sintered body, performing fire etching at a temperature lower by 50 to 100 ° C from the firing temperature, and using a scanning electron microscope (for example, JSM-7001F manufactured by JEOL Ltd.) Image data is created by shooting at a magnification of 1000 to 3000 times, the area of each crystal grain is obtained using an image analyzer (for example, Win ROOF manufactured by Mitani Corporation), and the equivalent circle diameter of each crystal is calculated from the area. Then, the crystal grain size may be obtained.

但し、本実施形態においては、セラミック焼結体に結晶粒径が0.2μm未満の結晶が含
まれている場合もあるが、本実施形態に用いた結晶粒径の測定方法では結晶粒径が0.2μ
m未満の結晶を検知できないため割愛している。
However, in this embodiment, the ceramic sintered body may contain crystals having a crystal grain size of less than 0.2 μm. However, the crystal grain size measurement method used in this embodiment has a crystal grain size of 0.2. μ
Omitted because crystals less than m cannot be detected.

なお、チタンイオンが3価の状態で存在するためには、チタンイオンがアルミナに固溶することが望ましい。チタンイオンがアルミナに固溶していれば、アルミナ中における3価のアルミニウムイオンに3価のチタンイオンが置換固溶できるので、チタンイオンは3価の状態でより安定して存在することができ、短い波長領域の反射率を向上することがで
きる。
In addition, in order for a titanium ion to exist in a trivalent state, it is desirable that a titanium ion is dissolved in alumina. If titanium ions are dissolved in alumina, trivalent titanium ions can be substituted and dissolved in trivalent aluminum ions in alumina, so that titanium ions can exist more stably in the trivalent state. The reflectance in a short wavelength region can be improved.

チタンイオンがアルミナに固溶していることを確認するためには、TEM(透過型電子顕微鏡)を用いて、アルミナの結晶相にEDS分析法(エネルギー分散型X線分析法)を用いて、成分分析を行なえば良い。   In order to confirm that titanium ions are dissolved in alumina, TEM (transmission electron microscope) is used, and EDS analysis method (energy dispersive X-ray analysis method) is used for the crystal phase of alumina. Component analysis may be performed.

図2は本実施形態の電子部品実装用基板を備える電子装置の一例を示す断面図である。図2に示す電子装置20は、電子部品実装用基板10に、電子部品3が実装されている。   FIG. 2 is a cross-sectional view illustrating an example of an electronic apparatus including the electronic component mounting substrate of the present embodiment. In the electronic device 20 shown in FIG. 2, the electronic component 3 is mounted on the electronic component mounting board 10.

図2に示す電子装置20においては、電子部品実装用基板10に形成された金属層2a上に、接着層4aを介して電子部品3が実装されており、電子部品実装用基板10に形成された金属層2b、2cを電極層もしくは配線層として、電子部品3のアノード電極(不図示)またはカソード電極(不図示)と金属層2b,2cとをボンディングワイヤ5a,5cにより電気的に接合している。   In the electronic device 20 shown in FIG. 2, the electronic component 3 is mounted on the metal layer 2a formed on the electronic component mounting substrate 10 via the adhesive layer 4a, and is formed on the electronic component mounting substrate 10. The metal layers 2b and 2c are used as electrode layers or wiring layers, and an anode electrode (not shown) or cathode electrode (not shown) of the electronic component 3 and the metal layers 2b and 2c are electrically joined by bonding wires 5a and 5c. ing.

また、電子部品実装用基板10の電子部品3を実装した側と反対側との面には、金属層2dと接着層4bとを介してヒートシンク6が接合されている。それにより、電子装置20の放熱特性をさらに向上することができる。   Further, a heat sink 6 is bonded to the surface of the electronic component mounting substrate 10 on the side opposite to the side on which the electronic component 3 is mounted via a metal layer 2d and an adhesive layer 4b. Thereby, the heat dissipation characteristics of the electronic device 20 can be further improved.

なお、電子部品実装用基板10に実装される電子部品3としては、例えば、絶縁ゲート・バイポーラ・トランジスタ(IGBT)素子、インテリジェント・パワー・モジュール(IPM)素子、金属酸化膜型電界効果トランジスタ(MOSFET)素子、発光ダイオード(LED)素子、フリーホイーリングダイオード(FWD)素子、ジャイアント・トランジスタ(GTR)素子、ショットキー・バリア・ダイオード(SBD)等の半導体素子、昇華型サーマルプリンタヘッドまたはサーマルインクジェットプリンタヘッド用の発熱素子、ペルチェ素子等を用いることができる。   Examples of the electronic component 3 mounted on the electronic component mounting substrate 10 include an insulated gate bipolar transistor (IGBT) element, an intelligent power module (IPM) element, and a metal oxide field effect transistor (MOSFET). ) Elements, light emitting diode (LED) elements, free wheeling diode (FWD) elements, giant transistor (GTR) elements, Schottky barrier diode (SBD) and other semiconductor elements, sublimation thermal printer heads or thermal inkjet printers A head heating element, a Peltier element, or the like can be used.

ここで、発光ダイオードのような光を放出する発光素子を電子部品3として電子部品実装用基板10に実装して、電子装置20を発光装置とする場合には、電子部品実装用基板10のセラミック焼結体1の反射率が高いことから、より輝度の高い発光装置とすることができる。特に、本実施形態のセラミック焼結体1は短い波長領域における反射率が高いので、電子部品実装用装置10に青色発光ダイオードを実装したLED照明装置として使用することによって、優れた発光装置とすることができる。   Here, when a light emitting element that emits light such as a light emitting diode is mounted on the electronic component mounting substrate 10 as the electronic component 3 and the electronic device 20 is used as the light emitting device, the ceramic of the electronic component mounting substrate 10 is used. Since the reflectance of the sintered body 1 is high, a light emitting device with higher luminance can be obtained. In particular, since the ceramic sintered body 1 of the present embodiment has a high reflectance in a short wavelength region, an excellent light emitting device can be obtained by using it as an LED lighting device in which a blue light emitting diode is mounted on the electronic component mounting device 10. be able to.

次に、本実施形態のセラミック焼結体1の製造方法の一例を説明する。   Next, an example of the manufacturing method of the ceramic sintered body 1 of this embodiment is demonstrated.

