JPS63162570A - Thermal degradation-resistant high strength zirconia-alumina ceramics and manufacture - Google Patents
Thermal degradation-resistant high strength zirconia-alumina ceramics and manufactureInfo
- Publication number
- JPS63162570A JPS63162570A JP61315012A JP31501286A JPS63162570A JP S63162570 A JPS63162570 A JP S63162570A JP 61315012 A JP61315012 A JP 61315012A JP 31501286 A JP31501286 A JP 31501286A JP S63162570 A JPS63162570 A JP S63162570A
- Authority
- JP
- Japan
- Prior art keywords
- mol
- powder
- component
- zirconia
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims description 28
- 239000000919 ceramic Substances 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 230000015556 catabolic process Effects 0.000 title 1
- 238000006731 degradation reaction Methods 0.000 title 1
- 239000000843 powder Substances 0.000 claims description 36
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical group O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 34
- 239000002243 precursor Substances 0.000 claims description 12
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 11
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- 238000001354 calcination Methods 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 claims description 3
- 239000012702 metal oxide precursor Substances 0.000 claims description 3
- 150000003609 titanium compounds Chemical class 0.000 claims description 3
- 150000003623 transition metal compounds Chemical class 0.000 claims description 3
- -1 yttrium compound Chemical class 0.000 claims description 3
- 150000003755 zirconium compounds Chemical class 0.000 claims description 3
- 239000010431 corundum Substances 0.000 claims description 2
- 229910052593 corundum Inorganic materials 0.000 claims description 2
- 239000011812 mixed powder Substances 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- 230000006866 deterioration Effects 0.000 description 18
- 238000005245 sintering Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 239000002994 raw material Substances 0.000 description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000007373 indentation Methods 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 150000002823 nitrates Chemical class 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 150000003748 yttrium compounds Chemical class 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、耐熱劣化性が優れた高強度、高靭性セラミッ
クスに係わり、さらに詳しくはα−アルミナと部分安定
化ジルコニアを主成分とするジルコニア・アルミナセラ
ミックスに関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to high-strength, high-toughness ceramics with excellent heat deterioration resistance, and more specifically to zirconia ceramics containing α-alumina and partially stabilized zirconia as main components. Regarding alumina ceramics.
本発明のジルコニア・アルミナセラミックスは、高強度
、かつ、高靭性を有する耐摩耗性、耐熱劣化性に優れた
焼結体であることから、切削工具を始め、耐摩耗性、耐
熱劣化性の要求される機械部材等の構造材料として使用
できる。The zirconia-alumina ceramic of the present invention is a sintered body with high strength and toughness, and excellent wear resistance and heat deterioration resistance. It can be used as a structural material for mechanical parts, etc.
アルミナ焼結体の靭性を向上させる手段として、安定化
剤を含む又は含まない正方晶ジルコニアがアルミナ組織
中に分散したジルコニア・アルミナセラミックス([セ
ラミックスJ Vol、17.No、2. P1064
11 (1982) 、特開昭54−25908号公
報等)、あるいは、部分安定化ジルコニアにアルミナを
添加して耐熱劣化性、硬度を向上させたジルコニア・ア
ルミナセラミックス(特開昭60−86073 号公報
)が知られている。As a means to improve the toughness of alumina sintered bodies, zirconia-alumina ceramics in which tetragonal zirconia containing or not containing a stabilizer is dispersed in an alumina structure ([Ceramics J Vol, 17. No. 2. P1064
11 (1982), JP-A-54-25908, etc.), or zirconia-alumina ceramics with improved heat deterioration resistance and hardness by adding alumina to partially stabilized zirconia (JP-A-60-86073). )It has been known.
C発明が解決しようとする問題点〕
従来知られているジルコニア・アルミナセラミックスは
、硬度及び耐熱劣化性に優れているが、焼結体の緻密化
が困難であるため、安定した焼結体を得るためには、高
温での焼結や、高圧下での焼結(HIP処理)が必要で
あり、工業的に好ましくない。また、高温焼結は、アル
ミナやジルコニアの粒成長を伴うので、強度上好ましく
ない。Problems to be solved by invention C] Conventionally known zirconia-alumina ceramics have excellent hardness and heat deterioration resistance, but it is difficult to make a sintered body dense, so it is difficult to create a stable sintered body. In order to obtain this, sintering at high temperature or sintering under high pressure (HIP treatment) is required, which is industrially unfavorable. Furthermore, high-temperature sintering is unfavorable in terms of strength because it involves grain growth of alumina and zirconia.
