WO2012036219A1 - Light-emitting element substrate and light-emitting device - Google Patents

Light-emitting element substrate and light-emitting device Download PDF

Info

Publication number
WO2012036219A1
WO2012036219A1 PCT/JP2011/071035 JP2011071035W WO2012036219A1 WO 2012036219 A1 WO2012036219 A1 WO 2012036219A1 JP 2011071035 W JP2011071035 W JP 2011071035W WO 2012036219 A1 WO2012036219 A1 WO 2012036219A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
emitting element
light emitting
light
powder
Prior art date
Application number
PCT/JP2011/071035
Other languages
French (fr)
Japanese (ja)
Inventor
谷田 正道
篤人 ▲橋▼本
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012534043A priority Critical patent/JPWO2012036219A1/en
Publication of WO2012036219A1 publication Critical patent/WO2012036219A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10969Metallic case or integral heatsink of component electrically connected to a pad on PCB

Definitions

  • the present invention relates to a light-emitting element substrate and a light-emitting device using the same, and more particularly to a light-emitting element substrate excellent in solder adhesion to a metal core substrate having high heat dissipation and a light-emitting device using the same.
  • a wiring board for mounting a light-emitting element such as a light-emitting diode element has a structure in which a wiring conductor layer is disposed on or inside an insulating substrate.
  • a recess for accommodating a light emitting element is formed on the surface of an insulating substrate made of alumina ceramics, and a refractory metal powder such as tungsten or molybdenum is formed on the surface and inside of the insulating substrate.
  • this wiring board usually has an external connection terminal as a part of the wiring conductor layer on the lower surface or side surface of the insulating substrate, and solders the external connection terminal and the wiring conductor formed on the surface of the external electric circuit board. Then, by being electrically connected, it is mounted on an external electric circuit board and used.
  • Ceramic substrates such as alumina and mullite which are cited as insulating substrates in the above-mentioned wiring substrate for light emitting elements, have a high strength of 200 MPa or more and are frequently used because of their high reliability in multilayer technology such as wiring conductor layers. Yes.
  • an external electric circuit board with good heat dissipation such as a metal core board
  • a ceramic substrate such as alumina is not connected to the external electric circuit board.
  • thermal stress distortion occurs in the solder, the solder that joins the two peels off, and cannot be stably electrically connected for a long time.
  • a glass ceramic substrate is cited as an insulating substrate having such characteristics.
  • Patent Document 2 and Patent Document 3 similarly describe a glass ceramic substrate in which the solder adhesion between the wiring substrate and the external electric circuit substrate is improved, and the glass ceramic sintered body constituting the substrate is Young's It is manufactured to have a characteristic of a rate of 150 GPa or less.
  • an insulating substrate of a wiring substrate for light emitting devices recently, it is possible to fabricate copper and silver with low temperature firing, low dielectric constant and high electrical conductivity. It has been proposed to do.
  • an external electric circuit board having high heat dissipation such as a metal core board in order to ensure heat dissipation as in the case of the alumina substrate. Ensuring stable electrical connectivity over a long period of time with this highly heat-dissipating external electric circuit board is also an important characteristic.
  • the present invention relates to a light emitting element substrate for surface mounting by soldering on a wiring circuit of an external electric circuit board mainly composed of metal, and capable of maintaining a strong and stable connection state with the external electric circuit board over a long period of time. It is an object of the present invention to provide a light emitting device having high reliability for a circuit board and electrical connection using the same.
  • the substrate for a light emitting device of the present invention comprises a sintered body of a glass ceramic composition containing glass powder and ceramic powder, and a substrate body having a mounting surface, a part of which is a mounting portion on which the light emitting device is mounted, A wiring conductor for electrically connecting the electrode of the light emitting element and an external circuit is provided on the surface and inside of the substrate body, and a part of the wiring conductor is connected to an external connection terminal on a non-mounting surface opposite to the mounting surface.
  • a substrate for a light emitting element that is solder-fixed on a wiring circuit of an external electric circuit board mainly composed of metal through the external connection terminal, and the Young's modulus at 25 ° C.
  • the thermal expansion coefficient at 50 to 400 ° C. is 2 to 8 ppm / ° C.
  • the Young's modulus at 25 ° C. of the sintered body is preferably 50 GPa or more and 150 GPa or less.
  • the sintered body of the glass ceramic composition is preferably a sintered body of low-temperature co-fired ceramic.
  • the material constituting the metal plate is a metal core substrate composed of at least one selected from the group consisting of tungsten, molybdenum, copper, aluminum, and an alloy composed of two or more thereof. It is suitably used for mounting.
  • the reason for using such a metal core substrate is to ensure heat dissipation, and a metal base substrate in which an insulating layer is formed on a similar metal plate is also preferably used in the present invention.
  • the surface of the metal plate on which the insulating layer is formed means the entire surface of the substrate, and in the case of a metal base substrate, it means at least the surface bonded to the light emitting element substrate by soldering. To do.
  • the light-emitting device of the present invention includes a light-emitting element substrate of the present invention, a light-emitting element mounted on the light-emitting element substrate, and an external body mainly composed of a metal having a wiring circuit on which the light-emitting element substrate is mounted.
  • ADVANTAGE OF THE INVENTION in the board
  • a light-emitting element substrate and a light-emitting device having high reliability in electrical connection using the substrate can be provided.
  • (A) is a plan view of an evaluation model in which a light emitting element substrate of the present invention and an external electric circuit substrate used for evaluation in the examples are joined by a solder layer
  • (b) is a cross-sectional view taken along line XX of the plan view. It is a fragmentary sectional view.
  • the substrate for a light emitting device of the present invention is a sintered body of a glass ceramic composition containing glass powder and ceramic powder (hereinafter referred to as “LTCC” (low-temperature co-fired ceramic) or “LTCC substrate” (low-temperature co-fired ceramic substrate). And a substrate main body having a mounting surface on which a part of the light emitting element is mounted, and an electrode and an external circuit of the light emitting element are electrically connected to the surface and inside of the substrate main body.
  • LTCC glass ceramic composition containing glass powder and ceramic powder
  • LTCC substrate low-temperature co-fired ceramic substrate
  • a part of the wiring conductor is disposed as an external connection terminal on a non-mounting surface opposite to the mounting surface, and an external body mainly composed of metal via the external connection terminal.
  • a substrate for a light emitting element which is solder-fixed on a wiring circuit of an electric circuit board, wherein the sintered body has a Young's modulus at 25 ° C. of 150 GPa or less and a thermal expansion coefficient at 50 to 400 ° C. Characterized in that it is a 2 ⁇ 8ppm / °C.
  • the “wiring conductor” of the light emitting element substrate is electrically connected from the electrode of the light emitting element to be mounted to the wiring circuit of the external electric circuit board through the electrode. All conductors related to the electrical wiring provided in this way, for example, element connection terminals connected to the electrodes of the light emitting element, inner layer wiring provided in the substrate (including through conductors penetrating through the substrate), external electric circuit board This term is used as a general term for external connection terminals connected to the wiring circuit.
  • a high heat dissipation external electric circuit board mainly composed of metal is used in order to enhance the heat dissipation of the light emitting device.
  • LTCC having a Young's modulus at 25 ° C. of 150 GPa or less and a thermal expansion coefficient of 2 to 8 ppm / ° C. at 50 to 400 ° C. is used as the material constituting the insulating substrate body of the light emitting element substrate. This makes it possible to reduce thermal stress strain (hereinafter referred to as residual stress strain) remaining in the solder layer after joining the light emitting element substrate and the external electric circuit substrate, and breaking the joint wiring due to peeling or the like. Is suppressed.
  • the substrate for a light-emitting element of the present invention in which the LTCC having the above characteristics is a constituent material of an insulating substrate body is a high heat dissipation external electric circuit substrate mainly composed of a metal mounted by a solder layer.
  • the external electric circuit board mainly composed of the metal to be used is used without particular limitation.
  • the thermal expansion coefficient of the metal at 50 to 200 ° C. is about 3 to 10 ppm / ° C., which is a difference from the thermal expansion coefficient of the LTCC used in the present invention. Is about 8 ppm at the maximum.
  • the substrate for a light-emitting element of the present invention is mounted on an external electric circuit substrate mainly composed of metal via a solder layer, if the difference in thermal expansion coefficient between the LTCC and the metal is within this range, the Young's modulus of the LTCC When the pressure is set to 150 GPa or less, solder bonding with reduced residual stress strain as described above can be achieved.
  • FIG. 1 is a plan view (a) showing an example of a substrate for a light-emitting element of the present invention, and a cross-sectional view along line XX in the plan view (a).
  • the light emitting element substrate 1 has a substantially flat substrate body 2 that mainly constitutes the substrate.
  • the substrate body 2 is made of a sintered body of a glass ceramic composition containing glass powder and ceramic powder, and has a Young's modulus at 25 ° C. of 150 GPa or less and a thermal expansion coefficient of 50 to 400 ° C. ⁇ 8 ppm / ° C.
  • the substrate body 2 is used as a light emitting element substrate, the surface on which the light emitting element is mounted is used as the mounting surface 21. In this example, the opposite surface is used as the non-mounting surface 23.
  • LTCC sintered body
  • Young's modulus at 25 ° C. is 150 GPa or less and thermal expansion at 50 to 400 ° C.
  • Any LTCC having a coefficient of 2 to 8 ppm / ° C. is not particularly limited.
  • the Young's modulus of the LTCC exceeds 150 GPa, a considerable residual stress strain occurs in the solder layer when the light emitting element substrate is mounted on the external electric circuit substrate mainly composed of metal via the solder layer, and the long term Stable use becomes difficult.
  • the thermal expansion coefficient of LTCC is less than 2 ppm / ° C.
  • the difference in thermal expansion coefficient from the external electric circuit board becomes large, and as a result, the residual stress strain between the two becomes large.
  • it exceeds 8 ppm / ° C. the difference in thermal expansion coefficient between the LED element mounted on the LTCC increases and the residual stress strain between the LED element and the LTCC increases.
  • the Young's modulus of LTCC used for the light emitting element substrate of the present invention is 150 GPa or less at 25 ° C. as described above, but is preferably 130 GPa or less, more preferably 100 GPa or less at the same temperature.
  • the lower limit of the Young's modulus of LTCC is not particularly provided, it is preferably 50 GPa or more from the viewpoint of strength.
  • the thermal expansion coefficient of LTCC is 2 to 8 ppm / ° C. at 50 to 400 ° C., but preferably 3 to 8 ppm / ° C., more preferably 3 to 7 ppm / ° C. in the same temperature range.
  • Such a slurry for forming a sintered body of a glass ceramic composition containing glass powder and ceramic powder satisfying the above-mentioned Young's modulus and thermal expansion coefficient includes, for example, the following glass powder and ceramic powder.
  • the glass ceramic composition is prepared by adding a binder resin and, if necessary, a plasticizer, a dispersant, a solvent and the like. Examples include a sintered body obtained by forming the slurry into a sheet having a predetermined shape by a doctor blade method, drying, degreasing as necessary, and firing at 800 ° C. or higher and 930 ° C. or lower.
  • the glass powder used as the raw material component of the LTCC is not necessarily limited, but a glass transition point (Tg) of 550 ° C. or higher and 700 ° C. or lower is preferable.
  • Tg glass transition point
  • the glass transition point (Tg) is less than 550 ° C., degreasing after forming the green sheet using the slurry may be difficult.
  • the glass transition point (Tg) exceeds 700 ° C., the shrinkage start temperature is increased, and the dimensional accuracy is increased. May decrease.
  • crystals do not precipitate when baked at 800 ° C. or higher and 930 ° C. or lower.
  • the crystal may be strongly generated only at the interface with the wiring material formed inside and outside the LTCC such as Ag.
  • the portion where the crystal is precipitated has a smaller firing shrinkage than the portion where the crystal is not precipitated. For this reason, the shrinkage is nonuniform between the portion with wiring and the portion without wiring, and the shape after firing may be deformed by this difference in firing shrinkage.
  • the Young's modulus may increase, which is not preferable.
  • the glass powder that can be used as the raw material component of the LTCC include, based on oxides, 30 to 75 mol% of SiO 2 , 0 to 20 mol% of B 2 O 3 , 0 to 5 mol% of ZnO, Li 2 O + Na 2 O + K. Examples thereof include those containing 2 O 0 to 10 mol%, CaO 10 to 35 mol%, CaO + MgO + BaO + SrO 10 to 35 mol%, TiO 2 0 to 5 mol%, and Al 2 O 3 0 to 10 mol%.
  • This glass powder contains a large amount of SiO 2 and is preferable because it can be effectively sintered even when a large amount of ceramic powder is contained in LTCC and has excellent chemical durability. .
  • SiO 2 is a glass network former, and is a component that is essential for improving chemical durability, particularly acid resistance.
  • chemical durability may be reduced.
  • the glass melting temperature may be increased, or the glass softening point (Ts) may be excessively increased.
  • B 2 O 3 is not an essential component but is preferably a glass network former and a component that lowers the softening point. If the content of B 2 O 3 exceeds 20 mol%, it is difficult to obtain a stable glass and also the chemical durability may deteriorate.
  • ZnO is not an essential component, but is a component that lowers the softening point and is useful. If the ZnO content exceeds 5 mol%, chemical durability may be reduced. In addition, the glass tends to crystallize during firing, which may hinder sintering and may not reduce the porosity of the sintered body.
  • Li 2 O is an alkali metal oxide, Na 2 O, and K 2 O is a component to lower the softening point, it is preferable to contain. Li 2 O, Na 2 O, and K 2 O, only one or two may be contained. When none of these metal oxides is contained, the glass melting temperature and the glass transition point (Tg) may be excessively high. On the other hand, when the total content thereof exceeds 10 mol%, chemical durability, particularly acid resistance may be lowered, and electrical insulation properties may be lowered.
  • CaO is a component that enhances the stability of the glass and lowers the softening point.
  • CaO is a component that improves the wettability between the alumina powder and the glass during firing, and has the effect of reducing the porosity of the sintered body. It is a certain component and essential.
  • CaO is a component that increases the thermal expansion coefficient, and is useful when matching the thermal expansion coefficient with other substrate materials and the like. When the content of CaO is less than 10 mol%, the stability of the glass cannot be sufficiently increased, and the softening point may not be sufficiently lowered.
  • CaO it may contain at least one selected from MgO, BaO, and SrO as a component that increases the stability of the glass and lowers the softening point.
  • the content of MgO, BaO, and SrO is 35 mol% or less together with the content of CaO. If the total content of CaO, MgO, BaO, and SrO exceeds 35 mol%, the stability of the glass may be reduced.
  • the total content of MgO, BaO, and SrO excluding CaO is preferably 15 mol% or less.
  • TiO 2 is not an essential component, but is useful as a component that enhances the weather resistance of glass. When the content of TiO 2 exceeds 5 mol%, there is a possibility that the stability of the glass decreases.
  • Al 2 O 3 is not an essential component, but is useful as a component that enhances the stability and chemical durability of glass. When the content of Al 2 O 3 exceeds 10 mol%, there is a possibility that the softening point becomes excessively high.
  • the content of Al 2 O 3 is preferably at least 2 mol%, more preferably at least 3 mol%.
  • a glass material consists essentially of the said component, it can contain other components other than the said component in the limit which does not impair the objective of this invention.
  • the glass may contain a P 2 O 5 in order to lower the softening point.
  • Sb 2 O 3 may be contained in order to increase the stability of the glass.
  • the total content is 10 mol% or less, and 5 mol% or less is preferable.
  • the glass powder used as a raw material component of LTCC is composed of other required characteristics as long as the LTCC obtained by being blended and fired satisfies the conditions of the Young's modulus and thermal expansion coefficient in the present invention. Can be adjusted.
  • glass powders include glass powders such as the first glass powder, the second glass powder, and the third glass powder, as shown below, depending on the difference in combination characteristics with the ceramic powder described later. .
  • the first glass powder is a glass powder that can be effectively sintered even if it contains a large amount of ceramic powder, particularly ceramic powder having a higher refractive index than alumina.
  • the first glass powder is 30 to 55 mol% of SiO 2 , 0 to 20 mol% of B 2 O 3 , 0 to 5 mol% of ZnO, 0 to 10 mol% of Li 2 O + Na 2 O + K 2 O, and 10 to 35 mol of CaO based on oxides. %, CaO + MgO + BaO + SrO 10-35 mol%, TiO 2 0-5 mol%, Al 2 O 3 0-10 mol%.
  • the second glass powder is a glass powder that can be effectively sintered even if it contains a large amount of ceramic powder.
  • the second glass powder is 55 to 65 mol% of SiO 2 , 10 to 20 mol% of B 2 O 3 , 0 to 5 mol% of ZnO, 1 to 5 mol% of Li 2 O + Na 2 O + K 2 O, and 10 to 20 mol of CaO on the oxide basis.
  • the second glass powder is 57 to 63 mol% of SiO 2 , 12 to 18 mol% of B 2 O 3 , 0 to 3 mol% of ZnO, 1 to 5 mol% of Li 2 O + Na 2 O + K 2 O, based on oxide. It contains CaO 12-18 mol%, CaO + MgO + BaO + SrO 12-20 mol%, TiO 2 0-3 mol%, and Al 2 O 3 2-8 mol%.
  • the third glass powder contains a large amount of SiO 2 , Li 2 O + Na 2 O + K 2 O compared to the second glass powder, and has a high reflectance even if the content of the ceramic powder is relatively small. Is preferable.
  • the third glass powder is composed of 65 to 75 mol% of SiO 2 , 0 to 5 mol% of B 2 O 3, 0 to 5 mol% of ZnO, 5 to 12 mol% of Li 2 O + Na 2 O + K 2 O, and 15 to 25 mol of CaO based on oxides. %, CaO + MgO + BaO + SrO 15 to 30 mol%, TiO 2 0 to 5 mol%, Al 2 O 3 0 to 5 mol%.
  • the third glass powder is 67 to 73 mol% of SiO 2 , 0 to 3 mol% of B 2 O 3, 0 to 3 mol% of ZnO, 6 to 11 mol% of Li 2 O + Na 2 O + K 2 O, based on oxide. It contains CaO 16-22 mol%, CaO + MgO + BaO + SrO 16-25 mol%, TiO 2 0-3 mol%, and Al 2 O 3 0-3 mol%.
  • a glass powder that can be used as a raw material component of the LTCC a glass powder that can be effectively sintered at a relatively low temperature even when a ceramic powder having a higher refractive index than alumina is contained at a high content.
  • the glass powder is an oxide basis, the SiO 2 0 ⁇ 50 wt%, the B 2 O 3 15 ⁇ 50 wt%, the Al 2 O 3 0 ⁇ 10% by weight, selected ZnO, CaO, from SrO and BaO 1 to 2 or more types in total 3 to 65% by mass, 1 or 2 types selected from Li 2 O, Na 2 O and K 2 O in total 3 to 20% by mass, Bi 2 O 3 A composition containing 0 to 10% by mass is also possible.
  • the glass powder the SiO 2 0 ⁇ 50 wt% on an oxide basis, the B 2 O 3 15 ⁇ 50 wt%, the Al 2 O 3 0 ⁇ 10 wt%, ZnO, CaO, from SrO and BaO
  • the composition may contain 10 to 50% by mass.
  • the glass powder used in the present invention can be obtained by producing glass having the above glass composition by a melting method and pulverizing it by a dry pulverization method or a wet pulverization method.
  • a dry pulverization method it is preferable to use water as a solvent.
  • the pulverization can be performed using a pulverizer such as a roll mill, a ball mill, or a jet mill.
  • the glass powder used in the present invention preferably has a 50% particle size (D 50 ) of 0.5 to 5 ⁇ m. If D 50 is less than 0.5 [mu] m, it becomes industrially easily unlikely also to aggregate production, it is difficult to handle. Further, it is difficult to disperse in the glass ceramic composition. D 50 is more preferably 0.8 ⁇ m or more, and further preferably 1.5 ⁇ m or more. On the other hand, if D 50 exceeds 5 [mu] m, it becomes difficult to obtain a dense sintered body by firing. In order to obtain a dense fired body by firing, D 50 of the glass powder is more preferably 4 ⁇ m or less, and further preferably 3 ⁇ m or less. The particle size can be adjusted, for example, by classification as necessary after pulverization. In addition, the 50% particle size (D 50 ) in the present specification is a value measured by a laser diffraction scattering method.
  • the blending amount of the glass powder and the ceramic powder in the glass ceramic composition in the raw material component of the LTCC is a ratio of 25 to 60 mass% with respect to the total amount of the glass powder and the ceramic powder of the glass ceramic composition.
  • the ceramic powder is blended at a ratio of 75 to 40% by mass with respect to the total amount of the glass powder and the ceramic powder of the glass ceramic composition.
  • the glass powder content in the glass ceramic composition is less than 25% by mass, firing may be insufficient and a dense sintered body (ie, LTCC substrate) may not be obtained.
  • the blending amount of the glass powder is preferably 28% by mass or more, and more preferably 31% by mass or more based on the total amount of the glass ceramic composition.
  • the blending amount of the glass powder is preferably 55% by mass or less and more preferably 53% by mass or less with respect to the total amount of the glass ceramic composition.
  • the ceramic powder in the raw material component of the LTCC for example, alumina powder, zirconia powder, titania powder, or a mixture thereof can be suitably used. These ceramic powders are blended in LTCC for the purpose of imparting the following characteristics.
  • Alumina powder is a component added to increase the bending strength of the sintered body.
  • Zirconia powder and titania powder are ceramic powders having a higher refractive index than alumina powder, and when these are blended at a predetermined ratio, a sintered body having a high reflectance with respect to light in the visible light region can be obtained. Furthermore, since crystallization of the glass phase is suppressed, warpage is suppressed and a sintered body having good shape stability can be obtained.
  • These ceramic powders can be used by appropriately combining and adjusting the mixing ratio according to the performance required of the substrate body made of LTCC in the light emitting element substrate in consideration of the characteristics of each ceramic powder.
  • the blending ratio of the alumina powder to the total amount of the glass ceramic composition is preferably about 15 to 60% by mass. If the content of the alumina powder is less than 15% by mass, the desired bending strength may not be obtained. On the other hand, if the content of the alumina powder exceeds 60% by mass, not only firing becomes insufficient and it becomes difficult to obtain a dense sintered body, but also the smoothness of the surface of the sintered body may be impaired.
  • examples of the glass powder that is preferably combined include the second glass powder and the third glass powder.
  • D 50 which is a 50% particle diameter of the alumina powder is preferably 0.3 to 5 ⁇ m. D 50 is difficult to achieve a sufficient flexural strength is less than 0.3 [mu] m. From the viewpoint of obtaining a sintered body having higher bending strength, D 50 is preferably 0.6 ⁇ m or more, and more preferably 1.5 ⁇ m or more. On the other hand, the smoothness of the sintered body surface D 50 exceeds 5 ⁇ m is impaired, or it is difficult to obtain a dense sintered body by firing. From the viewpoint of obtaining a denser and smoother sintered body, D 50 is preferably 4 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the blending ratio of the alumina powder to the total amount of the glass ceramic composition is preferably 15 to 60% by mass.
  • the content of the alumina powder is less than 15% by mass, it is difficult to achieve a desired bending strength. From the viewpoint of obtaining a sintered body with higher bending strength, it is preferably 17% by mass or more, and more preferably 18% by mass or more.
  • the content of the alumina powder exceeds 60% by mass, not only the firing becomes insufficient and it becomes difficult to obtain a dense sintered body, but the smoothness of the surface of the sintered body may be impaired.
  • the content is preferably 50% by mass or less, and more preferably 45% by mass or less.
  • the blending ratio of the high refractive index ceramic powder used together with the alumina powder to the total amount of the glass ceramic composition is preferably 5 to 50% by mass.
  • the content of the high refractive index ceramic powder is less than 5% by mass, a sintered body having a high reflectance, specifically, a reflectance of 85% or more which is a practically sufficient reflectance (that is, a thickness of 300 ⁇ m).
  • a sintered body having a reflectance of the LTCC substrate may not be obtained.
  • the reflectance is at a wavelength of 460 nm.
  • the content of the high refractive index ceramic powder is preferably 15% by mass or more, and more preferably 20% by mass or more.
  • the content of the high refractive index ceramic powder exceeds 50% by mass, it becomes difficult to obtain a dense sintered body.
  • the content is preferably 45% by mass or less, and more preferably 40% by mass or less.
  • the glass powder that is preferably combined the glass powder exemplified below as the glass powder that can contain the first glass powder or the second glass powder, or the high refractive index ceramic powder in a high content (hereinafter, And glass powder for high refractive index ceramic powder).
  • And glass powder for high refractive index ceramic powder the glass powder exemplified below as the glass powder that can contain the first glass powder or the second glass powder, or the high refractive index ceramic powder in a high content
  • And glass powder for high refractive index ceramic powder the glass powder exemplified below as the glass powder that can contain the first glass powder or the second glass powder, or the high refractive index ceramic powder in a high content
  • the first glass powder or the glass powder for high refractive index ceramic powder it is preferable to use the first glass powder or the glass powder for high refractive index ceramic powder.
  • the high refractive index ceramic powder used together with the alumina powder is, for example, titania powder or zirconia powder.
  • the refractive index of titania powder is about 2.7
  • the refractive index of zirconia powder is about 2.2, which is higher than that of alumina powder. It has a refractive index.
  • the difference between the refractive index of the high refractive index ceramic powder and the refractive index of the glass powder is 0.4 or more.
  • the composition of the glass powder is appropriately adjusted within a range where the effects of the present invention are not impaired, and a high refractive index ceramic powder to be combined is appropriately selected.
  • the refractive index is a refractive index with respect to light having a wavelength of 460 nm.
  • the refractive index is 1.5 to 1.
  • a glass powder of about 6 is obtained.
  • ceramic powder having a refractive index of more than 1.95 for example, titanium compounds such as barium titanate, strontium titanate, potassium titanate, titanium and zirconium It is possible to use other composite materials whose main component is.
  • the high refractive index ceramic powder it is particularly preferable to use zirconia powder.
  • zirconia powder it is possible to suppress a decrease in reflectance due to absorption of light near 400 nm, for example, when titania powder is used.
  • the zirconia powder may be composed of unstabilized zirconia, but is preferably a powder composed of partially stabilized zirconia partially stabilized by the addition of Y 2 O 3 , CaO, or MgO.
  • partially stabilized zirconia for example, a phase transition under high temperature can be suppressed, and a sintered body having various characteristics can be obtained.
  • the kind of the partially stabilized zirconia is not necessarily limited, but Y 2 O 3 -added zirconia that can be easily obtained industrially at low cost is preferable.
  • the amount of Y 2 O 3 added is preferably 0.1 to 10 mol%.
  • the D 50 which is the 50% particle size of such a high refractive index ceramic powder, is preferably 0.05 to 5 ⁇ m. It is less than D 50 of 0.05 .mu.m, since the size of the powder than the wavelength of light (460 nm in the present invention) is too small, it becomes difficult to obtain a sufficient reflectance. D 50 is more preferably 0.1 ⁇ m or more, and still more preferably 0.15 ⁇ m or more. Further, when D 50 is more than 5 [mu] m, it becomes difficult to obtain a sufficient reflectance for the powder than the wavelength of light becomes too large. More preferably, it is 3 micrometers or less, More preferably, it is 1.5 micrometers or less.
  • Some industrially available high refractive index ceramic powders are relatively large (eg, D 50 is 0.05 ⁇ m to 5 ⁇ m) due to aggregation of very small primary particles (eg, D 50 of 0.05 ⁇ m or less).
  • primary particles eg, D 50 of 0.05 ⁇ m or less.
  • secondary particles are formed, but in such a case, what is important for achieving the desired reflectance is not the primary particle size but the secondary particle size. That is, when the high refractive index ceramic powder is composed of secondary particles (that is, aggregated particles), in order to achieve a desired reflectance, the D 50 of the secondary particles is 0.05 to 5 ⁇ m. preferable.
  • the D 50 of the secondary particles is more preferably 0.1 ⁇ m or more, and further preferably 0.15 ⁇ m or more. On the other hand, if the D 50 of the secondary particles exceeds 5 ⁇ m, it is difficult to obtain a sufficient reflectance. From the viewpoint of obtaining a high reflectance, the D 50 of the secondary particles is more preferably 3 ⁇ m or less, and even more preferably 1.5 ⁇ m or less.
  • the D 50 of the secondary particles is also a value measured by a laser diffraction scattering method in the same manner as the D 50 of the non-aggregated primary particles.
  • the light emitting element substrate 1 has a frame on the peripheral edge of the substrate body mounting surface 21 so as to form a cavity having a substantially circular portion at the center of the mounting surface 21 of the substrate body 2 as a bottom surface (hereinafter referred to as “cavity bottom surface”). It has a body 3. Although the material which comprises the frame 3 is not specifically limited, It is preferable to use the same material as the substrate body 2. In addition, the light emitting element mounting portion 22 is positioned substantially at the center of the cavity bottom surface.
  • element connection terminals 4 electrically connected to a pair of electrodes of the light emitting element to be mounted on the mounting surface 21 of the substrate body 2 sandwich the light emitting element mounting portion 22.
  • a pair is provided so as to face the outside.
  • the non-mounting surface 23 of the substrate body 2 is electrically connected by a solder layer to a wiring circuit included in the external electric circuit substrate on which the substrate body 2 is mounted via the non-mounting surface 23.
  • a pair of external connection terminals 5 are provided.
  • a pair of through conductors 6 for electrically connecting the element connection terminals 4 and the external connection terminals 5 are provided inside the substrate body 2.
  • the element connection terminal 4, the external connection terminal 5, and the through conductor 6 are electrically connected by a route of the light emitting element ⁇ the element connection terminal 4 ⁇ the through conductor 6 ⁇ the external connection terminal 5 ⁇ the solder layer ⁇ the wiring circuit.
  • the position and the shape are arranged are not limited to those shown in FIG. 1 and can be adjusted as appropriate.
  • These component connection terminals 4, the external connection terminals 5, and the through conductors 6, that is, the constituent materials of the wiring conductors can be used without particular limitation as long as they are the same constituent materials as the wiring conductors used for the light emitting element substrate.
  • Specific examples of the constituent material of these wiring conductors include metal materials mainly composed of copper, silver, gold and the like. Among such metal materials, a metal material composed of silver, silver and platinum, or silver and palladium is preferably used.
  • the film thickness of the element connection terminal 4 and the external connection terminal 5 is such that the size of the constituent particles of the metal paste in which metal particles usually used for forming these are dispersed is several microns, and can be sufficiently covered by sintering. From the viewpoint of achieving the above, the thickness is preferably 5 to 20 ⁇ m, more preferably 7 to 15 ⁇ m. Further, in the external connection terminal 5, on the metal conductor layer made of the above-mentioned metal material, preferably on the metal conductor layer having a thickness of 5 to 20 ⁇ m, this layer is protected from oxidation and sulfidation and has conductivity.
  • the protective layer 7a is preferably formed.
  • the conductive protective layer 7a is not particularly limited as long as it is made of a conductive material having a function of protecting the metal conductor layer, but a nickel plated layer, a chrome plated layer, or the like is preferable.
