WO2017213038A1 - Oxide, oxygen storage agent, three-way catalyst for exhaust gas, and method for producing oxide - Google Patents

Oxide, oxygen storage agent, three-way catalyst for exhaust gas, and method for producing oxide Download PDF

Info

Publication number
WO2017213038A1
WO2017213038A1 PCT/JP2017/020578 JP2017020578W WO2017213038A1 WO 2017213038 A1 WO2017213038 A1 WO 2017213038A1 JP 2017020578 W JP2017020578 W JP 2017020578W WO 2017213038 A1 WO2017213038 A1 WO 2017213038A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
metal
oxygen
osc
sample
Prior art date
Application number
PCT/JP2017/020578
Other languages
French (fr)
Japanese (ja)
Inventor
▲高▼村仁
富田惇喜
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2018522451A priority Critical patent/JPWO2017213038A1/en
Publication of WO2017213038A1 publication Critical patent/WO2017213038A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an oxide, an oxygen storage agent, a three-way catalyst for exhaust gas, and a method for producing an oxide.
  • a three-way catalyst is used to purify exhaust gas from automobiles and the like.
  • the three-way catalyst is a catalyst that simultaneously removes three types of hydrocarbon (HC) carbon monoxide (CO) and nitrogen oxide (NO x ) in the exhaust gas.
  • Pt (platinum), Pd (palladium), Rh (rhodium) or the like used as a catalyst has a narrow air / fuel ratio range in which these three types can be removed simultaneously. Therefore, an oxygen storage agent that stores or releases oxygen when the air-fuel ratio is out of this range is used (for example, Patent Documents 1-3).
  • CeO 2 —ZrO 2 (ceria-zirconia) -based oxides are known as oxygen storage agents. It is known that an oxide composed of gadolinium-added cerium oxide and spinel-type Fe composite oxide is manufactured using the Pecini method (Patent Document 4, Non-Patent Document 1).
  • Oxygen storage capability of CeO 2 -ZrO 2 based oxide (OSC: Oxygen Storage Capacity) characteristic is not sufficient. For example, OSC characteristics deteriorate at a relatively low temperature.
  • the present invention has been made in view of the above problems, and aims to improve OSC characteristics.
  • the present invention includes Ce 1-x Zr x O 2- ⁇ (0 ⁇ x ⁇ 1 and 0 ⁇ ⁇ ) and MFe 2 O 4 having a spinel structure (M is a divalent metal element). It is an oxide.
  • the M may be Mn or Co.
  • the content of the MFe 2 O 4 may be configured to be less than 33% by volume.
  • the oxide is composed of the Ce 1-x Zr x O 2- ⁇ and the MFe 2 O 4, and the content of the MFe 2 O 4 may be 15% by volume or less. .
  • the M may be Co.
  • the present invention provides a crystal of Ce 1-x Zr x O 2- ⁇ containing Ce 1-x Zr x O 2- ⁇ (0 ⁇ x ⁇ 1, 0 ⁇ ⁇ ) and a metal oxide having a spinel structure.
  • An oxide comprising a layer containing the metal oxide at a grain boundary.
  • the layer containing the metal oxide may be an electron conductive layer.
  • the present invention is an oxygen storage agent comprising the above oxide.
  • the present invention is a three-way catalyst for exhaust gas characterized by containing the above oxygen storage agent.
  • the present invention provides a method of producing the Ce 1-x Zr x O 2 - ⁇ (0 ⁇ x ⁇ 1 and 0 ⁇ [delta]) oxide containing a metal oxide having a spinel structure, the Ce 1- forming a complex of the metal from a metal salt constituting x Zr x O 2- ⁇ and the metal oxide, producing a polymer containing the complex, and carbonizing the polymer. It is the manufacturing method of the oxide characterized by including.
  • OSC can be improved.
  • FIG. 1 (a) is a diagram showing a ⁇ at Ce 0.5 Zr 0.5 O 2.
  • FIG. 1 (b) is a diagram schematically showing the reaction during oxygen storage and oxygen release.
  • FIG. 2 is a flowchart showing a method for producing a mixed oxide using the Pechini method.
  • FIG. 3A is a schematic diagram of a mixed oxide produced using the Pecini method.
  • FIG. 3B is a cross-sectional view of the three-way catalyst according to the second embodiment.
  • FIG. 4 is a diagram showing the XRD measurement results of each sample.
  • FIG. 5A is a diagram showing the OSC measurement result of each sample
  • FIG. 5B is a diagram showing ⁇ in each sample.
  • FIG. 6 is a diagram showing the OSC cycle characteristics.
  • FIG. 7A and FIG. 7B are diagrams showing OSC characteristics at 150 ° C.
  • FIG. 8 is a diagram showing OSC with respect to the content of CoFe 2 O 4 .
  • a CeO 2 —ZrO 2 -based oxide used as an oxygen storage agent for a three-way catalyst will be described.
  • the oxygen storage agent releases oxygen when oxygen is insufficient in the three-way catalyst, and stores oxygen when oxygen is excessive. Thereby, even if the air-fuel ratio deviates from the ideal range, three types of hydrocarbons, carbon monoxide and nitrogen oxides in the exhaust gas can be removed simultaneously.
  • CeO 2 —ZrO 2 -based oxide has a high OSC.
  • the Ce 0.5 Zr 0.5 O 2- ⁇ the Ce 0.5 Zr 0.5 O 2- ⁇ .
  • the largest ⁇ is 0.25.
  • Ce 1-x Zr x O 2 has a plurality of phases such as a t ′ phase and a ⁇ phase.
  • t ′ phase or ⁇ phase is mainly used.
  • the t ′ phase is a tetragonal phase.
  • the ⁇ phase is a phase with a pyrochlore-like structure.
  • 1 (a) is a diagram showing a ⁇ at Ce 0.5 Zr 0.5 O 2.
  • is ⁇ when oxygen is released.
  • is large.
  • the theoretical maximum value ⁇ 0.25 is almost coincident.
  • exceeds 0.15.
  • both t ′ phase and ⁇ phase have a very small ⁇ of about 0.01.
  • Ce 1-x Zr x O 2 does not function sufficiently as an oxygen storage agent for relatively low temperature exhaust gas.
  • the exhaust gas temperature is low, and the OSC characteristic of Ce 1-x Zr x O 2 is insufficient.
  • FIG. 1 (b) is a diagram schematically showing the reaction during oxygen storage and oxygen release.
  • oxygen vacancy V O ⁇ and electrons 2e ⁇ are conducted from the inside of the CeO 2 —ZrO 2 oxide to the surface, and oxygen ions O 2 ⁇ is conducted from the surface to the inside.
  • oxygen ions O 2 ⁇ are conducted from the inside of the CeO 2 —ZrO 2 -based oxide to the surface, and oxygen vacancies V 2 O ⁇ and electrons 2e ⁇ are conducted from the surface to the inside.
  • the OSC characteristics of Ce 1-x Zr x O 2 might be limited by the diffusion of electron e ⁇ among the diffusion of oxygen ion O 2 ⁇ and the diffusion of electron e ⁇ .
  • the mixed oxide of Embodiment 1 includes Ce 1-x Zr x O 2- ⁇ and a metal oxide having a spinel structure.
  • the mixed oxide is made of Ce 1-x Zr x O 2- ⁇ and a metal oxide having a spinel structure.
  • a metal oxide having a spinel structure hardly reacts with Ce 1-x Zr x O 2 and has high electron conductivity. For this reason, the conductivity of electrons in the mixed oxide can be increased and the OSC characteristics can be improved.
  • M is a divalent metal element
  • M has high electron conductivity. Therefore, OSC characteristics can be improved by using MFe 2 O 4 for the metal oxide having a spinel structure.
  • M is a transition metal such as Co (cobalt), Mn (manganese), Fe (iron), Cu (copper), Cr (chromium), or Ni (nickel).
  • M may be a Group 2 element such as Mg (magnesium).
  • M may contain a plurality of these elements.
  • a group 1 element such as Li (lithium) is combined with a transition metal such as Fe, and a metal element that is not divalent, such as (Li 0.5 Fe 0.5 ), is combined, and apparently 2 A valent metal element may be used.
  • MFe 2 O 4 may have a stoichiometric composition within a range in which the effect of the embodiment can be obtained. Further, impurities may be included.
  • X in Ce 1-x Zr x O 2- ⁇ may be 0 ⁇ x ⁇ 1.
  • 0.2 ⁇ x ⁇ 0.8 is preferable, 0.3 ⁇ x ⁇ 0.7 is more preferable, and 0.4 ⁇ x ⁇ 0.6 is further preferable. Further, 0 ⁇ ⁇ may be satisfied.
  • Ce 0.5 Zr 0.5 O 2- ⁇ logically 0 ⁇ ⁇ ⁇ 0.25, and when x is close to 0, 0 ⁇ ⁇ ⁇ 0.5.
  • the mixed oxide according to Embodiment 1 can be manufactured using, for example, the Pecini method.
  • FIG. 2 is a flowchart showing a method for producing a mixed oxide using the Pechini method.
  • a metal salt is prepared (step S10).
  • the metal salt is a salt of a metal constituting a metal oxide having a Ce, Zr and spinel structure.
  • the prepared metal salt is a metal salt of Ce, Zr, M, and Fe.
  • metal salts for example, nitrates, sulfates or metal chlorides can be used.
  • a metal complex is generated from the metal salt (step S12).
  • the ligand for example, an organic ligand such as citric acid is used.
  • the ligand is preferably a chelate ligand.
  • a metal complex is generated by dissolving a metal salt in a polyhydric alcohol or the like and adding an excessive chemical substance (for example, citric acid) to be a ligand.
  • a polymer containing a metal complex is generated (step S14).
  • a polymer is produced by heating a solution containing a metal complex and a polymerization initiator.
  • the polymerization initiator is a polyhydric alcohol and the ligand is citric acid
  • an esterification reaction between citric acid and the polyhydric alcohol occurs.
  • a dehydration reaction occurs due to the OH group not reacting with the metal of citric acid and the OH group of the polyhydric alcohol.
  • esters are polymerized and polymerized.
  • the produced polymer is, for example, a gel.
  • the polymer is carbonized (step S16). For example, when a polymerized polymer is heated, a CC chain and / or a CH chain is broken. Thereafter, the carbonized polymer is pulverized. Calcination is performed (step S18). For example, the pulverized powder is calcined at a high temperature. Thereby, a mixed oxide can be produced. In the mixed oxide thus produced, a uniform mixed state of Ce 1-x Zr x O 2- ⁇ and the metal oxide having a spinel structure is maintained.
  • Ce 1-x Zr x O 2 - ⁇ and mixed oxides consisting of spinel-type metal oxide with Pechini method as described in Patent Document 4 and Non-Patent Document 1, Ce 1- the grain at the interface x Zr x O 2- ⁇ believed layer containing a spinel-type metal oxide is formed.
  • FIG. 3A is a schematic diagram of a mixed oxide produced using the Pecini method. As shown in FIG. 3A, there are Ce 1-x Zr x O 2- ⁇ phase crystal grains 12 and spinel-type metal oxide phase crystal grains 14. A layer 16 is formed at the interface of the crystal grains 12. The grain size of the crystal grains 12 and 14 is, for example, several nm to 100 nm. The thickness of the layer 16 is, for example, 1 nm to several tens of nm. The layer 16 includes a spinel metal oxide and functions as an electron conductive layer. The conductivity of electrons in the mixed oxide 10 is increased through the crystal grains 14 and the layer 16. Therefore, OSC characteristics in oxygen storage and oxygen release are improved.
  • the content of one substance phase is required to be 33% by volume or more of the whole.
  • a spinel metal oxide is added to Ce 1-x Zr x O 2- ⁇ , in order to connect the spinel metal oxide phase three-dimensionally so as to contribute to electronic conduction, The content of the spinel-type metal oxide is 33% by volume or more.
  • the spinel type metal oxide is increased, the OSC characteristic per unit weight is lowered.
  • a layer 16 containing a metal oxide having a spinel structure with high electron conductivity is formed at the interface of crystal grains 12 as shown in FIG.
  • the content of the spinel metal oxide is preferably 30% by volume or less, more preferably 25% by volume or less, and further preferably 20% by volume or less.
  • the content of the spinel metal oxide is preferably 1% by volume or more, and more preferably 2% by volume or more.
  • the second embodiment is a three-way catalyst using the mixed oxide of the first embodiment.
  • FIG. 3B is a cross-sectional view of the three-way catalyst according to the second embodiment.
  • an oxygen storage agent 22 is supported on the support material 20.
  • a catalyst metal 24 is supported on the oxygen storage agent 22.
  • the support material 20 is alumina or the like, for example.
  • the oxygen storage agent 22 is the mixed oxide according to the first embodiment.
  • the catalyst metal 24 is a noble metal such as Pt, Pd, or Rh.