また、ジルコニア成分の低温度領域での熱劣化を防ぐた
めには、安定化剤を増やす方法が通常数られるが、靭性
や硬度の低下という欠点を伴う。Further, in order to prevent thermal deterioration of the zirconia component in a low temperature range, there are usually methods of increasing the amount of stabilizer, but this method has the disadvantage of decreasing toughness and hardness.
本発明の目的は、耐熱劣化性の改善された高強度ジルコ
ニア・アルミナセラミックス、またその製造方法を提供
するにある。An object of the present invention is to provide a high-strength zirconia-alumina ceramic with improved heat deterioration resistance, and a method for producing the same.
本発明は、ジルコニアを主成分とするA成分5〜99モ
ル%、A1g031〜95モル%及び遷移金属酸化物0
〜1モル%からなるジルコニア・アルミナセラミックス
において、A成分が
v、o、 0〜3モル%
Ti(h 0.5〜30モル%
Zr0i 67〜99モル%からなり、Y2O3及びT
iO□がZrO□に固溶していることを特徴とする複合
焼結体である。The present invention is characterized in that A component mainly composed of zirconia is 5 to 99 mol%, A1g is 031 to 95 mol%, and transition metal oxide is 0.
In the zirconia-alumina ceramics consisting of ~1 mol%, the A component consists of v, o, 0-3 mol% Ti (h 0.5-30 mol% Zr0i 67-99 mol%, Y2O3 and T
This is a composite sintered body characterized in that iO□ is dissolved in ZrO□.
本発明に於いて、焼結体のA成分の結晶構造は80%以
上が正方晶であり、A f 、0.lの結晶構造は95
%以上がコランダムである。In the present invention, the crystal structure of component A of the sintered body is 80% or more tetragonal, and A f , 0. The crystal structure of l is 95
More than % is corundum.
A成分中、Y2O,含を率が3.0モル%を超えるか、
又はTiO□含有率が30モル%を超えると靭性が低下
し、TiO□含存率が0.5モル%未満ではZr0zの
耐熱劣化性の改善効果が不十分である。本発明によれば
、A成分とA1□0.との比率がいかなる場合でも、耐
熱劣化性の改善効果はあるが、A成分の含有率が5モル
%未満のジルコニア・アルミナセラミックスは靭性が不
十分であり、また本発明の効果が顕著でなくなるので好
ましくない。^120.の含有率が1 モル%未満のジ
ルコニア・アルミナセラミックスは、耐熱劣化性が高く
ないので、高強度高靭性のセラミックスとしては好まし
くない。遷移金属酸化物の含有率が1 モル%を超える
と、焼結特性が悪化する。In component A, the proportion of Y2O is more than 3.0 mol%,
Alternatively, if the TiO□ content exceeds 30 mol%, the toughness decreases, and if the TiO□ content is less than 0.5 mol%, the effect of improving the heat deterioration resistance of Zr0z is insufficient. According to the present invention, A component and A1□0. Regardless of the ratio, there is an effect of improving heat deterioration resistance, but zirconia-alumina ceramics with a content of component A of less than 5 mol% have insufficient toughness, and the effects of the present invention are not noticeable. So I don't like it. ^120. Zirconia-alumina ceramics with a content of less than 1 mol % do not have high heat deterioration resistance, and are therefore not preferred as high-strength, high-toughness ceramics. If the content of the transition metal oxide exceeds 1 mol %, the sintering properties will deteriorate.
A成分中のY2O,はAh(hが主成分の場合、必ずし
も添加する必要はないが、A成分が主成分となったとき
、ZrO□の正方晶を安定化させるため添加される。ま
た、Ti0zは、単独、又はY2O,とともにZrO□
に固溶することにより、z「Otの正方晶の耐熱劣化性
を向上させる。Y2O in component A is Ah (if h is the main component, it does not necessarily need to be added, but when component A becomes the main component, it is added to stabilize the tetragonal crystal of ZrO□. Also, Ti0z can be used alone or together with Y2O and ZrO□
By dissolving it in solid solution, the heat deterioration resistance of the tetragonal crystal of z'Ot is improved.