  • the thickness of the conductive protective layer 7a is preferably 2 to 20 ⁇ m, and more preferably 3 to 15 ⁇ m.
  • a gold plating layer is formed on the element connection terminal 4 from the viewpoint that a good bonding with a bonding wire used for connection with an electrode of a light emitting element to be described later can be obtained as a conductive protective layer (not shown).
  • a conductive protective layer (not shown).
  • it is formed, and it is more preferable that a nickel / gold plating layer formed by gold plating is formed on the nickel plating layer.
  • the thickness of the conductive protective layer is preferably 2 to 20 ⁇ m for the nickel plating layer and 0.1 to 1.0 ⁇ m for the gold plating layer.
  • the light emitting element substrate 1 preferably has a thermal via 8 embedded in the substrate body 2 for reducing thermal resistance.
  • the thermal via 8 has a columnar shape smaller than the light emitting element mounting portion 22, and a plurality of thermal vias 8 are provided immediately below the light emitting element mounting portion 22.
  • the thermal via 8 is provided from the non-mounting surface 23 to the vicinity of the mounting surface 21 so as not to reach the mounting surface 21.
  • the thermal via 8 may be formed so as to penetrate from the non-mounting surface 23 of the substrate body 2 to the mounting surface 21 so as to reach the mounting surface 21.
  • the thermal via 8 is not directly under the light emitting element mounting portion 22 but a part of the thermal via 8 is placed in a region having a distance of 1.0 mm or less from the end of the light emitting element 11.
  • it is 0.5 mm or less, More preferably, it is 0.2 mm or less.
  • a part of the thermal via 8 does not enter the light emitting element mounting portion 22 from the viewpoint of the flatness of the mounting portion 22 as described above.
  • the thermal via 8 that is arbitrarily provided in the light emitting element substrate 1 of the present invention is disposed as long as it is disposed so as to reduce the thermal resistance while maintaining the flatness of the light emitting element mounting portion.
  • the position, shape, size, number, and the like are not limited to those shown in FIG. 1 and can be adjusted as appropriate.
  • the substrate 1 for light-emitting element 1 is not mounted on the substrate body 2 so as to be connected to the thermal via 8 in order to conduct heat from the thermal via 8 to an external electric circuit board mainly made of metal and having high heat dissipation. 23, an external heat radiation layer 9 is provided. As shown in FIG.
  • the external heat dissipation layer 9 is joined to the wiring circuit 34 via the external connection terminal 5 via the solder layer 33a. In the same manner as described above, it is joined to the solder connection pad 36 of the external electric circuit board through the solder layer 33b, thereby securing a heat radiation path from the thermal via 8 to the metal portion (ie, heat sink) of the external electric circuit board.
  • the material constituting the thermal via 8 and the external heat dissipation layer 9 is not particularly limited as long as it is a material having heat dissipation properties, but a metal material containing silver, specifically, silver, silver and platinum, or silver and palladium.
  • the metal material consisting of is preferably used.
  • Specific examples of the metal material composed of silver and platinum or silver and palladium include a metal material in which the ratio of platinum or palladium to the total amount of the metal material is 5% by mass or less.
  • the film thickness of the external heat dissipation layer 9 can be the same as the film thickness of the external connection terminal 5. Further, it is preferable that a conductive protective layer 7b that protects this layer from oxidation and sulfurization and has thermal conductivity is formed on the external heat radiation layer 9.
  • the conductive protective layer 7 b can have the same configuration as the conductive protective layer 7 a provided on the external connection terminal 5.
  • the light emitting element mounting portion 22 is preferably provided with a glass film having a surface roughness Ra of 0.4 ⁇ m or less. Since the surface roughness Ra of a general LTCC substrate is about 1.0 ⁇ m, the flatness can be further improved by providing such a glass film on the light emitting element mounting portion 22. Since the reflectance of the glass film is generally lower than that of the substrate body 2, it is preferable to provide the glass film only on the light emitting element mounting portion 22 and not on the other portions.
  • the surface roughness Ra is an arithmetic average roughness Ra, and the value of the arithmetic average roughness Ra is represented by 3 “Definition and display of defined arithmetic average roughness” of JIS: B0601 (1994). Is.
  • FIG. 2 is a plan view (a) showing an example of the light emitting device 10 of the present invention using the light emitting element substrate 1 shown in FIG. 1, and a cross-sectional view along line XX in the plan view (a).
  • the light emitting element mounting portion 22 located on the substantially central portion of the bottom surface of the cavity formed on the mounting surface 21 of the substrate body 2 is used.
  • a light emitting element 11 such as a light emitting diode element is fixed and mounted by a die bond agent such as a silicone die bond agent or a metal bond agent.
  • a pair of electrodes (not shown) included in the light emitting element 11 are electrically connected to the element connection terminals 4 located on the outside via bonding wires 12.
  • a sealing layer 13 is provided so as to fill the cavity so as to cover the light emitting element 11 and the bonding wire 12.
  • the light emitting device 10 has a configuration in which the light emitting element substrate 1 on which the light emitting element 11 is mounted is further mounted on an external electric circuit board 31 mainly made of metal.
  • the external electric circuit board 31 has a wiring circuit 34 at least at a portion facing the pair of external connection terminals 5 provided on the non-mounting surface 23 of the substrate body 2 of the light emitting element substrate 1 to be mounted.
  • the pair of external connection terminals 5 are mounted on the conductive protective layer 7a formed on the surface thereof by being adhesively fixed via a solder layer 33a and electrically connected thereto.
  • the external electric circuit board 31 shown in FIG. 2 includes a metal plate 32 having an insulating layer 35 on the entire surface, a wiring circuit 34 for electric wiring disposed on the insulating layer 35, and the wiring circuit 34.
  • This is a metal core substrate having a solder connection pad 36 for heat dissipation formed so as to be electrically insulated.
  • the external electric circuit board 31 has an external heat radiation layer 9 connected to the thermal via 8 provided on the non-mounting surface 23 of the substrate body 2 of the light emitting element substrate 1 to be mounted on the surface having the wiring circuit 34 and the solder connection pads 36.
  • the conductive protective layer 7b formed on the surface and the solder connection pad 36 disposed on the insulating layer 35 are bonded and fixed via the solder layer 33b.
  • the light emitting element substrate 1 on which the light emitting element 11 is mounted and the external electric circuit board 31 are electrically connected to the electrode of the light emitting element 11 ⁇ the bonding wire 12 ⁇ the element connection terminal 4 ⁇ the through conductor 6 ⁇ the external connection.
  • the terminal 5 (conductive protective layer 7a), the solder layer 33a, and the wiring circuit 34 are connected to form a path.
  • the heat path is connected so as to conduct from the thermal via 8 ⁇ the external heat radiation layer 9 (conductive protection layer 7 b) ⁇ the solder layer 33 b ⁇ the solder connection pad 36 ⁇ the insulating layer 35 ⁇ the metal plate 32.
  • the external electric circuit board mainly composed of metal used in the light emitting device of the present invention specifically, a metal having an insulating layer on the surface as schematically shown in the external electric circuit board 31 of FIG. Examples thereof include a metal core substrate having a plate and a wiring circuit disposed on the insulating layer, and a metal base substrate having a structure in which a wiring circuit is disposed on an insulating layer of a metal plate having an insulating layer on the upper surface.
  • the heat generated by the light emitting element 11 is generated from the insulating layer 35 via the thermal via 8 ⁇ the external heat dissipation layer 9 (conductive protection layer 7 b) ⁇ the solder layer 33 b ⁇ the solder connection pad 36, and the metal on the metal core substrate. It is transmitted to the plate 32 and radiated. That is, the metal plate 32 acts as a heat sink.
  • a metal material with high heat dissipation which is usually used as a heat sink material, can be used without any particular limitation.
  • Specific examples include at least one metal material selected from the group consisting of tungsten, molybdenum, copper, aluminum, and an alloy made of two or more of these.
  • the coefficient of thermal expansion of such a metal material at 50 to 200 ° C. is, for example, 5.1 ppm / ° C. for molybdenum (Mo), 4.5 ppm / ° C. for tungsten (W), and the mass ratio of tungsten and copper (Cu).
  • thermal expansion coefficients with x and y indicate anisotropic thermal expansion, where x indicates the x direction and y indicates the thermal expansion coefficient in the direction. Moreover, it is 17 ppm / ° C. for copper (Cu) and 23 ppm / ° C. for aluminum (Al).
  • the metal material tends to have a larger thermal expansion coefficient than that of the LTCC used in the present invention.
  • the LTCC has a small Young's modulus, so that the residual stress distortion generated in the solder layers 33a and 33b can be reduced, resulting in problems such as peeling. Occurrence can be suppressed.
  • a smaller difference in thermal expansion coefficient is effective in reducing residual stress strain.
  • the thermal expansion coefficient of the semiconductor chip mounted on the LTCC material is 3 to 6 ppm / ° C.
  • the thermal expansion coefficient of LTCC is 2 to 8 ppm / C was selected. Considering this as a reference, it is ideal to use a heat sink material having a thermal expansion coefficient lower than 10 ppm / ° C. However, even when the thermal expansion coefficient exceeds 10 ppm / ° C., if the LTCC material has a small Young's modulus, the residual stress distortion generated in the solder layers 33a and 33b can be reduced, and there is no problem.
  • a commercially available product can be used as the high heat dissipation external electric circuit board in the light emitting device of the present invention.
  • Examples of commercially available products include, as a metal core substrate, a high thermal conductive metal-based copper laminate NRA series manufactured by Nippon Rika Kogyo.
  • solder material constituting the solder layers 33a and 33b a solder material used for fixing a substrate made of an LTCC material to an external electric circuit substrate can be used without particular limitation.
  • it is a solder material used in a reflow method.
  • Specific examples include solder materials made of tin / silver alloy, tin / copper alloy, tin / silver / copper alloy, and the like.
  • the thickness of the solder layer 33a that connects the external connection terminal 5 / conductive protection layer 7a and the wiring circuit 34 is preferably 10 to 50 ⁇ m from the viewpoint of bonding strength and ease of formation while ensuring sufficient bonding. 20-40 ⁇ m is more preferable.
  • the film thickness of the solder layer 33b that connects the external heat radiation layer 9 / conductive protection layer 7b and the solder connection pad 36 is preferably 10 to 50 ⁇ m, more preferably 20 to 40 ⁇ m, equivalent to the solder layer 33a.
  • the light emitting element substrate 1 shown in FIG. 1 and the light emitting device 10 shown in FIG. 2 described above as an example of the light emitting element substrate / light emitting device of the present invention can be manufactured by, for example, a manufacturing method described below.
  • symbol same as the member of a finished product is attached
  • the element connection terminal and the element connection terminal conductor paste layer are denoted by the same reference numeral 4, and the others are the same.
  • the substrate main body green sheet 2a has a non-mounting surface 23 and constitutes a lower portion of the substrate main body 2 where thermal vias are formed.
  • the substrate main body green sheet 2b constitutes an upper portion of the substrate main body 2 having a mounting surface 21 that becomes a light emitting element mounting portion 22 on which a light emitting element is mounted.
  • the frame green sheet 3 constituting the frame 3 is produced.
  • the frame green sheet 3 is formed by hollowing out a portion that becomes a cavity from a substantially flat green sheet of the same size as the substrate body green sheet in a column shape from the upper surface side to the back surface side by a normal method. It is made with.
  • the substrate green sheets 2a and 2b and the frame green sheet 3 are prepared by adding a binder resin and, if necessary, a plasticizer, a dispersant, a solvent, etc. to a glass ceramic composition containing glass powder and ceramic powder.
  • the produced slurry can be produced by forming into a predetermined shape sheet by the doctor blade method or the like and drying it.
  • the glass ceramic composition containing glass powder and ceramic powder is as described above.
  • the binder resin for example, polyvinyl butyral, acrylic resin, or the like can be suitably used.
  • plasticizer for example, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate, di-2-ethylhexyl phthalate and the like can be used.
  • organic solvents such as toluene, xylene, 2-propanol, 2-butanol and the like can be preferably used.
  • a through-hole for forming a through conductor 6 formed so as to penetrate through 23 is formed into a predetermined size and shape by a normal method.
  • a plurality of columnar through holes for forming the thermal via 8 are formed in a predetermined size and shape in the normal manner in the green sheet 2a for the substrate body directly under the light emitting element mounting portion 22.
  • the through-conductor paste layer 6 is formed in the through-holes for forming the through-conductors 6 at the two locations of the substrate body green sheets 2a and 2b obtained as described above. Further, the substrate body green sheet 2b is provided with the element connection terminal paste layer 4 at two locations on the mounting surface 21 so as to be connected to the through conductor paste layer 6, and the substrate body green sheet 2a is non-coated.
  • the external connection terminal conductor paste layer 5 is formed on the mounting surface 23 in a predetermined size and shape, respectively. These are the wiring circuits that the electrode of the light-emitting element to be mounted has on the external electric circuit board through the solder layer from the element connection terminal paste layer 4, the through conductor paste layer 6 and the external connection terminal conductor paste layer 5. It is formed so as to be electrically connected to.
  • the element connection terminal paste layer 4 As a method for forming the element connection terminal paste layer 4, the external connection terminal conductor paste layer 5, and the through conductor paste layer 6, there is a method of applying and filling the conductor paste by a screen printing method.
  • the film thicknesses of the element connection terminal paste layer 4 and the external connection terminal conductor paste layer 5 to be formed are adjusted so that the finally obtained element connection terminals and external connection terminals have a predetermined film thickness.
  • the wiring conductor paste for example, a paste obtained by adding a vehicle such as ethyl cellulose to a metal powder mainly composed of copper, silver, gold or the like, and a solvent or the like as necessary can be used.
  • a metal powder composed of silver, a metal powder composed of silver and platinum, or a metal powder composed of silver and palladium is preferably used.
  • the thermal via paste layer 8 is connected to the plurality of columnar through-holes for forming the thermal via 8 of the green sheet 2a for the substrate body produced as described above, and the thermal via paste layer 8 is connected to the thermal via paste layer 8.
  • the external heat radiation layer conductive paste layer 9 is formed on the mounting surface 23 in a predetermined size and shape, respectively.
  • a method for forming the thermal via paste layer 8 and the external heat radiation layer conductor paste layer 9 a method of applying or filling the conductor paste by screen printing as described above can be used.
  • the film thickness of the formed conductive paste layer 9 for external heat radiation layer is adjusted so that the film thickness of the finally obtained element connection terminals and external connection terminals becomes a predetermined film thickness.
  • the conductor paste to be used is a paste containing a heat dissipating material constituting the thermal via 8 and the external heat dissipating layer 9, preferably a metal material containing silver.
  • a heat dissipating material constituting the thermal via 8 and the external heat dissipating layer 9, preferably a metal material containing silver.
  • silver, a silver palladium mixture, a silver platinum mixture, etc. are mentioned as above-mentioned.
  • the conductor paste for the heat dissipation layer can be produced in the same manner as the above-mentioned wiring conductor paste except that metal powder is used as a heat dissipation material.
  • metal powder is used as a heat dissipation material.
  • the element connection terminal paste layer 4 the external connection terminal conductor paste layer 5, and the like are penetrated with one kind of conductor paste. It is possible to form the conductive paste layer 6, the thermal via paste layer 8, and the external heat dissipation layer conductive paste layer 9.
  • the frame green sheet 3 obtained in the step (1) is laminated on the mounting surface 21 of the substrate main body green sheet 2b.
  • a green sheet laminate having a shape in which the substrate body 2 has a cavity on the mounting surface 21 and the bottom surface thereof has the light emitting element mounting portion 22 of the light emitting element is obtained as the unsintered light emitting element substrate 1.
  • Degreasing can be performed, for example, by holding at a temperature of 500 ° C. to 600 ° C. for 1 hour to 10 hours.
  • the degreasing temperature is less than 500 ° C. or the degreasing time is less than 1 hour, the binder resin or the like may not be sufficiently removed.
  • the degreasing temperature is about 600 ° C. and the degreasing time is about 10 hours, the binder resin or the like can be sufficiently removed, and if it exceeds this, the productivity may be lowered.
  • the firing can be performed by appropriately adjusting the time in the temperature range of 800 ° C. to 930 ° C. in consideration of the acquisition of the dense structure of the substrate body 2 and the frame body 3 and the productivity. Specifically, it is preferable to hold at a temperature of 850 ° C. or higher and 900 ° C. or lower for 20 minutes or longer and 60 minutes or shorter, particularly preferably at a temperature of 860 ° C. or higher and 880 ° C. or lower. If the firing temperature is less than 800 ° C., the substrate body may not be obtained as a dense structure. On the other hand, if the firing temperature exceeds 930 ° C., the productivity may decrease due to deformation of the substrate body.
  • the unsintered light emitting element substrate 1 is fired to obtain the light emitting element substrate 1.
  • the element connection terminals 4, the external connection terminals 5, and the external heat dissipation layer 9 are entirely covered.
  • the element connection terminal 4 is a gold plating layer (not shown), and the external connection terminal 5 and the external heat radiation layer 9 are nickel plating layers 7a and 7b.
  • a protective layer is disposed.
  • the manufacturing method of the light emitting element substrate 1 has been described above, but the main body green sheet 2 and the frame green sheet 3 do not have to be formed of a single green sheet, and a plurality of green sheets are laminated as described above. It may be what you did. Further, the order of forming each part can be changed as appropriate as long as the light emitting element substrate can be manufactured.
  • the method for producing the light-emitting device 10 shown in FIG. 2 using the light-emitting element substrate 1 is not particularly limited, and the method for mounting the light-emitting element 11 on the light-emitting element substrate 1 is not limited. , A method of electrical connection such as wire bonding, a method of forming the sealing layer 13 using a sealing agent, and a method of fixing the light emitting element substrate 1 to the external electric circuit substrate 31 with solder, etc. Is applicable.
  • the light emitting element substrate of the present invention and the light emitting device using the same has been described with reference to the example shown in FIGS. 1 and 2, the light emitting element substrate and the light emitting device of the present invention are not limited thereto. It is not limited. As long as it does not contradict the spirit of the present invention, the configuration can be changed as necessary.
  • ADVANTAGE OF THE INVENTION in the board
  • a substrate for a light emitting element can be provided.
  • a light-emitting element is mounted on such a light-emitting element substrate, and this is mounted by soldering on a wiring circuit of an external electric circuit board via an external connection terminal.
  • a light-emitting device with high reliability in electrical connection in which peeling is suppressed can be obtained.
  • Such a light-emitting device of the present invention can be suitably used as a backlight for mobile phones, large liquid crystal displays, etc., illumination for automobiles or decoration, and other light sources.
  • the glass powder obtained in Production Examples 1 to 3 is a glass powder classified as the second glass powder that can be effectively sintered even when a large amount of ceramic powder is contained. Further, the glass powder obtained in Production Example 4 can be effectively sintered even if it contains a large amount of ceramic powder, particularly ceramic powder having a higher refractive index than alumina, at a high content. Glass powder classified as glass powder.
  • Solvent toluene, xylene, 2-propanol, 2-butanol mixed at a mass ratio of 4: 2
  • zirconia powder two types of yttria partially stabilized zirconia powder were used as zirconia powder 1 and zirconia powder 2.
  • the green sheet thus obtained was fired to produce a fired substrate (sintered body). Firing was performed by holding at 550 ° C. for 1 hour and performing a degreasing step for decomposing and removing the binder resin, and then heating and holding at a temperature of 870 ° C. for 45 minutes.
  • the obtained substrate was measured for Young's modulus, coefficient of thermal expansion, reflectance, and bending strength by the following methods. The results are shown in Table 1, respectively.
  • an alumina substrate was prepared by a method of firing a green sheet, and the Young's modulus, thermal expansion coefficient, reflectance, and bending strength were measured in the same manner as described above. The results are also shown in Table 1.
  • Young's modulus was measured by the following method.
  • the sintered body was cut and polished so as to have a thickness of 2 mm, a width of 15 mm and a length of 100 mm, and used as a measurement sample.
  • the Young's modulus at a temperature of 25 ° C. was measured by a resonance vibration method.
  • the thermal expansion coefficient was measured by the following method. The sintered body was cut and polished so that the size of the fired body was 2 mm thick, 5 mm wide ⁇ 20 mm long, used as a measurement sample, and a temperature of 50 with a thermomechanical analyzer (TMA) (Thermal expansion meter TD5000SA manufactured by Bruker AXS). The coefficient of thermal expansion at ⁇ 400 ° C. was measured.
  • TMA thermomechanical analyzer
  • the reflectance was measured by the following method. That is, three types of fired bodies having a thickness of 140 ⁇ m, 280 ⁇ m, and 420 ⁇ m are obtained by firing a square green sheet having a width of about 30 mm, a laminate of two sheets, and a laminate of three sheets. Obtained. The reflectance of the three samples obtained was measured using a spectroscope USB2000 and a small integrating sphere ISP-RF of Ocean Optics, and linearly complemented with respect to the thickness, whereby the reflectance (unit: 170 ⁇ m and 300 ⁇ m in thickness) was measured. :%) Was calculated.
  • the three-point bending strength was measured using 10 sheets obtained by cutting the fired body into a strip shape having a thickness of about 0.85 mm and a width of 5 mm (measuring device: manufactured by Instron, INSTRON 8561). The span was 15 mm and the crosshead speed was 0.5 cm / min.
  • Example 1 A light emitting element substrate having a structure similar to that shown in FIG. 1 was manufactured by the method described below. In addition, the same code
  • a substrate main body green sheet 2 and a frame green sheet 3 for manufacturing the main body substrate 2 of the light emitting element mounting substrate 1 were prepared. That is, using the same glass ceramic composition as in Production Example 1, a slurry was prepared in the same manner as described above. The slurry is applied on a PET film by a doctor blade method, and the coating film is dried to form a substantially flat plate shape of 120 mm ⁇ 120 mm, and the thickness after baking is 0.5 mm. Then, two green sheets of the green sheet for substrate main body 2b having a thickness after firing of 0.1 mm were produced. Moreover, the shape outside the frame was the same as that of the green sheet 2 for substrate main body, and the frame green sheet 3 having a frame height after firing of 0.6 mm was manufactured.
  • the light-emitting element substrate 1 is manufactured as a multi-piece connecting substrate, and after being fired to be described later, it is divided one by one and the light-emitting element substrate 1 having an outer size of 5 mm ⁇ 5 mm is obtained. did.
  • the following description explains one division which becomes one light-emitting element substrate 1 after the division among the multi-piece connection substrates.
  • conductive powder (silver powder, manufactured by Daiken Chemical Industry Co., Ltd., trade name: S550) and ethyl cellulose as a vehicle are blended at a mass ratio of 85:15, and used as a solvent so that the solid content is 85% by mass.
  • kneading was conducted for 1 hour in a porcelain mortar, and further three times of dispersion with a three roll to produce a wiring conductor paste.
  • the metal paste for the heat dissipation layer is composed of silver powder (manufactured by Daiken Chemical Industry Co., Ltd., trade name: S400-2) and ethyl cellulose as a vehicle in a mass ratio of 90:10 for both the thermal via and the external heat dissipation layer. It mix
  • a through hole having a diameter of 0.3 mm was formed in a portion corresponding to the through conductor 6 of the green sheets 2a and 2b for the substrate body using a hole puncher.
  • the substrate main body green sheets 2a and 2b are laminated so that 2a is on the lower side and 2b is on the upper side.
  • 25 through-holes having a diameter of 0.3 ⁇ m were formed in the substrate main body green sheet 2a directly below the mounting portion 22 for forming the thermal vias 8 using a perforator.
  • the through-conductor paste layer 6 is formed by filling the through-holes for forming through-conductors in two places of the green sheets 2a and 2b for the substrate body obtained above by screen printing to form the through-conductor paste layer 6.
  • the element connecting terminal paste layer 4 is disposed on the mounting surface 21 so as to cover the through conductor paste layer 6 on the green sheet 2b, and the external connecting terminal conductor paste layer 5 is disposed on the non-mounting surface 23 on the substrate body green sheet 2a.
  • the thermal via paste layer 8 is formed by filling the thermal via through hole of the substrate main body green sheet 2a by a screen printing method so as to cover the thermal via paste layer 8.
  • the external heat radiation layer paste layer 9 was formed on the non-mounting surface 23 by screen printing.
  • a through hole having a diameter of 4.4 mm was formed by using a hole punching machine so that the substantially central portion extends from the upper surface side to the back surface side, thereby forming a cavity.
  • the substrate body green sheet 2b with the wiring conductor paste layer and the frame green sheet 3 are sequentially laminated on the substrate body green sheet 2a with the wiring conductor paste layer and the heat radiation layer metal paste layer obtained above.
  • substrate 1 for unsintered light emitting elements was obtained. This was aligned and laminated
  • substrate 1 for unsintered light emitting elements may become an external dimension of 5 mm x 5 mm after baking to the unbaking multi-piece connection board
  • the substrate was degreased by holding for 5 hours, and further baked by holding at 870 ° C. for 45 minutes to produce a multi-piece connection substrate having a plurality of sections of the light-emitting element substrate 1.
  • the film thicknesses of the element connection terminals 4, the external connection terminals 5, and the external heat dissipation layer 9 made of silver (Ag) in the sections of the obtained light emitting element substrates 1 were 7 ⁇ m.
  • a nickel plating layer having a thickness of 3 ⁇ m was formed on the surfaces of the external connection terminal 5 and the external heat dissipation layer 9.
  • the obtained multi-piece connecting substrate was divided along the dividing groove to produce a test light emitting element substrate 1.
  • FIG. 3 is a plan view of an evaluation model in which the light-emitting element substrate 1 and an external electric circuit substrate are joined by a solder layer, and a partial cross-sectional view of a central portion along the line XX of the plan view.
  • the same evaluation was performed using a substrate for a light-emitting element using an alumina substrate prepared by degreasing and firing a green sheet molded material using the alumina substrate material used in the comparative manufacturing example. It was.
  • a high thermal conductive metal base copper laminated board NRA series (hereinafter referred to as “NRK metal core board”) manufactured by Nippon Rika Kogyo Co., Ltd. was used.
  • the size of the external electric circuit board 31 (NRK metal core board) is 15 mm ⁇ 20 mm and the thickness is 1.115 mm.
  • the light-emitting element substrate 1 is bonded to the wiring circuit 34 for electric wiring on the upper surface of the external electric circuit board 31 by the solder layer 33a having a thickness of 30 ⁇ m through the external connection terminal 5 with the nickel plating layer 7a. Has been.
  • the light-emitting element substrate 1 has an external heat dissipation layer 9 with a nickel plating layer 7b, and the external electric circuit substrate 31 has a heat dissipation solder connection electrically insulated from the wiring circuit 34 on the upper surface.
  • the pad 36 On the pad 36, it is joined by a solder layer 33b having a thickness of 30 ⁇ m.
  • the shape of the solder surface is such that the solder layer 33a is a rectangle of 0.85 mm ⁇ 5.0 mm, the end portion has a radius of 0.5 mm, and a 1/4 circle cutout, and the solder layer 33b is 2.0 mm ⁇ 5.0 mm. It is a rectangle.
  • the mounting of the light emitting element substrate 1 to the external electric circuit substrate 31 by the solder bonding is performed by a solder reflow method.
  • the thermal strain generated in the solder in the temperature change during the solder reflow was subjected to a steady elastic analysis by the finite element method using the evaluation model 100.
  • the initial state was set as stress free at a temperature of 260 ° C. during solder reflow.
  • a general-purpose finite element method program MSC Marc (2005r3) was used as the analysis program.
  • Table 2 shows physical property values of each component of the evaluation model 100 used for the analysis.
  • the symmetry is set by geometric constraints, and a quarter portion of the evaluation model 100 is divided by a mesh of every 3 ⁇ m, and the total number of elements 235,940 is in the initial state, that is, at a temperature of 260 ° C. during solder reflow. Residual stress distortion generated when cooling from zero stress to the expected temperature of 25 ° C at the end of solder reflow, and residual generated when cooling to 120 ° C and -40 ° C set as thermal cycle temperatures, respectively. The stress strain was obtained by calculation. The evaluation value was the maximum value of the total number of elements of the residual stress strain generated in the solder. The results are shown in Table 3.
  • the light emitting device substrate of the present invention using LTCC having a Young's modulus at 25 ° C. of 150 GPa or less and a thermal expansion coefficient of 2 to 8 ppm / ° C. at 50 to 400 ° C. is soldered to an external electric circuit substrate.
  • the residual stress strain on the solder layer is small as compared with the case of using a substrate for a light emitting element having a ceramic substrate that is not within this range in both Young's modulus and thermal expansion coefficient, such as an alumina substrate. If the residual stress strain is small, the problem of insulation due to peeling of the solder layer is avoided, and stable electrical connection can be achieved over a long period of time.
  • the light emitting element substrate of the present invention in the light emitting element substrate for surface mounting by soldering to the wiring circuit of the external electric circuit board mainly composed of metal, it is strong and stable over a long period of time with the external electric circuit board. It is possible to maintain the connection state, and by mounting this on the wiring circuit of the external electric circuit board via the external connection terminal by soldering, the electrical connection in which peeling of the solder connection portion is suppressed is high. A reliable light-emitting device can be obtained.
  • Such a light-emitting device of the present invention can be suitably used as a backlight for mobile phones, large liquid crystal displays, etc., illumination for automobiles or decoration, and other light sources.
  • SYMBOLS 1 Light emitting element substrate (unsintered light emitting element substrate), 2 ... Substrate body (substrate body green sheet), 3 ... Frame body (frame body green sheet), 4 ... Element connection terminal (for element connection terminal) Paste layer), 5 ... external connection terminals (external connection terminal paste layer), 6 ... penetrating conductor (penetrating conductor paste layer), 7a, 7b ... conductive protective layer (conductive protective layer paste layer), 8 ... Thermal via (paste layer for thermal via), 9 ... external heat dissipation layer (paste layer for external discharge layer), 10 ... light emitting device, 11 ... light emitting element, 12 ... bonding wire, 13 ... sealing layer, 21 ...