  • the oxygen storage agent 22 and the catalyst metal 24 may be supported on the support material.
  • the OSC characteristics of the oxygen storage agent can be improved. For example, the OSC characteristics are improved even at a relatively low temperature.
  • the oxygen storage agent using the mixed oxide of Embodiment 1 as a three-way catalyst for exhaust gas the exhaust gas temperature of a hybrid vehicle or the like can be used as a three-way catalyst.
  • CZ55-MFO and CZ55-CFO were prepared as mixed oxides.
  • the oxide and content of each sample is as follows.
  • CZ55-CFO Ce 0.5 Zr 0.5 O 2 , 15% by volume CoFe 2 O 4
  • step S10 of FIG. 2 the metal salts shown in Table 1 were prepared. Nitrate was used as the salt of Ce, Mn, Co, and Fe, and oxide chloride was used as the salt of Zr. The purity of each metal salt is 99.9 atomic%.
  • the mixing ratio of metal: citric acid: propylene glycol was 1: 3: 3 for Ce, Co, and Fe, and 1: 6: 6 for Zr. Since Mn nitrate Mn (NO 3 ) 2 .6H 2 O has a melting point of 26 ° C., it was directly used as a liquid raw material. For this reason, the mixing ratio is not described in Table 1.
  • Step S12 in order to prepare 5 g of CZ55-MFO and CZ55-CFO, respectively, a metal salt, citric acid and propylene glycol having a weight [g] shown in Table 2 were mixed, and distilled water half the weight of citric acid was added. Added and stirred. This produced a metal complex with citric acid as a ligand.
  • step S14 this solution was heated to about 150 ° C., whereby an esterification reaction of citric acid and propylene glycol accompanied with the dehydration reaction occurred. Further, by heating to 300 ° C. and holding for half a day, a dehydration reaction occurs due to the OH group not bonded to the metal of citric acid and the OH group of propylene glycol, and the esters are polymerized and polymerized. As a result, a polymer containing a metal complex was produced.
  • step S16 the polymer produced using an electric furnace was heated at 200 ° C. for 2 hours, then heated at 300 ° C. for 2 hours, and then heated at 400 ° C. for 2 hours.
  • the C—C chain and C—H chain of the polymer were cleaved to carbonize the polymer.
  • the carbonized sample was pulverized in an alumina mortar.
  • step S18 the pulverized powder was heated to 700 ° C. at a temperature rising rate of 5 ° C./min, and calcined in the atmosphere for 2 hours. Thereby, a mixed oxide is produced. Thereafter, the mixture was pulverized for 24 hours using a planetary ball mill to form fine particles. This produced CZ55-MFO and CZ55-CFO. Further, as the sample CZ55, Ce 0.5 Zr 0.5 O 2 not containing MnFe 2 O 4 and CoFe 2 O 4 was produced in the same manner using the Pechini method.
  • FIG. 4 is a diagram showing the XRD measurement results of each sample. Cu-K ⁇ rays were used as X-rays.
  • a broad peak having a fluorite structure due to Ce 0.5 Zr 0.5 O 2 is observed in the sample CZ55.
  • a sharp peak of MnFe 2 O 4 having a spinel structure is observed.
  • Some MnFeO 3 phase is observed in sample CZ55-MFO.
  • a sharp peak of CoFe 2 O 4 having the spinel structure is observed.
  • Table 3 is a diagram showing a crystal volume (Crystallite size) and a crystal volume of the Ce 0.5 Zr 0.5 O 2 phase calculated using a WPPD (Whole-Powder-Pattern Decomposition) method. .
  • the crystal volume of the Ce 0.5 Zr 0.5 O 2 phase in each sample is hardly changed. From this, it is considered that there is almost no solid solution of Fe, Mn, Co and the like in the Ce 0.5 Zr 0.5 O 2 phase. In addition, a sample having a small crystallite size is produced.
  • OSC was evaluated for each sample.
  • the evaluation of OSC was performed by calorimetric analysis.
  • a powder sample of about 50 mg to 100 mg is put in a platinum pan.
  • the sample is heated to 400 ° C. in a clean air atmosphere. Hold at 400 ° C. in clean air for 120 minutes. Thereafter, the temperature is maintained, and the atmosphere is switched to an atmosphere containing 5% H 2 gas in Ar gas (H 2 —Ar gas atmosphere) and held for 60 minutes. Thereafter, the temperature is maintained and the atmosphere is switched to a clean air atmosphere.
  • H 2 —Ar gas atmosphere Ar gas
  • oxygen is stored in the sample.
  • Oxygen is released in the H 2 —Ar gas atmosphere.
  • Sample weight changes correspond to oxygen storage and release.
  • the change in the weight of the sample is defined as the molar amount of oxygen absorbed per unit weight OSC ( ⁇ mol-O 2 ⁇ g ⁇ 1 ). Further, ⁇ of Ce 0.5 Zr 0.5 O 2- ⁇ was calculated from the OSC immediately before switching the atmosphere from the H 2 —Ar gas atmosphere to the clean air atmosphere. The theoretical maximum value of ⁇ is 0.25.
  • FIG. 5A is a diagram showing the OSC measurement result of each sample
  • FIG. 5B is a diagram showing ⁇ in each sample.
  • t'-CZ55 and ⁇ -CZ55 is Ce 0.5 Zr 0.5 O 2 of the solid phase each reaction method to prepare using t'-phase of Ce 0.5 Zr 0.5 O 2 and kappa phases.
  • t′-CZ55 (pechini) is Ce 0.5 Zr 0.5 O 2 of the t ′ phase produced by the Pechini method.
  • samples t′-CZ55, ⁇ -CZ55 and t′-CZ55 have low OSC and ⁇ is as small as about 0.01. This ⁇ is 10% or less of the theoretical maximum value.
  • samples CZ55-MFO and CZ55-CFO have high OSC, and ⁇ is about 50% of the theoretical maximum value.
  • Table 4 is a table showing the molar ratio of the spinel metal oxide in the sample in CZ55-MFO and CZ55-CFO and the ratio of the oxygen in the spinel metal oxide phase to the oxygen in the CZ55 phase.
  • the composition of the spinel metal oxide is 15% by volume, the molar ratio of the spinel metal oxide in the sample is 0.1 or less. Furthermore, the amount of oxygen in the spinel metal oxide phase relative to the CZ55 phase is 0.2 or less. Therefore, even if oxygen in the spinel-type metal oxide phase contributes to OSC, the large OSC in FIGS. 5A and 5B cannot be explained. Therefore, the increase in OSC in FIGS. 5A and 5B is considered to be because the spinel metal oxide contributed to the conduction of electrons. Thus, by using a spinel metal oxide, the electron conductivity can be improved, and the OSC can be greatly improved at a low temperature of 400 ° C.
  • FIG. 6 is a diagram showing the OSC cycle characteristics. As shown in FIG. 6, when the cycle is repeated, although the OSC becomes somewhat lower after oxygen storage, excellent cycle characteristics can be obtained. Also, the OSC after oxygen release after each cycle is almost unchanged. This makes this sample particularly excellent as an oxygen release agent.
  • FIG. 7A and FIG. 7B are diagrams showing OSC at 150.degree.
  • the OSC before and after oxygen storage in CZ55-MFO is 11.2 ⁇ mol-O 2 ⁇ g ⁇ 1 .
  • OSC is 7.6 ⁇ mol-O 2 ⁇ g ⁇ 1 in CZ55-CFO.
  • OSC was defined as the OSC difference immediately before switching to a clean air atmosphere and 30 minutes after switching. Thus, oxygen storage and release were confirmed even at 150 ° C.
  • Example 1 As in Example 1, a mixed oxide of Ce 0.5 Zr 0.5 O 2- ⁇ and MnFe 2 O 4 and a combination of Ce 0.5 Zr 0.5 O 2- ⁇ and CoFe 2 O 4 The mixed oxide was found to have excellent OSC characteristics.
  • Example 1 For CZ55-CFO, samples in which the content [volume%] of CoFe 2 O 4 (CFO) was changed were produced.
  • the sample preparation method is the same as in Example 1.
  • OSC was evaluated at 400 ° C. for each sample.
  • the OSC evaluation method is the same as in Example 1.
  • Table 5 is a table showing the OSC measurement and calculation results of each sample.
  • FIG. 8 is a diagram showing OSC with respect to the content of CoFe 2 O 4 .
  • Each dot is a measured value or a calculated value, and a straight line is a line connecting dots.
  • data A is the OSC actually measured for each sample of CZ55-CFO. Data A increases as the content of CoFe 2 O 4 increases.
  • data B is the theoretical maximum value of OSC when oxygen is released only from Ce 0.5 Zr 0.5 O 2- ⁇ .
  • the reason why the data B decreases as the content increases is that the absolute amount of Ce 0.5 Zr 0.5 O 2- ⁇ in the sample decreases as the content increases.
  • the content is about 30% by volume or more, and the data A exceeds the data B. This is because oxygen is released from CoFe 2 O 4 in addition to Ce 0.5 Zr 0.5 O 2- ⁇ .
  • the OSC of a sample having 100% CoFe 2 O 4 at 400 ° C. is measured, it is 1878 ⁇ mol-O 2 ⁇ g ⁇ 1 .
  • the reason why the OSC of CoFe 2 O 4 is large is that CoFe 2 O 4 is reduced to CoO or FeO at 400 ° C., and part of CoO or FeO is further reduced to the metals Co and Fe.
  • CoFe 2 O 4 is added to Ce 1-x Zr x O 2- ⁇ by increasing the conductivity of electrons in the mixed oxide, thereby increasing Ce 0.5 Zr. This is because oxygen release from 0.5 O 2- ⁇ is promoted. If CoFe 2 O 4 promotes the release of oxygen from Ce 0.5 Zr 0.5 O 2- ⁇ , the oxidation and reduction of CoFe 2 O 4 is less and the durability is improved.
  • the amount of oxygen released from CoFe 2 O 4 contained in each sample was calculated from the content of each sample.
  • Oxygen release amount of the sample CoFe 2 O 4 is 100% (i.e. OSC) is 1878 ⁇ mol-O 2 ⁇ g -1, a CoFe 2 O 4 in each sample if Jozure the ratio of CoFe 2 O 4 to the value
  • the amount of oxygen released can be calculated.
  • the amount of oxygen released from CoFe 2 O 4 calculated from the data A of each sample the amount of oxygen released from Ce 0.5 Zr 0.5 O 2- ⁇ in each sample can be calculated.
  • data C is the amount of oxygen released from Ce 0.5 Zr 0.5 O 2- ⁇ calculated in this way.
  • Data R in Table 3 is the ratio of data C / data A.
  • Data R represents the ratio of the oxygen release amount (data C) from Ce 0.5 Zr 0.5 O 2- ⁇ in the OSC (data A) measured for each sample.
  • Data D in Table 5 and FIG. 8 are predicted values of the amount of oxygen released from Ce 0.5 Zr 0.5 O 2- ⁇ when CoFe 2 O 4 does not contribute.
  • Data D was calculated from 57.7 ⁇ mol-O 2 ⁇ g ⁇ 1 , which is data A when the content was 0, and the content.
  • Data CD in Table 5 and FIG. 8 is a value obtained by subtracting data D from data C.
  • Data CD corresponds to the increase in the amount of oxygen released from Ce 0.5 Zr 0.5 O 2- ⁇ due to CoFe 2 O 4 increasing the conductivity of electrons in CZ55-CFO. .
  • the data CD is the largest when the content is 5% by volume, and the data CD becomes smaller when the content is increased from 5% by volume. Further, the data R decreases as the content increases. It shows that the amount of oxygen released from CoFe 2 O 4 increases as the data R decreases.
  • the data CD is large.
  • CoFe 2 O 4 contributes to the occlusion and release of oxygen, and durability may deteriorate.
  • the content of CoFe 2 O 4 is preferably 15% by volume or less. In order to make the data R 70% or more and increase the data CD, the content of CoFe 2 O 4 is more preferably 10% by volume or less.
  • Example 2 an experiment was performed using CoFe 2 O 4 as an example of MFe 2 O 4.
  • M is a divalent metal element
  • M is reducible. Therefore, it is considered that the same result as in Example 2 is obtained even when more general MFe 2 O 4 is used. Therefore, when the oxide is composed of Ce 1-x Zr x O 2- ⁇ and MFe 2 O 4 , the content of MFe 2 O 4 is preferably 15% by volume or less, more preferably 10% by volume or less, and 7% by volume. % Or less is more preferable.
  • the content of MFe 2 O 4 is preferably 1% by volume or more, and more preferably 2% by volume or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention provides an oxide that includes: Ce1-xZrxO2- δ (0<x<1 and 0≤δ); and MFe2O4 (M represents a divalent metal element) having a spinel structure. The present invention provides an oxide that includes: Ce1-xZrxO2- δ (0<x<1 and 0≤δ); and a metal oxide having a spinel structure, and that is provided with a layer including the metal oxide in the grain boundary of Ce1-xZrxO2- δ crystal grains. The present invention provides a method for producing an oxide that includes Ce1-xZrxO2- δ (0<x<1 and 0≤δ) and a metal oxide having a spinel structure, the method including: a step for generating a metal complex from metal salts that constitute Ce1-xZrxO2- δ and the metal oxide and generating a polymer that contains the complex; and a step for carbonizing the polymer.