遷移金属酸化物は、本発明に必須ではないが、低温での
焼結をより安定に達成させるために添加することが望ま
しい。Although the transition metal oxide is not essential to the present invention, it is desirable to add it to achieve more stable sintering at low temperatures.
本発明のジルコニア・アルミナセラミックスは、’It
030〜3モル%、TiO□0.5〜30モル%及びZ
r(h 61〜99モル%からなり、Y2O,及びTi
l□がZrO!に固溶しているA成分粉末若しくはその
前駆体粉末、α−アルミナ粉末若しくはその前駆体粉末
並びに要すれば遷移金属酸化物前駆体溶液からなる混合
物から得られた粉末を濾過、洗浄、乾燥後、仮焼して得
られる粉末を焼結することにより製造される。本発明に
おいて、前駆体とは、仮焼により当該酸化物を生成する
ものを意味する。The zirconia-alumina ceramics of the present invention is 'It
030-3 mol%, TiO□0.5-30 mol% and Z
r (h Consisting of 61 to 99 mol%, Y2O, and Ti
l□ is ZrO! After filtering, washing, and drying the powder obtained from the mixture consisting of component A powder or its precursor powder, α-alumina powder or its precursor powder, and, if necessary, a transition metal oxide precursor solution, which are solid-dissolved in It is manufactured by sintering the powder obtained by calcination. In the present invention, the term "precursor" refers to something that produces the oxide through calcination.
A成分である、Y20□及び又はTiO□が固溶したZ
rO□の調製は、イツトリウム化合物及び又はチタニウ
ム化合物とジルコニウム化合物との混合溶液を、アンモ
、ニア水等の沈殿形成液に混合し、生成した混合共沈粉
を仮焼することにより得られる。上記原料化合物として
は、水溶性でpH調整により沈殿を生成し、仮焼により
酸化物となるものであればよい。具体的には、ジルコニ
ウム化合物としては、オキシ塩化物、オキシ硝酸塩、オ
キシ酢酸塩オキシ硫酸塩等が挙げられる。イツトリウム
化合物としては、塩化物、硝酸塩、カルボン酸塩、金属
アルコキシド等が挙げられる。チタニウム化合物として
は、四塩化チタン、硫酸チタニル、酢酸チタニル等が挙
げられる。A component, Z in which Y20□ and/or TiO□ is solid-dissolved
The preparation of rO□ is obtained by mixing a mixed solution of a yttrium compound and/or a titanium compound and a zirconium compound with a precipitate forming liquid such as ammonia or nia water, and calcining the resulting mixed coprecipitated powder. The raw material compound may be any compound that is water-soluble, forms a precipitate upon pH adjustment, and becomes an oxide upon calcination. Specifically, examples of the zirconium compound include oxychlorides, oxynitrates, oxyacetates, oxysulfates, and the like. Examples of yttrium compounds include chlorides, nitrates, carboxylates, metal alkoxides, and the like. Examples of the titanium compound include titanium tetrachloride, titanyl sulfate, titanyl acetate, and the like.
^1□0.の混合は、前記A成分の沈殿形成前の混合溶
液に、α−アルミナ粉末又はその前駆体粉末を分散させ
てから、沈殿形成液に混合する方法がAl2O.とZr
O2との分散性を高め、焼結性の優れた粉末を得るため
に好ましい。^1□0. The mixing of Al2O. and Zr
This is preferable in order to improve the dispersibility with O2 and obtain a powder with excellent sinterability.
また、遷移金属酸化物を添加した焼結体を得る場合は、
A成分粉末又はその前駆体粉末と^1□03又はその前
駆体粉末との混合粉を、遷移金属化合物の溶液と混合後
、f全乾固又はスプレードライにより溶媒を除去した後
、仮焼することにより焼結原料粉末とする。使用する遷
移金属化合物は、熱分解により酸化物を生成するもので
あれば特に制限な(使用できるが、水又はを機溶媒に可
溶な化合物を溶液として使用する。具体例としては、硝
酸塩等の無機化合物、カルボン酸塩等の有機酸塩を例示
することができる。In addition, when obtaining a sintered body containing transition metal oxides,
A mixed powder of component A powder or its precursor powder and ^1□03 or its precursor powder is mixed with a solution of a transition metal compound, and then the solvent is removed by complete drying or spray drying, and then calcined. This makes a sintered raw material powder. The transition metal compound to be used is not particularly limited as long as it produces an oxide by thermal decomposition (it can be used, but a compound that is soluble in water or an organic solvent is used as a solution. Specific examples include nitrates, etc.) Examples include inorganic compounds and organic acid salts such as carboxylic acid salts.