Abstract

Provided is a light-emitting element substrate for mounting the surface thereof to a wiring circuit of an external electrical circuit board composed mainly of metal by soldering, wherein the light-emitting element substrate is capable of maintaining a stable connection to an external electrical circuit board firmly and over a long period. Also provided is a light-emitting device having highly-reliable electrical connections that use the light-emitting element substrate. The light-emitting element substrate has a substrate body comprising a sintered body of a glass ceramic composition containing glass powder and ceramic powder, and a wiring conductor that electrically connects an electrode of a light-emitting element and an external circuit to the surface and the inside of the substrate body. Part of the wiring conductor is provided as an external connection terminal, and the light-emitting element substrate is soldered on the wiring circuit of the external electrical circuit board composed mainly of metal via the external connection terminal. The Young's modulus of the sintered body at 25°C is not more than 150 GPa, and the coefficient of thermal expansion at 50 to 400°C is 2 to 8 ppm/°C.

Description

発光素子用基板および発光装置Light emitting element substrate and light emitting device
 本発明は、発光素子用基板およびこれを用いた発光装置に係り、特に、放熱性の高いメタルコア基板との半田接着性に優れる発光素子用基板およびこれを用いた発光装置に関する。 The present invention relates to a light-emitting element substrate and a light-emitting device using the same, and more particularly to a light-emitting element substrate excellent in solder adhesion to a metal core substrate having high heat dissipation and a light-emitting device using the same.
 従来、発光ダイオード素子等の発光素子を搭載するための配線基板は、絶縁基板の表面あるいは内部に配線導体層が配設された構造からなる。この配線基板の代表的な例として、アルミナセラミックスからなる絶縁基板の表面に発光素子を収容するための凹部が形成され、また絶縁基板の表面および内部には、タングステン、モリブデン等の高融点金属粉末からなる複数個の配線導体層が配設され、凹部内に収納される発光素子と電気的に接続される構成の配線基板がある。また、この配線基板は、通常、絶縁基板の下面または側面に配線導体層の一部として外部接続端子を有し、該外部接続端子と外部電気回路基板表面に形成された配線導体とを半田付けして電気的に接続することにより、外部電気回路基板に実装されて使用される。 Conventionally, a wiring board for mounting a light-emitting element such as a light-emitting diode element has a structure in which a wiring conductor layer is disposed on or inside an insulating substrate. As a typical example of this wiring board, a recess for accommodating a light emitting element is formed on the surface of an insulating substrate made of alumina ceramics, and a refractory metal powder such as tungsten or molybdenum is formed on the surface and inside of the insulating substrate. There is a wiring board having a structure in which a plurality of wiring conductor layers are arranged and electrically connected to a light emitting element housed in a recess. Also, this wiring board usually has an external connection terminal as a part of the wiring conductor layer on the lower surface or side surface of the insulating substrate, and solders the external connection terminal and the wiring conductor formed on the surface of the external electric circuit board. Then, by being electrically connected, it is mounted on an external electric circuit board and used.
 上記発光素子用の配線基板における絶縁基板として挙げられるアルミナ、ムライトなどのセラミックス基板は、200MPa以上の高強度を有し、しかも配線導体層などの多層化技術において信頼性が高い点で多用されている。しかしながら、発光ダイオード素子の高輝度化に伴い増加する発熱量に対応して、放熱性のよい外部電気回路基板、例えば、メタルコア基板を用いると、アルミナ等のセラミックス基板では外部電気回路基板との間に熱応力歪みが発生し、両者を接合する半田が剥離し、長期にわたり安定に電気的接続させることができないという問題があった。 Ceramic substrates such as alumina and mullite, which are cited as insulating substrates in the above-mentioned wiring substrate for light emitting elements, have a high strength of 200 MPa or more and are frequently used because of their high reliability in multilayer technology such as wiring conductor layers. Yes. However, when an external electric circuit board with good heat dissipation, such as a metal core board, is used in response to the amount of heat generated with the increase in luminance of the light emitting diode element, a ceramic substrate such as alumina is not connected to the external electric circuit board. There is a problem that thermal stress distortion occurs in the solder, the solder that joins the two peels off, and cannot be stably electrically connected for a long time.
 このような、セラミックス基板等の絶縁基板からなる配線基板と外部電気回路基板の半田接着性を改善しようとする試みが、発光素子用基板に限らず半導体素子全般を搭載する配線基板においてなされている。例えば、特許文献1においては、メタライズ配線層を有する絶縁基板からなる配線基板を、絶縁基板が有機樹脂を主体とする外部電気回路基板にロウ付けする際に、配線基板を構成する絶縁基板のヤング率を200GPa以下、熱膨張係数を8~25ppm/℃とすることで両者を強固にかつ長期安定性をもって接続することができる旨の記載がある。そして、このような特性を有する絶縁基板として、ガラスセラミックス基板を挙げている。さらに、特許文献2および特許文献3には、同様に配線基板と外部電気回路基板の半田接着性が改善されたガラスセラミックス基板の記載があり、この基板を構成するガラスセラミックス焼結体は、ヤング率150GPa以下の特性を有するように製造されている。 Attempts to improve the solder adhesion between a wiring board made of an insulating substrate such as a ceramic substrate and an external electric circuit board have been made not only on a substrate for a light emitting element but also on a wiring board on which all semiconductor elements are mounted. . For example, in Patent Document 1, when a wiring board made of an insulating board having a metallized wiring layer is brazed to an external electric circuit board mainly composed of an organic resin, the Young of the insulating board constituting the wiring board is used. There is a description that when the rate is 200 GPa or less and the thermal expansion coefficient is 8 to 25 ppm / ° C., both can be connected firmly and with long-term stability. A glass ceramic substrate is cited as an insulating substrate having such characteristics. Furthermore, Patent Document 2 and Patent Document 3 similarly describe a glass ceramic substrate in which the solder adhesion between the wiring substrate and the external electric circuit substrate is improved, and the glass ceramic sintered body constituting the substrate is Young's It is manufactured to have a characteristic of a rate of 150 GPa or less.
 一方、発光素子用配線基板の絶縁基板としても、最近では、低温焼成化、低誘電率化および高電気伝導性の銅、銀配線が可能なことから、絶縁基板をガラスセラミックス焼結体により構成することが提案されている。このガラスセラミックス焼結体を用いた発光素子用配線基板においても、アルミナ基板同様に、放熱性を確保するために、メタルコア基板等の高放熱性の外部電気回路基板を用いることが求められており、この高放熱性の外部電気回路基板との長期にわたる安定した電気接続性を確保することも重要な特性のひとつとなっている。そこで、発光素子用配線基板の絶縁基板において、高放熱性の外部電気回路基板を用いた際に、上記した特性およびその他の特性を損なうことなく、半田接着性に優れた最適な条件のヤング率や熱膨張係数特性等を有するガラスセラミックス焼結体からなる絶縁基板の開発が望まれていた。 On the other hand, as an insulating substrate of a wiring substrate for light emitting devices, recently, it is possible to fabricate copper and silver with low temperature firing, low dielectric constant and high electrical conductivity. It has been proposed to do. In the wiring board for light emitting devices using this glass ceramic sintered body, it is required to use an external electric circuit board having high heat dissipation such as a metal core board in order to ensure heat dissipation as in the case of the alumina substrate. Ensuring stable electrical connectivity over a long period of time with this highly heat-dissipating external electric circuit board is also an important characteristic. Therefore, when using a highly heat-dissipating external electric circuit board for the insulating substrate of the light-emitting element wiring board, the Young's modulus under optimal conditions with excellent solder adhesion without losing the above-mentioned characteristics and other characteristics. Development of an insulating substrate made of a glass ceramic sintered body having thermal expansion coefficient characteristics and the like has been desired.
日本特許第3347583号公報Japanese Patent No. 3347583 日本特開2004-168557号公報Japanese Unexamined Patent Publication No. 2004-168557 日本特開2004-256346号公報Japanese Unexamined Patent Publication No. 2004-256346
 本発明は、金属を主体とする外部電気回路基板の配線回路に半田付けによって表面実装するための発光素子用基板において、外部電気回路基板と強固に且つ長期にわたり安定した接続状態を維持できる発光素子用基板およびそれを用いた電気的接続に高い信頼性を有する発光装置を提供することを目的とする。 The present invention relates to a light emitting element substrate for surface mounting by soldering on a wiring circuit of an external electric circuit board mainly composed of metal, and capable of maintaining a strong and stable connection state with the external electric circuit board over a long period of time. It is an object of the present invention to provide a light emitting device having high reliability for a circuit board and electrical connection using the same.
 本発明の発光素子用基板は、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体からなり、一部が発光素子の搭載される搭載部となる搭載面を有する基板本体と、前記基板本体の表面および内部に前記発光素子の電極と外部回路を電気的に接続する配線導体を有し、前記配線導体の一部は、前記搭載面の反対面である非搭載面に外部接続端子として配設され、該外部接続端子を介して金属を主体とする外部電気回路基板の配線回路上に半田固定される発光素子用基板であって、前記焼結体の25℃におけるヤング率が150GPa以下、かつ50~400℃における熱膨張係数が2~8ppm/℃であることを特徴とする。
 前記焼結体の25℃におけるヤング率は、50GPa以上、150GPa以下であることが好ましい。
 また、前記ガラスセラミックス組成物の焼結体が、低温同時焼成セラミックスの焼結体であることが好ましい。
The substrate for a light emitting device of the present invention comprises a sintered body of a glass ceramic composition containing glass powder and ceramic powder, and a substrate body having a mounting surface, a part of which is a mounting portion on which the light emitting device is mounted, A wiring conductor for electrically connecting the electrode of the light emitting element and an external circuit is provided on the surface and inside of the substrate body, and a part of the wiring conductor is connected to an external connection terminal on a non-mounting surface opposite to the mounting surface. And a substrate for a light emitting element that is solder-fixed on a wiring circuit of an external electric circuit board mainly composed of metal through the external connection terminal, and the Young's modulus at 25 ° C. of the sintered body is 150 GPa The thermal expansion coefficient at 50 to 400 ° C. is 2 to 8 ppm / ° C.
The Young's modulus at 25 ° C. of the sintered body is preferably 50 GPa or more and 150 GPa or less.
The sintered body of the glass ceramic composition is preferably a sintered body of low-temperature co-fired ceramic.
 本発明の発光素子用基板が半田固定により実装される上記外部電気回路基板としては、表面に絶縁層を有する金属板と、前記絶縁層上に配設された配線回路を有するメタルコア基板、またはメタルベース基板が好ましい。また、本発明の発光素子用基板は、前記金属板を構成する材料が、タングステン、モリブデン、銅、アルミニウムおよびこれらの2種以上からなる合金からなる群より選ばれる少なくとも1種からなるメタルコア基板への実装に好適に用いられる。このようなメタルコア基板を用いる理由は、放熱性を確保するためであり、同様の金属板上に絶縁層が形成されたメタルベース基板も本発明において好適に用いられる。絶縁層が形成される金属板の表面とは、メタルコア基板の場合には基板の全面を意味するものであり、メタルベース基板の場合には少なくとも発光素子用基板と半田で接合される面を意味するものである。 As the external electric circuit board on which the light emitting element substrate of the present invention is mounted by soldering, a metal plate having an insulating layer on the surface and a metal core board having a wiring circuit disposed on the insulating layer, or a metal A base substrate is preferred. In the light emitting device substrate of the present invention, the material constituting the metal plate is a metal core substrate composed of at least one selected from the group consisting of tungsten, molybdenum, copper, aluminum, and an alloy composed of two or more thereof. It is suitably used for mounting. The reason for using such a metal core substrate is to ensure heat dissipation, and a metal base substrate in which an insulating layer is formed on a similar metal plate is also preferably used in the present invention. In the case of a metal core substrate, the surface of the metal plate on which the insulating layer is formed means the entire surface of the substrate, and in the case of a metal base substrate, it means at least the surface bonded to the light emitting element substrate by soldering. To do.
 本発明の発光装置は、上記本発明の発光素子用基板と、前記発光素子用基板に搭載される発光素子と、前記発光素子用基板が搭載される、配線回路を有する金属を主体とする外部電気回路基板と、前記発光素子用基板を前記外部電気回路基板に固定する半田層であって、前記外部接続端子と前記配線回路とを接続するように形成された半田層と、を有することを特徴とする。 The light-emitting device of the present invention includes a light-emitting element substrate of the present invention, a light-emitting element mounted on the light-emitting element substrate, and an external body mainly composed of a metal having a wiring circuit on which the light-emitting element substrate is mounted. An electric circuit board; and a solder layer for fixing the light emitting element substrate to the external electric circuit board, the solder layer formed so as to connect the external connection terminal and the wiring circuit. Features.
 本発明によれば、金属を主体とする外部電気回路基板の配線回路に半田付けによって表面実装するための発光素子用基板において、外部電気回路基板と強固に且つ長期にわたり安定した接続状態を維持できる発光素子用基板およびそれを用いた電気的接続に高い信頼性を有する発光装置を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, in the board | substrate for light emitting elements for carrying out the surface mounting by soldering to the wiring circuit of the external electric circuit board | substrate mainly composed of metal, a stable connection state can be maintained with the external electric circuit board for a long time. A light-emitting element substrate and a light-emitting device having high reliability in electrical connection using the substrate can be provided.
本発明の発光素子用基板の一例を示す図面であり、(a)は、該基板の平面図、(b)は、該平面図のX-X線断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing which shows an example of the board | substrate for light emitting elements of this invention, (a) is a top view of this board | substrate, (b) is XX sectional drawing of this top view. 図1に示す発光素子用基板を用いた本発明の発光装置の一例を示す図面であり、(a)は、該装置の平面図、(b)は、該平面図のX-X線断面図である。2 is a drawing showing an example of the light emitting device of the present invention using the substrate for light emitting element shown in FIG. 1, wherein (a) is a plan view of the device, and (b) is a sectional view taken along line XX of the plan view. It is. (a)は、実施例で評価に用いた本発明の発光素子用基板と外部電気回路基板を半田層により接合した評価モデルの平面図、(b)は、該平面図のX-X線における部分断面図である。(A) is a plan view of an evaluation model in which a light emitting element substrate of the present invention and an external electric circuit substrate used for evaluation in the examples are joined by a solder layer, and (b) is a cross-sectional view taken along line XX of the plan view. It is a fragmentary sectional view.
 以下に、図を参照しながら本発明の実施の形態を説明する。なお、本発明は、下記説明に限定して解釈されるものではない。
 本発明の発光素子用基板は、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体(以下、「LTCC」(低温同時焼成セラミックス)、または「LTCC基板」(低温同時焼成セラミックス基板)と記すことがある。)からなり、一部が発光素子の搭載される搭載部となる搭載面を有する基板本体と、前記基板本体の表面および内部に前記発光素子の電極と外部回路を電気的に接続する配線導体を有し、前記配線導体の一部は、前記搭載面の反対面である非搭載面に外部接続端子として配設され、該外部接続端子を介して金属を主体とする外部電気回路基板の配線回路上に半田固定される発光素子用基板であって、前記焼結体の25℃におけるヤング率が150GPa以下、かつ、50~400℃における熱膨張係数が2~8ppm/℃であることを特徴とする。
Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is limited to the following description and is not interpreted.
The substrate for a light emitting device of the present invention is a sintered body of a glass ceramic composition containing glass powder and ceramic powder (hereinafter referred to as “LTCC” (low-temperature co-fired ceramic) or “LTCC substrate” (low-temperature co-fired ceramic substrate). And a substrate main body having a mounting surface on which a part of the light emitting element is mounted, and an electrode and an external circuit of the light emitting element are electrically connected to the surface and inside of the substrate main body. And a part of the wiring conductor is disposed as an external connection terminal on a non-mounting surface opposite to the mounting surface, and an external body mainly composed of metal via the external connection terminal. A substrate for a light emitting element, which is solder-fixed on a wiring circuit of an electric circuit board, wherein the sintered body has a Young's modulus at 25 ° C. of 150 GPa or less and a thermal expansion coefficient at 50 to 400 ° C. Characterized in that it is a 2 ~ 8ppm / ℃.
 ここで、本明細書において、発光素子用基板が有する上記「配線導体」とは、搭載される発光素子の有する電極からこれを介して外部電気回路基板の配線回路へと電気的に接続されるように設けられた電気配線に係る全ての導体、例えば、発光素子の電極と接続される素子接続端子、基板内に設けられる内層配線(基板内を貫通する貫通導体を含む)、外部電気回路基板の配線回路に接続される外部接続端子等を総称する用語として用いるものである。 Here, in the present specification, the “wiring conductor” of the light emitting element substrate is electrically connected from the electrode of the light emitting element to be mounted to the wiring circuit of the external electric circuit board through the electrode. All conductors related to the electrical wiring provided in this way, for example, element connection terminals connected to the electrodes of the light emitting element, inner layer wiring provided in the substrate (including through conductors penetrating through the substrate), external electric circuit board This term is used as a general term for external connection terminals connected to the wiring circuit.
 本発明においては、発光素子用基板が半田層を介して実装される外部電気回路基板として、発光装置の放熱性を高めるために、金属を主体とする高放熱性の外部電気回路基板を用いた場合に、発光素子用基板の絶縁基板本体を構成する材料として、25℃におけるヤング率が150GPa以下、かつ、50~400℃における熱膨張係数が2~8ppm/℃であるLTCCを用いる。このことにより、発光素子用基板と外部電気回路基板を接合後、半田層に残留する熱応力歪み(以下、残留応力歪みと記す。)を軽減することを可能とし、剥離等による接合配線の破断の発生を抑制したものである。 In the present invention, as the external electric circuit board on which the light emitting element substrate is mounted via the solder layer, a high heat dissipation external electric circuit board mainly composed of metal is used in order to enhance the heat dissipation of the light emitting device. In this case, LTCC having a Young's modulus at 25 ° C. of 150 GPa or less and a thermal expansion coefficient of 2 to 8 ppm / ° C. at 50 to 400 ° C. is used as the material constituting the insulating substrate body of the light emitting element substrate. This makes it possible to reduce thermal stress strain (hereinafter referred to as residual stress strain) remaining in the solder layer after joining the light emitting element substrate and the external electric circuit substrate, and breaking the joint wiring due to peeling or the like. Is suppressed.
 上記特性を有するLTCCを絶縁基板本体の構成材料とする本発明の発光素子用基板が、半田層により実装される金属を主体とする高放熱性の外部電気回路基板としては、発光装置に、通常用いられる金属を主体とする外部電気回路基板が、特に制限なく用いられる。
 このような金属を主体とする外部電気回路基板において、該金属の50~200℃における熱膨張係数は概ね3~10ppm/℃であり、上記本発明に用いるLTCCの熱膨張係数と比べてその差は最大でも8ppm程度である。本発明の発光素子用基板を、金属を主体とする外部電気回路基板に半田層を介して実装する際に、上記LTCCと金属の熱膨張係数の差がこの範囲であれば、LTCCのヤング率を150GPa以下とすることで、上記のような残留応力歪みの軽減された半田接合が可能となる。
The substrate for a light-emitting element of the present invention in which the LTCC having the above characteristics is a constituent material of an insulating substrate body is a high heat dissipation external electric circuit substrate mainly composed of a metal mounted by a solder layer. The external electric circuit board mainly composed of the metal to be used is used without particular limitation.
In such an external electric circuit board mainly composed of a metal, the thermal expansion coefficient of the metal at 50 to 200 ° C. is about 3 to 10 ppm / ° C., which is a difference from the thermal expansion coefficient of the LTCC used in the present invention. Is about 8 ppm at the maximum. When the substrate for a light-emitting element of the present invention is mounted on an external electric circuit substrate mainly composed of metal via a solder layer, if the difference in thermal expansion coefficient between the LTCC and the metal is within this range, the Young's modulus of the LTCC When the pressure is set to 150 GPa or less, solder bonding with reduced residual stress strain as described above can be achieved.
 図1は、本発明の発光素子用基板の一例を示す平面図(a)および、平面図(a)におけるX-X線断面図(b)である。
 発光素子用基板1は、これを主として構成する略平板状の基板本体2を有している。この基板本体2は、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体からなるものであり、その25℃におけるヤング率は150GPa以下、かつ、50~400℃における熱膨張係数は2~8ppm/℃である。基板本体2は発光素子用基板とした際に発光素子を搭載する側の面を搭載面21として有し、本例においてはその反対側の面を非搭載面23とする。
FIG. 1 is a plan view (a) showing an example of a substrate for a light-emitting element of the present invention, and a cross-sectional view along line XX in the plan view (a).
The light emitting element substrate 1 has a substantially flat substrate body 2 that mainly constitutes the substrate. The substrate body 2 is made of a sintered body of a glass ceramic composition containing glass powder and ceramic powder, and has a Young's modulus at 25 ° C. of 150 GPa or less and a thermal expansion coefficient of 50 to 400 ° C. ~ 8 ppm / ° C. When the substrate body 2 is used as a light emitting element substrate, the surface on which the light emitting element is mounted is used as the mounting surface 21. In this example, the opposite surface is used as the non-mounting surface 23.
 本発明の発光素子用基板に用いるガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体(LTCC)としては、上記25℃におけるヤング率が150GPa以下、かつ、50~400℃における熱膨張係数が2~8ppm/℃であるLTCCであれば特に制限されない。上記LTCCのヤング率が、150GPaを超えると、発光素子用基板を、金属を主体とする外部電気回路基板に半田層を介して実装する際に半田層に相当の残留応力歪みが発生し、長期安定使用が困難となる。また、LTCCの熱膨張係数が2ppm/℃未満では、外部電気回路基板との熱膨張係数の差が大きくなり、結果として両者間の残留応力歪みが大きくなる。また、8ppm/℃を超えるとLTCCに実装されるLED素子との熱膨張係数の差が大きくなり、LED素子とLTCCとの間の残留応力歪みが大きくなる。 As a sintered body (LTCC) of a glass ceramic composition containing glass powder and ceramic powder used for the substrate for light emitting device of the present invention, Young's modulus at 25 ° C. is 150 GPa or less and thermal expansion at 50 to 400 ° C. Any LTCC having a coefficient of 2 to 8 ppm / ° C. is not particularly limited. When the Young's modulus of the LTCC exceeds 150 GPa, a considerable residual stress strain occurs in the solder layer when the light emitting element substrate is mounted on the external electric circuit substrate mainly composed of metal via the solder layer, and the long term Stable use becomes difficult. Moreover, if the thermal expansion coefficient of LTCC is less than 2 ppm / ° C., the difference in thermal expansion coefficient from the external electric circuit board becomes large, and as a result, the residual stress strain between the two becomes large. Moreover, when it exceeds 8 ppm / ° C., the difference in thermal expansion coefficient between the LED element mounted on the LTCC increases and the residual stress strain between the LED element and the LTCC increases.
 なお、本発明の発光素子用基板に用いるLTCCのヤング率は、上記の通り、25℃において150GPa以下であるが、同温度において、130GPa以下が好ましく、100GPa以下がより好ましい。LTCCのヤング率の下限は特に設けていないが、強度の観点から50GPa以上であることが好ましい。また、LTCCの熱膨張係数は上記の通り、50~400℃において2~8ppm/℃であるが、同温度範囲において、3~8ppm/℃が好ましく、3~7ppm/℃がより好ましい。 The Young's modulus of LTCC used for the light emitting element substrate of the present invention is 150 GPa or less at 25 ° C. as described above, but is preferably 130 GPa or less, more preferably 100 GPa or less at the same temperature. Although the lower limit of the Young's modulus of LTCC is not particularly provided, it is preferably 50 GPa or more from the viewpoint of strength. As described above, the thermal expansion coefficient of LTCC is 2 to 8 ppm / ° C. at 50 to 400 ° C., but preferably 3 to 8 ppm / ° C., more preferably 3 to 7 ppm / ° C. in the same temperature range.
 このような、上記ヤング率および熱膨張係数の条件を満たすガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体の形成用のスラリーは、例えば、以下のガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物にバインダー樹脂、必要に応じて可塑剤、分散剤、溶剤等を添加して調製される。このスラリーをドクターブレード法等により所定の形状のシート状に成形し、乾燥させ、必要に応じて脱脂を行い、800℃以上930℃以下で焼成して得られる焼結体が挙げられる。 Such a slurry for forming a sintered body of a glass ceramic composition containing glass powder and ceramic powder satisfying the above-mentioned Young's modulus and thermal expansion coefficient includes, for example, the following glass powder and ceramic powder. The glass ceramic composition is prepared by adding a binder resin and, if necessary, a plasticizer, a dispersant, a solvent and the like. Examples include a sintered body obtained by forming the slurry into a sheet having a predetermined shape by a doctor blade method, drying, degreasing as necessary, and firing at 800 ° C. or higher and 930 ° C. or lower.
(ガラスセラミックス組成物)
 上記LTCCの原料成分として用いるガラス粉末は、必ずしも限定されるものではないものの、ガラス転移点(Tg)が550℃以上700℃以下のものが好ましい。ガラス転移点(Tg)が550℃未満の場合、上記スラリーを用いてグリーンシートを形成した後の脱脂が困難となるおそれがあり、700℃を超える場合、収縮開始温度が高くなり、寸法精度が低下するおそれがある。
(Glass ceramic composition)