Description

酸化物、酸素貯蔵剤、排気ガス用3元触媒および酸化物の製造方法Oxide, oxygen storage agent, three-way catalyst for exhaust gas, and method for producing oxide
 酸化物、酸素貯蔵剤、排気ガス用3元触媒および酸化物の製造方法に関し、例えばセリアおよびジルコニアを含む酸化物、酸素貯蔵剤、排気ガス用3元触媒および酸化物の製造方法に関する。 The present invention relates to an oxide, an oxygen storage agent, a three-way catalyst for exhaust gas, and a method for producing an oxide.
 自動車等の排気ガスの浄化に3元触媒が用いられている。3元触媒は、排気ガス中の炭化水素(HC)一酸化炭素(CO)および窒素酸化物(NO)の3種類を同時に除去する触媒である。触媒として用いられるPt(白金)、Pd(パラジウム)またはRh(ロジウム)等はこれら3種類を同時に除去できる空燃比(Air/Fuel ratio)の範囲が狭い。そこで、空燃比がこの範囲から外れたときに酸素を吸蔵または放出する酸素貯蔵剤が用いられる(例えば特許文献1-3)。酸素貯蔵剤としてCeO-ZrO(セリア-ジルコニア)系酸化物が知られている。ガドリウム添加セリウム酸化物とスピネル型Fe複合酸化物とからなる酸化物をPechini法を用い作製することが知られている(特許文献4、非特許文献1)。 A three-way catalyst is used to purify exhaust gas from automobiles and the like. The three-way catalyst is a catalyst that simultaneously removes three types of hydrocarbon (HC) carbon monoxide (CO) and nitrogen oxide (NO x ) in the exhaust gas. Pt (platinum), Pd (palladium), Rh (rhodium) or the like used as a catalyst has a narrow air / fuel ratio range in which these three types can be removed simultaneously. Therefore, an oxygen storage agent that stores or releases oxygen when the air-fuel ratio is out of this range is used (for example, Patent Documents 1-3). CeO 2 —ZrO 2 (ceria-zirconia) -based oxides are known as oxygen storage agents. It is known that an oxide composed of gadolinium-added cerium oxide and spinel-type Fe composite oxide is manufactured using the Pecini method (Patent Document 4, Non-Patent Document 1).
特開2013-241328号公報JP 2013-241328 A 特開2015-112560号公報JP2015-112560A 特開2011-46567号公報JP 2011-46567 A 国際公開第2003/84894号International Publication No. 2003/84894
 CeO-ZrO系酸化物の酸素貯蔵能(OSC:Oxygen Storage Capacity)特性は十分ではない。例えば、比較的低温においてOSC特性が低下する。 Oxygen storage capability of CeO 2 -ZrO 2 based oxide (OSC: Oxygen Storage Capacity) characteristic is not sufficient. For example, OSC characteristics deteriorate at a relatively low temperature.
 本発明は、上記課題に鑑みなされたものであり、OSC特性を向上させることを目的とする。 The present invention has been made in view of the above problems, and aims to improve OSC characteristics.
 本発明は、Ce1-xZr2-δ(0<x<1かつ0≦δ)とスピネル構造を有するMFe(Mは2価をとる金属元素)とを含むことを特徴とする酸化物である。 The present invention includes Ce 1-x Zr x O 2-δ (0 <x <1 and 0 ≦ δ) and MFe 2 O 4 having a spinel structure (M is a divalent metal element). It is an oxide.
 上記構成において、前記MはMnまたはCoである構成とすることができる。 In the above configuration, the M may be Mn or Co.
 上記構成において、前記MFeの含有量は33体積%未満である構成とすることができる。 In the above structure, the content of the MFe 2 O 4 may be configured to be less than 33% by volume.
 上記構成において、前記酸化物は前記Ce1-xZr2-δと前記MFeとからなり、前記MFeの含有量は15体積%以下である構成とすることができる。 In the above structure, the oxide is composed of the Ce 1-x Zr x O 2-δ and the MFe 2 O 4, and the content of the MFe 2 O 4 may be 15% by volume or less. .
 上記構成において、前記MはCoである構成とすることができる。 In the above configuration, the M may be Co.
 本発明は、Ce1-xZr2-δ(0<x<1、0≦δ)とスピネル構造を有する金属酸化物とを含む、前記Ce1-xZr2-δの結晶粒の粒界に前記金属酸化物を含む層を備えることを特徴とする酸化物である。 The present invention provides a crystal of Ce 1-x Zr x O 2-δ containing Ce 1-x Zr x O 2-δ (0 <x <1, 0 ≦ δ) and a metal oxide having a spinel structure. An oxide comprising a layer containing the metal oxide at a grain boundary.
 上記構成において、前記金属酸化物を含む層は電子伝導層である構成とすることができる。 In the above structure, the layer containing the metal oxide may be an electron conductive layer.
 本発明は、上記酸化物を含むことを特徴とする酸素貯蔵剤である。 The present invention is an oxygen storage agent comprising the above oxide.
 本発明は上記酸素貯蔵剤を含むことを特徴とする排気ガス用3元触媒である。 The present invention is a three-way catalyst for exhaust gas characterized by containing the above oxygen storage agent.
 本発明は、Ce1-xZr2-δ(0<x<1かつ0≦δ)とスピネル構造を有する金属酸化物とを含む酸化物を製造する方法であって、前記Ce1-xZr2-δと前記金属酸化物とを構成する金属の塩から前記金属の錯体を生成し、前記錯体を含む高分子を生成する工程と、前記高分子を炭化する工程と、を含むことを特徴とする酸化物の製造方法である。 The present invention provides a method of producing the Ce 1-x Zr x O 2 -δ (0 <x <1 and 0 ≦ [delta]) oxide containing a metal oxide having a spinel structure, the Ce 1- forming a complex of the metal from a metal salt constituting x Zr x O 2-δ and the metal oxide, producing a polymer containing the complex, and carbonizing the polymer. It is the manufacturing method of the oxide characterized by including.
 本発明によれば、OSCを向上させることができる。 According to the present invention, OSC can be improved.
図1(a)は、Ce0.5Zr0.5におけるδを示す図である。図1(b)は、酸素吸蔵および酸素放出のときの反応を模式化した図である。1 (a) is a diagram showing a δ at Ce 0.5 Zr 0.5 O 2. FIG. 1 (b) is a diagram schematically showing the reaction during oxygen storage and oxygen release. 図2は、Pechini法を用い混合酸化物の作製方法を示すフローチャートである。FIG. 2 is a flowchart showing a method for producing a mixed oxide using the Pechini method. 図3(a)は、Pechini法を用い作製した混合酸化物の模式図である。図3(b)は、実施形態2に係る3元触媒の断面図である。FIG. 3A is a schematic diagram of a mixed oxide produced using the Pecini method. FIG. 3B is a cross-sectional view of the three-way catalyst according to the second embodiment. 図4は、各サンプルのXRD測定結果を示す図である。FIG. 4 is a diagram showing the XRD measurement results of each sample. 図5(a)は、各サンプルのOSCの測定結果を示す図であり、図5(b)は各サンプルにおけるδを示す図である。FIG. 5A is a diagram showing the OSC measurement result of each sample, and FIG. 5B is a diagram showing δ in each sample. 図6は、OSCサイクル特性を示す図である。FIG. 6 is a diagram showing the OSC cycle characteristics. 図7(a)および図7(b)は、150℃におけるOSC特性を示す図である。FIG. 7A and FIG. 7B are diagrams showing OSC characteristics at 150 ° C. 図8は、CoFeの含有量に対するOSCを示す図である。FIG. 8 is a diagram showing OSC with respect to the content of CoFe 2 O 4 .
 本発明の実施形態について説明する。 Embodiments of the present invention will be described.
 まず、3元触媒に酸素貯蔵剤に用いられるCeO-ZrO系酸化物について説明する。酸素貯蔵剤は、3元触媒において酸素が不足しているとき酸素を放出、酸素が過剰なとき酸素を吸蔵する。これにより、空燃比が理想の範囲からずれても排気ガス中の炭化水素、一酸化炭素および窒素酸化物の3種類を同時に除去することができる。 First, a CeO 2 —ZrO 2 -based oxide used as an oxygen storage agent for a three-way catalyst will be described. The oxygen storage agent releases oxygen when oxygen is insufficient in the three-way catalyst, and stores oxygen when oxygen is excessive. Thereby, even if the air-fuel ratio deviates from the ideal range, three types of hydrocarbons, carbon monoxide and nitrogen oxides in the exhaust gas can be removed simultaneously.
 CeOは立方晶蛍石型結晶構造を有する。CeOは以下の反応式により酸素を吸蔵および放出する。
 酸素放出 CeO→CeO2-δ+δ/2O
 酸素吸蔵 CeO2-δ+δ/2O→CeO
 CeOのCeイオンはCe4+であり、全てのCe4+がCe3+に還元されたとき最もδが大きくなる。このときδ=0.5である。
CeO 2 has a cubic fluorite-type crystal structure. CeO 2 occludes and releases oxygen according to the following reaction formula.
Oxygen release CeO 2 → CeO 2-δ + δ / 2O 2
Oxygen storage CeO 2-δ + δ / 2O 2 → CeO 2
The Ce ion of CeO 2 is Ce 4+ , and δ becomes the largest when all Ce 4+ is reduced to Ce 3+ . At this time, δ = 0.5.
 CeO単体では結晶表面の酸素が主にOSC特性に寄与するが、CeO-ZrOでは結晶内部の酸素もOSCに寄与する。このため、CeO-ZrO系酸化物は高いOSCを有する。Ce1-xZrでは、x=0.5近傍で最も高いOSC特性となる。Ce0.5Zr0.5において酸素を放出すると、Ce0.5Zr0.52-δとなる。Zrイオンの価数は変わらないとすると、最も大きいδは0.25である。Ce1-xZrにはt´相およびκ相等の複数の相が存在する。酸素貯蔵剤としては、主にt´相またはκ相が用いられる。t´相は正方晶系の相である。κ相はパイロクロア類似構造の相である。 In the case of CeO 2 alone, oxygen on the crystal surface mainly contributes to OSC characteristics, but in CeO 2 —ZrO 2 , oxygen inside the crystal also contributes to OSC. Therefore, CeO 2 —ZrO 2 -based oxide has a high OSC. Ce 1-x Zr x O 2 has the highest OSC characteristics near x = 0.5. When oxygen is released at Ce 0.5 Zr 0.5 O 2, the Ce 0.5 Zr 0.5 O 2-δ . If the valence of the Zr ion is not changed, the largest δ is 0.25. Ce 1-x Zr x O 2 has a plurality of phases such as a t ′ phase and a κ phase. As the oxygen storage agent, t ′ phase or κ phase is mainly used. The t ′ phase is a tetragonal phase. The κ phase is a phase with a pyrochlore-like structure.
 t´相およびκ相のCe0.5Zr0.5のCSO特性を測定した。測定方法は後述する実施例と同様である。図1(a)は、Ce0.5Zr0.5におけるδを示す図である。図1(a)のδは、酸素を放出させたときのδである。図1(a)に示すように、800℃においては、δが大きい。特にκ相では、理論的最大値のδ=0.25にほぼ一致している。t´相でもδは0.15を越えている。一方、400℃においては、t´相およびκ相ともδが0.01程度と非常に小さい。 CSO characteristics of Ce 0.5 Zr 0.5 O 2 of t ′ phase and κ phase were measured. The measuring method is the same as in the examples described later. 1 (a) is a diagram showing a δ at Ce 0.5 Zr 0.5 O 2. In FIG. 1A, δ is δ when oxygen is released. As shown in FIG. 1A, at 800 ° C., δ is large. In particular, in the κ phase, the theoretical maximum value δ = 0.25 is almost coincident. Even in the t ′ phase, δ exceeds 0.15. On the other hand, at 400 ° C., both t ′ phase and κ phase have a very small δ of about 0.01.
 このように、Ce1-xZrは比較的低温の排気ガスに対しては酸素貯蔵剤として十分に機能しない。例えばハイブリッド車等では排気ガスの温度が低く、Ce1-xZrのOSC特性では不十分である。 Thus, Ce 1-x Zr x O 2 does not function sufficiently as an oxygen storage agent for relatively low temperature exhaust gas. For example, in a hybrid vehicle or the like, the exhaust gas temperature is low, and the OSC characteristic of Ce 1-x Zr x O 2 is insufficient.
 発明者らは、低温においてCe1-xZrのOSC特性が低い理由について考察した。図1(b)は、酸素吸蔵および酸素放出のときの反応を模式化した図である。図1(b)に示すように、酸素を吸蔵するとき、CeO-ZrO系酸化物の内部から表面に酸素の空孔(vacancy)V ・・および電子2eが伝導し、酸素イオンO2-が表面から内部に伝導する。酸素を放出するとき、CeO-ZrO系酸化物の内部から表面に酸素イオンO2-が伝導し、酸素空孔V ・・および電子2eが表面から内部に伝導する。Ce1-xZrのOSC特性は、酸素イオンO2-の拡散と電子eの拡散のうち電子eの拡散で律速されているのではないかと推測した。 The inventors considered the reason why Ce 1-x Zr x O 2 has low OSC characteristics at low temperatures. FIG. 1 (b) is a diagram schematically showing the reaction during oxygen storage and oxygen release. As shown in FIG. 1B, when occluding oxygen, oxygen vacancy V O ·· and electrons 2e are conducted from the inside of the CeO 2 —ZrO 2 oxide to the surface, and oxygen ions O 2− is conducted from the surface to the inside. When oxygen is released, oxygen ions O 2− are conducted from the inside of the CeO 2 —ZrO 2 -based oxide to the surface, and oxygen vacancies V 2 O ·· and electrons 2e are conducted from the surface to the inside. It was speculated that the OSC characteristics of Ce 1-x Zr x O 2 might be limited by the diffusion of electron e among the diffusion of oxygen ion O 2− and the diffusion of electron e .
(実施形態1)
 実施形態1の混合酸化物は、Ce1-xZr2-δとスピネル構造を有する金属酸化物とを含む。例えば、混合酸化物は、Ce1-xZr2-δとスピネル構造を有する金属酸化物とからなる。スピネル構造を有する金属酸化物は、Ce1-xZrとの反応が生じにくく、かつ電子伝導性が高い。このため、混合酸化物内の電子の伝導性を高めOSC特性を高めることができる。
(Embodiment 1)
The mixed oxide of Embodiment 1 includes Ce 1-x Zr x O 2-δ and a metal oxide having a spinel structure. For example, the mixed oxide is made of Ce 1-x Zr x O 2-δ and a metal oxide having a spinel structure. A metal oxide having a spinel structure hardly reacts with Ce 1-x Zr x O 2 and has high electron conductivity. For this reason, the conductivity of electrons in the mixed oxide can be increased and the OSC characteristics can be improved.
 スピネル構造を有する金属酸化物の中で、MFe(Mは2価をとる金属元素)は電子伝導性が高い。よって、スピネル構造を有する金属酸化物にMFeを用いることでOSC特性を高めることができる。Mは、例えばCo(コバルト)、Mn(マンガン)、Fe(鉄)、Cu(銅)、Cr(クロム)、またはNi(ニッケル)等の遷移金属である。また、Mは、例えばMg(マグネシウム)等の2族元素でもよい。さらに、Mとしてこれら元素を複数含んでもよい。また、例えばLi(リチウム)等の1族の元素をFe等の遷移金属と組み合わせて、(Li0.5Fe0.5)のように、2価ではない金属元素を組み合わせて、見かけ上2価の金属元素としてもよい。なお、MFeは、実施形態の効果が得られる範囲で化学量論的な組成がずれていてもよい。また、不純物を含んでいてもよい。 Among metal oxides having a spinel structure, MFe 2 O 4 (M is a divalent metal element) has high electron conductivity. Therefore, OSC characteristics can be improved by using MFe 2 O 4 for the metal oxide having a spinel structure. M is a transition metal such as Co (cobalt), Mn (manganese), Fe (iron), Cu (copper), Cr (chromium), or Ni (nickel). Further, M may be a Group 2 element such as Mg (magnesium). Furthermore, M may contain a plurality of these elements. Further, for example, a group 1 element such as Li (lithium) is combined with a transition metal such as Fe, and a metal element that is not divalent, such as (Li 0.5 Fe 0.5 ), is combined, and apparently 2 A valent metal element may be used. Note that MFe 2 O 4 may have a stoichiometric composition within a range in which the effect of the embodiment can be obtained. Further, impurities may be included.
 Ce1-xZr2-δにおけるxは0<x<1であればよい。高いOSC特性を実現するため、0.2≦x≦0.8が好ましく、0.3≦x≦0.7がより好ましく、0.4≦x≦0.6がさらに好ましい。また、0≦δであればよい。Ce0.5Zr0.52-δのとき論理的には0≦δ≦0.25であり、xが0に近いとき0≦δ≦0.5である。 X in Ce 1-x Zr x O 2-δ may be 0 <x <1. In order to realize high OSC characteristics, 0.2 ≦ x ≦ 0.8 is preferable, 0.3 ≦ x ≦ 0.7 is more preferable, and 0.4 ≦ x ≦ 0.6 is further preferable. Further, 0 ≦ δ may be satisfied. When Ce 0.5 Zr 0.5 O 2-δ , logically 0 ≦ δ ≦ 0.25, and when x is close to 0, 0 ≦ δ ≦ 0.5.
 実施形態1に係る混合酸化物は例えばPechini法を用い作製することができる。図2は、Pechini法を用い混合酸化物の作製方法を示すフローチャートである。図2に示すように、金属塩を準備する(ステップS10)。金属塩は、Ce、Zrおよびスピネル構造を有する金属酸化物を構成する金属の塩である。金属酸化物がMFeの場合、準備する金属塩は、Ce、Zr、MおよびFeの金属塩である。金属塩として、例えば硝酸塩、硫酸塩または金属塩化物を用いることができる。 The mixed oxide according to Embodiment 1 can be manufactured using, for example, the Pecini method. FIG. 2 is a flowchart showing a method for producing a mixed oxide using the Pechini method. As shown in FIG. 2, a metal salt is prepared (step S10). The metal salt is a salt of a metal constituting a metal oxide having a Ce, Zr and spinel structure. When the metal oxide is MFe 2 O 4 , the prepared metal salt is a metal salt of Ce, Zr, M, and Fe. As metal salts, for example, nitrates, sulfates or metal chlorides can be used.
 金属塩から金属錯体を生成する(ステップS12)。配位子としては、例えばクエン酸等の有機配位子を用いる。配位子としてはキレート配位子が好ましい。例えば金属塩を多価アルコール等に溶解させ、配位子となる化学物質(例えばクエン酸)を過剰に加えることで、金属錯体を生成する。 A metal complex is generated from the metal salt (step S12). As the ligand, for example, an organic ligand such as citric acid is used. The ligand is preferably a chelate ligand. For example, a metal complex is generated by dissolving a metal salt in a polyhydric alcohol or the like and adding an excessive chemical substance (for example, citric acid) to be a ligand.
 金属錯体を含む高分子を生成する(ステップS14)。例えば、金属錯体と重合開始剤を含む溶液を加熱することにより高分子を生成する。例えば重合開始剤が多価アルコールであり、配位子がクエン酸である場合、クエン酸と多価アルコールのエステル化反応が起こる。さらに、加熱すると、クエン酸の金属と反応していないOH基と多価アルコールのOH基とにより脱水反応が起こる。これによりエステル同士が重合されポリマー化する。生成された高分子は例えばゲル状である。 A polymer containing a metal complex is generated (step S14). For example, a polymer is produced by heating a solution containing a metal complex and a polymerization initiator. For example, when the polymerization initiator is a polyhydric alcohol and the ligand is citric acid, an esterification reaction between citric acid and the polyhydric alcohol occurs. Furthermore, when heated, a dehydration reaction occurs due to the OH group not reacting with the metal of citric acid and the OH group of the polyhydric alcohol. Thereby, esters are polymerized and polymerized. The produced polymer is, for example, a gel.
 高分子を炭化する(ステップS16)。例えば、ポリマー化した高分子を加熱すると、C-C鎖および/またはC-H鎖が切れる。その後、炭化した高分子を粉砕する。仮焼する(ステップS18)。例えば粉砕した粉末を高温で仮焼きする。これにより、混合酸化物が作製できる。このように作製した混合酸化物では、Ce1-xZr2-δとスピネル構造を有する金属酸化物との均一な混合状態が保たれる。 The polymer is carbonized (step S16). For example, when a polymerized polymer is heated, a CC chain and / or a CH chain is broken. Thereafter, the carbonized polymer is pulverized. Calcination is performed (step S18). For example, the pulverized powder is calcined at a high temperature. Thereby, a mixed oxide can be produced. In the mixed oxide thus produced, a uniform mixed state of Ce 1-x Zr x O 2-δ and the metal oxide having a spinel structure is maintained.
 また、Pechini法を用いCe1-xZr2-δとスピネル型金属酸化物からなる混合酸化物を作成すると、特許文献4および非特許文献1に記載されているように、Ce1-xZr2-δの結晶粒の界面にスピネル型金属酸化物を含む層が形成されると考えられる。 Also, creating a Ce 1-x Zr x O 2 -δ and mixed oxides consisting of spinel-type metal oxide with Pechini method, as described in Patent Document 4 and Non-Patent Document 1, Ce 1- the grain at the interface x Zr x O 2-δ believed layer containing a spinel-type metal oxide is formed.
 図3(a)は、Pechini法を用い作製した混合酸化物の模式図である。図3(a)に示すように、Ce1-xZr2-δ相の結晶粒12とスピネル型金属酸化物相の結晶粒14が存在する。結晶粒12の界面に層16が形成されている。結晶粒12および14の粒径は例えば数nmから100nmである。層16の厚さは例えば1nmから数十nmである。層16は、スピネル型金属酸化物を含み電子伝導層として機能する。結晶粒14および層16を介し混合酸化物10内の電子の伝導性が高くなる。よって、酸素吸蔵および酸素放出におけるOSC特性が向上する。 FIG. 3A is a schematic diagram of a mixed oxide produced using the Pecini method. As shown in FIG. 3A, there are Ce 1-x Zr x O 2-δ phase crystal grains 12 and spinel-type metal oxide phase crystal grains 14. A layer 16 is formed at the interface of the crystal grains 12. The grain size of the crystal grains 12 and 14 is, for example, several nm to 100 nm. The thickness of the layer 16 is, for example, 1 nm to several tens of nm. The layer 16 includes a spinel metal oxide and functions as an electron conductive layer. The conductivity of electrons in the mixed oxide 10 is increased through the crystal grains 14 and the layer 16. Therefore, OSC characteristics in oxygen storage and oxygen release are improved.
 2つの物質相の混合状態において、1つの物質相が3次元的に接続されるためには、1つの物質相の含有量は全体の33体積%以上が求められる。Ce1-xZr2-δにスピネル型金属酸化物を添加した場合、電子伝導に寄与するように、スピネル型金属酸化物相を3次元的に接続させるためには、混合酸化物中のスピネル型金属酸化物の含有量を33体積%以上とすることになる。スピネル型金属酸化物を増やすと単位重量当たりのOSC特性が低下してしまう。 In order to connect one substance phase three-dimensionally in a mixed state of two substance phases, the content of one substance phase is required to be 33% by volume or more of the whole. When a spinel metal oxide is added to Ce 1-x Zr x O 2-δ , in order to connect the spinel metal oxide phase three-dimensionally so as to contribute to electronic conduction, The content of the spinel-type metal oxide is 33% by volume or more. When the spinel type metal oxide is increased, the OSC characteristic per unit weight is lowered.
 実施形態1によれば、図3(a)のように、結晶粒12の界面に電子伝導性の高いスピネル構造を有する金属酸化物を含む層16が形成されている。これにより、スピネル型金属酸化物の含有量が33%体積未満であっても、電子伝導に寄与する結晶粒14および層16が3次元的にネットワークを形成する。よって、電子の伝導性が高くなりOSC特性が向上する。スピネル型金属酸化物の含有量は30体積%以下が好ましく、25体積%以下がより好ましく、20体積%以下がさらに好ましい。また、3次元ネットワークを形成するために、スピネル型金属酸化物の含有量は1体積%以上が好ましく、2体積%以上がより好ましい。 According to Embodiment 1, a layer 16 containing a metal oxide having a spinel structure with high electron conductivity is formed at the interface of crystal grains 12 as shown in FIG. Thereby, even if the content of the spinel metal oxide is less than 33% by volume, the crystal grains 14 and the layer 16 that contribute to electron conduction form a three-dimensional network. Accordingly, electron conductivity is increased and OSC characteristics are improved. The content of the spinel metal oxide is preferably 30% by volume or less, more preferably 25% by volume or less, and further preferably 20% by volume or less. In order to form a three-dimensional network, the content of the spinel metal oxide is preferably 1% by volume or more, and more preferably 2% by volume or more.
(実施形態2)
 実施形態2は、実施形態1の混合酸化物を用いた3元触媒である。図3(b)は、実施形態2に係る3元触媒の断面図である。図3(b)に示すように、サポート材20に酸素貯蔵剤22が担持されている。酸素貯蔵剤22に触媒金属24が担持されている。サポート材20は例えばアルミナ等である。酸素貯蔵剤22は実施形態1に係る混合酸化物である。触媒金属24は、例えばPt、Pd、Rh等の貴金属である。酸素貯蔵剤22と触媒金属24がサポート材に担持されていてもよい。
(Embodiment 2)
The second embodiment is a three-way catalyst using the mixed oxide of the first embodiment. FIG. 3B is a cross-sectional view of the three-way catalyst according to the second embodiment. As shown in FIG. 3B, an oxygen storage agent 22 is supported on the support material 20. A catalyst metal 24 is supported on the oxygen storage agent 22. The support material 20 is alumina or the like, for example. The oxygen storage agent 22 is the mixed oxide according to the first embodiment. The catalyst metal 24 is a noble metal such as Pt, Pd, or Rh. The oxygen storage agent 22 and the catalyst metal 24 may be supported on the support material.