まず、原料として、平均粒径が1.1μm程度のアルミナ(Al)と、カルシア(
CaO),マグネシア(MgO),ストロンチア(SrO),イットリア(Y)およびセリア(CeO)から1種類もしくは2種類選択した安定化剤の含有割合が1モル%以上5モル%以下のジルコニア(ZrO)と、平均粒径が0.4μm程度の酸化チタン
(TiO)の粉末を準備し、セラミック焼結体1中における、チタンを酸化物換算での含有量が0.05質量%以上0.5質量%以下となるように調合し、混合粉末を準備する。
First, as raw materials, alumina (Al 2 O 3 ) having an average particle diameter of about 1.1 μm and calcia (
The content of the stabilizer selected from one or two of CaO), magnesia (MgO), strontia (SrO), yttria (Y 2 O 3 ) and ceria (CeO 2 ) is 1 mol% or more and 5 mol% or less. Zirconia (ZrO 2 ) and titanium oxide (TiO 2 ) powder having an average particle diameter of about 0.4 μm are prepared, and the content of titanium in the ceramic sintered body 1 is 0.05% by mass or more in terms of oxide 0.5 Prepare a mixed powder so that it is less than or equal to mass%.

このとき、セラミック焼結体1において、アルミナを70.8質量%以上93.8質量%以下、安定化剤を含むジルコニアを5質量%以上28質量%以下で含有するように調合することが好ましい。   At this time, it is preferable that the ceramic sintered body 1 is prepared so as to contain 70.8% by mass to 93.8% by mass of alumina and 5% by mass to 28% by mass of zirconia containing a stabilizer.

さらに、平均粒径が0.5μm程度の酸化珪素(SiO)および平均粒径が0.6μm程度の炭酸マグネシウム(MgCO)の少なくとも1種の粉末を添加することによって、混合粉末としても良い。この際、セラミック焼結体1において、珪素およびマグネシウムの
含有量が、それぞれ酸化物換算で0.3質量%以上0.9質量%以下および0.2質量%以上0.5質量%以下となるように添加することが好ましい。
Furthermore, a mixed powder may be obtained by adding at least one powder of silicon oxide (SiO 2 ) having an average particle diameter of about 0.5 μm and magnesium carbonate (MgCO 3 ) having an average particle diameter of about 0.6 μm. At this time, in the ceramic sintered body 1, it is preferable to add so that the silicon and magnesium contents are 0.3% by mass or more and 0.9% by mass or less and 0.2% by mass or more and 0.5% by mass or less, respectively, in terms of oxides.

また、混合粉末におけるチタン,ジルコニウム,ハフニウムおよびジルコニアの安定化剤を除く遷移金属の酸化物換算での合計含有量は、150ppm以上500ppm以下であることが好ましい。この範囲ならば、焼成の際に揮発しても、酸化チタンと電荷移動を行なうにあたり十分な量とすることができる。   Further, the total content of the transition metal excluding titanium, zirconium, hafnium and zirconia stabilizers in the mixed powder in terms of oxide is preferably 150 ppm or more and 500 ppm or less. If it is this range, even if it volatilizes at the time of baking, it can be made into the quantity sufficient for performing a charge transfer with a titanium oxide.

ここで、不可避不純物である遷移金属と電荷移動を行なって生じる3価のチタンイオンを、3価の状態で安定させるためには、3価のチタンイオンをアルミナに固溶させることが好ましい。3価のチタンイオンをアルミナに固溶させるにあたっては、アルミナと、酸化チタンとを混合粉砕した後、酸化雰囲気で最高温度800℃以上1000℃以下の温度範囲で
、1時間以上5時間以下の範囲で仮焼を行なうことによって、アルミナに3価のチタンイオンが固溶しやすくなる。そして、その仮焼された粉末をジルコニアと、酸化珪素と、炭酸マグネシウムとを添加し、混合粉砕することによって混合粉末としても良い。
Here, in order to stabilize a trivalent titanium ion generated by performing charge transfer with a transition metal which is an inevitable impurity in a trivalent state, it is preferable to dissolve the trivalent titanium ion in alumina. When trivalent titanium ions are dissolved in alumina, alumina and titanium oxide are mixed and pulverized, and then the maximum temperature is 800 ° C or higher and 1000 ° C or lower in an oxidizing atmosphere. By performing calcination at, trivalent titanium ions are easily dissolved in alumina. Then, the calcined powder may be mixed powder by adding zirconia, silicon oxide, and magnesium carbonate, and mixing and grinding.

そして、この混合粉末を分散剤が添加された水等の溶媒とともに回転ミルやビーズミルにおいて高純度のアルミナボールもしくはジルコニアボールを用いて粉砕しスラリーにする。   The mixed powder is pulverized with a solvent such as water to which a dispersant is added using a high-purity alumina ball or zirconia ball in a rotary mill or bead mill to form a slurry.

なお、溶媒として水を用いる場合においては、マグネシウム源として炭酸マグネシウムを用いることが好ましい。炭酸マグネシウムを用いることによって、水を溶媒とした湿式粉砕を行なう際に、原料の混合粉末が完全に混ざり合う前に水酸化物に変化することを抑えることができるので、スラリーの内部に存在する原料の混合粉末の分散状態が良くなる。それにより、このスラリーを用いることで、内部のジルコニアの分散性が良いので、安定した機械的強度を得ることができるうえに、反射率が向上したセラミック焼結体1とすることができる。   In addition, when using water as a solvent, it is preferable to use magnesium carbonate as a magnesium source. By using magnesium carbonate, when performing wet pulverization using water as a solvent, it is possible to prevent the mixed powder of the raw material from changing to a hydroxide before being completely mixed. The dispersion state of the raw material mixed powder is improved. Thus, by using this slurry, the dispersibility of the internal zirconia is good, so that it is possible to obtain a ceramic sintered body 1 having a stable mechanical strength and an improved reflectivity.

次に、このスラリーを用いて、ドクターブレード法や、スプレードライヤを用いて作製した造粒体を用いて、公知の粉末プレス成形法や、またはロールコンパクション法によってセラミックスのシートを成形する。そして、得られたシートを製品形状とするための金型による加工もしくはレーザ加工によって未焼成の成形体を作製する。このとき成形体は、量産性を考慮すれば多数個取りの成形体とするのがより好ましい。そして、得られた成形体を、大気(酸化)雰囲気の焼成炉(例えば、ローラー式トンネル炉,バッチ式雰囲気炉およびプッシャー式トンネル炉)を用いて、最高温度が1420〜1650℃の範囲で調整して焼成することによって、本実施形態のセラミック焼結体1を作製することができる。また、焼成の最高温度はアルミナおよびジルコニアの含有割合、焼結助剤の量によって適宜調整すれば良い。   Next, using this slurry, a ceramic sheet is formed by a known powder press forming method or a roll compaction method using a granulated body produced using a doctor blade method or a spray dryer. And an unbaking molded object is produced by the process by the metal mold | die for making the obtained sheet | seat into a product shape, or laser processing. At this time, it is more preferable that the molded body is a multi-piece molded body in consideration of mass productivity. Then, the obtained molded body is adjusted in the range of maximum temperature from 1420 to 1650 ° C using a firing furnace (for example, a roller-type tunnel furnace, a batch-type atmosphere furnace, and a pusher-type tunnel furnace) in an air (oxidation) atmosphere. Then, the ceramic sintered body 1 of the present embodiment can be produced by firing. The maximum firing temperature may be adjusted as appropriate depending on the content ratio of alumina and zirconia and the amount of sintering aid.