The glass powder used as the raw material component of the LTCC is not necessarily limited, but a glass transition point (Tg) of 550 ° C. or higher and 700 ° C. or lower is preferable. When the glass transition point (Tg) is less than 550 ° C., degreasing after forming the green sheet using the slurry may be difficult. When the glass transition point (Tg) exceeds 700 ° C., the shrinkage start temperature is increased, and the dimensional accuracy is increased. May decrease.
 また、800℃以上930℃以下で焼成したときに結晶が析出しないことが好ましい。結晶が析出するものの場合、Agなど、LTCC内部および外部に形成する配線材料との界面でのみ、強く結晶を発生する場合がある。結晶が析出した部分は結晶が析出していない部分に比べて、焼成収縮が小さくなる。そのため、焼成収縮が配線のある部分と、配線のない部分とで収縮が不均一になり、この焼成収縮差で焼成後の形状が変形する恐れがある。また、一般的に結晶が析出すると、ヤング率が大きくなる恐れがあり好ましくない。 Further, it is preferable that crystals do not precipitate when baked at 800 ° C. or higher and 930 ° C. or lower. In the case where the crystal is precipitated, the crystal may be strongly generated only at the interface with the wiring material formed inside and outside the LTCC such as Ag. The portion where the crystal is precipitated has a smaller firing shrinkage than the portion where the crystal is not precipitated. For this reason, the shrinkage is nonuniform between the portion with wiring and the portion without wiring, and the shape after firing may be deformed by this difference in firing shrinkage. In general, when crystals are precipitated, the Young's modulus may increase, which is not preferable.
 上記LTCCの原料成分として使用可能なガラス粉末として、具体的には、酸化物基準で、SiO 30~75mol%、B 0~20mol%、ZnO 0~5mol%、LiO+NaO+KO 0~10mol%、CaO 10~35mol%、CaO+MgO+BaO+SrO 10~35mol%、TiO 0~5mol%、Al 0~10mol%を含有するものが挙げられる。このガラス粉末は、SiOを多量に含むものであり、LTCCにおいて多量のセラミックス粉末を含有させた場合であっても有効に焼結させることができ、また化学的耐久性にも優れるために好ましい。 Specific examples of the glass powder that can be used as the raw material component of the LTCC include, based on oxides, 30 to 75 mol% of SiO 2 , 0 to 20 mol% of B 2 O 3 , 0 to 5 mol% of ZnO, Li 2 O + Na 2 O + K. Examples thereof include those containing 2 O 0 to 10 mol%, CaO 10 to 35 mol%, CaO + MgO + BaO + SrO 10 to 35 mol%, TiO 2 0 to 5 mol%, and Al 2 O 3 0 to 10 mol%. This glass powder contains a large amount of SiO 2 and is preferable because it can be effectively sintered even when a large amount of ceramic powder is contained in LTCC and has excellent chemical durability. .
 以下、ガラス粉末の各成分について説明する。
 SiOは、ガラスのネットワークフォーマーであり、化学的耐久性、特に耐酸性を向上させる成分であり必須である。SiOの含有量が30mol%未満の場合、化学的耐久性が低下するおそれがある。一方、SiOの含有量が75mol%を超える場合、ガラス溶融温度が高くなる、またはガラス軟化点(Ts)が過度に高くなるおそれある。
Hereinafter, each component of the glass powder will be described.
SiO 2 is a glass network former, and is a component that is essential for improving chemical durability, particularly acid resistance. When the content of SiO 2 is less than 30 mol%, chemical durability may be reduced. On the other hand, when the content of SiO 2 exceeds 75 mol%, the glass melting temperature may be increased, or the glass softening point (Ts) may be excessively increased.
 Bは、必須成分ではないが、ガラスのネットワークフォーマーであり、また軟化点を低下させる成分であることから含有させることが好ましい。Bの含有量が20mol%を超える場合、安定なガラスを得ることが難しく、また化学的耐久性も低下するおそれがある。 B 2 O 3 is not an essential component but is preferably a glass network former and a component that lowers the softening point. If the content of B 2 O 3 exceeds 20 mol%, it is difficult to obtain a stable glass and also the chemical durability may deteriorate.
 ZnOは、必須成分ではないが、軟化点を低下させる成分であり有用である。ZnOの含有量が5mol%を超えると、化学的耐久性が低下するおそれがある。また、焼成時にガラスが結晶化しやすくなり、焼結を阻害し、焼結体の空隙率が低減しないおそれがある。 ZnO is not an essential component, but is a component that lowers the softening point and is useful. If the ZnO content exceeds 5 mol%, chemical durability may be reduced. In addition, the glass tends to crystallize during firing, which may hinder sintering and may not reduce the porosity of the sintered body.
 アルカリ金属酸化物であるLiO、NaO、およびKOは、軟化点を低下させる成分であり、含有することが好ましい。LiO、NaO、およびKOは、1種または2種のみが含有されていてもよい。これらのうちのいずれの金属酸化物も含有しない場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれがある。一方、これらの合計した含有量が、10mol%を超えると、化学的耐久性、特に耐酸性が低下するおそれがあり、電気的絶縁性も低下するおそれがある。 Li 2 O is an alkali metal oxide, Na 2 O, and K 2 O is a component to lower the softening point, it is preferable to contain. Li 2 O, Na 2 O, and K 2 O, only one or two may be contained. When none of these metal oxides is contained, the glass melting temperature and the glass transition point (Tg) may be excessively high. On the other hand, when the total content thereof exceeds 10 mol%, chemical durability, particularly acid resistance may be lowered, and electrical insulation properties may be lowered.
 CaOは、ガラスの安定性を高めるとともに、軟化点を低下させる成分であり、特に焼成時のアルミナ粉末とガラスとの濡れ性を向上する成分であり、焼結体の空隙率を低減する効果のある成分であり必須である。また、CaOは、熱膨張係数を高める成分であり、他の基板材料等との熱膨張係数の整合性をとる場合に有用である。CaOの含有量が10mol%未満の場合、ガラスの安定性を十分に高めることができず、また軟化点も十分に低下させることができないおそれがある。一方、CaOの含有量が35mol%を超える場合、過度に含有量が多いために、焼成時にガラスが結晶化しやすくなり、焼結を阻害し、焼結体の空隙率が低減しないおそれがある。また、ガラスの安定性が低下するおそれがある。 CaO is a component that enhances the stability of the glass and lowers the softening point. In particular, CaO is a component that improves the wettability between the alumina powder and the glass during firing, and has the effect of reducing the porosity of the sintered body. It is a certain component and essential. CaO is a component that increases the thermal expansion coefficient, and is useful when matching the thermal expansion coefficient with other substrate materials and the like. When the content of CaO is less than 10 mol%, the stability of the glass cannot be sufficiently increased, and the softening point may not be sufficiently lowered. On the other hand, when the content of CaO exceeds 35 mol%, the content is excessively high, so that the glass is likely to be crystallized during firing, inhibiting sintering, and the porosity of the sintered body may not be reduced. Moreover, there exists a possibility that stability of glass may fall.
 また、CaOと同様にガラスの安定性を高めるとともに、軟化点を低下させる成分として、MgO、BaO、およびSrOから選ばれる少なくとも1種を含有してもよい。この場合、MgO、BaO、およびSrOの含有量は、CaOの含有量と合わせて35mol%以下である。CaO、MgO、BaO、およびSrOの合計した含有量が35mol%を超えると、ガラスの安定性が低下するおそれがある。なお、CaOを除いた、MgO、BaO、およびSrOの合計した含有量は、15mol%以下が好ましい。 Further, as with CaO, it may contain at least one selected from MgO, BaO, and SrO as a component that increases the stability of the glass and lowers the softening point. In this case, the content of MgO, BaO, and SrO is 35 mol% or less together with the content of CaO. If the total content of CaO, MgO, BaO, and SrO exceeds 35 mol%, the stability of the glass may be reduced. The total content of MgO, BaO, and SrO excluding CaO is preferably 15 mol% or less.
 TiOは、必須成分ではないが、ガラスの耐候性を高める成分として有用である。TiOの含有量が5mol%を超える場合、ガラスの安定性が低下するおそれがある。 TiO 2 is not an essential component, but is useful as a component that enhances the weather resistance of glass. When the content of TiO 2 exceeds 5 mol%, there is a possibility that the stability of the glass decreases.
 Alは、必須成分ではないが、ガラスの安定性、化学的耐久性を高める成分として有用である。Alの含有量が10mol%を超える場合、軟化点が過度に高くなるおそれがある。なお、Alの含有量は、2mol%以上が好ましく、3mol%以上がより好ましい。 Al 2 O 3 is not an essential component, but is useful as a component that enhances the stability and chemical durability of glass. When the content of Al 2 O 3 exceeds 10 mol%, there is a possibility that the softening point becomes excessively high. The content of Al 2 O 3 is preferably at least 2 mol%, more preferably at least 3 mol%.
 ガラス材料は、基本的に上記成分からなることが好ましいが、本発明の目的を損なわない限度において、上記成分以外の他の成分を含有することができる。例えば、ガラスの安定性を高めるとともに、軟化点を低下させるためにPを含有させてよい。また、例えば、ガラスの安定性を高めるためにSbを含有させてよい。なお、その他の成分を含有させる場合には、その合計した含有量は10mol%以下であり、5mol%以下が好ましい。 Although it is preferable that a glass material consists essentially of the said component, it can contain other components other than the said component in the limit which does not impair the objective of this invention. For example, to increase the stability of the glass may contain a P 2 O 5 in order to lower the softening point. Further, for example, Sb 2 O 3 may be contained in order to increase the stability of the glass. In addition, when it contains other components, the total content is 10 mol% or less, and 5 mol% or less is preferable.
 LTCCの原料成分として使用される上記ガラス粉末は、これが配合されて、焼成して得られるLTCCが、本発明における上記ヤング率および熱膨張係数の条件を満たす限りにおいて、その他の求められる特性により組成を調整することが可能である。このようなガラス粉末としては、後述するセラミックス粉末との組合せ特性の違いにより、以下に示すような、第1のガラス粉末、第2のガラス粉末、第3のガラス粉末等のガラス粉末が挙げられる。 The glass powder used as a raw material component of LTCC is composed of other required characteristics as long as the LTCC obtained by being blended and fired satisfies the conditions of the Young's modulus and thermal expansion coefficient in the present invention. Can be adjusted. Examples of such glass powders include glass powders such as the first glass powder, the second glass powder, and the third glass powder, as shown below, depending on the difference in combination characteristics with the ceramic powder described later. .
 第1のガラス粉末は、多量のセラミックス粉末、特にアルミナよりも高い屈折率を有するセラミックス粉末を高含有率で含有しても有効に焼結させることができるガラス粉末である。
 第1のガラス粉末は、酸化物基準で、SiO 30~55mol%、B 0~20mol%、ZnO 0~5mol%、LiO+NaO+KO 0~10mol%、CaO 10~35mol%、CaO+MgO+BaO+SrO 10~35mol%、TiO 0~5mol%、Al 0~10mol%を含有するものである。
The first glass powder is a glass powder that can be effectively sintered even if it contains a large amount of ceramic powder, particularly ceramic powder having a higher refractive index than alumina.
The first glass powder is 30 to 55 mol% of SiO 2 , 0 to 20 mol% of B 2 O 3 , 0 to 5 mol% of ZnO, 0 to 10 mol% of Li 2 O + Na 2 O + K 2 O, and 10 to 35 mol of CaO based on oxides. %, CaO + MgO + BaO + SrO 10-35 mol%, TiO 2 0-5 mol%, Al 2 O 3 0-10 mol%.
 第2のガラス粉末は、特に多量のセラミックス粉末を含有しても有効に焼結させることができるガラス粉末である。
 第2のガラス粉末は、酸化物基準で、SiO 55~65mol%、B 10~20mol%、ZnO 0~5mol%、LiO+NaO+KO 1~5mol%、CaO 10~20mol%、CaO+MgO+BaO+SrO 10~25mol%、TiO 0~5mol%、Al 0~10mol%を含有するものである。
The second glass powder is a glass powder that can be effectively sintered even if it contains a large amount of ceramic powder.
The second glass powder is 55 to 65 mol% of SiO 2 , 10 to 20 mol% of B 2 O 3 , 0 to 5 mol% of ZnO, 1 to 5 mol% of Li 2 O + Na 2 O + K 2 O, and 10 to 20 mol of CaO on the oxide basis. %, CaO + MgO + BaO + SrO 10 to 25 mol%, TiO 2 0 to 5 mol%, and Al 2 O 3 0 to 10 mol%.
 第2のガラス粉末は、より好ましくは、酸化物基準で、SiO 57~63mol%、B 12~18mol%、ZnO 0~3mol%、LiO+NaO+KO 1~5mol%、CaO 12~18mol%、CaO+MgO+BaO+SrO 12~20mol%、TiO 0~3mol%、Al 2~8mol%を含有するものである。 More preferably, the second glass powder is 57 to 63 mol% of SiO 2 , 12 to 18 mol% of B 2 O 3 , 0 to 3 mol% of ZnO, 1 to 5 mol% of Li 2 O + Na 2 O + K 2 O, based on oxide. It contains CaO 12-18 mol%, CaO + MgO + BaO + SrO 12-20 mol%, TiO 2 0-3 mol%, and Al 2 O 3 2-8 mol%.
 第3のガラス粉末は、第2のガラス粉末に比べて、SiO、LiO+NaO+KOを多量に含むものであり、セラミックス粉末の含有量が比較的少量であっても高い反射率を得ることができるために好ましい。
 第3のガラス粉末は、酸化物基準で、SiO 65~75mol%、B 0~5mol%、ZnO 0~5mol%、LiO+NaO+KO 5~12mol%、CaO 15~25mol%、CaO+MgO+BaO+SrO 15~30mol%、TiO 0~5mol%、Al 0~5mol%を含有するものである。
The third glass powder contains a large amount of SiO 2 , Li 2 O + Na 2 O + K 2 O compared to the second glass powder, and has a high reflectance even if the content of the ceramic powder is relatively small. Is preferable.
The third glass powder is composed of 65 to 75 mol% of SiO 2 , 0 to 5 mol% of B 2 O 3, 0 to 5 mol% of ZnO, 5 to 12 mol% of Li 2 O + Na 2 O + K 2 O, and 15 to 25 mol of CaO based on oxides. %, CaO + MgO + BaO + SrO 15 to 30 mol%, TiO 2 0 to 5 mol%, Al 2 O 3 0 to 5 mol%.
 第3のガラス粉末は、より好ましくは、酸化物基準で、SiO 67~73mol%、B 0~3mol%、ZnO 0~3mol%、LiO+NaO+KO 6~11mol%、CaO 16~22mol%、CaO+MgO+BaO+SrO 16~25mol%、TiO 0~3mol%、Al 0~3mol%を含有するものである。 More preferably, the third glass powder is 67 to 73 mol% of SiO 2 , 0 to 3 mol% of B 2 O 3, 0 to 3 mol% of ZnO, 6 to 11 mol% of Li 2 O + Na 2 O + K 2 O, based on oxide. It contains CaO 16-22 mol%, CaO + MgO + BaO + SrO 16-25 mol%, TiO 2 0-3 mol%, and Al 2 O 3 0-3 mol%.
 また、上記LTCCの原料成分として使用可能なガラス粉末として、特にアルミナよりも高い屈折率を有するセラミックス粉末を高含有率で含有しても、比較的低温で有効に焼結させることができるガラス粉末として、酸化物基準で、SiOを0~50質量%、Bを15~50質量%、Alを0~10質量%、ZnO、CaO、SrOおよびBaOから選ばれる1種または2種以上を合計で3~65質量%、LiO、NaOおよびKOから選ばれる1種または2種以上を合計で0~20質量%、Biを0~50質量%含有し、該ガラス粉末中の質量%表記での「(B+Biの含有量)の3倍」+「(ZnO+CaO+SrO+BaOの含有量)の2倍」+「(LiO+NaO+KOの含有量)の10倍」の値が、200を超えるものが挙げられる。 Further, as a glass powder that can be used as a raw material component of the LTCC, a glass powder that can be effectively sintered at a relatively low temperature even when a ceramic powder having a higher refractive index than alumina is contained at a high content. as, on an oxide basis, the SiO 2 0 to 50% by weight, B 2 O 3 15 to 50 mass%, the Al 2 O 3 0 ~ 10 wt%, one selected ZnO, CaO, from SrO and BaO Or 2 or more types in total 3 to 65% by mass, 1 type or 2 types or more selected from Li 2 O, Na 2 O and K 2 O in total 0 to 20% by mass, Bi 2 O 3 in 0 to 50% It is contained by mass%, and is expressed as “3 times the content of (B 2 O 3 + Bi 2 O 3 )” + “2 times the content of (ZnO + CaO + SrO + BaO)” + “(Li 2 O + Na 2 O The value of 10 times "of K content of 2 O) may be mentioned those of more than 200.
 上記ガラス粉末は、酸化物基準で、SiOを0~50質量%、Bを15~50質量%、Alを0~10質量%、ZnO、CaO、SrOおよびBaOから選ばれる1種または2種以上を合計で3~65質量%、LiO、NaOおよびKOから選ばれる1種または2種以上を合計で3~20質量%、Biを0~10質量%含有する組成とすることもできる。 The glass powder is an oxide basis, the SiO 2 0 ~ 50 wt%, the B 2 O 3 15 ~ 50 wt%, the Al 2 O 3 0 ~ 10% by weight, selected ZnO, CaO, from SrO and BaO 1 to 2 or more types in total 3 to 65% by mass, 1 or 2 types selected from Li 2 O, Na 2 O and K 2 O in total 3 to 20% by mass, Bi 2 O 3 A composition containing 0 to 10% by mass is also possible.
 また、上記ガラス粉末は、酸化物基準でSiOを0~50質量%、Bを15~50質量%、Alを0~10質量%、ZnO、CaO、SrOおよびBaOから選ばれる1種または2種以上を合計で3~65質量%、LiO、NaOおよびKOから選ばれる1種または2種以上を合計で0~3質量%、Biを10~50質量%含有する組成とすることもできる。 Further, the glass powder, the SiO 2 0 ~ 50 wt% on an oxide basis, the B 2 O 3 15 ~ 50 wt%, the Al 2 O 3 0 ~ 10 wt%, ZnO, CaO, from SrO and BaO One or more selected from a total of 3 to 65% by mass, and one or more selected from Li 2 O, Na 2 O and K 2 O in a total of 0 to 3% by mass, Bi 2 O 3 The composition may contain 10 to 50% by mass.
 本発明に用いるガラス粉末は、上記したようなガラス組成を有するガラスを溶融法によって製造し、乾式粉砕法や湿式粉砕法によって粉砕することにより得ることができる。湿式粉砕法の場合、溶媒として水を用いることが好ましい。粉砕は、例えばロールミル、ボールミル、ジェットミル等の粉砕機を用いて行うことができる。 The glass powder used in the present invention can be obtained by producing glass having the above glass composition by a melting method and pulverizing it by a dry pulverization method or a wet pulverization method. In the case of the wet pulverization method, it is preferable to use water as a solvent. The pulverization can be performed using a pulverizer such as a roll mill, a ball mill, or a jet mill.
 本発明に用いるガラス粉末の50%粒径(D50)は、0.5~5μmであることが好ましい。D50が0.5μm未満になると、工業的に製造しにくくまた凝集しやすくなるため、取り扱いが難しい。また、ガラスセラミックス組成物中にも分散しにくくなる。D50は、より好ましくは0.8μm以上、さらに好ましくは1.5μm以上である。一方、D50が5μmを超えると、焼成によって緻密な焼結体を得ることが困難になる。焼成により緻密な焼成体を得るために、ガラス粉末のD50は、4μm以下がより好ましく、3μm以下がさらに好ましい。粒径の調整は、例えば粉砕後に必要に応じて分級することにより行うことができる。なお、本明細書における50%粒径(D50)は、レーザ回折散乱法で測定された値である。 The glass powder used in the present invention preferably has a 50% particle size (D 50 ) of 0.5 to 5 μm. If D 50 is less than 0.5 [mu] m, it becomes industrially easily unlikely also to aggregate production, it is difficult to handle. Further, it is difficult to disperse in the glass ceramic composition. D 50 is more preferably 0.8 μm or more, and further preferably 1.5 μm or more. On the other hand, if D 50 exceeds 5 [mu] m, it becomes difficult to obtain a dense sintered body by firing. In order to obtain a dense fired body by firing, D 50 of the glass powder is more preferably 4 μm or less, and further preferably 3 μm or less. The particle size can be adjusted, for example, by classification as necessary after pulverization. In addition, the 50% particle size (D 50 ) in the present specification is a value measured by a laser diffraction scattering method.
 上記LTCCの原料成分におけるガラスセラミックス組成物中の上記ガラス粉末とセラミックス粉末の配合量としては、ガラス粉末がガラスセラミックス組成物のガラス粉末とセラミックス粉末の合量に対して25~60質量%の割合で、セラミックス粉末がガラスセラミックス組成物のガラス粉末とセラミックス粉末の合量に対して75~40質量%の割合で配合されることが好ましい。上記ガラスセラミックス組成物におけるガラス粉末の含有量が25質量%未満であると、焼成不足になり緻密な焼結体(すなわち、LTCC基板)が得られない場合がある。より緻密な焼結体を得る観点から、ガラス粉末の配合量は、ガラスセラミックス組成物全量に対して28質量%以上が好ましく、31質量%以上がより好ましい。 The blending amount of the glass powder and the ceramic powder in the glass ceramic composition in the raw material component of the LTCC is a ratio of 25 to 60 mass% with respect to the total amount of the glass powder and the ceramic powder of the glass ceramic composition. Thus, it is preferable that the ceramic powder is blended at a ratio of 75 to 40% by mass with respect to the total amount of the glass powder and the ceramic powder of the glass ceramic composition. If the glass powder content in the glass ceramic composition is less than 25% by mass, firing may be insufficient and a dense sintered body (ie, LTCC substrate) may not be obtained. From the viewpoint of obtaining a denser sintered body, the blending amount of the glass powder is preferably 28% by mass or more, and more preferably 31% by mass or more based on the total amount of the glass ceramic composition.
 また、ガラス粉末の含有量がガラスセラミックス組成物全量に対して60質量%を超えると、焼結体の抗折強度が不足するおそれがある。より抗折強度の高い焼結体を得る観点から、ガラス粉末の配合量は、ガラスセラミックス組成物全量に対して55質量%以下が好ましく、53質量%以下がより好ましい。 Moreover, if the content of the glass powder exceeds 60% by mass with respect to the total amount of the glass ceramic composition, the bending strength of the sintered body may be insufficient. From the viewpoint of obtaining a sintered body with higher bending strength, the blending amount of the glass powder is preferably 55% by mass or less and more preferably 53% by mass or less with respect to the total amount of the glass ceramic composition.
 一方、上記LTCCの原料成分におけるセラミックス粉末としては、例えばアルミナ粉末、ジルコニア粉末、チタニア粉末、またはこれらの混合物を好適に用いることができる。これらのセラミックス粉末は、それぞれ以下の特性を付与することを目的として、LTCCに配合される。 On the other hand, as the ceramic powder in the raw material component of the LTCC, for example, alumina powder, zirconia powder, titania powder, or a mixture thereof can be suitably used. These ceramic powders are blended in LTCC for the purpose of imparting the following characteristics.
 アルミナ粉末は、焼結体の抗折強度を高くするために添加される成分である。ジルコニア粉末やチタニア粉末はアルミナ粉末より高屈折率のセラミックス粉末であり、これらが所定の割合で配合されると、可視光領域の光に対して高い反射率を有する焼結体が得られる。さらに、ガラス相の結晶化が抑制されるため、反りが抑制され、形状安定性が良好な焼結体を得ることができる。 Alumina powder is a component added to increase the bending strength of the sintered body. Zirconia powder and titania powder are ceramic powders having a higher refractive index than alumina powder, and when these are blended at a predetermined ratio, a sintered body having a high reflectance with respect to light in the visible light region can be obtained. Furthermore, since crystallization of the glass phase is suppressed, warpage is suppressed and a sintered body having good shape stability can be obtained.
 これらセラミックス粉末は、各セラミックス粉末の有する特性を勘案して、発光素子用基板においてLTCCからなる基板本体が求められる性能に応じて、適宜組合せ、配合割合を調整して用いることができる。 These ceramic powders can be used by appropriately combining and adjusting the mixing ratio according to the performance required of the substrate body made of LTCC in the light emitting element substrate in consideration of the characteristics of each ceramic powder.
 例えば、焼結体の抗折強度を高くするためにセラミックス粉末としてアルミナ粉末のみを用いることが可能である。その場合、アルミナ粉末のガラスセラミックス組成物全量(すなわち、セラミックス粉末とガラス粉末との合量)に対する配合割合は15~60質量%程度とすることが好ましい。アルミナ粉末の含有量が15質量%未満であると、所望の抗折強度が得られない場合がある。また、アルミナ粉末の含有量が60質量%を超えると、焼成不足になり緻密な焼結体を得ることが困難になるばかりでなく、焼結体表面の平滑性が損なわれるおそれがある。この場合、組合せることが好ましいガラス粉末としては、上記第2のガラス粉末または第3のガラス粉末が挙げられる。 For example, in order to increase the bending strength of the sintered body, it is possible to use only alumina powder as the ceramic powder. In that case, the blending ratio of the alumina powder to the total amount of the glass ceramic composition (that is, the total amount of the ceramic powder and the glass powder) is preferably about 15 to 60% by mass. If the content of the alumina powder is less than 15% by mass, the desired bending strength may not be obtained. On the other hand, if the content of the alumina powder exceeds 60% by mass, not only firing becomes insufficient and it becomes difficult to obtain a dense sintered body, but also the smoothness of the surface of the sintered body may be impaired. In this case, examples of the glass powder that is preferably combined include the second glass powder and the third glass powder.
 アルミナ粉末の50%粒径であるD50は0.3~5μmであることが好ましい。D50が0.3μm未満では十分な抗折強度を達成することが困難になる。より抗折強度の高い焼結体を得る観点から、D50は0.6μm以上が好ましく、1.5μm以上がさらに好ましい。一方、D50が5μmを超えると焼結体表面の平滑性が損なわれる、あるいは焼成により緻密な焼結体を得ることが困難になる。より緻密かつ表面の平滑な焼結体を得る観点から、D50は4μm以下が好ましく、3μm以下がさらに好ましい。 D 50 which is a 50% particle diameter of the alumina powder is preferably 0.3 to 5 μm. D 50 is difficult to achieve a sufficient flexural strength is less than 0.3 [mu] m. From the viewpoint of obtaining a sintered body having higher bending strength, D 50 is preferably 0.6 μm or more, and more preferably 1.5 μm or more. On the other hand, the smoothness of the sintered body surface D 50 exceeds 5μm is impaired, or it is difficult to obtain a dense sintered body by firing. From the viewpoint of obtaining a denser and smoother sintered body, D 50 is preferably 4 μm or less, and more preferably 3 μm or less.
 また、高い抗折強度と高反射率の両方を兼ね備えたLTCCを得るために、セラミックス粉末としてアルミナ粉末と、アルミナ粉末より高屈折率のセラミックス粉末を組合せて用いることが可能である。この場合、アルミナ粉末のガラスセラミックス組成物全量(すなわち、セラミックス粉末とガラス粉末との合量)に対する配合割合は、15~60質量%であることが好ましい。アルミナ粉末の含有量が15質量%未満であると、所望の抗折強度を実現することが困難になる。より抗折強度の高い焼結体を得る観点から、17質量%以上が好ましく、18質量%以上がより好ましい。一方、アルミナ粉末の含有量が60質量%を超えると、焼成不足になり緻密な焼結体を得ることが困難になるばかりでなく、焼結体表面の平滑性が損なわれるおそれがある。より緻密で表面の平滑な焼結体を得る観点から、50質量%以下が好ましく、45質量%以下がより好ましい。 Further, in order to obtain LTCC having both high bending strength and high reflectivity, it is possible to use alumina powder as ceramic powder and ceramic powder having a higher refractive index than alumina powder in combination. In this case, the blending ratio of the alumina powder to the total amount of the glass ceramic composition (that is, the total amount of the ceramic powder and the glass powder) is preferably 15 to 60% by mass. When the content of the alumina powder is less than 15% by mass, it is difficult to achieve a desired bending strength. From the viewpoint of obtaining a sintered body with higher bending strength, it is preferably 17% by mass or more, and more preferably 18% by mass or more. On the other hand, when the content of the alumina powder exceeds 60% by mass, not only the firing becomes insufficient and it becomes difficult to obtain a dense sintered body, but the smoothness of the surface of the sintered body may be impaired. From the viewpoint of obtaining a sintered body having a finer and smoother surface, the content is preferably 50% by mass or less, and more preferably 45% by mass or less.
 ここで、アルミナ粉末とともに用いる高屈折率セラミックス粉末のガラスセラミックス組成物全量(すなわち、セラミックス粉末とガラス粉末との合量)に対する配合割合は、5~50質量%であることが好ましい。高屈折率セラミックス粉末の含有量が5質量%未満であると、反射率の高い焼結体、具体的には実用上十分な反射率である85%以上の反射率(すなわち、厚さ300μmのLTCC基板における反射率)を有する焼結体が得られないことがある。なお、ここで反射率は、波長460nmにおけるものである。より反射率の高い焼結体を得る観点から、高屈折率セラミックス粉末の含有量は、好ましくは15質量%以上、さらに好ましくは20質量%以上とする。一方、高屈折率セラミックス粉末の含有量が50質量%を超えると、緻密な焼結体を得ることが困難になる。より緻密な焼結体を得る観点から、45質量%以下が好ましく、40質量%以下がより好ましい。 Here, the blending ratio of the high refractive index ceramic powder used together with the alumina powder to the total amount of the glass ceramic composition (that is, the total amount of the ceramic powder and the glass powder) is preferably 5 to 50% by mass. When the content of the high refractive index ceramic powder is less than 5% by mass, a sintered body having a high reflectance, specifically, a reflectance of 85% or more which is a practically sufficient reflectance (that is, a thickness of 300 μm). A sintered body having a reflectance of the LTCC substrate may not be obtained. Here, the reflectance is at a wavelength of 460 nm. From the viewpoint of obtaining a sintered body having a higher reflectance, the content of the high refractive index ceramic powder is preferably 15% by mass or more, and more preferably 20% by mass or more. On the other hand, when the content of the high refractive index ceramic powder exceeds 50% by mass, it becomes difficult to obtain a dense sintered body. From the viewpoint of obtaining a denser sintered body, the content is preferably 45% by mass or less, and more preferably 40% by mass or less.