粉末の成形は、通常の金型成形で十分であるが、最終焼
結体の焼結体密度、機械的強度等の向上のためには成形
体の静水圧加圧を行うことが好ましい。Although it is sufficient to compact the powder by ordinary molding, it is preferable to hydrostatically press the compact in order to improve the density, mechanical strength, etc. of the final sintered compact.
成形体の焼結は、既知のいずれの方法を採用してもよい
が、空気雰囲気下の常圧焼結で十分に目的を達すること
ができる。Although any known method may be used for sintering the molded body, normal pressure sintering in an air atmosphere can sufficiently achieve the purpose.
前記の如く、ジルコニア・アルミナ複合体を高密度に焼
結するためには、高温焼結が必要であり、高温焼結する
と粒成長が進行してジルコニア、アルミナの分散性が低
下すると同時に、ジルコニアの正方品率が低下するため
安定化剤を増やす必要があるが、その場合靭性値の低下
を招く。また、)11P処理などはコスト高となる欠点
がある。As mentioned above, high-temperature sintering is necessary to sinter the zirconia-alumina composite to a high density, and high-temperature sintering progresses grain growth and reduces the dispersibility of zirconia and alumina. Since the square yield rate of steel decreases, it is necessary to increase the amount of stabilizer, but in this case, the toughness value decreases. Furthermore, )11P processing has the disadvantage of high cost.
一方、ジルコニアの靭性を維持する程度に安定化剤(Y
zOi)を低く保つと、ジルコニアの耐熱劣化性が低下
する。On the other hand, the stabilizer (Y
If zOi) is kept low, the heat deterioration resistance of zirconia decreases.
本発明では、Ti0z及びY2O,のZrO□への固溶
効果及び7.rOt粒子と41201粒子との分散焼結
効果、さらに遷移金属酸化物の低温焼結促進効果が相乗
的に作用し、耐熱劣化性に優れた高靭性、高強度のジル
コニア・アルミナ焼結体を得ることが出来る。In the present invention, the solid solution effect of TiOz and Y2O on ZrO□ and 7. The dispersion sintering effect of rOt particles and 41201 particles and the low-temperature sintering promotion effect of transition metal oxides act synergistically to obtain a zirconia-alumina sintered body with high toughness and high strength with excellent heat deterioration resistance. I can do it.
本発明を実施例を挙げさらに詳しく説明する。 The present invention will be explained in more detail with reference to Examples.
(1)原料粉末の製造
(1−1)ZrOCb、、YCIz及びTiC1mの混
合水溶液、又はZr0C1zとTiC1a との混合水
溶液に第1表のアルミナ粉末を加えて撹拌、分散させた
後、アンモニア水でpHを調整し、アルミナを含む共沈
混合物を得た。該共沈物を所定温度で1時間仮焼し、Y
2O3及び又はTiO□がZrO2に固溶したZrO□
・ A1□0.複合粉末を得た。得られた粉末の特性を
第2表に示す(粉末番号1−1〜1−3)。(1) Production of raw material powder (1-1) The alumina powder shown in Table 1 was added to a mixed aqueous solution of ZrOCb, YCIz and TiC1m, or a mixed aqueous solution of Zr0C1z and TiC1a, stirred and dispersed, and then mixed with ammonia water. The pH was adjusted to obtain a coprecipitation mixture containing alumina. The coprecipitate was calcined at a predetermined temperature for 1 hour, and Y
ZrO□ in which 2O3 and or TiO□ are dissolved in ZrO2
・A1□0. A composite powder was obtained. The properties of the obtained powders are shown in Table 2 (powder numbers 1-1 to 1-3).