 実施形態1の混合酸化物を酸素貯蔵剤として用いることで、酸素貯蔵剤のOSC特性を向上できる。例えば比較的低温においてもOSC特性が向上する。実施形態1の混合酸化物を用いた酸素貯蔵剤を排気ガス用3元触媒とすることで、ハイブリッド車等の排気ガス温度が低い場合において、3元触媒として使用することができる。 By using the mixed oxide of Embodiment 1 as an oxygen storage agent, the OSC characteristics of the oxygen storage agent can be improved. For example, the OSC characteristics are improved even at a relatively low temperature. By using the oxygen storage agent using the mixed oxide of Embodiment 1 as a three-way catalyst for exhaust gas, the exhaust gas temperature of a hybrid vehicle or the like can be used as a three-way catalyst.
 混合酸化物としてサンプルCZ55-MFOおよびCZ55-CFOを作製した。各サンプルの酸化物および含有量は以下である。
CZ55-MFO:Ce0.5Zr0.5、15体積%MnFe
CZ55-CFO:Ce0.5Zr0.5、15体積%CoFe
Samples CZ55-MFO and CZ55-CFO were prepared as mixed oxides. The oxide and content of each sample is as follows.
CZ55-MFO: Ce 0.5 Zr 0.5 O 2 , 15% by volume MnFe 2 O 4
CZ55-CFO: Ce 0.5 Zr 0.5 O 2 , 15% by volume CoFe 2 O 4
 Pechini法を用いたCZ55-MFOおよびCZ55-CFOの作製方法について説明する。図2のステップS10において、表1の金属塩を準備した。Ce、Mn、CoおよびFeの塩として硝酸塩を用い、Zrの塩として酸化塩化物を用いた。各金属塩の純度は99.9原子%である。金属:クエン酸:プロピレングリコールの混合比はCe、Co、Feでは1:3:3、Zrでは1:6:6とした。Mnの硝酸塩Mn(NO・6HOは融点が26℃のため、そのまま液体原料として用いた。このため、表1には混合比を記載していない。
Figure JPOXMLDOC01-appb-T000001
A method for manufacturing CZ55-MFO and CZ55-CFO using the Pecini method will be described. In step S10 of FIG. 2, the metal salts shown in Table 1 were prepared. Nitrate was used as the salt of Ce, Mn, Co, and Fe, and oxide chloride was used as the salt of Zr. The purity of each metal salt is 99.9 atomic%. The mixing ratio of metal: citric acid: propylene glycol was 1: 3: 3 for Ce, Co, and Fe, and 1: 6: 6 for Zr. Since Mn nitrate Mn (NO 3 ) 2 .6H 2 O has a melting point of 26 ° C., it was directly used as a liquid raw material. For this reason, the mixing ratio is not described in Table 1.
Figure JPOXMLDOC01-appb-T000001
 ステップS12において、CZ55-MFOおよびCZ55-CFOを各々5g作製するため、表2の重量[g]の金属塩、クエン酸およびプロピレングリコールを混合し、クエン酸の重量の1/2の蒸留水を加え、攪拌した。これによりクエン酸を配位子とする金属錯体を生成した。
Figure JPOXMLDOC01-appb-T000002
In Step S12, in order to prepare 5 g of CZ55-MFO and CZ55-CFO, respectively, a metal salt, citric acid and propylene glycol having a weight [g] shown in Table 2 were mixed, and distilled water half the weight of citric acid was added. Added and stirred. This produced a metal complex with citric acid as a ligand.
Figure JPOXMLDOC01-appb-T000002
 ステップS14において、この溶液を約150℃に加熱することで、脱水反応にともなうクエン酸とプロピレングリコールのエステル化反応が生じた。さらに、300℃に加熱し半日保持することで、クエン酸の金属と結合していないOH基とプロピレングリコールのOH基により脱水反応が生じエステル同士が重合されポリマー化する。これにより金属錯体を含む高分子が生成された。 In step S14, this solution was heated to about 150 ° C., whereby an esterification reaction of citric acid and propylene glycol accompanied with the dehydration reaction occurred. Further, by heating to 300 ° C. and holding for half a day, a dehydration reaction occurs due to the OH group not bonded to the metal of citric acid and the OH group of propylene glycol, and the esters are polymerized and polymerized. As a result, a polymer containing a metal complex was produced.
 ステップS16において、電気炉を用い生成した高分子を200℃で2時間加熱し、その後300℃で2時間加熱し、その後400℃で2時間加熱した。これにより、高分子のC-C鎖およびC-H鎖が切断され高分子が炭化された。炭化後の試料をアルミナ乳鉢で粉砕した。 In step S16, the polymer produced using an electric furnace was heated at 200 ° C. for 2 hours, then heated at 300 ° C. for 2 hours, and then heated at 400 ° C. for 2 hours. As a result, the C—C chain and C—H chain of the polymer were cleaved to carbonize the polymer. The carbonized sample was pulverized in an alumina mortar.
 ステップS18において、粉砕した粉末を5℃/分の昇温速度で700℃まで昇温し、大気中で2時間仮焼した。これにより混合酸化物が作製される。その後、遊星ボールミルを用い24時間粉砕することで微粒子化した。これにより、CZ55-MFOおよびCZ55-CFOを作製した。また、サンプルCZ55として同様にPechini法を用いMnFeおよびCoFeを含まないCe0.5Zr0.5を作製した。 In step S18, the pulverized powder was heated to 700 ° C. at a temperature rising rate of 5 ° C./min, and calcined in the atmosphere for 2 hours. Thereby, a mixed oxide is produced. Thereafter, the mixture was pulverized for 24 hours using a planetary ball mill to form fine particles. This produced CZ55-MFO and CZ55-CFO. Further, as the sample CZ55, Ce 0.5 Zr 0.5 O 2 not containing MnFe 2 O 4 and CoFe 2 O 4 was produced in the same manner using the Pechini method.
 作製された各サンプルのXRD(X‐Ray Diffraction)測定を行なった。図4は、各サンプルのXRD測定結果を示す図である。X線としてCu-Kα線を用いた。図4に示すように、サンプルCZ55では、Ce0.5Zr0.5に起因した蛍石型構造のブロードなピークが観察される。サンプルCZ55-MFOでは、蛍石型構造のピークに加え、スピネル型構造のMnFeの先鋭なピークが観察される。サンプルCZ55-MFOに若干のMnFeO相が観察される。サンプルCZ55-CFOでは、蛍石型構造のピークに加え、スピネル型構造のCoFeの先鋭なピークが観察される。 XRD (X-Ray Diffraction) measurement of each produced sample was performed. FIG. 4 is a diagram showing the XRD measurement results of each sample. Cu-Kα rays were used as X-rays. As shown in FIG. 4, in the sample CZ55, a broad peak having a fluorite structure due to Ce 0.5 Zr 0.5 O 2 is observed. In the sample CZ55-MFO, in addition to the peak of the fluorite structure, a sharp peak of MnFe 2 O 4 having a spinel structure is observed. Some MnFeO 3 phase is observed in sample CZ55-MFO. In the sample CZ55-CFO, in addition to the peak of the fluorite structure, a sharp peak of CoFe 2 O 4 having the spinel structure is observed.
 表3は、WPPD(Whole-Powder-Pattern Decomposition)法を用い算出されたCe0.5Zr0.5相の結晶体積(Cell volume)および結晶子サイズ(Crystallite size)を示す図である。表3のように、各サンプルにおけるCe0.5Zr0.5相の結晶体積はほとんど変わらない。このことから、Ce0.5Zr0.5相にFe、MnおよびCo等の固溶はほとんどないと考えられる。また、結晶子サイズの小さなサンプルが作製されている。
Figure JPOXMLDOC01-appb-T000003
Table 3 is a diagram showing a crystal volume (Crystallite size) and a crystal volume of the Ce 0.5 Zr 0.5 O 2 phase calculated using a WPPD (Whole-Powder-Pattern Decomposition) method. . As shown in Table 3, the crystal volume of the Ce 0.5 Zr 0.5 O 2 phase in each sample is hardly changed. From this, it is considered that there is almost no solid solution of Fe, Mn, Co and the like in the Ce 0.5 Zr 0.5 O 2 phase. In addition, a sample having a small crystallite size is produced.
Figure JPOXMLDOC01-appb-T000003
 各サンプルについてOSCを評価した。OSCの評価は熱分量分析により行なった。50mgから100mg程度の粉末状のサンプルを白金パンに入れる。サンプルをクリーン空気雰囲気中で400℃まで昇温する。400℃においてクリーン空気中で120分間保持する。その後、温度を維持しArガス中に5%のHガスを含む雰囲気(H-Arガス雰囲気)に切り替え、60分保持する。その後、温度を維持し雰囲気をクリーン空気雰囲気に切り替える。クリーン空気中ではサンプルに酸素が吸蔵される。H-Arガス雰囲気中では酸素が放出される。この過程においてサンプルの重量を測定する。サンプルの重量変化は酸素の吸蔵および放出に対応する。サンプルの重量変化を単位重さ当たりの酸素のモル吸出量OSC(μmol-O・g-1)とする。また、雰囲気をH-Arガス雰囲気からクリーン空気雰囲気に切り替える直前のOSCからCe0.5Zr0.52-δのδを算出した。δの理論的最大値は0.25である。 OSC was evaluated for each sample. The evaluation of OSC was performed by calorimetric analysis. A powder sample of about 50 mg to 100 mg is put in a platinum pan. The sample is heated to 400 ° C. in a clean air atmosphere. Hold at 400 ° C. in clean air for 120 minutes. Thereafter, the temperature is maintained, and the atmosphere is switched to an atmosphere containing 5% H 2 gas in Ar gas (H 2 —Ar gas atmosphere) and held for 60 minutes. Thereafter, the temperature is maintained and the atmosphere is switched to a clean air atmosphere. In clean air, oxygen is stored in the sample. Oxygen is released in the H 2 —Ar gas atmosphere. In this process, the weight of the sample is measured. Sample weight changes correspond to oxygen storage and release. The change in the weight of the sample is defined as the molar amount of oxygen absorbed per unit weight OSC (μmol-O 2 · g −1 ). Further, δ of Ce 0.5 Zr 0.5 O 2- δ was calculated from the OSC immediately before switching the atmosphere from the H 2 —Ar gas atmosphere to the clean air atmosphere. The theoretical maximum value of δ is 0.25.
 図5(a)は、各サンプルのOSCの測定結果を示す図であり、図5(b)は各サンプルにおけるδを示す図である。t´-CZ55およびκ-CZ55は、固相反応法を用い作製したそれぞれt´相のCe0.5Zr0.5およびκ相のCe0.5Zr0.5である。t´-CZ55(pechini)はPechini法で作製したt´相のCe0.5Zr0.5である。 FIG. 5A is a diagram showing the OSC measurement result of each sample, and FIG. 5B is a diagram showing δ in each sample. t'-CZ55 and κ-CZ55 is Ce 0.5 Zr 0.5 O 2 of the solid phase each reaction method to prepare using t'-phase of Ce 0.5 Zr 0.5 O 2 and kappa phases. t′-CZ55 (pechini) is Ce 0.5 Zr 0.5 O 2 of the t ′ phase produced by the Pechini method.
 図5(a)および図5(b)に示すように、サンプルt´-CZ55、κ-CZ55およびt´-CZ55(pechini)ではOSCが低く、δも0.01程度と小さい。このδは理論的最大値の10%以下である。一方、サンプルCZ55-MFOおよびCZ55-CFOでは、OSCが高く、δは理論的最大値の50%程度である。 As shown in FIGS. 5A and 5B, samples t′-CZ55, κ-CZ55 and t′-CZ55 (pechini) have low OSC and δ is as small as about 0.01. This δ is 10% or less of the theoretical maximum value. On the other hand, samples CZ55-MFO and CZ55-CFO have high OSC, and δ is about 50% of the theoretical maximum value.
 表4は、CZ55-MFOおよびCZ55-CFOにおけるサンプル中のスピネル型金属酸化物のモル比およびCZ55相中の酸素に対するスピネル型金属酸化物相の酸素の比を示す表である。
Figure JPOXMLDOC01-appb-T000004
Table 4 is a table showing the molar ratio of the spinel metal oxide in the sample in CZ55-MFO and CZ55-CFO and the ratio of the oxygen in the spinel metal oxide phase to the oxygen in the CZ55 phase.
Figure JPOXMLDOC01-appb-T000004
 表4のように、スピネル型金属酸化物の組成が15体積%では、サンプル中のスピネル型金属酸化物のモル比は0.1以下である。さらに、CZ55相に対するスピネル型金属酸化物相内の酸素の量は0.2以下である。よって、仮にスピネル型金属酸化物相内の酸素がOSCに寄与したとしても、図5(a)および図5(b)の大きなOSCは説明できない。よって、図5(a)および図5(b)における、OSCの増大は、スピネル型金属酸化物が電子の伝導に寄与したためと考えられる。このように、スピネル型金属酸化物を用いることで電子伝導性を向上でき、400℃という低温においてOSCを大きく向上させることができる。 As shown in Table 4, when the composition of the spinel metal oxide is 15% by volume, the molar ratio of the spinel metal oxide in the sample is 0.1 or less. Furthermore, the amount of oxygen in the spinel metal oxide phase relative to the CZ55 phase is 0.2 or less. Therefore, even if oxygen in the spinel-type metal oxide phase contributes to OSC, the large OSC in FIGS. 5A and 5B cannot be explained. Therefore, the increase in OSC in FIGS. 5A and 5B is considered to be because the spinel metal oxide contributed to the conduction of electrons. Thus, by using a spinel metal oxide, the electron conductivity can be improved, and the OSC can be greatly improved at a low temperature of 400 ° C.
 次に400℃におけるOSCサイクル特性を測定した。クリーン空気雰囲気とH-Arガス雰囲気を30分毎に切り替えた。図6は、OSCサイクル特性を示す図である。図6に示すように、サイクルを繰り返すと酸素吸蔵後にOSCが多少低くなるものの、優れたサイクル特性を得ることができる。また、各サイクル後の酸素放出後のOSCはほとんど変わらない。これにより、このサンプルは酸素放出剤として特に優れている。 Next, OSC cycle characteristics at 400 ° C. were measured. The clean air atmosphere and the H 2 —Ar gas atmosphere were switched every 30 minutes. FIG. 6 is a diagram showing the OSC cycle characteristics. As shown in FIG. 6, when the cycle is repeated, although the OSC becomes somewhat lower after oxygen storage, excellent cycle characteristics can be obtained. Also, the OSC after oxygen release after each cycle is almost unchanged. This makes this sample particularly excellent as an oxygen release agent.
 図7(a)および図7(b)は、150℃におけるOSCを示す図である。図7(a)に示すように、CZ55-MFOにおいて酸素吸蔵前後のOSCは11.2μmol-O・g-1である。図7(b)に示すように、CZ55-CFOにおいてOSCは7.6μmol-O・g-1である。OSCは、クリーン空気雰囲気への切り替え直前と切り替え後30分後のOSC差とした。このように、150℃においても酸素吸蔵および放出を確認した。 FIG. 7A and FIG. 7B are diagrams showing OSC at 150.degree. As shown in FIG. 7A, the OSC before and after oxygen storage in CZ55-MFO is 11.2 μmol-O 2 · g −1 . As shown in FIG. 7B, OSC is 7.6 μmol-O 2 · g −1 in CZ55-CFO. OSC was defined as the OSC difference immediately before switching to a clean air atmosphere and 30 minutes after switching. Thus, oxygen storage and release were confirmed even at 150 ° C.
 実施例1のように、Ce0.5Zr0.52-δとMnFeとの混合酸化物、およびCe0.5Zr0.52-δとCoFeとの混合酸化物は優れたOSC特性を有することがわかった。 As in Example 1, a mixed oxide of Ce 0.5 Zr 0.5 O 2-δ and MnFe 2 O 4 and a combination of Ce 0.5 Zr 0.5 O 2-δ and CoFe 2 O 4 The mixed oxide was found to have excellent OSC characteristics.
 CZ55-CFOについて、CoFe(CFO)の含有量[体積%]を変えたサンプルを作製した。サンプルの作製方法は実施例1と同じである。各サンプルについて400℃においてOSCを評価した。OSCの評価方法は実施例1と同じである。 For CZ55-CFO, samples in which the content [volume%] of CoFe 2 O 4 (CFO) was changed were produced. The sample preparation method is the same as in Example 1. OSC was evaluated at 400 ° C. for each sample. The OSC evaluation method is the same as in Example 1.
 表5は、各サンプルのOSCの測定および算出結果を示す表である。
Figure JPOXMLDOC01-appb-T000005
Table 5 is a table showing the OSC measurement and calculation results of each sample.
Figure JPOXMLDOC01-appb-T000005
 図8は、CoFeの含有量に対するOSCを示す図である。各ドットが測定した値または算出した値であり、直線はドットをつなぐ線である。表5および図8において、データAは、CZ55-CFOの各サンプルの実際に測定したOSCである。データAは、CoFeの含有量が大きくなると大きくなる。 FIG. 8 is a diagram showing OSC with respect to the content of CoFe 2 O 4 . Each dot is a measured value or a calculated value, and a straight line is a line connecting dots. In Table 5 and FIG. 8, data A is the OSC actually measured for each sample of CZ55-CFO. Data A increases as the content of CoFe 2 O 4 increases.
 表5および図8において、データBは、Ce0.5Zr0.52-δのみから酸素が放出されるとしたときのOSCの理論的最大値である。含有量が大きくなるとデータBが減少するのは、含有量が大きくなるとサンプル内のCe0.5Zr0.52-δの絶対量が減少するためである。 In Table 5 and FIG. 8, data B is the theoretical maximum value of OSC when oxygen is released only from Ce 0.5 Zr 0.5 O 2-δ . The reason why the data B decreases as the content increases is that the absolute amount of Ce 0.5 Zr 0.5 O 2-δ in the sample decreases as the content increases.
 含有量が約30体積%以上でデータAがデータBを越えている。これは、Ce0.5Zr0.52-δに加えCoFeから酸素が放出されるためである。400℃におけるCoFeが100%のサンプルのOSCを測定すると、1878μmol-O・g-1である。CoFeのOSCが大きいのは、CoFeが400℃でCoOまたはFeOに還元され、さらにCoOまたはFeOの一部が金属のCoおよびFeまで還元されるためである。 The content is about 30% by volume or more, and the data A exceeds the data B. This is because oxygen is released from CoFe 2 O 4 in addition to Ce 0.5 Zr 0.5 O 2-δ . When the OSC of a sample having 100% CoFe 2 O 4 at 400 ° C. is measured, it is 1878 μmol-O 2 · g −1 . The reason why the OSC of CoFe 2 O 4 is large is that CoFe 2 O 4 is reduced to CoO or FeO at 400 ° C., and part of CoO or FeO is further reduced to the metals Co and Fe.
 データAからは、CoFeの含有量が大きい方がよいように考えられる。しかし、酸素の吸蔵および放出によりCoFeが酸化および還元を繰り返すと、CoFeが酸化物と金属とを繰り返すことになる。これにより、CoFeが凝集し作動しなくなる。つまり耐久性がなくなる。実施形態1で説明したように、Ce1-xZr2-δにMFeを添加するのは、混合酸化物内での電子の伝導性を高めることにより、Ce0.5Zr0.52-δからの酸素の放出を促進させるためである。CoFeがCe0.5Zr0.52-δからの酸素の放出を促進させるのであれば、CoFeの酸化還元は少なく耐久性は向上する。 From the data A, it is considered that the larger content of CoFe 2 O 4 is better. However, when the CoFe 2 O 4 by insertion of oxygen and release are repeated oxidation and reduction, CoFe 2 O 4 is to repeat the oxide and the metal. Thereby, CoFe 2 O 4 aggregates and does not operate. In other words, durability is lost. As described in the first embodiment, MFe 2 O 4 is added to Ce 1-x Zr x O 2-δ by increasing the conductivity of electrons in the mixed oxide, thereby increasing Ce 0.5 Zr. This is because oxygen release from 0.5 O 2-δ is promoted. If CoFe 2 O 4 promotes the release of oxygen from Ce 0.5 Zr 0.5 O 2-δ , the oxidation and reduction of CoFe 2 O 4 is less and the durability is improved.
 そこで、各サンプルの含有量から各サンプルに含まれるCoFeから放出される酸素量を算出した。CoFeが100%のサンプルの酸素放出量(すなわちOSC)は1878μmol-O・g-1であり、この値にCoFeの比率を乗ずれば各サンプルのCoFeから放出される酸素量が算出できる。各サンプルのデータAから算出したCoFeから放出される酸素量を引くと、各サンプルにおけるCe0.5Zr0.52-δからの酸素放出量が算出できる。表5および図8において、データCは、このようにして算出したCe0.5Zr0.52-δからの酸素放出量である。表3のデータRは、データC/データAの比率である。データRは、各サンプル実測したOSC(データA)のうちCe0.5Zr0.52-δからの酸素放出量(データC)の比率を表している。 Therefore, the amount of oxygen released from CoFe 2 O 4 contained in each sample was calculated from the content of each sample. Oxygen release amount of the sample CoFe 2 O 4 is 100% (i.e. OSC) is 1878μmol-O 2 · g -1, a CoFe 2 O 4 in each sample if Jozure the ratio of CoFe 2 O 4 to the value The amount of oxygen released can be calculated. By subtracting the amount of oxygen released from CoFe 2 O 4 calculated from the data A of each sample, the amount of oxygen released from Ce 0.5 Zr 0.5 O 2-δ in each sample can be calculated. In Table 5 and FIG. 8, data C is the amount of oxygen released from Ce 0.5 Zr 0.5 O 2-δ calculated in this way. Data R in Table 3 is the ratio of data C / data A. Data R represents the ratio of the oxygen release amount (data C) from Ce 0.5 Zr 0.5 O 2-δ in the OSC (data A) measured for each sample.
 表5および図8におけるデータDは、CoFeが寄与しないときのCe0.5Zr0.52-δからの酸素放出量の予測値である。データDは、含有量が0のときのデータAである57.7μmol-O・g-1と含有量とから算出した。表5および図8におけるデータC-DはデータCからデータDを引いた値である。データC-Dは、CoFeがCZ55-CFO内の電子の伝導性を高めたことにより、Ce0.5Zr0.52-δからの酸素放出量が増加した分に相当する。 Data D in Table 5 and FIG. 8 are predicted values of the amount of oxygen released from Ce 0.5 Zr 0.5 O 2-δ when CoFe 2 O 4 does not contribute. Data D was calculated from 57.7 μmol-O 2 · g −1 , which is data A when the content was 0, and the content. Data CD in Table 5 and FIG. 8 is a value obtained by subtracting data D from data C. Data CD corresponds to the increase in the amount of oxygen released from Ce 0.5 Zr 0.5 O 2-δ due to CoFe 2 O 4 increasing the conductivity of electrons in CZ55-CFO. .
 表5および図8から、含有量が5体積%のときデータC-Dは最も大きく、含有量が5体積%から大きくなるとデータC-Dは小さくなる。また、含有量が大きくなるとデータRが小さくなる。データRが小さくなるとCoFeからの酸素放出量が増えることを示している。 From Table 5 and FIG. 8, the data CD is the largest when the content is 5% by volume, and the data CD becomes smaller when the content is increased from 5% by volume. Further, the data R decreases as the content increases. It shows that the amount of oxygen released from CoFe 2 O 4 increases as the data R decreases.
 CoFeがCe0.5Zr0.52-δからの酸素の放出を促進させるという観点からはデータC-Dが大きい方が好ましい。データRが小さくなるとCoFeが酸素の吸蔵放出に寄与することになり耐久性が劣化する可能性がある。 From the viewpoint that CoFe 2 O 4 promotes the release of oxygen from Ce 0.5 Zr 0.5 O 2-δ, it is preferable that the data CD is large. When the data R is small, CoFe 2 O 4 contributes to the occlusion and release of oxygen, and durability may deteriorate.
 データRを50%以上としかつデータC-Dを大きくするため、CoFeの含有量は15体積%以下が好ましい。データRを70%以上としかつデータC-Dをより大きくするため、CoFeの含有量は10体積%以下がより好ましい。 In order to make the data R 50% or more and increase the data CD, the content of CoFe 2 O 4 is preferably 15% by volume or less. In order to make the data R 70% or more and increase the data CD, the content of CoFe 2 O 4 is more preferably 10% by volume or less.
 実施例2では、MFeの例としてCoFeを用い実験したが、Mが2価をとる金属元素であれば、Mは還元性がある。よって、より一般的なMFeを用いても実施例2と同様の結果となると考えられる。よって、酸化物がCe1-xZr2-δとMFeとからなるとき、MFeの含有量は15体積%以下が好ましく、10体積%以下がより好ましく、7体積%以下がさらに好ましい。MFeの含有量は、1体積%以上が好ましく、2体積%以上がより好ましい。 In Example 2, an experiment was performed using CoFe 2 O 4 as an example of MFe 2 O 4. However, if M is a divalent metal element, M is reducible. Therefore, it is considered that the same result as in Example 2 is obtained even when more general MFe 2 O 4 is used. Therefore, when the oxide is composed of Ce 1-x Zr x O 2-δ and MFe 2 O 4 , the content of MFe 2 O 4 is preferably 15% by volume or less, more preferably 10% by volume or less, and 7% by volume. % Or less is more preferable. The content of MFe 2 O 4 is preferably 1% by volume or more, and more preferably 2% by volume or more.
 以上、発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.
 10 混合酸化物
 12、14 結晶粒
 16 層
 20 サポート材
 22 酸素貯蔵剤
 24 触媒金属
10 Mixed oxide 12, 14 Crystal grain 16 Layer 20 Support material 22 Oxygen storage agent 24 Catalytic metal