 この場合、組合せることが好ましいガラス粉末としては、上記第1のガラス粉末もしくは第2のガラス粉末、または上記高屈折率セラミックス粉末を高含有量で含有できるガラス粉末として例示したガラス粉末(以下、高屈折率セラミックス粉末用ガラス粉末という)が挙げられる。ただし、より多量の高屈折率セラミックス粉末、例えば、アルミナ粉末より多量の高屈折率セラミックス粉末を配合する場合には、上記第1のガラス粉末または高屈折率セラミックス粉末用ガラス粉末を用いることが好ましい。 In this case, as the glass powder that is preferably combined, the glass powder exemplified below as the glass powder that can contain the first glass powder or the second glass powder, or the high refractive index ceramic powder in a high content (hereinafter, And glass powder for high refractive index ceramic powder). However, when blending a larger amount of high refractive index ceramic powder, for example, a larger amount of high refractive index ceramic powder than alumina powder, it is preferable to use the first glass powder or the glass powder for high refractive index ceramic powder. .
 アルミナ粉末とともに用いる高屈折率セラミックス粉末は、例えばチタニア粉末、ジルコニア粉末である。これらは、アルミナ粉末の屈折率が1.8程度であるのに対して、チタニア粉末の屈折率は2.7程度、ジルコニア粉末の屈折率は2.2程度であり、アルミナ粉末に比べて高い屈折率を有している。 The high refractive index ceramic powder used together with the alumina powder is, for example, titania powder or zirconia powder. In contrast to the refractive index of alumina powder, which is about 1.8, the refractive index of titania powder is about 2.7, and the refractive index of zirconia powder is about 2.2, which is higher than that of alumina powder. It has a refractive index.
 高屈折率セラミックス粉末の添加によって十分な反射率を得るためには、高屈折率セラミックス粉末の屈折率とガラス粉末の屈折率の差が0.4以上であることが好ましい。このような屈折率差を得るためにガラス粉末の組成を本発明の効果が損なわれない範囲で適宜調整するとともに、組合せる高屈折率セラミックス粉末を適宜選択する。ここで、屈折率は波長460nmの光に対する屈折率である。例えば、上記第1のガラス粉末、第2のガラス粉末または高屈折率セラミックス粉末用ガラス粉末ではガラス組成を調整することで、本発明の効果を損なわずに、屈折率が1.5~1.6程度のガラス粉末が得られる。したがって、高屈折率セラミックス粉末としては、上記した材料以外にも、屈折率が概ね1.95を超えるセラミックス粉末、例えば、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カリウム等のチタン化合物、チタンやジルコニウムを主成分とするその他の複合材を用いることが可能である。 In order to obtain sufficient reflectance by adding the high refractive index ceramic powder, it is preferable that the difference between the refractive index of the high refractive index ceramic powder and the refractive index of the glass powder is 0.4 or more. In order to obtain such a difference in refractive index, the composition of the glass powder is appropriately adjusted within a range where the effects of the present invention are not impaired, and a high refractive index ceramic powder to be combined is appropriately selected. Here, the refractive index is a refractive index with respect to light having a wavelength of 460 nm. For example, in the first glass powder, the second glass powder, or the glass powder for high refractive index ceramic powder, by adjusting the glass composition, the refractive index is 1.5 to 1. A glass powder of about 6 is obtained. Therefore, as the high refractive index ceramic powder, in addition to the above materials, ceramic powder having a refractive index of more than 1.95, for example, titanium compounds such as barium titanate, strontium titanate, potassium titanate, titanium and zirconium It is possible to use other composite materials whose main component is.
 高屈折率セラミックス粉末としては、特にジルコニア粉末を用いることが好ましい。ジルコニア粉末を用いることで、例えばチタニア粉末を用いた場合のような、400nm付近の光の吸収による反射率の低下を抑制することができる。さらに、ジルコニア粉末としては、安定化されていないジルコニアからなるものであってもよいが、Y、CaO、またはMgOの添加により部分安定化された部分安定化ジルコニアからなる粉末が好ましい。部分安定化ジルコニアを用いることで、例えば高温下での相転移を抑制し、諸特性の安定した焼結体を得ることができる。部分安定化ジルコニアの種類については、必ずしも限定されるものではないが、工業的に安価に入手することが容易な、Y添加ジルコニアが好ましい。Yの添加量としては、0.1~10mol%であることが好ましい。 As the high refractive index ceramic powder, it is particularly preferable to use zirconia powder. By using zirconia powder, it is possible to suppress a decrease in reflectance due to absorption of light near 400 nm, for example, when titania powder is used. Further, the zirconia powder may be composed of unstabilized zirconia, but is preferably a powder composed of partially stabilized zirconia partially stabilized by the addition of Y 2 O 3 , CaO, or MgO. By using partially stabilized zirconia, for example, a phase transition under high temperature can be suppressed, and a sintered body having various characteristics can be obtained. The kind of the partially stabilized zirconia is not necessarily limited, but Y 2 O 3 -added zirconia that can be easily obtained industrially at low cost is preferable. The amount of Y 2 O 3 added is preferably 0.1 to 10 mol%.
 このような高屈折率セラミックス粉末の50%粒径であるD50は0.05~5μmであることが好ましい。D50が0.05μm未満では、光の波長(本発明では460nm)よりも粉体の大きさが小さくなりすぎるため、十分な反射率を得ることが困難になる。D50はより好ましくは0.1μm以上、さらに好ましくは0.15μm以上である。また、D50が5μmを超えると、光の波長よりも粉体が大きくなりすぎるために十分な反射率を得ることが困難になる。より好ましくは、3μm以下であり、さらに好ましくは1.5μm以下である。 The D 50, which is the 50% particle size of such a high refractive index ceramic powder, is preferably 0.05 to 5 μm. It is less than D 50 of 0.05 .mu.m, since the size of the powder than the wavelength of light (460 nm in the present invention) is too small, it becomes difficult to obtain a sufficient reflectance. D 50 is more preferably 0.1 μm or more, and still more preferably 0.15 μm or more. Further, when D 50 is more than 5 [mu] m, it becomes difficult to obtain a sufficient reflectance for the powder than the wavelength of light becomes too large. More preferably, it is 3 micrometers or less, More preferably, it is 1.5 micrometers or less.
 工業的に入手可能な高屈折率セラミックス粉末の中には、非常に小さい(例えばD50が0.05μm以下)1次粒子が凝集することで比較的大きな(例えばD50が0.05μm~5μm程度)2次粒子を形成しているものもあるが、そのような場合、所望の反射率を達成するために重要なのは1次粒子径ではなく2次粒子径である。すなわち、高屈折率セラミックス粉末が2次粒子(すなわち、凝集粒子)からなる場合には、所望の反射率を達成するためには、2次粒子のD50が0.05~5μmであることが好ましい。より高い反射率を得る観点から、2次粒子のD50は、より好ましくは0.1μm以上、さらに好ましくは0.15μm以上である。また、2次粒子のD50が5μmを超えると十分な反射率を得ることが困難になる。高い反射率を得る観点から、2次粒子のD50は、より好ましくは3μm以下であり、さらに好ましくは1.5μm以下である。なお、上記2次粒子のD50も、凝集していない1次粒子のD50と同様にレーザ回折散乱法で測定した値である。 Some industrially available high refractive index ceramic powders are relatively large (eg, D 50 is 0.05 μm to 5 μm) due to aggregation of very small primary particles (eg, D 50 of 0.05 μm or less). In some cases, secondary particles are formed, but in such a case, what is important for achieving the desired reflectance is not the primary particle size but the secondary particle size. That is, when the high refractive index ceramic powder is composed of secondary particles (that is, aggregated particles), in order to achieve a desired reflectance, the D 50 of the secondary particles is 0.05 to 5 μm. preferable. From the viewpoint of obtaining a higher reflectance, the D 50 of the secondary particles is more preferably 0.1 μm or more, and further preferably 0.15 μm or more. On the other hand, if the D 50 of the secondary particles exceeds 5 μm, it is difficult to obtain a sufficient reflectance. From the viewpoint of obtaining a high reflectance, the D 50 of the secondary particles is more preferably 3 μm or less, and even more preferably 1.5 μm or less. The D 50 of the secondary particles is also a value measured by a laser diffraction scattering method in the same manner as the D 50 of the non-aggregated primary particles.
 発光素子用基板1は、基板本体2の搭載面21の中央の略円形状部分を底面(以下、「キャビティ底面」という)とするキャビティを構成するように基板本体搭載面21の周縁部に枠体3を有する。枠体3を構成する材料は、特に限定されないが、基板本体2を構成する材料と同じものを使用することが好ましい。また、キャビティ底面の略中央部に発光素子の搭載部22が位置する。 The light emitting element substrate 1 has a frame on the peripheral edge of the substrate body mounting surface 21 so as to form a cavity having a substantially circular portion at the center of the mounting surface 21 of the substrate body 2 as a bottom surface (hereinafter referred to as “cavity bottom surface”). It has a body 3. Although the material which comprises the frame 3 is not specifically limited, It is preferable to use the same material as the substrate body 2. In addition, the light emitting element mounting portion 22 is positioned substantially at the center of the cavity bottom surface.
 発光素子用基板1には、基板本体2の搭載面21上に、搭載される発光素子が有する一対の電極とそれぞれ電気的に接続される素子接続端子4が、この発光素子搭載部22を挟んでその外側に対向するようにして一対設けられている。 In the light emitting element substrate 1, element connection terminals 4 electrically connected to a pair of electrodes of the light emitting element to be mounted on the mounting surface 21 of the substrate body 2 sandwich the light emitting element mounting portion 22. A pair is provided so as to face the outside.
 基板本体2の非搭載面23には、発光装置とした際に、基板本体2が非搭載面23を介して搭載される、外部電気回路基板が有する配線回路と半田層により電気的に接続される一対の外部接続端子5が設けられる。また、基板本体2の内部に、上記素子接続端子4と外部接続端子5とを電気的に接続する貫通導体6が一対設けられている。素子接続端子4、外部接続端子5および貫通導体6については、これらが発光素子→素子接続端子4→貫通導体6→外部接続端子5→半田層→配線回路との経路により電気的に接続される限りは、その配設される位置や形状は図1に示されるものに限定されず、適宜調整可能である。 When the light emitting device is used, the non-mounting surface 23 of the substrate body 2 is electrically connected by a solder layer to a wiring circuit included in the external electric circuit substrate on which the substrate body 2 is mounted via the non-mounting surface 23. A pair of external connection terminals 5 are provided. In addition, a pair of through conductors 6 for electrically connecting the element connection terminals 4 and the external connection terminals 5 are provided inside the substrate body 2. The element connection terminal 4, the external connection terminal 5, and the through conductor 6 are electrically connected by a route of the light emitting element → the element connection terminal 4 → the through conductor 6 → the external connection terminal 5 → the solder layer → the wiring circuit. As long as the position and the shape are arranged are not limited to those shown in FIG. 1 and can be adjusted as appropriate.
 これら素子接続端子4、外部接続端子5および貫通導体6、すなわち配線導体の構成材料は、通常、発光素子用基板に用いられる配線導体と同様の構成材料であれば特に制限なく使用できる。これら配線導体の構成材料として、具体的には、銅、銀、金等を主成分とする金属材料を挙げることができる。このような金属材料のなかでも、銀、銀と白金、または銀とパラジウムからなる金属材料が好ましく用いられる。 These component connection terminals 4, the external connection terminals 5, and the through conductors 6, that is, the constituent materials of the wiring conductors can be used without particular limitation as long as they are the same constituent materials as the wiring conductors used for the light emitting element substrate. Specific examples of the constituent material of these wiring conductors include metal materials mainly composed of copper, silver, gold and the like. Among such metal materials, a metal material composed of silver, silver and platinum, or silver and palladium is preferably used.
 素子接続端子4および外部接続端子5の膜厚は、これらの形成に通常用いられる金属粒子を分散させた金属ペーストの構成粒子のサイズが数ミクロンあり、焼結して充分に被覆させることができるようにする観点から、5~20μmであることが好ましく、7~15μmであることがより好ましい。また、外部接続端子5においては、前記した金属材料からなる金属導体層上に、好ましくは厚さ5~20μmの金属導体層上に、この層を酸化や硫化から保護しかつ導電性を有する導電性保護層7aが形成されていることが好ましい。導電性保護層7aとしては上記金属導体層を保護する機能を有する導電性材料で構成されていれば、特に制限されないが、ニッケルメッキ層、クロムメッキ層等が好ましい。導電性保護層7aの膜厚は、2~20μmであることが好ましく、3~15μmがより好ましい。 The film thickness of the element connection terminal 4 and the external connection terminal 5 is such that the size of the constituent particles of the metal paste in which metal particles usually used for forming these are dispersed is several microns, and can be sufficiently covered by sintering. From the viewpoint of achieving the above, the thickness is preferably 5 to 20 μm, more preferably 7 to 15 μm. Further, in the external connection terminal 5, on the metal conductor layer made of the above-mentioned metal material, preferably on the metal conductor layer having a thickness of 5 to 20 μm, this layer is protected from oxidation and sulfidation and has conductivity. The protective layer 7a is preferably formed. The conductive protective layer 7a is not particularly limited as long as it is made of a conductive material having a function of protecting the metal conductor layer, but a nickel plated layer, a chrome plated layer, or the like is preferable. The thickness of the conductive protective layer 7a is preferably 2 to 20 μm, and more preferably 3 to 15 μm.
 また、同様に素子接続端子4上には、導電性保護層(図示せず)として、後述する発光素子の電極との接続に用いるボンディングワイヤとの良好な接合が得られる点から、金メッキ層が形成されていることが好ましく、ニッケルメッキ層の上に金メッキを施したニッケル/金メッキ層が形成されていることがより好ましい。導電性保護層の膜厚としては、ニッケルメッキ層が2~20μm、金メッキ層が0.1~1.0μmであることが好ましい。 Similarly, a gold plating layer is formed on the element connection terminal 4 from the viewpoint that a good bonding with a bonding wire used for connection with an electrode of a light emitting element to be described later can be obtained as a conductive protective layer (not shown). Preferably, it is formed, and it is more preferable that a nickel / gold plating layer formed by gold plating is formed on the nickel plating layer. The thickness of the conductive protective layer is preferably 2 to 20 μm for the nickel plating layer and 0.1 to 1.0 μm for the gold plating layer.
 また発光素子用基板1は、基板本体2の内部に埋設された、熱抵抗を低減するためのサーマルビア8を有することが好ましい。サーマルビア8は、例えば、図1に示すように、発光素子搭載部22より小さい柱状のものであり、発光素子搭載部22の直下に複数設けられている。本例において、サーマルビア8は、搭載面21に達しないように、非搭載面23から搭載面21の近傍にかけて設けられている。サーマルビアをこのような構成とすることで、搭載面21、特に発光素子搭載部22の平坦度を向上させることができ、熱抵抗を低減し、また発光素子を搭載したときの傾きも抑制することができる。
 また、図示しないが、サーマルビア8が搭載面21まで達するように、基板本体2の非搭載面23から搭載面21まで貫通するように形成してもよい。この場合、サーマルビア8は発光素子搭載部22の直下ではなく、発光素子11の端から1.0mm以下までの距離の領域内に、サーマルビア8の一部が入るようにする。発光素子11の端から距離が1.0mm超の場合、発光素子11が発する熱を良好にサーマルビア8に伝えることが難しくなる。好ましくは、0.5mm以下であり、さらに好ましくは0.2mm以下である。基板本体2を貫通させたサーマルビアの場合には、上記したように搭載部22の平坦性の観点から、サーマルビア8の一部は発光素子搭載部22に入らないようにすることが好ましい。
The light emitting element substrate 1 preferably has a thermal via 8 embedded in the substrate body 2 for reducing thermal resistance. For example, as shown in FIG. 1, the thermal via 8 has a columnar shape smaller than the light emitting element mounting portion 22, and a plurality of thermal vias 8 are provided immediately below the light emitting element mounting portion 22. In this example, the thermal via 8 is provided from the non-mounting surface 23 to the vicinity of the mounting surface 21 so as not to reach the mounting surface 21. By adopting such a thermal via structure, the flatness of the mounting surface 21, particularly the light emitting element mounting portion 22, can be improved, the thermal resistance is reduced, and the inclination when the light emitting element is mounted is also suppressed. be able to.
Although not shown, the thermal via 8 may be formed so as to penetrate from the non-mounting surface 23 of the substrate body 2 to the mounting surface 21 so as to reach the mounting surface 21. In this case, the thermal via 8 is not directly under the light emitting element mounting portion 22 but a part of the thermal via 8 is placed in a region having a distance of 1.0 mm or less from the end of the light emitting element 11. When the distance from the end of the light emitting element 11 exceeds 1.0 mm, it becomes difficult to transfer the heat generated by the light emitting element 11 to the thermal via 8 well. Preferably, it is 0.5 mm or less, More preferably, it is 0.2 mm or less. In the case of the thermal via penetrating the substrate body 2, it is preferable that a part of the thermal via 8 does not enter the light emitting element mounting portion 22 from the viewpoint of the flatness of the mounting portion 22 as described above.
 なお、本発明の発光素子用基板1において任意に設けられるサーマルビア8は、発光素子搭載部の平坦性を維持しながら熱抵抗を低減するように配設される限りは、その配設される位置や形状、大きさ、個数等は図1に示されるものに限定されず、適宜調整可能である。また、発光素子用基板1はサーマルビア8からさらに金属を主体とする高放熱性の外部電気回路基板へと熱を伝導するために、サーマルビア8に接続するように基板本体2の非搭載面23に、外部放熱層9が設けられている。
 後述の図2に示すように発光素子用基板1が外部電気回路基板に実装される際に、外部放熱層9は、上記外部接続端子5が半田層33aを介して配線回路34に接合されるのと同様に、半田層33bを介して外部電気回路基板の半田接続用パッド36に接合され、これによりサーマルビア8から外部電気回路基板の金属部分(すなわち、ヒートシンク)への放熱経路が確保される。
The thermal via 8 that is arbitrarily provided in the light emitting element substrate 1 of the present invention is disposed as long as it is disposed so as to reduce the thermal resistance while maintaining the flatness of the light emitting element mounting portion. The position, shape, size, number, and the like are not limited to those shown in FIG. 1 and can be adjusted as appropriate. Further, the substrate 1 for light-emitting element 1 is not mounted on the substrate body 2 so as to be connected to the thermal via 8 in order to conduct heat from the thermal via 8 to an external electric circuit board mainly made of metal and having high heat dissipation. 23, an external heat radiation layer 9 is provided.
As shown in FIG. 2 described later, when the light emitting element substrate 1 is mounted on the external electric circuit board, the external heat dissipation layer 9 is joined to the wiring circuit 34 via the external connection terminal 5 via the solder layer 33a. In the same manner as described above, it is joined to the solder connection pad 36 of the external electric circuit board through the solder layer 33b, thereby securing a heat radiation path from the thermal via 8 to the metal portion (ie, heat sink) of the external electric circuit board. The
 上記サーマルビア8および外部放熱層9を構成する材料としては、放熱性を有する材料であれば特に制限されないが、銀を含む金属材料、具体的には、銀、銀と白金、または銀とパラジウムからなる金属材料が好ましく用いられる。銀と白金、または銀とパラジウムからなる金属材料として、具体的には、金属材料全量に対する白金またはパラジウムの割合が5質量%以下の金属材料が挙げられる。外部放熱層9の膜厚については、上記外部接続端子5の膜厚と同様とすることができる。また、外部放熱層9上には、この層を酸化や硫化から保護し、かつ熱伝導性を有する導電性保護層7bが形成されていることが好ましい。導電性保護層7bは、外部接続端子5上に設けられる導電性保護層7aと同様の構成とすることができる。 The material constituting the thermal via 8 and the external heat dissipation layer 9 is not particularly limited as long as it is a material having heat dissipation properties, but a metal material containing silver, specifically, silver, silver and platinum, or silver and palladium. The metal material consisting of is preferably used. Specific examples of the metal material composed of silver and platinum or silver and palladium include a metal material in which the ratio of platinum or palladium to the total amount of the metal material is 5% by mass or less. The film thickness of the external heat dissipation layer 9 can be the same as the film thickness of the external connection terminal 5. Further, it is preferable that a conductive protective layer 7b that protects this layer from oxidation and sulfurization and has thermal conductivity is formed on the external heat radiation layer 9. The conductive protective layer 7 b can have the same configuration as the conductive protective layer 7 a provided on the external connection terminal 5.
 また、発光素子搭載部22には、図示されていないが表面粗さRaが0.4μm以下のガラス膜を設けることが好ましい。一般的なLTCC基板の表面粗さRaが1.0μm程度であることから、このようなガラス膜を発光素子搭載部22に設けることで、より平坦度を向上させることができる。なお、一般に基板本体2に比べてガラス膜の反射率は低くなることから、ガラス膜は発光素子搭載部22のみに設け、それ以外の部分には設けないことが好ましい。また表面粗さRaは算術平均粗さRaのことであり、算術平均粗さRaの値は、JIS:B0601(1994年)の3「定義された算術平均粗さの定義及び表示」によって表されるものである。 Further, although not shown, the light emitting element mounting portion 22 is preferably provided with a glass film having a surface roughness Ra of 0.4 μm or less. Since the surface roughness Ra of a general LTCC substrate is about 1.0 μm, the flatness can be further improved by providing such a glass film on the light emitting element mounting portion 22. Since the reflectance of the glass film is generally lower than that of the substrate body 2, it is preferable to provide the glass film only on the light emitting element mounting portion 22 and not on the other portions. The surface roughness Ra is an arithmetic average roughness Ra, and the value of the arithmetic average roughness Ra is represented by 3 “Definition and display of defined arithmetic average roughness” of JIS: B0601 (1994). Is.
 以上、本発明の発光素子用基板の一例について説明したが、次に、上に説明した発光素子用基板1を用いた本発明の発光装置10の一例を図2に基づいて説明する。
 図2は、図1に示す発光素子用基板1を用いた本発明の発光装置10の一例を示す平面図(a)、平面図(a)におけるX-X線断面図(b)である。
The example of the light emitting element substrate of the present invention has been described above. Next, an example of the light emitting device 10 of the present invention using the light emitting element substrate 1 described above will be described with reference to FIG.
FIG. 2 is a plan view (a) showing an example of the light emitting device 10 of the present invention using the light emitting element substrate 1 shown in FIG. 1, and a cross-sectional view along line XX in the plan view (a).
 上記発光素子用基板1を用いて、本例における発光装置10を作製する際には、基板本体2の搭載面21上に形成されたキャビティ底面の略中央部に位置する発光素子搭載部22に、図2に示すように発光ダイオード素子等の発光素子11が、シリコーンダイボンド剤やメタルボンド剤等のダイボンド剤によって固定、搭載される。発光装置10においては、発光素子11が有する一対の電極(図示せず)は、その外側に位置する素子接続端子4とそれぞれボンディングワイヤ12を介して電気的に接続されている。また、発光素子11やボンディングワイヤ12を覆うようにキャビティを充填する形に封止層13が設けられている。 When the light emitting device 10 in the present example is manufactured using the light emitting element substrate 1, the light emitting element mounting portion 22 located on the substantially central portion of the bottom surface of the cavity formed on the mounting surface 21 of the substrate body 2 is used. As shown in FIG. 2, a light emitting element 11 such as a light emitting diode element is fixed and mounted by a die bond agent such as a silicone die bond agent or a metal bond agent. In the light emitting device 10, a pair of electrodes (not shown) included in the light emitting element 11 are electrically connected to the element connection terminals 4 located on the outside via bonding wires 12. Further, a sealing layer 13 is provided so as to fill the cavity so as to cover the light emitting element 11 and the bonding wire 12.
 発光装置10は、このようにして発光素子11が搭載された発光素子用基板1がさらに金属を主体とする外部電気回路基板31上に実装された構成を有する。外部電気回路基板31は、少なくとも、実装される発光素子用基板1の基板本体2が非搭載面23に有する一対の外部接続端子5に対向する部分に配線回路34を有し、この配線回路34と、該一対の外部接続端子5とがその表面に形成された導電性保護層7a上で半田層33aを介して接着固定され、電気的に接続されることで、実装されている。 The light emitting device 10 has a configuration in which the light emitting element substrate 1 on which the light emitting element 11 is mounted is further mounted on an external electric circuit board 31 mainly made of metal. The external electric circuit board 31 has a wiring circuit 34 at least at a portion facing the pair of external connection terminals 5 provided on the non-mounting surface 23 of the substrate body 2 of the light emitting element substrate 1 to be mounted. The pair of external connection terminals 5 are mounted on the conductive protective layer 7a formed on the surface thereof by being adhesively fixed via a solder layer 33a and electrically connected thereto.
 ここで、図2に示される外部電気回路基板31は、全表面に絶縁層35を有する金属板32と、前記絶縁層35上に配設された電気配線用の配線回路34およびこの配線回路34と電気的に絶縁するように形成された放熱用の半田接続用パッド36を有するメタルコア基板である。外部電気回路基板31は、配線回路34および半田接続用パッド36を有する面の、実装される発光素子用基板1の基板本体2が非搭載面23に有するサーマルビア8に接続する外部放熱層9、実質的にはその表面に形成された導電性保護層7bと絶縁層35上に配設された半田接続用パッド36が半田層33bを介して接着固定されている。 Here, the external electric circuit board 31 shown in FIG. 2 includes a metal plate 32 having an insulating layer 35 on the entire surface, a wiring circuit 34 for electric wiring disposed on the insulating layer 35, and the wiring circuit 34. This is a metal core substrate having a solder connection pad 36 for heat dissipation formed so as to be electrically insulated. The external electric circuit board 31 has an external heat radiation layer 9 connected to the thermal via 8 provided on the non-mounting surface 23 of the substrate body 2 of the light emitting element substrate 1 to be mounted on the surface having the wiring circuit 34 and the solder connection pads 36. Substantially, the conductive protective layer 7b formed on the surface and the solder connection pad 36 disposed on the insulating layer 35 are bonded and fixed via the solder layer 33b.
 このように、発光素子11が搭載された発光素子用基板1と外部電気回路基板31は、電気的には、発光素子11の電極→ボンディングワイヤ12→素子接続端子4→貫通導体6→外部接続端子5(導電性保護層7a)→半田層33a→配線回路34の経路となるように接続される。一方、熱の経路としてはサーマルビア8→外部放熱層9(導電性保護層7b)→半田層33b→半田接続用パッド36→絶縁層35→金属板32へと伝導するように接続される。 As described above, the light emitting element substrate 1 on which the light emitting element 11 is mounted and the external electric circuit board 31 are electrically connected to the electrode of the light emitting element 11 → the bonding wire 12 → the element connection terminal 4 → the through conductor 6 → the external connection. The terminal 5 (conductive protective layer 7a), the solder layer 33a, and the wiring circuit 34 are connected to form a path. On the other hand, the heat path is connected so as to conduct from the thermal via 8 → the external heat radiation layer 9 (conductive protection layer 7 b) → the solder layer 33 b → the solder connection pad 36 → the insulating layer 35 → the metal plate 32.