また、より高い放熱特性を有するとともに、基板の機械的強度を維持するならば、セラミック焼結体1の厚みは0.2mm以上1.2mm以下となるように、成形体の厚みを調整するか、焼成後に研削加工を施せば良い。特に、セラミック焼結体1の放熱特性を重要視する場合には、セラミック焼結体1の熱抵抗率を下げるために厚みを薄くすればよく、セラミック焼結体1の反射率を重要視する場合には、セラミック焼結体1の内部の粒界にて生じる光が散乱する機会を増やすために厚みを厚くすればよい。   If the ceramic sintered body 1 has a higher heat dissipation characteristic and the mechanical strength of the substrate is maintained, the thickness of the molded body is adjusted or fired so that the thickness of the ceramic sintered body 1 is 0.2 mm or more and 1.2 mm or less. Grinding may be performed later. In particular, when the heat radiation characteristics of the ceramic sintered body 1 are regarded as important, the thickness may be reduced in order to reduce the thermal resistivity of the ceramic sintered body 1, and the reflectance of the ceramic sintered body 1 is regarded as important. In that case, the thickness may be increased in order to increase the chance of scattering of the light generated at the grain boundaries inside the ceramic sintered body 1.

なお、セラミック焼結体1の表面処理を施すことにより、セラミック焼結体1の表面におけるジルコニア結晶を、正方晶、立方晶および単斜晶の合計量に対する単斜晶の割合が3%以上6%以下となるように調整することができる。セラミック焼結体1において、4価のチタンイオンがジルコニアに固溶することによって、ジルコニア結晶は正方晶になり
やすくなるものの、表面処理を施すことによって、正方晶および立方晶の相変態を促すことによって単斜晶の割合を増やすことができる。表面処理の方法としては、具体的には、セラミック焼結体1をダイヤモンド砥石で研削もしくは研磨する研削・研磨処理、セラミック焼結体1を高温下に放置した後に急冷する熱処理、セラミック焼結体1にセラミックスやダイヤモンド、金属などの砥粒を吹きつけるブラスト処理などが挙げられる。なお、ブラスト処理を行なうならば、セラミック焼結体1の主面に存在する開気孔に入り込んでも反射率に影響を与えないように、白色のアルミナやジルコニアの砥粒を用いるのが望ましい。
The surface treatment of the ceramic sintered body 1 causes the zirconia crystals on the surface of the ceramic sintered body 1 to have a monoclinic crystal ratio of 3% or more to the total amount of tetragonal, cubic and monoclinic crystals. % Can be adjusted. In the ceramic sintered body 1, although tetravalent titanium ions are dissolved in zirconia, the zirconia crystals are likely to become tetragonal crystals, but the surface treatment is performed to promote the phase transformation of tetragonal crystals and cubic crystals. Can increase the proportion of monoclinic crystals. Specifically, as the surface treatment method, a grinding / polishing process in which the ceramic sintered body 1 is ground or polished with a diamond grindstone, a heat treatment in which the ceramic sintered body 1 is left at a high temperature and then rapidly cooled, a ceramic sintered body 1 includes a blasting process in which abrasive grains such as ceramics, diamond, and metal are blown. If blasting is performed, it is desirable to use white alumina or zirconia abrasive grains so as not to affect the reflectivity even if they enter the open pores existing in the main surface of the ceramic sintered body 1.

そして、セラミック焼結体1の一方の主面に、公知の印刷法、めっき法または活性金属法による金属板接合によって金属層2を形成することによって、電子部品3を実装するための電子部品実装用基板10とすることができる。金属層2は、銅、アルミニウムおよび銀から形成されること好ましいが、コストを考慮しつつより高い放熱特性を求めるならば銅にて形成すると良い。なお、回路を形成する場合は、公知のエッチング法を用いて形成すれば良い。   An electronic component mounting for mounting the electronic component 3 by forming a metal layer 2 on one main surface of the ceramic sintered body 1 by metal plate bonding by a known printing method, plating method or active metal method. The substrate 10 can be used. The metal layer 2 is preferably formed from copper, aluminum, and silver, but is preferably formed from copper if higher heat dissipation characteristics are required in consideration of cost. In addition, what is necessary is just to form using a well-known etching method, when forming a circuit.

さらに、もう一方の主面に金属層2dを形成し、その金属層2dに、接着層4bを介してヒートシンク6を接合することによって、電子部品実装用基板10の放熱特性を向上することができる。なお、ヒートシンク6は熱伝導率の高い板状体でも良いが、内部に冷媒となる気体や液体などの流体を流すことができる流路を有する構造であっても良い。   Further, by forming the metal layer 2d on the other main surface and bonding the heat sink 6 to the metal layer 2d via the adhesive layer 4b, the heat dissipation characteristics of the electronic component mounting board 10 can be improved. . The heat sink 6 may be a plate having a high thermal conductivity, but may have a structure having a flow path through which a fluid such as a gas or a liquid serving as a refrigerant can flow.

また、金属層2の表面には部分的もしくは全面にめっき処理を行なってもよい。このようにめっき処理を行なうことによって、電極パッド(図示しない)やボンディングワイヤ5などの密着処理がしやすくなり、金属層2が酸化腐蝕するのを抑制することができる。めっきの種類としては公知のめっきであればよく、例えば、金めっき、銀めっきまたはニッケル−金めっきなどが挙げられる。   The surface of the metal layer 2 may be partially or entirely plated. By performing the plating process in this manner, it becomes easy to perform an adhesion process of an electrode pad (not shown), the bonding wire 5 and the like, and it is possible to suppress the metal layer 2 from being oxidized and corroded. As the type of plating, any known plating may be used, and examples thereof include gold plating, silver plating, or nickel-gold plating.

また、セラミック焼結体1に金属層2を形成して電子部品実装用基板10として用いることを説明したが、電子部品実装用基板10上に、例えば接着層4aを介して電子部品3を搭載することにより、本実施形態の電子装置1とすることができる。   In addition, it has been described that the metal layer 2 is formed on the ceramic sintered body 1 and used as the electronic component mounting substrate 10. However, the electronic component 3 is mounted on the electronic component mounting substrate 10 via, for example, the adhesive layer 4 a. By doing so, the electronic apparatus 1 of the present embodiment can be obtained.