Claims (10)

  1.  Ce1-xZr2-δ(0<x<1かつ0≦δ)とスピネル構造を有するMFe(Mは2価をとる金属元素)とを含むことを特徴とする酸化物。 An oxide comprising Ce 1-x Zr x O 2-δ (0 <x <1 and 0 ≦ δ) and MFe 2 O 4 having a spinel structure (M is a divalent metal element) .
  2.  前記MはMnまたはCoであることを特徴とする請求項1記載の酸化物。 2. The oxide according to claim 1, wherein said M is Mn or Co.
  3.  前記MFeの含有量は33体積%未満であることを特徴とする請求項1または2記載の酸化物。 The oxide according to claim 1 or 2, wherein the content of MFe 2 O 4 is less than 33% by volume.
  4.  前記酸化物は前記Ce1-xZr2-δと前記MFeとからなり、前記MFeの含有量は15体積%以下であることを特徴とする請求項1記載の酸化物。 2. The oxide according to claim 1, wherein the oxide includes the Ce 1-x Zr x O 2-δ and the MFe 2 O 4, and the content of the MFe 2 O 4 is 15% by volume or less. Oxides.
  5.  前記MはCoであることを特徴とする請求項4記載の酸化物。 The oxide according to claim 4, wherein said M is Co.
  6.  Ce1-xZr2-δ(0<x<1、0≦δ)とスピネル構造を有する金属酸化物とを含み、前記Ce1-xZr2-δの結晶粒の粒界に前記金属酸化物を含む層を備えることを特徴とする酸化物。 Ce 1-x Zr x O 2-δ (0 <x <1, 0 ≦ δ) and a metal oxide having a spinel structure, and the grain boundary of the Ce 1-x Zr x O 2-δ crystal grains An oxide comprising a layer containing the metal oxide.
  7.  前記金属酸化物を含む層は電子伝導層であることを特徴とする請求項6記載の酸化物。 The oxide according to claim 6, wherein the layer containing the metal oxide is an electron conductive layer.
  8.  請求項1から7のいずれか一項記載の酸化物を含むことを特徴とする酸素貯蔵剤。 An oxygen storage agent comprising the oxide according to any one of claims 1 to 7.
  9.  請求項8記載の酸素貯蔵剤を含むことを特徴とする排気ガス用3元触媒。 A three-way catalyst for exhaust gas, comprising the oxygen storage agent according to claim 8.
  10.  Ce1-xZr2-δ(0<x<1かつ0≦δ)とスピネル構造を有する金属酸化物とを含む酸化物を製造する方法であって、
     前記Ce1-xZr2-δと前記金属酸化物とを構成する金属の塩から前記金属の錯体を生成し、前記錯体を含む高分子を生成する工程と、
     前記高分子を炭化する工程と、
    を含むことを特徴とする酸化物の製造方法。
    A method for producing an oxide comprising Ce 1-x Zr x O 2-δ (0 <x <1 and 0 ≦ δ) and a metal oxide having a spinel structure,
    Generating a complex of the metal from a metal salt constituting the Ce 1-x Zr x O 2-δ and the metal oxide, and generating a polymer containing the complex;
    Carbonizing the polymer;
    A method for producing an oxide, comprising:
PCT/JP2017/020578 2016-06-07 2017-06-02 Oxide, oxygen storage agent, three-way catalyst for exhaust gas, and method for producing oxide WO2017213038A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018522451A JPWO2017213038A1 (en) 2016-06-07 2017-06-02 Oxide, oxygen storage agent, three-way catalyst for exhaust gas and method for producing oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016113939 2016-06-07
JP2016-113939 2016-06-07