(]−2)上記と同様に調製したジルコニア・アルミナ
粉末を、各種遷移金属の硝酸塩を溶解したエタノール溶
液に加えてミリング混合した後、エタノールを蒸発させ
て乾燥し、遷移金属添加ZrO2・A1□03複合粉末
を得た。得られた粉末の特性を第2表に示す(粉末番号
2−1〜2−6) 。(]-2) Zirconia/alumina powder prepared in the same manner as above was added to an ethanol solution in which nitrates of various transition metals were dissolved and mixed by milling, then the ethanol was evaporated and dried, and the transition metal-added ZrO2/A1□ 03 composite powder was obtained. The properties of the obtained powders are shown in Table 2 (powder numbers 2-1 to 2-6).
(比較例)
比較例1〜4では組成が本発明範囲外である他は実施例
と同様にして粉末を得た。比較例5では四塩化チタンの
添加は行わず、他は実施例と同様の操作により得た仮焼
粉末にTiO□粒子を加え、ミリング粉砕により混合し
て焼結原料粉末を得た。(Comparative Example) In Comparative Examples 1 to 4, powders were obtained in the same manner as in the Example except that the composition was outside the range of the present invention. In Comparative Example 5, titanium tetrachloride was not added, but TiO□ particles were added to the calcined powder obtained by the same operation as in the example, and mixed by milling to obtain a sintered raw material powder.
Ti0tはZrO2中に固溶していない。Ti0t is not dissolved in ZrO2.
第1表 原料アルミナの粉末特性
(2)焼結体の製造
前記の原料粉末を加圧成形したのち、さらに2t/cm
”の圧力で静水圧加圧し成形体を得た。 この成形体を
常圧下、第3表に示す温度で3時間焼結し、ジルコニア
・アルミナ焼結体を得た。Table 1: Powder properties of raw material alumina (2) Production of sintered body After the raw material powder was pressure-molded, an additional 2t/cm
A molded body was obtained by isostatic pressing at a pressure of 100 ml. This molded body was sintered under normal pressure at the temperature shown in Table 3 for 3 hours to obtain a zirconia-alumina sintered body.
〔原料粉末及び焼結体の特性測定〕
(A )BET比表面積
マイクロメリティクス(Micromeritics・
島津製作所製)を使用して測定した。[Measurement of characteristics of raw material powder and sintered body] (A) BET specific surface area Micromeritics
(manufactured by Shimadzu Corporation).
(B)破壊靭性値
鏡面研磨した試料の表面にビアカース圧子を打ち込み、
得られた圧痕の大きさ及び圧痕から発生した亀裂の長さ
から、新涼等の提案による下記式により算出した。圧子
の打ち込み荷重は30kgfとした。(B) Fracture toughness value A via-curse indenter is driven into the mirror-polished surface of the sample.
It was calculated from the size of the obtained indentation and the length of the crack generated from the indentation using the following formula proposed by Shinryo et al. The driving load of the indenter was 30 kgf.
(Ko、φ/Ha ’ ”) (H/ Eφ)0・4=
0.035(1/a) −””Φ:拘束係数(〜3)
H:ビアカース圧子
E:弾性係数
a:圧痕の対角線の長さの1/2
1 :圧痕の中心から亀裂先端までの長さくC)曲げ強
度
3 x4 X40m+mの試料により、JIS−160
1の規定に基づき測定した。スパン:301IIm、ク
ロスヘッドスピード:0,5mm/l1inとした。同
一の条件で製造した5試料の平均値を求めた。(Ko, φ/Ha' ”) (H/Eφ)0・4=
0.035 (1/a) -””Φ: Restraint coefficient (~3) H: Via-curse indenter E: Elastic modulus a: 1/2 of the diagonal length of the indentation 1: Length from the center of the indentation to the tip of the crack C) Bending strength 3 x 4 x 40m + m sample, JIS-160
Measurements were made based on the provisions of 1. Span: 301 IIm, crosshead speed: 0.5 mm/l1in. The average value of 5 samples manufactured under the same conditions was determined.
(F)正方晶相含有率
試料の表面を3μmのダイヤモンドスラリーで研磨した
後X線回折を行い、次式により算出した。(F) Tetragonal phase content The surface of the sample was polished with a 3 μm diamond slurry, then subjected to X-ray diffraction, and calculated using the following formula.