また、セラミック焼結体1のその他の利用方法として、青色の波長領域を効率よく反射できる反射部材や、時計の文字盤などの装飾部材に利用しても構わない。   Further, as another method of using the ceramic sintered body 1, it may be used for a reflective member that can efficiently reflect the blue wavelength region and a decorative member such as a dial of a watch.

以下、本発明の実施例を具体的に説明するが、本発明では以下の実施例に限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to the following examples.

酸化チタン(TiO)の含有量によって、セラミック焼結体1の反射率がどのように変化するか確認した。 It was confirmed how the reflectance of the ceramic sintered body 1 varied depending on the content of titanium oxide (TiO 2 ).

まず、平均粒径が0.5μmのアルミナ(Al)、安定化剤としてイットリア(Y
)を3モル%含有するジルコニア(ZrO)、酸化チタン(TiO)の粉末からなる混合粉末を、セラミック焼結体1に含有される量が表1に示した割合となるように混合し、溶媒の水とともに回転ミルを用いて高純度のアルミナボールを用いて粉砕し、これにアクリル樹脂のバインダを添加し、高純度のアルミナボールを用いて回転ミルで混合してスラリーを得た。ここで、バインダの添加量は混合粉末100質量%に対して6質量%
とした。
First, alumina (Al 2 O 3 ) having an average particle diameter of 0.5 μm, yttria (Y
The mixed powder composed of the powder of zirconia (ZrO 2 ) and titanium oxide (TiO 2 ) containing 3 mol% of 2 O 3 ) is contained in the ceramic sintered body 1 in the ratio shown in Table 1. , Pulverize with high-purity alumina balls using a rotary mill together with solvent water, add an acrylic resin binder to this, and mix with a rotary mill using high-purity alumina balls. Obtained. Here, the added amount of the binder is 6% by mass with respect to 100% by mass of the mixed powder.
It was.

次に、得られたスラリーを公知のドクターブレード法でシート状に成形し、このシート
をレーザ加工により、焼成後の寸法値が長さ50mm,幅30mm,厚み0.40mmとなる成形体を作製した。
Next, the obtained slurry was formed into a sheet shape by a known doctor blade method, and this sheet was subjected to laser processing to produce a molded body having dimensions after firing of 50 mm in length, 30 mm in width, and 0.40 mm in thickness. .

次にこの成形体を、電気炉を用いて最高温度を1560〜1650℃として、保持時間を2時間として焼成を行ない、見掛け密度が96%以上となるように試料No.1〜7のセラミック焼結体の試料を得た。   Next, this molded body was baked using an electric furnace at a maximum temperature of 1560 to 1650 ° C. and a holding time of 2 hours, so that an apparent density was 96% or more. Samples of 1 to 7 ceramic sintered bodies were obtained.

次に、ICP発光分光法で、セラミック焼結体1に含有されるチタン,ジルコニウム,
ハフニウムおよびイットリウムを除く遷移金属の酸化物の合計含有量を測定したところ、各試料において100ppm以上200ppm以下が検出された。
Next, by ICP emission spectroscopy, titanium, zirconium,
When the total content of oxides of transition metals excluding hafnium and yttrium was measured, 100 ppm to 200 ppm was detected in each sample.

また、アルミナ、ジルコニアおよび酸化チタンの含有量についても確認した。なお、表1に示したジルコニアの含有量は、安定化剤であるイットリアを含有した量である。   The contents of alumina, zirconia and titanium oxide were also confirmed. In addition, content of the zirconia shown in Table 1 is the quantity containing the yttria which is a stabilizer.

次に、可視光の反射率は(株)島津製作所製の分光光度計 型名:UV−315と積分球ユニット 型名ISR−3100とを用い、光源に50Wハロゲンランプと重水素ランプとを使用
し、波長領域は短い波長として480nm、長い波長として690nmを選択し、測定範囲は拡散反射率(スリット20nm時7×9mm)として、マスクの使用はなしで、基準に硫酸バリウム粉体を用いて測定した。得られた結果を表1に示す。
Next, the spectrophotometer manufactured by Shimadzu Corp. Model name: UV-315 and integrating sphere unit model name ISR-3100 are used, and a 50W halogen lamp and deuterium lamp are used as the light source. The wavelength range is 480 nm as the short wavelength and 690 nm as the long wavelength, and the measurement range is diffuse reflectance (7 × 9 mm at 20 nm slit), without using a mask, and measured using barium sulfate powder as a reference. did. The obtained results are shown in Table 1.

Figure 2013199415
Figure 2013199415

表1に示すようにTiOを含有しない試料No.1では、短い波長領域である波長480nmにおける反射率が78.8%と低く、またTiOの含有量が5.5質量%である試料No.7では、長い波長領域である波長690nmの反射率が78.9%と低かった。これに対し、
TiOを0.05質量%以上0.5質量%以下含有する試料No.2〜6では、短い波長領域
である波長480nmと長い波長領域である波長690nmとのいずれにおいても、反射率が80.0%以上であり、長い波長領域の反射率を維持しつつ短い波長領域の反射率を高くすることができることがわかる。
As shown in Table 1, the sample No. containing no TiO 2 was used. 1 has a low reflectance of 78.8% at a wavelength of 480 nm, which is a short wavelength region, and sample No. 1 having a TiO 2 content of 5.5% by mass. 7, the reflectance at a wavelength of 690 nm, which is a long wavelength region, was as low as 78.9%. In contrast,
Sample No. containing 0.05% by mass or more and 0.5% by mass or less of TiO 2 . 2 to 6, the reflectance is 80.0% or more in both the short wavelength region of wavelength 480 nm and the long wavelength region of wavelength 690 nm, and the reflectance in the short wavelength region is maintained while maintaining the reflectance in the long wavelength region. It can be seen that the rate can be increased.

次に、酸化珪素(SiO)および酸化マグネシウム(MgO)の含有量によって、セラミック焼結体1の反射率や機械的強度がどのように変化するか確認した。 Next, it was confirmed how the reflectance and mechanical strength of the ceramic sintered body 1 change depending on the contents of silicon oxide (SiO 2 ) and magnesium oxide (MgO).

アルミナ(Al)、ジルコニア(ZrO)および酸化チタン(TiO)は実施例1で用いた原料を使用し、セラミック焼結体1に含有される量が、表2に示した割合になるように酸化珪素(SiO)および炭酸マグネシウム(MgCO)を混合し、溶媒の水とともに回転ミルを用いて高純度のアルミナボールを用いて粉砕し、これにアクリ
ル樹脂のバインダを添加し、高純度のアルミナボールを用いて回転ミルで混合してスラリーを得た。ここで、バインダの添加量は混合粉末100質量%に対して6質量%とした。
Alumina (Al 2 O 3 ), zirconia (ZrO 2 ) and titanium oxide (TiO 2 ) use the raw materials used in Example 1, and the amount contained in the ceramic sintered body 1 is the ratio shown in Table 2 Then, silicon oxide (SiO 2 ) and magnesium carbonate (MgCO 3 ) are mixed, and pulverized with high-purity alumina balls using a rotating mill together with solvent water, and an acrylic resin binder is added thereto. The slurry was obtained by mixing with a rotary mill using high-purity alumina balls. Here, the additive amount of the binder was 6% by mass with respect to 100% by mass of the mixed powder.

そして、後は、実施例1と同じ工程で成形体を作製し、焼成を行なうことによって、試料No.8〜19を作製した。なお、試料No.8は実施例1で示した試料No.4と同じ工程で作製した。   And after that, a molded object is produced in the same process as Example 1, and by baking, sample No. 8-19 were produced. Sample No. No. 8 shows the sample No. shown in Example 1. 4 was produced in the same process.

そして、反射率および各成分の含有量は実施例1と同じ方法で測定した。   The reflectance and the content of each component were measured by the same method as in Example 1.

また、ICP発光分光法で、セラミック焼結体1に含有されるチタン,ジルコニウム,
ハフニウムおよびイットリウムを除く遷移金属の酸化物の合計含有量を測定したところ、各試料において100ppm以上200ppm以下が検出された。
Further, by ICP emission spectroscopy, titanium, zirconium,
When the total content of oxides of transition metals excluding hafnium and yttrium was measured, 100 ppm to 200 ppm was detected in each sample.

機械的強度については、各試料において、同じ工程で作製された基板サンプルを11枚準備し、JIS R 1601−2008を参考にし、基板形状での機械的強度を測定するため、3点曲げ強度試験を行ない、最も低い値と最も高い値を示したサンプルを省き、残り9点の平均値を求め、機械的強度とした。得られた結果を表2に示す。   For mechanical strength, in each sample, 11 substrate samples prepared in the same process are prepared, and JIS R 1601-2008 is used as a reference to measure the mechanical strength of the substrate shape. The samples showing the lowest value and the highest value were omitted, and the average value of the remaining nine points was determined as the mechanical strength. The obtained results are shown in Table 2.

Figure 2013199415
Figure 2013199415

表2に示すように、試料No.8〜13を比較すると、酸化珪素を含まない試料No.8は、反射率が短い波長領域である波長480nmでは81.4%、長い波長領域である波長690nmでは81.0%であり、3点曲げ強度が590MPaであった。また、酸化珪素を0.90質量%
を超えて含む試料No.13は、反射率が短い波長領域である波長480nmでは83.0%、長
い波長領域である波長690nmでは82.6%と高いものの、3点曲げ強度が591MPaであった。これに対し、酸化珪素を0.20質量%以上0.90質量%以下含む試料No.9〜12は、反射率が短い波長領域である波長480nmでは81.9%以上、長い波長領域の反射率である波
長690nmでは81.5%以上と高く、3点曲げ強度が619MPa以上であり優れていることがわかる。
As shown in Table 2, sample no. When comparing 8 to 13, sample no. No. 8 had a reflectance of 81.4% at a wavelength of 480 nm which is a short wavelength region, 81.0% at a wavelength of 690 nm which was a long wavelength region, and a three-point bending strength of 590 MPa. Also, 0.90 mass% silicon oxide
Sample no. 13 had a high reflectivity of 83.0% at a wavelength of 480 nm, which is a short wavelength region, and 82.6% at a wavelength of 690 nm, which is a long wavelength region, but had a three-point bending strength of 591 MPa. In contrast, Sample No. containing silicon oxide in an amount of 0.20 mass% to 0.90 mass%. Nos. 9 to 12 have a high three-point bending strength of 619 MPa or more, with a high reflectance of 81.9% or more at a wavelength of 480 nm, which is a short wavelength region, and 81.5% or more at a wavelength of 690 nm, which is a long wavelength region. I understand.

次に、試料No.14〜19を比較すると、酸化マグネシウムを0.10質量%含む試料No.14は、反射率が短い波長領域である波長480nmでは82.6%、長い波長領域の反射率であ
る波長690nmでは82.2%であり、3点曲げ強度が682MPaであった。また、酸化マグネシウムを0.50質量%を超えて含む試料No.19は、反射率が短い波長領域である波長480
nmでは84.0%、長い波長領域の反射率である波長690nmでは83.6%と高いものの、粒
界に存在するガラス層が多くなり3点曲げ強度が689MPaであった。これに対し、酸化
マグネシウムを0.20質量%以上0.50質量%以下含む試料No.15〜18は、反射率が短い波長領域である波長480nmでは83.0%以上、長い波長領域の反射率である波長690nmでは
82.6%以上と高く、3点曲げ強度が714MPa以上であり優れていることがわかり、3点
曲げ強度を向上するにあたり、酸化マグネシウムを0.20質量%以上0.50質量%以下含む場合に、より効率良く3点曲げ強度を向上できることがわかる。
Next, sample No. 14-19, sample No. containing 0.10% by mass of magnesium oxide. No. 14 was 82.6% at a wavelength of 480 nm, which is a short wavelength region, and 82.2% at a wavelength of 690 nm, which was a long wavelength region, and the three-point bending strength was 682 MPa. Sample No. containing magnesium oxide exceeding 0.50 mass%. 19 is a wavelength region of 480, which is a wavelength region with a short reflectance
Although the wavelength was as high as 84.0% at 8 nm and 83.6% at a wavelength of 690 nm, which is a reflectance in a long wavelength region, the number of glass layers existing at the grain boundaries increased and the three-point bending strength was 689 MPa. On the other hand, Sample No. containing 0.20 mass% or more and 0.50 mass% or less of magnesium oxide. 15 to 18 are 83.0% or more at a wavelength of 480 nm, which is a short wavelength region, and at a wavelength of 690 nm, which is a reflectance of a long wavelength region.
82.6% or more is high, and the three-point bending strength is 714 MPa or more, which is excellent. When the magnesium oxide content is 0.20 mass% or more and 0.50 mass% or less in order to improve the three-point bending strength, 3 is more efficient. It can be seen that the point bending strength can be improved.

次に、アルミナ(Al)およびジルコニア(ZrO)の含有量によって、セラミック焼結体1の機械的強度や熱伝導率がどのように変化するか確認した。 Next, it was confirmed how the mechanical strength and thermal conductivity of the ceramic sintered body 1 change depending on the contents of alumina (Al 2 O 3 ) and zirconia (ZrO 2 ).

アルミナ(Al)、ジルコニア(ZrO)、酸化チタン(TiO)、酸化珪素(SiO)および炭酸マグネシウム(MgCO)は実施例1で用いた原料を使用し、セラミック焼結体1に含有される量が、表3に示した割合となるように混合し、溶媒の水とともに回転ミルを用いて高純度のアルミナボールを用いて粉砕し、これにアクリル樹脂のバインダを添加し、高純度のアルミナボールを用いて回転ミルで混合してスラリーを得た。ここで、バインダの添加量は混合粉末100質量%に対して6質量%とした。 Alumina (Al 2 O 3 ), zirconia (ZrO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ) and magnesium carbonate (MgCO 3 ) are the ceramic sintered bodies using the raw materials used in Example 1. 1 was mixed so that the amount contained in Table 3 was the ratio shown in Table 3, and pulverized with high-purity alumina balls using a rotary mill together with solvent water, and an acrylic resin binder was added thereto. The slurry was obtained by mixing with a rotary mill using high-purity alumina balls. Here, the additive amount of the binder was 6% by mass with respect to 100% by mass of the mixed powder.

そして、後は、実施例1および2と同じ工程で成形体を作製し、焼成を行なうことによって、試料No.20〜25を作製した。   And after that, a molded body was produced in the same process as in Examples 1 and 2, and fired to obtain a sample No. 20-25 were produced.

機械的強度および各成分の含有量は実施例2と同じ方法で測定した。   The mechanical strength and the content of each component were measured by the same method as in Example 2.

ICP発光分光法で、セラミック焼結体1に含有されるチタン,ジルコニウム,ハフニ
ウムおよびイットリウムを除く遷移金属の酸化物の合計含有量を測定したところ、各試料において100ppm以上350ppm以下が検出された。
When the total content of transition metal oxides excluding titanium, zirconium, hafnium and yttrium contained in the ceramic sintered body 1 was measured by ICP emission spectroscopy, 100 ppm or more and 350 ppm or less were detected in each sample.

熱伝導率については、各試料と同じ組成のものを用いてプレス成形を行ない、焼成して作製したセラミック焼結体1を直径が10mm、厚さが1mmの試験片として切り出し、アルキメデス法で密度を求めた後、JIS R1611−2010に準拠したレーザーフラッシュ法
によって求めた。得られた結果を表3に示す。
Regarding the thermal conductivity, the ceramic sintered body 1 produced by press-molding using the same composition as each sample and fired was cut out as a test piece having a diameter of 10 mm and a thickness of 1 mm, and the density was measured by Archimedes method. Was obtained by a laser flash method in accordance with JIS R1611-2010. The obtained results are shown in Table 3.

Figure 2013199415
Figure 2013199415

表3に示すように、アルミナが94.8質量%、ジルコニアが4.0質量%である試料No.20は、熱伝導率が31W/m・Kと高いものの、ジルコニアの含有量が少ないことから3点
曲げ強度が600MPaであった。また、アルミナが70.3質量%、ジルコニアが28.5質量%
である試料No.25は、3点曲げ強度が772MPaと高いものの、アルミナの含有量が少
ないことから熱伝導率が8W/m・Kであった。これらに対し、アルミナが70.8質量%以上93.8質量%以下、ジルコニアが5.0質量%以上28.0質量%以下である試料No.21〜24
は、熱伝導率が13W/m・K以上、かつ、3点曲げ強度が625MPa以上であり熱的信頼
性および機械的強度が優れていることがわかる。特に、アルミナが72.8質量%以上90.3質量%以下、ジルコニアが8.5質量%以上26.0質量%以下である試料No.22および23は、
熱伝導率が16W/m・K以上、かつ、3点曲げ強度が654MPa以上であり熱的信頼性お
よび機械的強度がより優れていることがわかる。
As shown in Table 3, the sample No. 1 was 94.8% by mass of alumina and 4.0% by mass of zirconia. No. 20 had a high thermal conductivity of 31 W / m · K, but its three-point bending strength was 600 MPa because of its low zirconia content. Alumina is 70.3% by mass, zirconia is 28.5% by mass
Sample No. Although the three-point bending strength was as high as 772 MPa, the thermal conductivity was 8 W / m · K because the content of alumina was small. On the other hand, Sample Nos. In which alumina is 70.8% by mass to 93.8% by mass and zirconia is 5.0% by mass to 28.0% by mass. 21-24
It can be seen that the thermal conductivity is 13 W / m · K or more, the three-point bending strength is 625 MPa or more, and the thermal reliability and mechanical strength are excellent. In particular, Sample No. 7 in which alumina is 72.8 mass% to 90.3 mass% and zirconia is 8.5 mass% to 26.0 mass%. 22 and 23 are
It can be seen that the thermal conductivity is 16 W / m · K or more, the three-point bending strength is 654 MPa or more, and the thermal reliability and mechanical strength are more excellent.

次に、ジルコニアの単斜晶の割合によって、セラミック焼結体1の反射率がどのように変化するか確認した。   Next, it was confirmed how the reflectance of the ceramic sintered body 1 changes depending on the ratio of monoclinic zirconia.

セラミック焼結体を得るまでは、実施例2の試料No.16と同じ工程で作製し、試料を6個作製した。そして、各々の試料に対して、市販のジェットブラスト装置を用いて、加工条件として、加工物までの距離が5cm,空気圧が3kg/cm,噴射速度が25m/sec,加工時間が0.5〜2分として、番手が400番の白色アルミナ砥粒を用いたブラスト処理を0.5〜2分行なうことによって、単斜晶の割合が異なる試料No.27〜31を作製し
た。なお、試料No.26についてはブラスト処理を行なわなかった。
Until the ceramic sintered body was obtained, the sample No. Six samples were prepared in the same process as in FIG. For each sample, using a commercially available jet blasting apparatus, the processing conditions are as follows: the distance to the workpiece is 5 cm, the air pressure is 3 kg / cm 2 , the injection speed is 25 m / sec, and the processing time is 0.5-2. As a result, sample No. 1 with a different monoclinic crystal ratio was obtained by performing blasting using white alumina abrasive grains having a count of 400 for 0.5 to 2 minutes. 27-31 were produced. Sample No. No blasting was performed on 26.

反射率および各成分の測定は実施例1、2および3と同じ方法で測定した。   The reflectance and each component were measured by the same method as in Examples 1, 2, and 3.

ICP発光分光法で、セラミック焼結体1に含有されるチタン,ジルコニウム,ハフニ
ウムおよびイットリウムを除く遷移金属の酸化物の合計含有量を測定したところ、各試料において100ppm以上200ppm以下が検出された。
When the total content of oxides of transition metals excluding titanium, zirconium, hafnium and yttrium contained in the ceramic sintered body 1 was measured by ICP emission spectroscopy, 100 ppm to 200 ppm was detected in each sample.