Publications (1)

Publication Number Publication Date
WO2017213038A1 true WO2017213038A1 (en) 2017-12-14

Family

ID=60578586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020578 WO2017213038A1 (en) 2016-06-07 2017-06-02 Oxide, oxygen storage agent, three-way catalyst for exhaust gas, and method for producing oxide

Country Status (2)

Country Link
JP (1) JPWO2017213038A1 (en)
WO (1) WO2017213038A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148748A (en) * 1987-12-05 1989-06-12 Mitsubishi Mining & Cement Co Ltd Production of sintered body of zirconia
JP2002292246A (en) * 2001-03-30 2002-10-08 Nissan Diesel Motor Co Ltd Apparatus for cleaning exhaust gas from diesel engine
JP2007145647A (en) * 2005-11-28 2007-06-14 Kyocera Corp Reaction preventing member to lead-containing compound
WO2010010714A1 (en) * 2008-07-23 2010-01-28 新日鉄マテリアルズ株式会社 Oxygen storage material, catalyst for exhaust gas purification, and honeycomb catalyst structure for exhaust gas purification
JP2013199415A (en) * 2012-03-26 2013-10-03 Kyocera Corp Ceramic sintered compact, electronic component mounting substrate using the same, and electronic device
JP2014121686A (en) * 2012-12-21 2014-07-03 Toyota Motor Corp Catalyst for purifying exhaust gas
JP2014128766A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Catalyst for emission gas purification
JP2014210229A (en) * 2013-04-18 2014-11-13 三井金属鉱業株式会社 Catalyst composition for exhaust gas purification, and catalyst for exhaust gas purification
JP2014226646A (en) * 2013-05-27 2014-12-08 トヨタ自動車株式会社 Exhaust gas purifying catalyst
JP2014237078A (en) * 2013-06-06 2014-12-18 トヨタ自動車株式会社 Exhaust gas purifying catalyst and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148748A (en) * 1987-12-05 1989-06-12 Mitsubishi Mining & Cement Co Ltd Production of sintered body of zirconia
JP2002292246A (en) * 2001-03-30 2002-10-08 Nissan Diesel Motor Co Ltd Apparatus for cleaning exhaust gas from diesel engine
JP2007145647A (en) * 2005-11-28 2007-06-14 Kyocera Corp Reaction preventing member to lead-containing compound
WO2010010714A1 (en) * 2008-07-23 2010-01-28 新日鉄マテリアルズ株式会社 Oxygen storage material, catalyst for exhaust gas purification, and honeycomb catalyst structure for exhaust gas purification
JP2013199415A (en) * 2012-03-26 2013-10-03 Kyocera Corp Ceramic sintered compact, electronic component mounting substrate using the same, and electronic device
JP2014121686A (en) * 2012-12-21 2014-07-03 Toyota Motor Corp Catalyst for purifying exhaust gas
JP2014128766A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Catalyst for emission gas purification
JP2014210229A (en) * 2013-04-18 2014-11-13 三井金属鉱業株式会社 Catalyst composition for exhaust gas purification, and catalyst for exhaust gas purification
JP2014226646A (en) * 2013-05-27 2014-12-08 トヨタ自動車株式会社 Exhaust gas purifying catalyst
JP2014237078A (en) * 2013-06-06 2014-12-18 トヨタ自動車株式会社 Exhaust gas purifying catalyst and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E. APEL ET AL.: "Introduction to a tough, strong and stable Ce-TZP/MgA1204 composite for biomedical applications", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 32, no. 11, August 2012 (2012-08-01), pages 2697 - 2703, XP028512170 *

Also Published As

Publication number Publication date
JPWO2017213038A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US8361925B2 (en) Exhaust gas-purifying catalyst
Dou et al. A novel 3D oxide nanosheet array catalyst derived from hierarchical structured array-like CoMgAl-LDH/graphene nanohybrid for highly efficient NO x capture and catalytic soot combustion
JP2015000818A (en) Ceria-zirconia composite oxide and method for manufacturing the same as well as exhaust gas cleaning catalyst using the same ceria-zirconia composite oxide
WO2009104386A1 (en) Process for production of catalyst supports and catalyst supports
JP2010099638A (en) Catalyst, catalyst for purifying exhaust gas, and method for manufacturing the catalyst
KR101593683B1 (en) Composite oxide
US20170028384A1 (en) Composite oxide
JP6087784B2 (en) Oxygen storage / release material and exhaust gas purification catalyst containing the same
JP5761710B2 (en) Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition
JP6759298B2 (en) Oxygen storage material and its manufacturing method
CN107224971B (en) Oxygen-occluding material and method for producing same
WO2017213038A1 (en) Oxide, oxygen storage agent, three-way catalyst for exhaust gas, and method for producing oxide
JP2017189761A (en) Method for producing catalyst for exhaust purification
JP6855326B2 (en) Manufacturing method of oxygen storage material
JP6181260B1 (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst
JP6670880B2 (en) Oxygen storage material and method for producing the same
JP7237048B2 (en) Oxygen storage material and its manufacturing method
JP7097766B2 (en) Oxygen storage material and its manufacturing method
JP6806588B2 (en) Auxiliary catalyst for purifying automobile exhaust gas and its manufacturing method
JP6851336B2 (en) Oxygen storage material and its manufacturing method
JP5673173B2 (en) Exhaust gas purification catalyst
JP5287222B2 (en) PM oxidation catalyst, particulate filter, and method for producing PM oxidation catalyst
JP6800127B2 (en) Oxygen storage material and its manufacturing method
Safdar et al. Development of Ni-doped A-site lanthanides-based perovskite-type oxide catalysts for CO 2 methanation by auto-combustion method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522451

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810216

Country of ref document: EP

Kind code of ref document: A1