(111)t+(111)m+(lli)m(111)
t :正方晶(111)面回折強度(111)w :単
斜晶(111)面回折強度(111)+m :単斜晶(
111)面回折強度(111)を回折ピークは、立方晶
の(111)c回折ピークを含むが、全て正方品として
計算した。(111)t+(111)m+(lli)m(111)
t: Tetragonal (111) plane diffraction intensity (111) w: Monoclinic (111) plane diffraction intensity (111) + m: Monoclinic (
The (111) plane diffraction intensity (111) diffraction peak includes the cubic (111) c diffraction peak, but all calculations were made assuming a square product.
比較例を除く全試料とも、焼結体中のZr0zの正方晶
相含有率は95%以上であることを確認した。It was confirmed that the tetragonal phase content of Zr0z in the sintered body was 95% or more in all samples except the comparative example.
(D)耐熱劣化性
焼結体を3μ麟のダイヤモンドスラリーで鏡面まで仕上
げた試料を、200℃で200時間保持したときに鏡面
の正方晶率の減少率が5z以内であれば(○)、5〜2
0χであれば(△)それ以上であれば(×)とした。(D) If a sample of a heat-resistant deterioration-resistant sintered body finished to a mirror finish with 3 μm of diamond slurry is held at 200°C for 200 hours, if the rate of decrease in the tetragonal crystal content of the mirror is within 5z (○), 5-2
If it was 0χ, it was marked (△), and if it was more than that, it was marked (×).
本発明の耐熱劣化性・高強度ジルコニア・アルミナ焼結
体は、前記実施例に示す如く、耐熱劣化性に優れ、焼結
密度、破壊靭性値、曲げ強度及び硬度が高い、高強度、
高靭性焼結体である。The heat deterioration resistant, high strength zirconia/alumina sintered body of the present invention has excellent heat deterioration resistance, high sintered density, fracture toughness value, high bending strength, and high hardness, as shown in the above examples.
It is a highly tough sintered body.
本発明においては、少量のY2O,及び又はTiO2の
ZrO□への固溶によりジルコニアの耐熱劣化性が靭性
を損なわずに増加し、かつ、緻密化が促進され、さらに
、アルミナとジルコニアとの相互分散効果及び遷移金属
の焼結促進効果により、低温で粒成長することなく焼結
が進行するので低Y20.ジルコニアの持つ高靭性を維
持しつつ、熱劣化の少ない高強度、高靭性焼結体が得ら
れるのである。In the present invention, the heat deterioration resistance of zirconia is increased without impairing toughness by solid solution of a small amount of Y2O and/or TiO2 in ZrO□, and densification is promoted. Due to the dispersion effect and the sintering promotion effect of the transition metal, sintering progresses at low temperatures without grain growth, resulting in a low Y20. A high-strength, high-toughness sintered body with little thermal deterioration can be obtained while maintaining the high toughness of zirconia.
従って、耐熱性の要求される高強度の機能性セラミック
スとして機械部材等への応用が期待される。Therefore, it is expected to be applied to mechanical parts and the like as high-strength functional ceramics that require heat resistance.
また、Y2O,は高価な材料であるため、Y2O,含有
率の低下は経済的にも効果が大きい。Furthermore, since Y2O is an expensive material, reducing the Y2O content is economically effective.
本発明は、耐熱劣化性に優れた高靭性・高強度のジルコ
ニア・アルミナ焼結体を提供するものであり、その産業
的意義は大きい。The present invention provides a zirconia-alumina sintered body having high toughness and high strength and excellent heat deterioration resistance, and has great industrial significance.
Claims (6)
、Al_2O_31〜95モル%及び遷移金属酸化物0
〜1モル%からなるジルコニア・アルミナセラミックス
において、A成分が Y_2O_30〜3モル% TiO_20.5〜30モル% ZrO_267〜99モル%からなり、Y_2O_3及
びTiO_2がZrO_2に固溶していることを特徴と
する複合焼結体。(1) 5 to 99 mol% of A component whose main component is zirconia
, Al_2O_31-95 mol% and transition metal oxide 0
In the zirconia alumina ceramics consisting of ~1 mol%, the A component consists of Y_2O_30-3 mol%, TiO_20.5-30 mol%, ZrO_267-99 mol%, and Y_2O_3 and TiO_2 are dissolved in ZrO_2. Composite sintered body.
り、Al_2O_3の結晶構造の95%以上がコランダ
ムである特許請求の範囲第(1)項記載の複合焼結体。(2) The composite sintered body according to claim (1), wherein 80% or more of the crystal structure of the A component particles is tetragonal, and 95% or more of the crystal structure of Al_2O_3 is corundum.