また、単斜晶の割合については、X線回折(XRD)法を用いることによって得られたX線回折強度より以下の計算式で求めた。得られた結果を表3に示す。   In addition, the monoclinic crystal ratio was determined by the following calculation formula from the X-ray diffraction intensity obtained by using the X-ray diffraction (XRD) method. The obtained results are shown in Table 3.

単斜晶割合(%)=(Im1+Im2)/(Im1+Im2+It+Ic)
It :正方晶(111)面のX線回折強度
Ic :立方晶(111)面のX線回折強度
Im1:単斜晶(111)面のX線回折強度
Im2:単斜晶(11−1)面のX線回折強度
Monoclinic crystal ratio (%) = (Im1 + Im2) / (Im1 + Im2 + It + Ic)
It: Tetragonal (111) plane X-ray diffraction intensity Ic: Cubic (111) plane X-ray diffraction intensity Im1: Monoclinic (111) plane X-ray diffraction intensity Im2: Monoclinic crystal (11-1) X-ray diffraction intensity of surface

Figure 2013199415
Figure 2013199415

表4に示すように、試料No.26は、単斜晶の割合が2.5%であり、反射率が短い波長
領域である波長480nmでは83.4%、長い波長領域の反射率である波長690nmでは83.0%であった。また、試料No.31は、単斜晶の割合が6.5%であり、反射率が短い波長領域
である波長480nmでは84.5%、長い波長領域の反射率である波長690nmでは83.8%であった。これらに対し、試料No.27〜30は、単斜晶の割合が3.0%以上6.0%以下であり、反射率が短い波長領域である波長480nmでは83.8%以上、長い波長領域の反射率である
波長690nmでは83.2%以上であり、高い反射率を優れていることがわかる。
As shown in Table 4, Sample No. No. 26 had a monoclinic crystal ratio of 2.5%, a reflectance of 83.4% at a wavelength of 480 nm, which is a short wavelength region, and 83.0% at a wavelength of 690 nm, which is a reflectance of a long wavelength region. Sample No. No. 31 had a monoclinic crystal ratio of 6.5%, 84.5% at a wavelength of 480 nm, which is a short wavelength region, and 83.8% at a wavelength of 690 nm, which is a long wavelength region. In contrast, sample no. 27-30, the ratio of monoclinic crystals is 3.0% or more and 6.0% or less, and the reflectance is 83.8% or more at a wavelength of 480 nm which is a short wavelength region, and 83.2% or more at a wavelength of 690 nm which is a reflectance of a long wavelength region. It can be seen that the high reflectance is excellent.

1:セラミック焼結体
2,2a,2b,2c,2d:金属層
3:電子部品
4,4a,4b:接着層
5:ワイヤーボンディング
6:ヒートシンク
10:電子部品実装用基板
20:電子装置
1: Ceramic sintered body 2, 2a, 2b, 2c, 2d: Metal layer 3: Electronic component 4, 4a, 4b: Adhesive layer 5: Wire bonding 6: Heat sink
10: Electronic component mounting board
20: Electronic equipment

Claims (4)

アルミナを主成分とし、安定化剤を含むジルコニアを含有するとともに、チタンを酸化物換算で0.05質量%以上0.5質量%以下で含有することを特徴とするセラミック焼結体。   A ceramic sintered body comprising alumina as a main component and containing zirconia containing a stabilizer and titanium in an amount of 0.05% by mass or more and 0.5% by mass or less in terms of oxide. 表面における前記ジルコニア結晶の正方晶、立方晶および単斜晶の合計量に対する単斜晶の割合が3%以上6%以下とすることを特徴とする請求項1に記載のセラミック焼結体。   2. The ceramic sintered body according to claim 1, wherein the ratio of the monoclinic crystal to the total amount of tetragonal, cubic and monoclinic crystals of the zirconia crystal on the surface is 3% or more and 6% or less. 請求項1または請求項2に記載のセラミック焼結体の少なくとも一方の主面に金属層が形成されてなることを特徴とする電子部品実装用基板。   3. A substrate for mounting electronic parts, wherein a metal layer is formed on at least one main surface of the ceramic sintered body according to claim 1 or 2. 請求項3に記載の電子部品実装用基板に電子部品が実装されてなることを特徴とする電子装置。   An electronic device comprising an electronic component mounted on the electronic component mounting board according to claim 3.
JP2012069577A 2012-03-26 2012-03-26 Electronic component mounting substrate and electronic device Active JP5836862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012069577A JP5836862B2 (en) 2012-03-26 2012-03-26 Electronic component mounting substrate and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012069577A JP5836862B2 (en) 2012-03-26 2012-03-26 Electronic component mounting substrate and electronic device

Publications (2)

Publication Number Publication Date
JP2013199415A true JP2013199415A (en) 2013-10-03
JP5836862B2 JP5836862B2 (en) 2015-12-24

Family

ID=49519948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012069577A Active JP5836862B2 (en) 2012-03-26 2012-03-26 Electronic component mounting substrate and electronic device

Country Status (1)