 ここで、本発明の発光装置に用いる金属を主体とする外部電気回路基板として、具体的には、図2の外部電気回路基板31に模式的に示されるような、表面に絶縁層を有する金属板と、上記絶縁層上に配設された配線回路を有するメタルコア基板や、上面に絶縁層を有する金属板の絶縁層上に配線回路が配設された構成のメタルベース基板等が挙げられる。 Here, as the external electric circuit board mainly composed of metal used in the light emitting device of the present invention, specifically, a metal having an insulating layer on the surface as schematically shown in the external electric circuit board 31 of FIG. Examples thereof include a metal core substrate having a plate and a wiring circuit disposed on the insulating layer, and a metal base substrate having a structure in which a wiring circuit is disposed on an insulating layer of a metal plate having an insulating layer on the upper surface.
 図2に示すように発光素子11の発熱は、サーマルビア8→外部放熱層9(導電性保護層7b)→半田層33b→半田接続用パッド36を介して絶縁層35から、メタルコア基板における金属板32に伝えられ、放熱される。すなわち金属板32はヒートシンクとして作用する。 As shown in FIG. 2, the heat generated by the light emitting element 11 is generated from the insulating layer 35 via the thermal via 8 → the external heat dissipation layer 9 (conductive protection layer 7 b) → the solder layer 33 b → the solder connection pad 36, and the metal on the metal core substrate. It is transmitted to the plate 32 and radiated. That is, the metal plate 32 acts as a heat sink.
 金属板32を構成する材料としては、ヒートシンク材料として通常用いられる、高放熱性の金属材料が特に制限なく使用可能である。具体的には、タングステン、モリブデン、銅、アルミニウムおよびこれらの2種以上からなる合金からなる群から選ばれる少なくとも1種の金属材料が挙げられる。このような、金属材料の50~200℃における熱膨張係数は、例えば、モリブデン(Mo)で5.1ppm/℃、タングステン(W)で4.5ppm/℃、タングステンと銅(Cu)の質量比89:11の合金(89W-11Cu)で6.5ppm/℃、同様に85:15の合金(85W-15Cu)で7.2ppm/℃、80:20の合金(80W-20Cu)で8.3ppm/℃、等である。また、モリブデンと銅の質量比85:15の合金(85Mo-15Cu)で7.0ppm/℃、同様に70:30の合金(70Mo-30Cu)でx7.0-y8.3ppm/℃、65:35の合金(65Mo-35Cu)でx7.2-y9.3ppm/℃、等である。上記のxおよびyの付された熱膨張係数は、異方性の熱膨張を示し、xはx方向、yは方向の熱膨張係数をそれぞれ示す。また、銅(Cu)で、17ppm/℃、アルミニウム(Al)で、23ppm/℃である。 As the material constituting the metal plate 32, a metal material with high heat dissipation, which is usually used as a heat sink material, can be used without any particular limitation. Specific examples include at least one metal material selected from the group consisting of tungsten, molybdenum, copper, aluminum, and an alloy made of two or more of these. The coefficient of thermal expansion of such a metal material at 50 to 200 ° C. is, for example, 5.1 ppm / ° C. for molybdenum (Mo), 4.5 ppm / ° C. for tungsten (W), and the mass ratio of tungsten and copper (Cu). 6.5 ppm / ° C for 89:11 alloy (89W-11Cu), 7.2 ppm / ° C for 85:15 alloy (85W-15Cu), 8.3 ppm for 80:20 alloy (80W-20Cu) / ° C. Moreover, 7.0 ppm / ° C. for an alloy of 85:15 mass ratio of molybdenum and copper (85Mo-15Cu), x7.0-y8.3 ppm / ° C. for an alloy of 70:30 (70Mo-30Cu), 65: 35 alloy (65Mo-35Cu), such as x7.2-y9.3 ppm / ° C. The above-mentioned thermal expansion coefficients with x and y indicate anisotropic thermal expansion, where x indicates the x direction and y indicates the thermal expansion coefficient in the direction. Moreover, it is 17 ppm / ° C. for copper (Cu) and 23 ppm / ° C. for aluminum (Al).
 上記本発明に用いるLTCCの熱膨張係数と比べて金属材料は熱膨張係数が大きい傾向である。本発明の発光装置においては、この熱膨張係数の差が大きくても、LTCCのヤング率が小さいために、半田層33a、33bに発生する残留応力歪みを低減でき、結果として剥離等の不具合の発生を抑制可能としている。もちろん、熱膨張係数の差は小さい方が、残留応力歪みの低減には有効である。しかしながら、LTCC材料に実装する半導体チップの熱膨張係数は3~6ppm/℃であり、チップとLTCC材料の熱膨張マッチングを考慮して、本発明においては、LTCCの熱膨張係数として2~8ppm/℃を選択した。これを基準に考慮すると、ヒートシンク材料も10ppm/℃を下回る熱膨張係数のものを使用することが理想的である。しかし、10ppm/℃を超える熱膨張係数をもつ場合であっても、LTCC材料のヤング率が小さければ、半田層33a、33bに発生する残留応力歪みは低減でき、問題はない。 The metal material tends to have a larger thermal expansion coefficient than that of the LTCC used in the present invention. In the light emitting device of the present invention, even if the difference in thermal expansion coefficient is large, the LTCC has a small Young's modulus, so that the residual stress distortion generated in the solder layers 33a and 33b can be reduced, resulting in problems such as peeling. Occurrence can be suppressed. Of course, a smaller difference in thermal expansion coefficient is effective in reducing residual stress strain. However, the thermal expansion coefficient of the semiconductor chip mounted on the LTCC material is 3 to 6 ppm / ° C. Considering the thermal expansion matching between the chip and the LTCC material, in the present invention, the thermal expansion coefficient of LTCC is 2 to 8 ppm / C was selected. Considering this as a reference, it is ideal to use a heat sink material having a thermal expansion coefficient lower than 10 ppm / ° C. However, even when the thermal expansion coefficient exceeds 10 ppm / ° C., if the LTCC material has a small Young's modulus, the residual stress distortion generated in the solder layers 33a and 33b can be reduced, and there is no problem.
 このような本発明の発光装置における高放熱性の外部電気回路基板としては、市販品が使用可能である。市販品としては、例えば、メタルコア基板として、日本理化工業所製の高熱伝導金属ベース銅積層板NRAシリーズ等が挙げられる。 A commercially available product can be used as the high heat dissipation external electric circuit board in the light emitting device of the present invention. Examples of commercially available products include, as a metal core substrate, a high thermal conductive metal-based copper laminate NRA series manufactured by Nippon Rika Kogyo.
 半田層33a、33bを構成する半田材料としては、通常、LTCC材料からなる基板を外部電気回路基板に固定するために用いる半田材料が特に制限なく利用可能である。好ましくは、リフロー方式で使用される半田材料である。具体的には、錫・銀合金、錫・銅合金、錫・銀・銅合金等からなる半田材料等が挙げられる。外部接続端子5/導電性保護層7aと配線回路34を接続する半田層33aの膜厚は、十分な接合を確保しつつ接合強度および、形成のしやすさの観点から10~50μmが好ましく、20~40μmがより好ましい。外部放熱層9/導電性保護層7bと半田接続用パッド36を接続する半田層33bの膜厚は、半田層33aと同等の10~50μmが好ましく、20~40μmがより好ましい。 As a solder material constituting the solder layers 33a and 33b, a solder material used for fixing a substrate made of an LTCC material to an external electric circuit substrate can be used without particular limitation. Preferably, it is a solder material used in a reflow method. Specific examples include solder materials made of tin / silver alloy, tin / copper alloy, tin / silver / copper alloy, and the like. The thickness of the solder layer 33a that connects the external connection terminal 5 / conductive protection layer 7a and the wiring circuit 34 is preferably 10 to 50 μm from the viewpoint of bonding strength and ease of formation while ensuring sufficient bonding. 20-40 μm is more preferable. The film thickness of the solder layer 33b that connects the external heat radiation layer 9 / conductive protection layer 7b and the solder connection pad 36 is preferably 10 to 50 μm, more preferably 20 to 40 μm, equivalent to the solder layer 33a.
 ここで、本発明の発光素子用基板・発光装置の一例として上に説明した図1に示す発光素子用基板1および図2に示す発光装置10は、例えば、以下に説明する製造方法により製造できる。なお、その製造に用いる部材、形成材料層等については、完成品の部材と同一の符号を付して説明するものである。例えば、素子接続用端子と素子接続端子導体ペースト層とは、同じ4の符号をもって表記し、他も同様とする。 Here, the light emitting element substrate 1 shown in FIG. 1 and the light emitting device 10 shown in FIG. 2 described above as an example of the light emitting element substrate / light emitting device of the present invention can be manufactured by, for example, a manufacturing method described below. . In addition, about the member used for the manufacture, a formation material layer, etc., the code | symbol same as the member of a finished product is attached | subjected and demonstrated. For example, the element connection terminal and the element connection terminal conductor paste layer are denoted by the same reference numeral 4, and the others are the same.
(1)グリーンシートの作製
 まず、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物(例えば、LTCC用組成物)を用いて発光素子用基板の本体基板2を構成する、基板本体用グリーンシートとして、2枚の略平板状の基板本体用グリーンシート2a、2bを作製する。基板本体用グリーンシート2aは、非搭載面23を有し、サーマルビアが形成される基板本体2の下部を構成する。基板本体用グリーンシート2bは、その一部が発光素子の搭載される発光素子搭載部22となる搭載面21を有する基板本体2の上部を構成する。
 また、枠体3を構成する枠体用グリーンシート3を作製する。枠体用グリーンシート3は、上記基板本体用グリーンシートと同じサイズの略平板状のグリーンシートから、キャビティとなる部分を、通常の方法で上面側から裏面側に至るように円柱状にくり抜くことで作製される。
(1) Production of Green Sheet First, as a green sheet for a substrate main body that constitutes the main body substrate 2 of the light emitting element substrate using a glass ceramic composition (for example, a composition for LTCC) containing glass powder and ceramic powder. Two substantially flat board body green sheets 2a and 2b are produced. The substrate main body green sheet 2a has a non-mounting surface 23 and constitutes a lower portion of the substrate main body 2 where thermal vias are formed. The substrate main body green sheet 2b constitutes an upper portion of the substrate main body 2 having a mounting surface 21 that becomes a light emitting element mounting portion 22 on which a light emitting element is mounted.
Also, the frame green sheet 3 constituting the frame 3 is produced. The frame green sheet 3 is formed by hollowing out a portion that becomes a cavity from a substantially flat green sheet of the same size as the substrate body green sheet in a column shape from the upper surface side to the back surface side by a normal method. It is made with.
 基板本体用グリーンシート2a、2bおよび枠体用グリーンシート3は、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物にバインダー樹脂、必要に応じて可塑剤、分散剤、溶剤等を添加して調製されたスラリーをドクターブレード法等により所定の形状のシート状に成形し、乾燥させることで製造できる。 The substrate green sheets 2a and 2b and the frame green sheet 3 are prepared by adding a binder resin and, if necessary, a plasticizer, a dispersant, a solvent, etc. to a glass ceramic composition containing glass powder and ceramic powder. The produced slurry can be produced by forming into a predetermined shape sheet by the doctor blade method or the like and drying it.
 ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物については上記の通りである。バインダー樹脂としては、例えばポリビニルブチラール、アクリル樹脂等を好適に用いることができる。可塑剤としては、例えばフタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル、フタル酸ジ-2-エチルヘキシル等を用いることができる。また、溶剤としては、トルエン、キシレン、2-プロパノール、2-ブタノール等の有機溶剤を好適に用いることができる。 The glass ceramic composition containing glass powder and ceramic powder is as described above. As the binder resin, for example, polyvinyl butyral, acrylic resin, or the like can be suitably used. As the plasticizer, for example, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate, di-2-ethylhexyl phthalate and the like can be used. As the solvent, organic solvents such as toluene, xylene, 2-propanol, 2-butanol and the like can be preferably used.
(2)配線導体ペースト層および放熱用金属ペースト層の形成
 上記で得られた基板本体用グリーンシート2a、2bの所定の位置2箇所に、これらが積層されたときに搭載面21から非搭載面23に貫通するように形成される貫通導体6形成用の貫通孔を所定の大きさ形状に通常の方法で形成する。また、基板本体用グリーンシート2aには、発光素子搭載部22の直下にサーマルビア8形成用の複数の柱状の貫通孔を所定の大きさ、形状に通常の方法で形成する。
(2) Formation of wiring conductor paste layer and heat dissipating metal paste layer When these are laminated at two predetermined positions of the substrate body green sheets 2a, 2b obtained above, the mounting surface 21 is not mounted. A through-hole for forming a through conductor 6 formed so as to penetrate through 23 is formed into a predetermined size and shape by a normal method. In addition, a plurality of columnar through holes for forming the thermal via 8 are formed in a predetermined size and shape in the normal manner in the green sheet 2a for the substrate body directly under the light emitting element mounting portion 22.
 次いで、上記で得られた基板本体用グリーンシート2a、2bの2箇所の貫通導体6形成用の貫通孔に貫通導体用ペースト層6を形成する。また、基板本体用グリーンシート2bには、貫通導体用ペースト層6と接続するように、搭載面21上の2箇所に素子接続端子用ペースト層4を、基板本体用グリーンシート2aには、非搭載面23に外部接続端子用導体ペースト層5を、それぞれ所定の大きさ、形状で形成する。
 これらは、搭載される発光素子の電極が、素子接続端子用ペースト層4、貫通導体用ペースト層6および外部接続端子用導体ペースト層5から半田層を介して、外部電気回路基板が有する配線回路と電気的に接続されるように形成される。
Next, the through-conductor paste layer 6 is formed in the through-holes for forming the through-conductors 6 at the two locations of the substrate body green sheets 2a and 2b obtained as described above. Further, the substrate body green sheet 2b is provided with the element connection terminal paste layer 4 at two locations on the mounting surface 21 so as to be connected to the through conductor paste layer 6, and the substrate body green sheet 2a is non-coated. The external connection terminal conductor paste layer 5 is formed on the mounting surface 23 in a predetermined size and shape, respectively.
These are the wiring circuits that the electrode of the light-emitting element to be mounted has on the external electric circuit board through the solder layer from the element connection terminal paste layer 4, the through conductor paste layer 6 and the external connection terminal conductor paste layer 5. It is formed so as to be electrically connected to.
 素子接続端子用ペースト層4、外部接続端子用導体ペースト層5、および貫通導体用ペースト層6の形成方法としては、スクリーン印刷法により導体ペーストを塗布、充填する方法が挙げられる。形成される素子接続端子用ペースト層4および外部接続端子用導体ペースト層5の膜厚は、最終的に得られる素子接続端子および外部接続端子の膜厚が所定の膜厚となるように調整される。 As a method for forming the element connection terminal paste layer 4, the external connection terminal conductor paste layer 5, and the through conductor paste layer 6, there is a method of applying and filling the conductor paste by a screen printing method. The film thicknesses of the element connection terminal paste layer 4 and the external connection terminal conductor paste layer 5 to be formed are adjusted so that the finally obtained element connection terminals and external connection terminals have a predetermined film thickness. The
 配線導体ペーストとしては、例えば銅、銀、または金等を主成分とする金属粉末に、エチルセルロース等のビヒクル、必要に応じて溶剤等を添加してペースト状としたものを用いることができる。なお、上記金属粉末としては、銀からなる金属粉末、銀と白金からなる金属粉末、または銀とパラジウムからなる金属粉末が好ましく用いられる。 As the wiring conductor paste, for example, a paste obtained by adding a vehicle such as ethyl cellulose to a metal powder mainly composed of copper, silver, gold or the like, and a solvent or the like as necessary can be used. As the metal powder, a metal powder composed of silver, a metal powder composed of silver and platinum, or a metal powder composed of silver and palladium is preferably used.
 また、上記で作製した基板本体用グリーンシート2aのサーマルビア8の形成用の複数の柱状の貫通孔にサーマルビア用ペースト層8を、またこのサーマルビア用ペースト層8と接続するように、非搭載面23に外部放熱層用導体ペースト層9を、それぞれ所定の大きさ、形状で形成する。サーマルビア用ペースト層8および外部放熱層用導体ペースト層9の形成方法としては、上記と同様にスクリーン印刷法により導体ペーストを塗布、または充填する方法が挙げられる。形成される外部放熱層用導体ペースト層9の膜厚は、最終的に得られる素子接続端子および外部接続端子の膜厚が所定の膜厚となるように調整される。用いる導体ペーストとしてはサーマルビア8、外部放熱層9を構成する放熱性材料、好ましくは、銀を含む金属材料を含有するペーストである。このような材料としては、上記の通り、銀、銀パラジウム混合物、銀白金混合物等が挙げられる。 Further, the thermal via paste layer 8 is connected to the plurality of columnar through-holes for forming the thermal via 8 of the green sheet 2a for the substrate body produced as described above, and the thermal via paste layer 8 is connected to the thermal via paste layer 8. The external heat radiation layer conductive paste layer 9 is formed on the mounting surface 23 in a predetermined size and shape, respectively. As a method for forming the thermal via paste layer 8 and the external heat radiation layer conductor paste layer 9, a method of applying or filling the conductor paste by screen printing as described above can be used. The film thickness of the formed conductive paste layer 9 for external heat radiation layer is adjusted so that the film thickness of the finally obtained element connection terminals and external connection terminals becomes a predetermined film thickness. The conductor paste to be used is a paste containing a heat dissipating material constituting the thermal via 8 and the external heat dissipating layer 9, preferably a metal material containing silver. As such a material, silver, a silver palladium mixture, a silver platinum mixture, etc. are mentioned as above-mentioned.
 放熱層用の導体ペーストとしては、金属粉末を放熱性材料とする以外は上記配線導体ペーストと同様に作製できる。また用いる金属粉末として両者に好ましく用いられる銀、銀パラジウム混合物、銀白金混合物等を用いる場合には、1種の導体ペーストで素子接続端子用ペースト層4、外部接続端子用導体ペースト層5、貫通導体用ペースト層6、サーマルビア用ペースト層8および外部放熱層用導体ペースト層9を形成することが可能である。 The conductor paste for the heat dissipation layer can be produced in the same manner as the above-mentioned wiring conductor paste except that metal powder is used as a heat dissipation material. When silver, silver palladium mixture, silver platinum mixture or the like preferably used for both is used as the metal powder to be used, the element connection terminal paste layer 4, the external connection terminal conductor paste layer 5, and the like are penetrated with one kind of conductor paste. It is possible to form the conductive paste layer 6, the thermal via paste layer 8, and the external heat dissipation layer conductive paste layer 9.
(3)グリーンシートの積層
 上記(2)の工程で得られた配線導体用ペースト層(外部接続端子用導体ペースト層5、貫通導体用ペースト層6)と放熱層用金属ペースト層(サーマルビア用ペースト層8、外部放熱層用導体ペースト層9)付きの基板本体用グリーンシート2a上に、配線導体用ペースト層(素子接続端子用ペースト層4、貫通導体用ペースト層6)付き基板本体用グリーンシート2bを積層する。積層の際、下となる面(非搭載面)に外部接続端子用導体ペースト層5、外部放熱層用導体ペースト層9が、上となる面(搭載面)に素子接続端子用ペースト層4が位置するように積層する。さらに、基板本体用グリーンシート2bの搭載面21上に上記(1)の工程で得られた枠体用グリーンシート3を積層する。これにより基板本体2が搭載面21上にキャビティを有し、その底面が発光素子の発光素子搭載部22を有する形状のグリーンシート積層体が、未焼結発光素子用基板1として得られる。
(3) Lamination of green sheets Paste layer for wiring conductors (conductor paste layer 5 for external connection terminals, paste layer 6 for through conductors) and metal paste layer for heat dissipation layer (for thermal vias) obtained in the step (2) above Substrate body green with wiring conductor paste layer (element connection terminal paste layer 4, through conductor paste layer 6) on substrate body green sheet 2a with paste layer 8 and external heat dissipation layer conductor paste layer 9) The sheets 2b are stacked. At the time of lamination, the external connection terminal conductor paste layer 5 and the external heat dissipation layer conductor paste layer 9 are formed on the lower surface (non-mounting surface), and the element connection terminal paste layer 4 is formed on the upper surface (mounting surface). Laminate to position. Further, the frame green sheet 3 obtained in the step (1) is laminated on the mounting surface 21 of the substrate main body green sheet 2b. As a result, a green sheet laminate having a shape in which the substrate body 2 has a cavity on the mounting surface 21 and the bottom surface thereof has the light emitting element mounting portion 22 of the light emitting element is obtained as the unsintered light emitting element substrate 1.
(4)焼成
 上記(3)で得られた未焼結発光素子用基板1について、必要に応じてバインダー樹脂等を除去するための脱脂を行い、各グリーンシートのガラスセラミックス組成物等を焼結させるための焼成(焼成温度:800~930℃)を行う。
(4) Firing About the unsintered light emitting device substrate 1 obtained in (3) above, degreasing for removing the binder resin and the like is performed as necessary, and the glass ceramic composition of each green sheet is sintered. Calcination (calcination temperature: 800 to 930 ° C.) is performed.
 脱脂は、例えば500℃以上600℃以下の温度で1時間以上10時間以下保持することにより行える。脱脂温度が500℃未満もしくは脱脂時間が1時間未満の場合、バインダー樹脂等を十分に除去できないおそれがある。一方、脱脂温度は600℃程度、脱脂時間は10時間程度とすれば、十分にバインダー樹脂等を除去でき、これを超えるとかえって生産性等が低下するおそれがある。 Degreasing can be performed, for example, by holding at a temperature of 500 ° C. to 600 ° C. for 1 hour to 10 hours. When the degreasing temperature is less than 500 ° C. or the degreasing time is less than 1 hour, the binder resin or the like may not be sufficiently removed. On the other hand, if the degreasing temperature is about 600 ° C. and the degreasing time is about 10 hours, the binder resin or the like can be sufficiently removed, and if it exceeds this, the productivity may be lowered.
 また、焼成は、基板本体2および枠体3の緻密な構造の獲得と生産性を考慮して、800℃~930℃の温度範囲で適宜時間を調整することで行える。具体的には、850℃以上900℃以下の温度で20分以上60分以下保持することが好ましく、特に860℃以上880℃以下の温度で行うことが好ましい。焼成温度が800℃未満では、基板本体が緻密な構造のものとして得られないおそれがある。一方、焼成温度は930℃を超えると基板本体が変形するなど生産性等が低下するおそれがある。また、上記配線導体用ペーストや放熱層用導体ペーストとして、銀を主成分とする金属粉末を含有する金属ペーストを用いた場合、焼成温度が880℃を超えると、過度に軟化するために所定の形状を維持できなくなるおそれがある。 Further, the firing can be performed by appropriately adjusting the time in the temperature range of 800 ° C. to 930 ° C. in consideration of the acquisition of the dense structure of the substrate body 2 and the frame body 3 and the productivity. Specifically, it is preferable to hold at a temperature of 850 ° C. or higher and 900 ° C. or lower for 20 minutes or longer and 60 minutes or shorter, particularly preferably at a temperature of 860 ° C. or higher and 880 ° C. or lower. If the firing temperature is less than 800 ° C., the substrate body may not be obtained as a dense structure. On the other hand, if the firing temperature exceeds 930 ° C., the productivity may decrease due to deformation of the substrate body. In addition, when a metal paste containing a metal powder containing silver as a main component is used as the wiring conductor paste or the heat dissipation layer conductor paste, when the firing temperature exceeds 880 ° C., it is excessively softened. The shape may not be maintained.
 このようにして、未焼結発光素子用基板1が焼成され発光素子用基板1が得られるが、焼成後、素子接続端子4、外部接続端子5および外部放熱層9の全体を被覆するように、素子接続端子4には金メッキ層(図示されず)、外部接続端子5および外部放熱層9にはニッケルメッキ層7a,7bのような、通常、発光素子用基板において導体保護用に用いられる導電性保護層を配設する。 In this way, the unsintered light emitting element substrate 1 is fired to obtain the light emitting element substrate 1. After firing, the element connection terminals 4, the external connection terminals 5, and the external heat dissipation layer 9 are entirely covered. The element connection terminal 4 is a gold plating layer (not shown), and the external connection terminal 5 and the external heat radiation layer 9 are nickel plating layers 7a and 7b. A protective layer is disposed.
 以上、発光素子用基板1の製造方法について説明したが、本体用グリーンシート2および枠体用グリーンシート3は単一のグリーンシートからなる必要はなく、上記のように複数枚のグリーンシートを積層したものであってもよい。また、各部の形成順序等についても、発光素子用基板の製造が可能な限度において適宜変更できる。
(5)発光装置の作製
 上記発光素子用基板1を用いて、例えば図2に示す発光装置10を作製する方法については、特に制限されず、発光素子11を発光素子用基板1に搭載する方法、ワイヤボンディング等の電気接続方法、封止剤を用いて封止層13を形成する方法、さらに発光素子用基板1を半田により外部電気回路基板31に固定する方法等において、全て従来公知の方法が適用可能である。
The manufacturing method of the light emitting element substrate 1 has been described above, but the main body green sheet 2 and the frame green sheet 3 do not have to be formed of a single green sheet, and a plurality of green sheets are laminated as described above. It may be what you did. Further, the order of forming each part can be changed as appropriate as long as the light emitting element substrate can be manufactured.
(5) Production of Light-Emitting Device The method for producing the light-emitting device 10 shown in FIG. 2 using the light-emitting element substrate 1 is not particularly limited, and the method for mounting the light-emitting element 11 on the light-emitting element substrate 1 is not limited. , A method of electrical connection such as wire bonding, a method of forming the sealing layer 13 using a sealing agent, and a method of fixing the light emitting element substrate 1 to the external electric circuit substrate 31 with solder, etc. Is applicable.
 以上、本発明の発光素子用基板およびこれを用いた発光装置の実施形態を、図1および図2に示される一例を挙げて説明したが、本発明の発光素子用基板および発光装置はこれらに限定されるものではない。本発明の趣旨に反しない限度において、また必要に応じて、その構成を適宜変更できる。 As mentioned above, although the embodiment of the light emitting element substrate of the present invention and the light emitting device using the same has been described with reference to the example shown in FIGS. 1 and 2, the light emitting element substrate and the light emitting device of the present invention are not limited thereto. It is not limited. As long as it does not contradict the spirit of the present invention, the configuration can be changed as necessary.
 本発明によれば、金属を主体とする外部電気回路基板の配線回路に半田付けによって表面実装するための発光素子用基板において、外部電気回路基板と強固に且つ長期にわたり安定した接続状態を維持できる発光素子用基板を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, in the board | substrate for light emitting elements for carrying out the surface mounting by soldering to the wiring circuit of the external electric circuit board | substrate mainly composed of metal, a stable connection state can be maintained with the external electric circuit board for a long time. A substrate for a light emitting element can be provided.
 また、本発明によれば、このような発光素子用基板に発光素子を搭載し、これを外部接続端子を介して外部電気回路基板の配線回路上に半田付けにより実装することで、半田接続部分の剥離が抑制された電気的接続に高い信頼性を有する発光装置が得られる。このような本発明の発光装置は、例えば携帯電話や大型液晶ディスプレイ等のバックライト、自動車用あるいは装飾用の照明、その他の光源として好適に用いることができる。 Further, according to the present invention, a light-emitting element is mounted on such a light-emitting element substrate, and this is mounted by soldering on a wiring circuit of an external electric circuit board via an external connection terminal. Thus, a light-emitting device with high reliability in electrical connection in which peeling is suppressed can be obtained. Such a light-emitting device of the present invention can be suitably used as a backlight for mobile phones, large liquid crystal displays, etc., illumination for automobiles or decoration, and other light sources.
 以下に、本発明の実施例を説明する。なお、本発明はこれら実施例に限定されるものではない。
[製造例1~4]
 表1のガラス組成の欄にmol%で示すガラス組成となるように原料を調合・混合し、混合された原料を白金ルツボに入れて1400~1600℃で60分間加熱溶融後、溶融ガラスを流し出し冷却した。得られたガラスをアルミナ製やジルコニア製ボールミルで水および/またはエタノールを溶媒として20~60時間粉砕して、ガラス粉末を得た。得られたガラス粉末の50%粒径(D50)を、島津製作所社製レーザ回折式粒度分布測定装置(SALD2100)を用いて測定したところ、いずれも2.0μmであった。なお、製造例1~3で得られたガラス粉末は、特に多量のセラミックス粉末を含有しても有効に焼結させることができる上記第2のガラス粉末に分類されるガラス粉末である。また、製造例4で得られたガラス粉末は、多量のセラミックス粉末、特にアルミナよりも高い屈折率を有するセラミックス粉末を高含有率で含有しても有効に焼結させることができる上記第1のガラス粉末に分類されるガラス粉末である。
Examples of the present invention will be described below. The present invention is not limited to these examples.
[Production Examples 1 to 4]
The raw materials are prepared and mixed so that the glass composition shown in mol% in the glass composition column of Table 1 is obtained, and the mixed raw materials are put into a platinum crucible and heated and melted at 1400-1600 ° C. for 60 minutes, and then the molten glass is poured. Cooled out. The obtained glass was pulverized for 20 to 60 hours with an aluminum or zirconia ball mill using water and / or ethanol as a solvent to obtain glass powder. When the 50% particle size (D 50 ) of the obtained glass powder was measured using a laser diffraction particle size distribution analyzer (SALD2100) manufactured by Shimadzu Corporation, all were 2.0 μm. The glass powder obtained in Production Examples 1 to 3 is a glass powder classified as the second glass powder that can be effectively sintered even when a large amount of ceramic powder is contained. Further, the glass powder obtained in Production Example 4 can be effectively sintered even if it contains a large amount of ceramic powder, particularly ceramic powder having a higher refractive index than alumina, at a high content. Glass powder classified as glass powder.
 次いで、上記で得られたガラス粉末と、セラミックス粉末としてアルミナ粉末、ジルコニア粉末(ジルコニア粉末1またはジルコニア粉末2)をそれぞれ表1に示す質量百分率で混合した粉末(ガラスセラミックス組成物)50gに、有機溶剤(トルエン、キシレン、2-プロパノール、2-ブタノールを質量比4:2:2:1で混合したもの)15g、可塑剤(フタル酸ジ-2-エチルヘキシル)2.5g、バインダー樹脂(デンカ社製ポリビニルブチラールPVK#3000K)5gおよび分散剤(ビックケミー社製DISPERBYK180)0.5gをそれぞれ混合してスラリーとした。このスラリーをPETフィルム上にドクターブレード法を用いて塗布し、塗膜を乾燥して厚さが0.2mmのグリーンシートを作製した。 Next, 50 g of the powder (glass ceramic composition) obtained by mixing the glass powder obtained above and alumina powder and zirconia powder (zirconia powder 1 or zirconia powder 2) as the ceramic powder in the mass percentages shown in Table 1, respectively, Solvent (toluene, xylene, 2-propanol, 2-butanol mixed at a mass ratio of 4: 2: 2: 1) 15 g, plasticizer (di-2-ethylhexyl phthalate) 2.5 g, binder resin (Denka) Polyvinyl butyral PVK # 3000K (5 g) and a dispersant (DISPERBYK180 manufactured by Big Chemie) 0.5 g were mixed to form a slurry. This slurry was applied onto a PET film using a doctor blade method, and the coating film was dried to produce a green sheet having a thickness of 0.2 mm.
 なお、本製造例では、アルミナ粉末は、昭和電工社製のローソーダアルミナAL47-H(D50=2.1μm)を用いた。また、ジルコニア粉末については2種類のイットリア部分安定化ジルコニア粉末を、ジルコニア粉末1、ジルコニア粉末2として用いた。ジルコニア粉末1は、第一稀元素化学工業社製のHSY-3F-J(D50=0.56μm)であり、ジルコニア粉末2は、東レ社製の3YS(D50=0.7μm)である。 In this production example, as the alumina powder, low soda alumina AL47-H (D 50 = 2.1 μm) manufactured by Showa Denko Co., Ltd. was used. As for zirconia powder, two types of yttria partially stabilized zirconia powder were used as zirconia powder 1 and zirconia powder 2. The zirconia powder 1 is HSY-3F-J (D 50 = 0.56 μm) manufactured by Daiichi Rare Element Chemical Industries, and the zirconia powder 2 is 3YS (D 50 = 0.7 μm) manufactured by Toray. .
 こうして得られたグリーンシートを焼成し、焼成基板(焼結体)を作製した。焼成は、550℃に1時間保持してバインダー樹脂を分解除去する脱脂工程を行なった後、870℃の温度に45分間加熱保持することにより行った。得られた基板のヤング率、熱膨張係数、反射率、抗折強度をそれぞれ以下の方法により測定した。結果をそれぞれ表1に示す。
 また、比較製造例としてアルミナ基板をグリーンシート焼成の方法により作製し、これについても上記と同様にヤング率、熱膨張係数、反射率、抗折強度を測定した。結果を併せて表1に示す。
The green sheet thus obtained was fired to produce a fired substrate (sintered body). Firing was performed by holding at 550 ° C. for 1 hour and performing a degreasing step for decomposing and removing the binder resin, and then heating and holding at a temperature of 870 ° C. for 45 minutes. The obtained substrate was measured for Young's modulus, coefficient of thermal expansion, reflectance, and bending strength by the following methods. The results are shown in Table 1, respectively.
In addition, as a comparative production example, an alumina substrate was prepared by a method of firing a green sheet, and the Young's modulus, thermal expansion coefficient, reflectance, and bending strength were measured in the same manner as described above. The results are also shown in Table 1.
<ヤング率>
 ヤング率は次のような方法で測定した。焼成体寸法が2mm厚み、幅15mm×長さ100mmになるように切削研磨し、測定用サンプルとし、共鳴振動法により温度25℃におけるヤング率を測定した。
<Young's modulus>
Young's modulus was measured by the following method. The sintered body was cut and polished so as to have a thickness of 2 mm, a width of 15 mm and a length of 100 mm, and used as a measurement sample. The Young's modulus at a temperature of 25 ° C. was measured by a resonance vibration method.
<熱膨張係数>
 熱膨張係数は次のような方法で測定した。焼成体寸法が2mm厚み、幅5mm×長さ20mmになるように切削研磨し、測定サンプルとし、熱機械分析装置(TMA)(ブルカー・エイエックスエス社製 熱膨張計 TD5000SA)にて、温度50~400℃における熱膨張係数を測定した。
<Coefficient of thermal expansion>
The thermal expansion coefficient was measured by the following method. The sintered body was cut and polished so that the size of the fired body was 2 mm thick, 5 mm wide × 20 mm long, used as a measurement sample, and a temperature of 50 with a thermomechanical analyzer (TMA) (Thermal expansion meter TD5000SA manufactured by Bruker AXS). The coefficient of thermal expansion at ˜400 ° C. was measured.
<反射率>
 反射率は次のような方法で測定した。すなわち、幅が30mm程度の正方形のグリーンシートを1枚としたもの、2枚積層したもの、3枚積層したものを焼成し、厚みが、140μm、280μm、420μm、程度の3種類の焼成体を得た。得られた3サンプルの反射率を、オーシャンオプティクス社の分光器USB2000と小型積分球ISP-RFを用いて測定し、厚みに関して線形補完することで、厚み170μmおよび300μmの焼成体の反射率(単位:%)を算出した。
<Reflectance>
The reflectance was measured by the following method. That is, three types of fired bodies having a thickness of 140 μm, 280 μm, and 420 μm are obtained by firing a square green sheet having a width of about 30 mm, a laminate of two sheets, and a laminate of three sheets. Obtained. The reflectance of the three samples obtained was measured using a spectroscope USB2000 and a small integrating sphere ISP-RF of Ocean Optics, and linearly complemented with respect to the thickness, whereby the reflectance (unit: 170 μm and 300 μm in thickness) was measured. :%) Was calculated.
<抗折強度>
 抗折強度として、焼成体を切断して厚さが約0.85mm、幅が5mmの短冊状に加工したもの10枚を用いて3点曲げ強度を測定した(測定装置:インストロン社製、INSTRON 8561)。スパンは15mm、クロスヘッドスピードは0.5cm/分とした。
<Folding strength>
As the bending strength, the three-point bending strength was measured using 10 sheets obtained by cutting the fired body into a strip shape having a thickness of about 0.85 mm and a width of 5 mm (measuring device: manufactured by Instron, INSTRON 8561). The span was 15 mm and the crosshead speed was 0.5 cm / min.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 以下に説明する方法で、図1に示すのと同様の構造の発光素子用基板を作製した。なお、上記と同様に、焼成の前後で部材に用いる符号は同じものを用いた。
[Example 1]
A light emitting element substrate having a structure similar to that shown in FIG. 1 was manufactured by the method described below. In addition, the same code | symbol used for a member before and behind baking was used similarly to the above.
 まず、発光素子搭載用基板1の本体基板2を作製するための基板本体用グリーンシート2、枠体用グリーンシート3を作製した。
 すなわち、上記製造例1と同様のガラスセラミックス組成物を用いて上記と同様にしてスラリーを調製した。このスラリーをPETフィルム上にドクターブレード法により塗布し、塗膜を乾燥して、120mm×120mmの略平板状であって、焼成後の厚さが0.5mmとなる基板本体用グリーンシート2aと、焼成後の厚さが0.1mmとなる基板本体用グリーンシート2bの2枚のグリーンシートを作製した。また、枠外の形状が基板本体用グリーンシート2と同様であり、焼成後の枠高さが0.6mmである枠体用グリーンシート3を製造した。なお、本実施例においては、発光素子用基板1を多数個取りの連結基板として製造し、後述の焼成後に、1個ずつに分割して、5mm×5mmの外寸の発光素子用基板1とした。以下の記載は、多数個取り連結基板のうちの、分割後、1個の発光素子用基板1となる一区画について説明するものである。
First, a substrate main body green sheet 2 and a frame green sheet 3 for manufacturing the main body substrate 2 of the light emitting element mounting substrate 1 were prepared.
That is, using the same glass ceramic composition as in Production Example 1, a slurry was prepared in the same manner as described above. The slurry is applied on a PET film by a doctor blade method, and the coating film is dried to form a substantially flat plate shape of 120 mm × 120 mm, and the thickness after baking is 0.5 mm. Then, two green sheets of the green sheet for substrate main body 2b having a thickness after firing of 0.1 mm were produced. Moreover, the shape outside the frame was the same as that of the green sheet 2 for substrate main body, and the frame green sheet 3 having a frame height after firing of 0.6 mm was manufactured. In this embodiment, the light-emitting element substrate 1 is manufactured as a multi-piece connecting substrate, and after being fired to be described later, it is divided one by one and the light-emitting element substrate 1 having an outer size of 5 mm × 5 mm is obtained. did. The following description explains one division which becomes one light-emitting element substrate 1 after the division among the multi-piece connection substrates.
 一方、導電性粉末(銀粉末、大研化学工業社製、商品名:S550)、ビヒクルとしてのエチルセルロースを質量比85:15の割合で配合し、固形分が85質量%となるように溶剤としてのαテレピネオールに分散した後、磁器乳鉢中で1時間混練を行い、さらに三本ロールにて3回分散を行って配線導体用ペーストを製造した。 On the other hand, conductive powder (silver powder, manufactured by Daiken Chemical Industry Co., Ltd., trade name: S550) and ethyl cellulose as a vehicle are blended at a mass ratio of 85:15, and used as a solvent so that the solid content is 85% by mass. After being dispersed in α-terpineol, kneading was conducted for 1 hour in a porcelain mortar, and further three times of dispersion with a three roll to produce a wiring conductor paste.
 また、放熱層用金属ペーストは、サーマルビア用および外部放熱層用ともに、銀粉末(大研化学工業社製、商品名:S400-2)と、ビヒクルとしてのエチルセルロースとを質量比90:10の割合で配合し、固形分が87質量%となるように溶剤としてのαテレピネオールに分散した後、磁器乳鉢中で1時間混練を行い、さらに三本ロールにて3回分散を行って製造した。 In addition, the metal paste for the heat dissipation layer is composed of silver powder (manufactured by Daiken Chemical Industry Co., Ltd., trade name: S400-2) and ethyl cellulose as a vehicle in a mass ratio of 90:10 for both the thermal via and the external heat dissipation layer. It mix | blended in the ratio, and after disperse | distributing to alpha terpineol as a solvent so that solid content might be 87 mass%, it knead | mixed for 1 hour in the porcelain mortar, and also disperse | distributed 3 times with three rolls, and manufactured.
 基板本体用グリーンシート2a、2bの貫通導体6に相当する部分に孔空け機を用いて直径0.3mmの貫通孔を形成した。ここで、基板本体用グリーンシート2a、2bは、2aが下側、2bが上側となるように積層される。さらに、基板本体用グリーンシート2aには、搭載部22の直下にサーマルビア8形成用に25個の直径0.3μmの貫通孔を孔空け機を用いて形成した。 A through hole having a diameter of 0.3 mm was formed in a portion corresponding to the through conductor 6 of the green sheets 2a and 2b for the substrate body using a hole puncher. Here, the substrate main body green sheets 2a and 2b are laminated so that 2a is on the lower side and 2b is on the upper side. Further, 25 through-holes having a diameter of 0.3 μm were formed in the substrate main body green sheet 2a directly below the mounting portion 22 for forming the thermal vias 8 using a perforator.
 上記で得られた基板本体用グリーンシート2a、2bの2箇所の貫通導体形成用の貫通孔にスクリーン印刷法により配線導体用ペーストを充填して貫通導体用ペースト層6を形成するとともに、基板本体用グリーンシート2bには貫通導体用ペースト層6を覆うように搭載面21に素子接続端子用ペースト層4を、基板本体用グリーンシート2aには非搭載面23に外部接続端子導体用ペースト層5を形成した。次いで、基板本体用グリーンシート2aのサーマルビア用の貫通孔にスクリーン印刷法により放熱層用金属ペーストを充填してサーマルビア用ペースト層8を形成するとともに、サーマルビア用ペースト層8を覆うように非搭載面23に外部放熱層用ペースト層9をスクリーン印刷により形成させた。 The through-conductor paste layer 6 is formed by filling the through-holes for forming through-conductors in two places of the green sheets 2a and 2b for the substrate body obtained above by screen printing to form the through-conductor paste layer 6. The element connecting terminal paste layer 4 is disposed on the mounting surface 21 so as to cover the through conductor paste layer 6 on the green sheet 2b, and the external connecting terminal conductor paste layer 5 is disposed on the non-mounting surface 23 on the substrate body green sheet 2a. Formed. Next, the thermal via paste layer 8 is formed by filling the thermal via through hole of the substrate main body green sheet 2a by a screen printing method so as to cover the thermal via paste layer 8. The external heat radiation layer paste layer 9 was formed on the non-mounting surface 23 by screen printing.
 一方、枠体用グリーンシート3については、略中央部を上面側から裏面側に至るように、孔空け機を用いて直径4.4mmの貫通孔を形成してキャビティを形成させた。上記で得られた、配線導体用ペースト層及び放熱層用金属ペースト層付きの基板本体用グリーンシート2a上に配線導体用ペースト層付き基板本体用グリーンシート2b、枠体用グリーンシート3を順に積層し、未焼結発光素子用基板1を得た。これを位置あわせして積層し、複数の未焼結発光素子用基板1の区画を有する未焼成多数個取り連結基板を得た。 On the other hand, with respect to the green body 3 for the frame body, a through hole having a diameter of 4.4 mm was formed by using a hole punching machine so that the substantially central portion extends from the upper surface side to the back surface side, thereby forming a cavity. The substrate body green sheet 2b with the wiring conductor paste layer and the frame green sheet 3 are sequentially laminated on the substrate body green sheet 2a with the wiring conductor paste layer and the heat radiation layer metal paste layer obtained above. And the board | substrate 1 for unsintered light emitting elements was obtained. This was aligned and laminated | stacked, and the unbaking multi-piece connection board | substrate which has the division of the some board | substrate 1 for unsintered light emitting elements was obtained.
 上記で得られた未焼成多数個取り連結基板に、未焼結発光素子用基板1の各区画が焼成後に5mm×5mmの外寸となるような分割用の分割溝を入れた後、550℃で5時間保持して脱脂を行い、さらに870℃で45分間保持して焼成を行って複数の発光素子用基板1の区画を有する多数個取り連結基板を製造した。得られた各発光素子用基板1の区画における、銀(Ag)からなる素子接続端子4、外部接続端子5および外部放熱層9の膜厚は7μmであった。次いで、外部接続端子5および外部放熱層9の表面に、それぞれ3μmの厚さのニッケルメッキ層を形成させた。得られた多数個取り連結基板を分割溝に沿って分割して試験用の発光素子用基板1を製造した。 After putting the dividing groove for dividing | segmenting so that each division of the board | substrate 1 for unsintered light emitting elements may become an external dimension of 5 mm x 5 mm after baking to the unbaking multi-piece connection board | substrate obtained above, 550 degreeC The substrate was degreased by holding for 5 hours, and further baked by holding at 870 ° C. for 45 minutes to produce a multi-piece connection substrate having a plurality of sections of the light-emitting element substrate 1. The film thicknesses of the element connection terminals 4, the external connection terminals 5, and the external heat dissipation layer 9 made of silver (Ag) in the sections of the obtained light emitting element substrates 1 were 7 μm. Next, a nickel plating layer having a thickness of 3 μm was formed on the surfaces of the external connection terminal 5 and the external heat dissipation layer 9. The obtained multi-piece connecting substrate was divided along the dividing groove to produce a test light emitting element substrate 1.
[残留応力歪み評価]
 上記で得られた実施例1のLTCC発光素子用基板1を用いて以下の条件で、図3に示す構造の残留応力歪みの評価モデルを想定し、残留応力歪みの評価を行った。図3は発光素子用基板1と外部電気回路基板を半田層により接合した評価モデルの平面図、および該平面図のX-X線における中央部の部分断面図である。なお、比較例として、比較製造例で用いたアルミナ基板材料を用いて、グリーンシート成形したものを脱脂、焼成することにより作製したアルミナ基板を用いた発光素子用基板を用いて同様の評価を行った。
[Residual stress strain evaluation]
Using the LTCC light emitting device substrate 1 of Example 1 obtained above, the residual stress strain was evaluated under the following conditions, assuming an evaluation model of the residual stress strain having the structure shown in FIG. FIG. 3 is a plan view of an evaluation model in which the light-emitting element substrate 1 and an external electric circuit substrate are joined by a solder layer, and a partial cross-sectional view of a central portion along the line XX of the plan view. As a comparative example, the same evaluation was performed using a substrate for a light-emitting element using an alumina substrate prepared by degreasing and firing a green sheet molded material using the alumina substrate material used in the comparative manufacturing example. It was.
 外部電気回路基板31としては、日本理化工業所製の高熱伝導金属ベース銅積層板NRAシリーズ(以下、「NRKメタルコア基板」という)を用いた。評価モデル100において、外部電気回路基板31(NRKメタルコア基板)の大きさは15mm×20mmで厚さ1.115mmである。また、発光素子用基板1は、ニッケルメッキ層7a付きの外部接続端子5を介して、外部電気回路基板31が上面に有する電気配線用の配線回路34上に、30μm厚の半田層33aにより接合されている。さらに、発光素子用基板1はニッケルメッキ層7b付きの外部放熱層9を介して、外部電気回路基板31が上面に有する、上記配線回路34とは電気的に絶縁された放熱用の半田接続用パッド36上に、30μm厚の半田層33bにより接合されている。
 半田面の形状は、半田層33aが0.85mm×5.0mmの長方形で、端部半径0.5mmの1/4円の切り欠きがある形状、半田層33bが2.0mm×5.0mmの長方形である。
As the external electric circuit board 31, a high thermal conductive metal base copper laminated board NRA series (hereinafter referred to as “NRK metal core board”) manufactured by Nippon Rika Kogyo Co., Ltd. was used. In the evaluation model 100, the size of the external electric circuit board 31 (NRK metal core board) is 15 mm × 20 mm and the thickness is 1.115 mm. The light-emitting element substrate 1 is bonded to the wiring circuit 34 for electric wiring on the upper surface of the external electric circuit board 31 by the solder layer 33a having a thickness of 30 μm through the external connection terminal 5 with the nickel plating layer 7a. Has been. Further, the light-emitting element substrate 1 has an external heat dissipation layer 9 with a nickel plating layer 7b, and the external electric circuit substrate 31 has a heat dissipation solder connection electrically insulated from the wiring circuit 34 on the upper surface. On the pad 36, it is joined by a solder layer 33b having a thickness of 30 μm.
The shape of the solder surface is such that the solder layer 33a is a rectangle of 0.85 mm × 5.0 mm, the end portion has a radius of 0.5 mm, and a 1/4 circle cutout, and the solder layer 33b is 2.0 mm × 5.0 mm. It is a rectangle.
 発光素子用基板1の外部電気回路基板31への上記半田接合による実装は、半田リフロー方式により行われる。この半田リフロー時の温度変化において半田に生じる熱歪みを上記評価モデル100を用いて、有限要素法により、定常弾性解析した。なお、初期状態は、半田リフロー時の温度260℃において応力フリーとして設定した。解析プログラムとしては、汎用有限要素法プログラムMSC Marc(2005r3)を用いた。また、解析に用いた評価モデル100の各構成要素における物性値を表2に示す。 The mounting of the light emitting element substrate 1 to the external electric circuit substrate 31 by the solder bonding is performed by a solder reflow method. The thermal strain generated in the solder in the temperature change during the solder reflow was subjected to a steady elastic analysis by the finite element method using the evaluation model 100. The initial state was set as stress free at a temperature of 260 ° C. during solder reflow. As the analysis program, a general-purpose finite element method program MSC Marc (2005r3) was used. In addition, Table 2 shows physical property values of each component of the evaluation model 100 used for the analysis.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 幾何学的拘束により対称性を設定し、上記評価モデル100の1/4の部分を3μm毎のメッシュで区切って全要素数235,940について、上記初期状態、すなわち半田リフロー時の温度260℃における応力ゼロの状態から、半田リフロー終了時の想定温度25℃へと冷却した際に発生する残留応力歪み、熱サイクルの温度として設定した120℃および-40℃へとそれぞれ冷却した際に発生する残留応力歪みを計算により求めた。評価の値としては、半田内部に生じる残留応力歪みの上記全要素数における最大値とした。結果を表3に示す。 The symmetry is set by geometric constraints, and a quarter portion of the evaluation model 100 is divided by a mesh of every 3 μm, and the total number of elements 235,940 is in the initial state, that is, at a temperature of 260 ° C. during solder reflow. Residual stress distortion generated when cooling from zero stress to the expected temperature of 25 ° C at the end of solder reflow, and residual generated when cooling to 120 ° C and -40 ° C set as thermal cycle temperatures, respectively. The stress strain was obtained by calculation. The evaluation value was the maximum value of the total number of elements of the residual stress strain generated in the solder. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、25℃におけるヤング率が150GPa以下、かつ、50~400℃における熱膨張係数が2~8ppm/℃であるLTCCを用いた本発明の発光素子用基板を外部電気回路基板に半田接合すれば、アルミナ基板のようなヤング率、熱膨張係数ともにこの範囲内にないセラミックス基板を構成要素とする発光素子用基板を用いた場合に比べ、半田層に対する残留応力歪みが小さいことがわかる。残留応力歪みが小さければ、半田層の剥離による絶縁の問題は回避され、長期にわたり安定に電気的接続させることが可能である。 From Table 3, the light emitting device substrate of the present invention using LTCC having a Young's modulus at 25 ° C. of 150 GPa or less and a thermal expansion coefficient of 2 to 8 ppm / ° C. at 50 to 400 ° C. is soldered to an external electric circuit substrate. Thus, it can be seen that the residual stress strain on the solder layer is small as compared with the case of using a substrate for a light emitting element having a ceramic substrate that is not within this range in both Young's modulus and thermal expansion coefficient, such as an alumina substrate. If the residual stress strain is small, the problem of insulation due to peeling of the solder layer is avoided, and stable electrical connection can be achieved over a long period of time.
 本発明の発光素子用基板によれば、金属を主体とする外部電気回路基板の配線回路に半田付けによって表面実装するための発光素子用基板において、外部電気回路基板と強固に且つ長期にわたり安定した接続状態を維持することが可能であり、これを外部接続端子を介して外部電気回路基板の配線回路上に半田付けにより実装することで、半田接続部分の剥離が抑制された電気的接続に高い信頼性を有する発光装置が得られる。このような本発明の発光装置は、例えば携帯電話や大型液晶ディスプレイ等のバックライト、自動車用あるいは装飾用の照明、その他の光源として好適に用いることができる。
 なお、2010年9月17日に出願された日本特許出願2010-209662号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
According to the light emitting element substrate of the present invention, in the light emitting element substrate for surface mounting by soldering to the wiring circuit of the external electric circuit board mainly composed of metal, it is strong and stable over a long period of time with the external electric circuit board. It is possible to maintain the connection state, and by mounting this on the wiring circuit of the external electric circuit board via the external connection terminal by soldering, the electrical connection in which peeling of the solder connection portion is suppressed is high. A reliable light-emitting device can be obtained. Such a light-emitting device of the present invention can be suitably used as a backlight for mobile phones, large liquid crystal displays, etc., illumination for automobiles or decoration, and other light sources.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2010-20962 filed on September 17, 2010 are incorporated herein as the disclosure of the present invention. .
1…発光素子用基板(未焼結発光素子用基板)、2…基板本体(基板本体用グリーンシート)、3…枠体(枠体用グリーンシート)、4…素子接続端子(素子接続端子用ペースト層)、5…外部接続端子(外部接続端子用ペースト層)、6…貫通導体(貫通導体用ペースト層)、7a・7b…導電性保護層(導電性保護層用ペースト層)、8…サーマルビア(サーマルビア用ペースト層)、9…外部放熱層(外部放電層用ペースト層)、10…発光装置、11…発光素子、12…ボンディングワイヤ、13…封止層、21…搭載面、22…発光素子搭載部、23…非搭載面、31…外部電気回路基板、33a・33b…半田層、32…金属板(ヒートシンク)、34…配線回路、35…絶縁層、36…半田接続用パッド。 DESCRIPTION OF SYMBOLS 1 ... Light emitting element substrate (unsintered light emitting element substrate), 2 ... Substrate body (substrate body green sheet), 3 ... Frame body (frame body green sheet), 4 ... Element connection terminal (for element connection terminal) Paste layer), 5 ... external connection terminals (external connection terminal paste layer), 6 ... penetrating conductor (penetrating conductor paste layer), 7a, 7b ... conductive protective layer (conductive protective layer paste layer), 8 ... Thermal via (paste layer for thermal via), 9 ... external heat dissipation layer (paste layer for external discharge layer), 10 ... light emitting device, 11 ... light emitting element, 12 ... bonding wire, 13 ... sealing layer, 21 ... mounting surface, 22 ... light emitting element mounting portion, 23 ... non-mounting surface, 31 ... external electric circuit board, 33a and 33b ... solder layer, 32 ... metal plate (heat sink), 34 ... wiring circuit, 35 ... insulating layer, 36 ... for solder connection pad.

Claims (6)

  1.  ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体からなり、一部が発光素子の搭載される搭載部となる搭載面を有する基板本体と、
     前記基板本体の表面および内部に前記発光素子の電極と外部回路を電気的に接続する配線導体を有し、
     前記配線導体の一部は、前記搭載面の反対面である非搭載面に外部接続端子として配設され、該外部接続端子を介して金属を主体とする外部電気回路基板の配線回路上に半田固定される発光素子用基板であって、
     前記焼結体の25℃におけるヤング率が150GPa以下、かつ、50~400℃における熱膨張係数が2~8ppm/℃であることを特徴とする発光素子用基板。
    A substrate body comprising a sintered body of a glass-ceramic composition containing glass powder and ceramic powder, a part of which is a mounting surface on which a light-emitting element is mounted;
    A wiring conductor that electrically connects an electrode of the light emitting element and an external circuit on the surface and inside of the substrate body,
    A part of the wiring conductor is disposed as an external connection terminal on a non-mounting surface opposite to the mounting surface, and is soldered onto a wiring circuit of an external electric circuit board mainly composed of metal via the external connection terminal. A light-emitting element substrate to be fixed,
    A substrate for a light-emitting element, wherein the sintered body has a Young's modulus at 25 ° C. of 150 GPa or less and a thermal expansion coefficient at 50 to 400 ° C. of 2 to 8 ppm / ° C.
  2.  前記焼結体の25℃におけるヤング率が、50GPa以上、150GPa以下である請求項1に記載の発光素子用基板。 The substrate for a light-emitting element according to claim 1, wherein the sintered body has a Young's modulus at 25 ° C. of 50 GPa or more and 150 GPa or less.
  3.  前記ガラスセラミックス組成物の焼結体が、低温同時焼成セラミックスの焼結体である請求項1または2に記載の発光素子用基板。 The substrate for a light-emitting element according to claim 1 or 2, wherein the sintered body of the glass ceramic composition is a sintered body of low-temperature co-fired ceramics.
  4.  前記外部電気回路基板が、表面に絶縁層を有する金属板と、前記絶縁層上に配設された配線回路を有するメタルコア基板またはメタルベース基板である請求項1~3のいずれか1項に記載の発光素子用基板。 4. The external electric circuit board is a metal core board or metal base board having a metal plate having an insulating layer on a surface thereof and a wiring circuit disposed on the insulating layer. Substrate for light emitting device.
  5.  前記金属板を構成する材料がタングステン、モリブデン、銅、アルミニウムおよびこれらの2種以上からなる合金からなる群から選ばれる少なくとも1種からなる請求項4に記載の発光素子用基板。 The light emitting element substrate according to claim 4, wherein the material constituting the metal plate is at least one selected from the group consisting of tungsten, molybdenum, copper, aluminum, and an alloy composed of two or more thereof.
  6.  請求項1~5のいずれか1項に記載の発光素子用基板と、
     前記発光素子用基板に搭載される発光素子と、
     前記発光素子用基板が搭載される、配線回路を有する金属を主体とする外部電気回路基板と、
     前記発光素子用基板を前記外部電気回路基板に固定する半田層であって、前記外部接続端子と前記配線回路とを接続するように形成された半田層と、
     を有することを特徴とする発光装置。
    A substrate for a light emitting device according to any one of claims 1 to 5,
    A light emitting element mounted on the light emitting element substrate;
    An external electric circuit board mainly composed of metal having a wiring circuit on which the light emitting element substrate is mounted;
    A solder layer for fixing the light emitting element substrate to the external electric circuit board, the solder layer formed so as to connect the external connection terminal and the wiring circuit;
    A light emitting device comprising:
PCT/JP2011/071035 2010-09-17 2011-09-14 Light-emitting element substrate and light-emitting device WO2012036219A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012534043A JPWO2012036219A1 (en) 2010-09-17 2011-09-14 Light emitting element substrate and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-209662 2010-09-17
JP2010209662 2010-09-17

Publications (1)

Publication Number Publication Date
WO2012036219A1 true WO2012036219A1 (en) 2012-03-22

Family

ID=45831675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071035 WO2012036219A1 (en) 2010-09-17 2011-09-14 Light-emitting element substrate and light-emitting device

Country Status (3)

Country Link
JP (1) JPWO2012036219A1 (en)
TW (1) TW201218464A (en)
WO (1) WO2012036219A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199415A (en) * 2012-03-26 2013-10-03 Kyocera Corp Ceramic sintered compact, electronic component mounting substrate using the same, and electronic device
EP2843719A3 (en) * 2013-08-30 2015-05-06 Toshiba Lighting & Technology Corporation Light emitting device
JP2015534606A (en) * 2012-09-21 2015-12-03 イーエヌアイ ソシエタ ペル アチオニEni S.P.A. Process for making optically selective coatings on substrates for high temperature solar collector devices and related materials obtained thereby
JPWO2015087812A1 (en) * 2013-12-11 2017-03-16 旭硝子株式会社 Cover glass for light emitting diode package, sealing structure, and light emitting device
JPWO2018235925A1 (en) * 2017-06-22 2020-05-21 Agc株式会社 Window material, optical package

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017038110A1 (en) * 2015-08-28 2018-06-07 日立化成株式会社 Semiconductor device and manufacturing method thereof
JP6701566B2 (en) * 2016-04-05 2020-05-27 日本電気硝子株式会社 Composite powder, green sheet, light-reflecting substrate, and light-emitting device using these

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321171A (en) * 1996-05-30 1997-12-12 Kyocera Corp Mounting structure of wiring board
JP2004231453A (en) * 2003-01-29 2004-08-19 Kyocera Corp Glass-ceramic composition, glass-ceramic sintered compact, wiring substrate using the compact, and packaging structure of the wiring substrate
JP2004256346A (en) * 2003-02-25 2004-09-16 Kyocera Corp Glass-ceramic composition, glass-ceramic sintered compact, its producing method, wiring board using the sintered compact body, and its mounting structure
JP2006232645A (en) * 2005-02-28 2006-09-07 Kyocera Corp Glass ceramic composition, glass ceramic sintered compact, wiring board using the same and mounting structure of the same
JP2009054801A (en) * 2007-08-27 2009-03-12 Sanyo Electric Co Ltd Heat radiation member, and light emitting module equipped with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321171A (en) * 1996-05-30 1997-12-12 Kyocera Corp Mounting structure of wiring board
JP2004231453A (en) * 2003-01-29 2004-08-19 Kyocera Corp Glass-ceramic composition, glass-ceramic sintered compact, wiring substrate using the compact, and packaging structure of the wiring substrate
JP2004256346A (en) * 2003-02-25 2004-09-16 Kyocera Corp Glass-ceramic composition, glass-ceramic sintered compact, its producing method, wiring board using the sintered compact body, and its mounting structure
JP2006232645A (en) * 2005-02-28 2006-09-07 Kyocera Corp Glass ceramic composition, glass ceramic sintered compact, wiring board using the same and mounting structure of the same
JP2009054801A (en) * 2007-08-27 2009-03-12 Sanyo Electric Co Ltd Heat radiation member, and light emitting module equipped with the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199415A (en) * 2012-03-26 2013-10-03 Kyocera Corp Ceramic sintered compact, electronic component mounting substrate using the same, and electronic device
JP2015534606A (en) * 2012-09-21 2015-12-03 イーエヌアイ ソシエタ ペル アチオニEni S.P.A. Process for making optically selective coatings on substrates for high temperature solar collector devices and related materials obtained thereby
EP2843719A3 (en) * 2013-08-30 2015-05-06 Toshiba Lighting & Technology Corporation Light emitting device
JPWO2015087812A1 (en) * 2013-12-11 2017-03-16 旭硝子株式会社 Cover glass for light emitting diode package, sealing structure, and light emitting device
JPWO2018235925A1 (en) * 2017-06-22 2020-05-21 Agc株式会社 Window material, optical package
JP7205470B2 (en) 2017-06-22 2023-01-17 Agc株式会社 Window materials, optical packages

Also Published As

Publication number Publication date
JPWO2012036219A1 (en) 2014-02-03
TW201218464A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
JP5640632B2 (en) Light emitting device
EP2369903A1 (en) Substrate for light-emitting element and light-emitting device
WO2012036219A1 (en) Light-emitting element substrate and light-emitting device
JP5729375B2 (en) Light emitting device
JP5499960B2 (en) Element substrate, light emitting device
JP5862574B2 (en) Light emitting element substrate and light emitting device
JP2013149637A (en) Light emitting device and manufacturing method of the same
WO2011059070A1 (en) Substrate for light-emitting elements and light-emitting device
JP2013197236A (en) Light-emitting device and manufacturing method therefor
JP2013243256A (en) Wiring board and manufacturing method of the same
JP5725029B2 (en) Light emitting element mounting substrate and light emitting device
JP2014154582A (en) Light-emitting element substrate and light-emitting device
WO2012067204A1 (en) Substrate for light-emitting element, and light-emitting device
JP2012209310A (en) Substrate for light-emitting element, and light-emitting device
WO2013141322A1 (en) Method for manufacturing substrate for light-emitting element, substrate for light-emitting element, and light-emitting device
JP5958342B2 (en) Light emitting element substrate and light emitting device
WO2012133899A1 (en) Substrate for light emitting element and light emitting device
JP2014017375A (en) Substrate for light emitting element and light emitting device
JP2012074478A (en) Substrate for light emitting element, and light emitting device
JP2015070088A (en) Substrate for light-emitting element and light-emitting device
JP6398996B2 (en) Light emitting element substrate and light emitting device
JP6492443B2 (en) Light emitting element substrate and light emitting device
JP2011228652A (en) Substrate for light-emitting element and light-emitting device
JP2012099534A (en) Element substrate and light-emitting device
JP2011176303A (en) Substrate for mounting light emitting element and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825219

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012534043

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825219

Country of ref document: EP

Kind code of ref document: A1