CoO、NiO、CuO及びZnOからなる群から選ば
れた少なくとも一種である特許請求の範囲第(1)項記
載の複合焼結体。(3) The transition metal oxide is MnO_2, Fe_2O_3,
The composite sintered body according to claim (1), which is at least one selected from the group consisting of CoO, NiO, CuO, and ZnO.
30モル%及びZrO_267〜99モル%からなり、
Y_2O_3及びTiO_2がZrO_2に固溶してい
るA成分粉末若しくはその前駆体粉末、α−アルミナ粉
末若しくはその前駆体粉末並びに要すれば遷移金属酸化
物前駆体溶液からなる混合物から得られた粉末を焼結し
てジルコニアを主成分とするA成分5〜99モル%、A
l_2O_31〜95モル%及び遷移金属酸化物0〜1
モル%からなるジルコニア・アルミナセラミックスを製
造することを特徴とする複合焼結体の製造方法。(4) Y_2O_30~3 mol%, TiO_20.5~
Consisting of 30 mol% and ZrO_267-99 mol%,
A powder obtained from a mixture consisting of A component powder or its precursor powder in which Y_2O_3 and TiO_2 are dissolved in ZrO_2, α-alumina powder or its precursor powder, and if necessary a transition metal oxide precursor solution is sintered. 5 to 99 mol% of A component mainly composed of zirconia, A
l_2O_31-95 mol% and transition metal oxide 0-1
A method for manufacturing a composite sintered body, characterized by manufacturing a zirconia-alumina ceramic comprising mol%.
いチタニウム化合物とジルコニウム化合物との混合溶液
に、α−アルミナ粉末又はその前駆体粉末を分散した分
散液から共沈させてA成分前駆体とAl_2O_3又は
Al_2O_3前駆体との混合物を得ることを特徴とす
る特許請求の範囲第(4)項記載の方法。(5) A component precursor and Al_2O_3 or Al_2O_3 precursor are co-precipitated from a dispersion of α-alumina powder or its precursor powder in a mixed solution of a titanium compound and a zirconium compound containing or not containing an yttrium compound. 4. A method according to claim 4, characterized in that a mixture with the body is obtained.
3前駆体との混合物を仮焼したのち、該粉末を遷移金属
化合物溶液に分散させ溶媒を除去することにより、A成
分、Al_2O_3及び遷移金属酸化物前駆体の混合粉
を得ることを特徴とする特許請求の範囲第(5)項記載
の方法。(6) A component precursor and Al_2O_3 or Al_2O_
After calcining the mixture with 3 precursors, the powder is dispersed in a transition metal compound solution and the solvent is removed to obtain a mixed powder of component A, Al_2O_3, and transition metal oxide precursor. A method according to claim (5).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61315012A JP2645826B2 (en) | 1986-12-25 | 1986-12-25 | High-strength zirconia-alumina ceramics with heat resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61315012A JP2645826B2 (en) | 1986-12-25 | 1986-12-25 | High-strength zirconia-alumina ceramics with heat resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63162570A true JPS63162570A (en) | 1988-07-06 |
JP2645826B2 JP2645826B2 (en) | 1997-08-25 |
Family
ID=18060356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61315012A Expired - Fee Related JP2645826B2 (en) | 1986-12-25 | 1986-12-25 | High-strength zirconia-alumina ceramics with heat resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2645826B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006056746A (en) * | 2004-08-20 | 2006-03-02 | Kyocera Corp | Alumina-zirconia ceramic and its production method |
JP2006062921A (en) * | 2004-08-27 | 2006-03-09 | Kyocera Corp | Alumina-zirconia-based ceramic and method manufacturing the same |
JP2008094688A (en) * | 2006-10-16 | 2008-04-24 | Nitsukatoo:Kk | Zirconia-based electroconductive sintered compact |
JP2013056809A (en) * | 2011-09-09 | 2013-03-28 | Nagamine Seisakusho:Kk | Alumina ceramic toughened with black zirconia and method for manufacturing the same |
JP2013199415A (en) * | 2012-03-26 | 2013-10-03 | Kyocera Corp | Ceramic sintered compact, electronic component mounting substrate using the same, and electronic device |
JP2014201718A (en) * | 2013-04-09 | 2014-10-27 | 曙ブレーキ工業株式会社 | Friction material |
CN114685147A (en) * | 2020-12-28 | 2022-07-01 | 财团法人工业技术研究院 | Ceramic material and welding wire ceramic nozzle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5836976A (en) * | 1981-08-25 | 1983-03-04 | 日本特殊陶業株式会社 | High tenacity zirconia sintered body |