Country Link
JP (1) JP5836862B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015106633A (en) * 2013-11-29 2015-06-08 京セラ株式会社 Substrate of light-emitting element mounting use, and light-emitting element module arranged by use thereof
KR101538333B1 (en) * 2014-04-10 2015-07-22 (주)씨티엘 Chip scale LED package
JP2015138830A (en) * 2014-01-21 2015-07-30 Ngkエレクトロデバイス株式会社 Electronic component mounting substrate
JP2015163558A (en) * 2014-02-28 2015-09-10 香川県 Visible light shielding white ceramic, production method thereof and white ceramic visible light shielding body
WO2016208766A1 (en) * 2015-06-26 2016-12-29 京セラ株式会社 Ceramic substrate and mounting substrate using same, and electronic device
WO2017213038A1 (en) * 2016-06-07 2017-12-14 国立大学法人東北大学 Oxide, oxygen storage agent, three-way catalyst for exhaust gas, and method for producing oxide
JP2020043126A (en) * 2018-09-06 2020-03-19 住友電気工業株式会社 Silicon carbide semiconductor device and silicon carbide semiconductor module
CN112805822A (en) * 2018-12-06 2021-05-14 日本碍子株式会社 Substrate for semiconductor device
EP3854766A4 (en) * 2018-12-06 2022-05-11 NGK Insulators, Ltd. Ceramic sintered body and substrate for semiconductor device
CN116082877A (en) * 2022-12-29 2023-05-09 上海卫星装备研究所 High-reflectivity filler and inorganic thermal control coating thereof and preparation method thereof
CN116120046A (en) * 2023-02-17 2023-05-16 江苏博睿光电股份有限公司 High-reflectivity alumina ceramic substrate, preparation method and application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162570A (en) * 1986-12-25 1988-07-06 第一稀元素化学工業株式会社 Thermal degradation-resistant high strength zirconia-alumina ceramics and manufacture
JPH0590444A (en) * 1991-09-26 1993-04-09 Toshiba Corp Ceramic circuit board
JPH0729764A (en) * 1993-07-12 1995-01-31 Kyocera Corp Capacitor material and multilayered alumina wiring substrate as well as semiconductor element containing package
JP2003055044A (en) * 2001-08-23 2003-02-26 Matsushita Electric Works Ltd Zirconia alumina composite ceramic sintered body for high frequency circuit and wiring board for high frequency
JP2005075659A (en) * 2003-08-28 2005-03-24 Kyocera Corp Ceramic sintered compact, method for producing the same, and biomaterial
JP2010229570A (en) * 2009-03-26 2010-10-14 Kyocera Corp Fiber guide
WO2012036219A1 (en) * 2010-09-17 2012-03-22 旭硝子株式会社 Light-emitting element substrate and light-emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162570A (en) * 1986-12-25 1988-07-06 第一稀元素化学工業株式会社 Thermal degradation-resistant high strength zirconia-alumina ceramics and manufacture
JPH0590444A (en) * 1991-09-26 1993-04-09 Toshiba Corp Ceramic circuit board
JPH0729764A (en) * 1993-07-12 1995-01-31 Kyocera Corp Capacitor material and multilayered alumina wiring substrate as well as semiconductor element containing package
JP2003055044A (en) * 2001-08-23 2003-02-26 Matsushita Electric Works Ltd Zirconia alumina composite ceramic sintered body for high frequency circuit and wiring board for high frequency
JP2005075659A (en) * 2003-08-28 2005-03-24 Kyocera Corp Ceramic sintered compact, method for producing the same, and biomaterial
JP2010229570A (en) * 2009-03-26 2010-10-14 Kyocera Corp Fiber guide
WO2012036219A1 (en) * 2010-09-17 2012-03-22 旭硝子株式会社 Light-emitting element substrate and light-emitting device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015106633A (en) * 2013-11-29 2015-06-08 京セラ株式会社 Substrate of light-emitting element mounting use, and light-emitting element module arranged by use thereof
JP2015138830A (en) * 2014-01-21 2015-07-30 Ngkエレクトロデバイス株式会社 Electronic component mounting substrate
JP2015163558A (en) * 2014-02-28 2015-09-10 香川県 Visible light shielding white ceramic, production method thereof and white ceramic visible light shielding body
KR101538333B1 (en) * 2014-04-10 2015-07-22 (주)씨티엘 Chip scale LED package
JPWO2016208766A1 (en) * 2015-06-26 2018-04-19 京セラ株式会社 Ceramic substrate, mounting substrate using the same, and electronic device
WO2016208766A1 (en) * 2015-06-26 2016-12-29 京セラ株式会社 Ceramic substrate and mounting substrate using same, and electronic device
WO2017213038A1 (en) * 2016-06-07 2017-12-14 国立大学法人東北大学 Oxide, oxygen storage agent, three-way catalyst for exhaust gas, and method for producing oxide
JP2020043126A (en) * 2018-09-06 2020-03-19 住友電気工業株式会社 Silicon carbide semiconductor device and silicon carbide semiconductor module
CN112805822A (en) * 2018-12-06 2021-05-14 日本碍子株式会社 Substrate for semiconductor device
EP3854766A4 (en) * 2018-12-06 2022-05-11 NGK Insulators, Ltd. Ceramic sintered body and substrate for semiconductor device
US11897817B2 (en) 2018-12-06 2024-02-13 Ngk Insulators, Ltd. Ceramic sintered body and substrate for semiconductor device
CN116082877A (en) * 2022-12-29 2023-05-09 上海卫星装备研究所 High-reflectivity filler and inorganic thermal control coating thereof and preparation method thereof
CN116082877B (en) * 2022-12-29 2024-04-09 上海卫星装备研究所 High-reflectivity filler and inorganic thermal control coating thereof and preparation method thereof
CN116120046A (en) * 2023-02-17 2023-05-16 江苏博睿光电股份有限公司 High-reflectivity alumina ceramic substrate, preparation method and application
CN116120046B (en) * 2023-02-17 2024-02-02 江苏博睿光电股份有限公司 High-reflectivity alumina ceramic substrate, preparation method and application

Also Published As

Publication number Publication date
JP5836862B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5836862B2 (en) Electronic component mounting substrate and electronic device
EP3438229B1 (en) Fluorescent body, light-emitting device, illuminating apparatus, and image display apparatus
US10873009B2 (en) Barrier layer functioned novel-structure ceramic converter materials and light emitting devices
JP6496021B2 (en) Ceramic substrate, mounting substrate using the same, and electronic device
TWI534246B (en) Fluorescent particles and light-emitting diodes, and a lighting device using the same, and a backlight device for a liquid crystal panel
CN101939272B (en) Zirconia sintered body and manufacturing method thereof
CN109642156B (en) Sintered phosphor, light-emitting device, lighting device, and display lamp for vehicle
CN101536199A (en) Illumination system comprising monolithic ceramic luminescence converter
WO2006006582A1 (en) Fluorescent substance and light bulb color light emitting diode lamp using the fluorescent substance and emitting light bulb color light
TWI447866B (en) A ceramic substrate for mounting a light emitting element, and a light emitting device
JP2018021193A (en) Sintered phosphor, light-emitting device, illumination device, image display device and indicator lamp for vehicle
WO2014156831A1 (en) Substrate for mounting light-emitting element, and light-emitting element module
JP2010024278A (en) Phosphor ceramic plate and light-emitting element using it
JP5954746B2 (en) Visible light shielding white ceramics, method for producing the same, and white ceramics visible light shield
JP2020073993A (en) Manufacturing method of wavelength conversion member
CN103254901B (en) LED (light-emitting diode) fluorescent powder with broadband gradient and preparation method thereof
TW201424050A (en) Wavelength conversion member and light-emitting device employing same
KR102641930B1 (en) Method for manufacturing ceramic converter elements, ceramic converter elements, and optoelectronic components
JP2013230949A (en) Ceramic substrate and light-emitting device using the same
CN107586127A (en) Ceramic composite and the projecting apparatus fluorophor and luminaire containing it
JP2013145833A (en) Reflection substrate for led light-emitting element and led package
CN107502354B (en) Fluorescent powder for warm white LED and preparation method thereof
TW202106655A (en) Oxide sintered body
JP6987981B2 (en) Ceramic substrate and mounting substrate and electronic device using it
JP6122367B2 (en) Light emitting element mounting substrate and light emitting element module using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R150 Certificate of patent or registration of utility model

Ref document number: 5836862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150