-
1986
- 1986-12-25 JP JP61315012A patent/JP2645826B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5836976A (en) * | 1981-08-25 | 1983-03-04 | 日本特殊陶業株式会社 | High tenacity zirconia sintered body |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006056746A (en) * | 2004-08-20 | 2006-03-02 | Kyocera Corp | Alumina-zirconia ceramic and its production method |
JP2006062921A (en) * | 2004-08-27 | 2006-03-09 | Kyocera Corp | Alumina-zirconia-based ceramic and method manufacturing the same |
JP4514563B2 (en) * | 2004-08-27 | 2010-07-28 | 京セラ株式会社 | Alumina / zirconia ceramics and process for producing the same |
JP2008094688A (en) * | 2006-10-16 | 2008-04-24 | Nitsukatoo:Kk | Zirconia-based electroconductive sintered compact |
JP2013056809A (en) * | 2011-09-09 | 2013-03-28 | Nagamine Seisakusho:Kk | Alumina ceramic toughened with black zirconia and method for manufacturing the same |
JP2013199415A (en) * | 2012-03-26 | 2013-10-03 | Kyocera Corp | Ceramic sintered compact, electronic component mounting substrate using the same, and electronic device |
JP2014201718A (en) * | 2013-04-09 | 2014-10-27 | 曙ブレーキ工業株式会社 | Friction material |
CN114685147A (en) * | 2020-12-28 | 2022-07-01 | 财团法人工业技术研究院 | Ceramic material and welding wire ceramic nozzle |
US11964915B2 (en) | 2020-12-28 | 2024-04-23 | Industrial Technology Research Institute | Ceramic material and wire bonding capillary |
Also Published As
Publication number | Publication date |
---|---|
JP2645826B2 (en) | 1997-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4772576A (en) | High density alumina zirconia ceramics and a process for production thereof | |
JP5366398B2 (en) | Composite ceramics and manufacturing method thereof | |
US4900701A (en) | Zirconia sintered body and process for the production thereof | |
JPS63144167A (en) | Ceramic composition, ceramic body and composite body | |
JPH02296727A (en) | Sinterable zirconium oxide powder and production thereof | |
EP0232094B1 (en) | Chemical preparation of zirconium-aluminum-magnesium oxide composites | |
EP1514856A1 (en) | Alumina/zirconia ceramics and method of producing the same | |
JP2645826B2 (en) | High-strength zirconia-alumina ceramics with heat resistance and method for producing the same | |
JPS627667A (en) | Alumina-containing partially stabilized zirconia sintered body and manufacture | |
JP3736649B2 (en) | Zirconia sintered body, method for producing the same, and pulverized component material | |
JPS6259565A (en) | High density alumina/zirconia sintered body and its production | |
EP0351827B1 (en) | Zirconia-based sintered material and process for producing the same | |
EP0156491A2 (en) | Formation of fine particle sinterable ceramic powders | |
CN114787086A (en) | Zirconia powder, zirconia sintered body, and method for producing zirconia sintered body | |
JPH08698B2 (en) | Partially stabilized zirconia powder | |
JP2000095564A (en) | Zirconia sintered body, its production and material for pulverizing member | |
JPH02229758A (en) | Al2o3-zro2 ceramics and production thereof | |
Moya et al. | Influence of additives on the microstructural development of mullite-ZrO2 and alumina-ZrO2 | |
KR960006247B1 (en) | Process for the preparation of aluminium titanate ceramics | |
JP2791441B2 (en) | Zirconia fine powder and zirconia sintered body | |
JPS6291419A (en) | Production of easy-to-sinter composite powder of alumina and zirconia | |
JP2000327416A (en) | Zirconium oxide raw material powder and its production | |
Lukin et al. | Dense and durable ceramics based on alumina and zirconia. | |
JP2006056746A (en) | Alumina-zirconia ceramic and its production method | |
JPS63139049A (en) | Zirconia ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |