JP2006095018A - Biological member and joint prosthesis using the same - Google Patents
Biological member and joint prosthesis using the same Download PDFInfo
- Publication number
- JP2006095018A JP2006095018A JP2004283560A JP2004283560A JP2006095018A JP 2006095018 A JP2006095018 A JP 2006095018A JP 2004283560 A JP2004283560 A JP 2004283560A JP 2004283560 A JP2004283560 A JP 2004283560A JP 2006095018 A JP2006095018 A JP 2006095018A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- zro
- living body
- body member
- biological
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
本発明は、ZrO2を含む高強度のセラミックからなる生体部材それを用いた人工関節に関するものである。 The present invention relates to a living body member made of a high-strength ceramic containing ZrO 2 and an artificial joint using the living body member.
アルミナセラミックスやジルコニアセラミックスは生体不活性な材料である上、機械的強度、耐摩耗性に優れることから人工関節や人工歯根といった医療用材料としての適用が進んでいる。例えば、人工股関節では、金属に比べ、アルミナもしくはジルコニアセラミックス/超高分子量ポリエチレンの組合せが摩耗しにくく、且つ欠陥も生じにくいとされていることから、骨頭にセラミックスが、臼蓋ソケットに超高分子ポリエチレンが採用されてきた(特許文献1参照)。 Alumina ceramics and zirconia ceramics are biologically inert materials, and are excellent in mechanical strength and wear resistance, and thus are being applied as medical materials such as artificial joints and artificial tooth roots. For example, in artificial hip joints, the combination of alumina or zirconia ceramics / ultra high molecular weight polyethylene is less likely to wear and defects than metal. Polyethylene has been employed (see Patent Document 1).
さらに、アルミナセラミックス同士の摺動部を有した人工股関節も開発されている(特許文献2参照)。 Furthermore, an artificial hip joint having a sliding portion between alumina ceramics has been developed (see Patent Document 2).
また近年、アルミナ、ジルコニア系の酸化物セラミックスは、高強度、耐摩耗性及び耐食性が要求される構造部材として広く利用されている。特に、アルミナとジルコニアを一定の比率で複合化する場合は、結晶粒の微細化効果によりそれぞれの単体よりも高い強度が得られることが注目されている(非特許文献1参照)。
前記アルミナセラミックスは非常に優れた生体材料であるが、強度・靭性の点でジルコニアセラミックスに遠く及ばない。例えば、前述のアルミナセラミックス同士の摺動部を有した人工股関節では、アルミナセラミックスの強度、靭性では不十分で、残念ながら破壊に至った症例が報告されている。その破壊の原因は、マイクロセパレーションとよばれる臼蓋カップと骨頭との亜脱臼状態から骨頭が臼蓋カップに入る際に骨頭と臼蓋カップがあたり、場合によっては衝撃により破壊することが判明している。衝撃による破壊は、材料の靱性により改善されることは周知の事実である(例えば、特許文献4)。
また、ジルコニアセラミックスは、Y2O3を安定化剤として用いた場合、水が存在する環境下で相変態が起こり易く、強度や表面粗さが悪化する場合がある。表面粗さが悪化した場合、摺動部での摩耗に伴って摩耗粉が発生し、この摩耗粉が人工股関節近傍の組織内に蓄積されると、骨吸収を引き起こす。この骨吸収は、人工股関節と骨とのルーズニングの原因になる。このような摩耗粉の発生は、特に、ジルコニアセラミックス同士の摺動部で顕著となる。また、この対策のためにCeO2を安定化剤に使用した場合、水による相変態は無くなるが、Y2O3と比較し、結晶が成長するため、摺動特性、強度が良好なジルコニアセラミックスは得られていない。 In addition, when Y 2 O 3 is used as a stabilizer, zirconia ceramics are likely to undergo phase transformation in an environment where water is present, and the strength and surface roughness may deteriorate. When the surface roughness is deteriorated, wear powder is generated with wear at the sliding portion, and when this wear powder is accumulated in the tissue near the artificial hip joint, bone resorption is caused. This bone resorption causes loosening of the artificial hip joint and bone. The generation of such wear powder is particularly noticeable at the sliding portion between the zirconia ceramics. In addition, when CeO 2 is used as a stabilizer for this measure, phase transformation due to water is eliminated, but since crystallization grows compared to Y 2 O 3 , the zirconia ceramics have good sliding characteristics and strength. Is not obtained.
前述の複合材については、形状異方性粒子の生成によって破壊靭性が向上する一方で、強度と硬度が低下することが知られている。破壊靭性をより高くする為には形状異方性粒子をより細長く成長させる必要があるが、粒子が大きくなるほど強度と硬度が低下する。前記特許文献1では、アルミナの異方性成長により靭性改善効果が見られたものの、曲げ強度が1050MPa以下となり、形状異方性粒子の生成によって強度が低下している。従って、高強度、高靭性材料を得るには、粒成長を抑えながら、靭性を向上する方法を検討する必要がある。 About the above-mentioned composite material, while the fracture toughness improves by generation | occurrence | production of a shape anisotropic particle, it is known that intensity | strength and hardness will fall. In order to further increase the fracture toughness, it is necessary to grow the shape anisotropic particles longer and longer, but the strength and the hardness decrease as the particles become larger. In Patent Document 1, although an effect of improving toughness is observed due to the anisotropic growth of alumina, the bending strength is 1050 MPa or less, and the strength is reduced due to the formation of shape anisotropic particles. Therefore, in order to obtain a high strength and high toughness material, it is necessary to study a method for improving toughness while suppressing grain growth.
アルミナ磁器中にジルコニアが、準安定相である正方晶結晶として分散した存在、外部応力が作用することにより、安定な単斜晶へ相変態する(応力誘起変態)。この相変態による体積膨張により、クラックの進展が妨げられ、靭性が向上する。しかし、ジルコニアは本来常温では単斜晶であり、準安定な正方晶として分散させるためには、安定化剤を微量添加しなければ正方晶を安定して分散させることは難しい。アルカリ土類、稀土類元素の8配位の際のイオン半径が、ジルコニウムのイオン半径の140%以下の時、固溶し、安定化剤となると言われており、安定化剤となる物質は、Mg、Ca、Y等、安定化剤とならない物質はSr、Ba等が知られている。 The presence of zirconia dispersed as tetragonal crystals, which are metastable phases in alumina ceramics, and the transformation of external stress, cause phase transformation to stable monoclinic crystals (stress-induced transformation). The volume expansion due to this phase transformation hinders the progress of cracks and improves toughness. However, zirconia is originally monoclinic at normal temperature, and in order to disperse as metastable tetragonal crystals, it is difficult to stably disperse tetragonal crystals without adding a small amount of stabilizer. It is said that when the ionic radius at the time of 8-coordination of alkaline earth and rare earth elements is 140% or less of the ionic radius of zirconium, it dissolves and becomes a stabilizer. Sr, Ba, etc. are known as substances that do not become stabilizers, such as Mg, Ca, Y.
本発明は、そのような従来技術の課題に鑑みてなされたものであり、非常に高い強度・靭性を有する生体部材を提供することを目的とする。また、本発明の別の目的は、生体内環境下で耐摩耗性を有した人工関節を提供することである。 This invention is made | formed in view of the subject of such a prior art, and it aims at providing the biological member which has very high intensity | strength and toughness. Another object of the present invention is to provide an artificial joint having wear resistance in an in vivo environment.
ZrO2を含み、且つシャルピー衝撃試験におけるシャルピー衝撃値が45kJ/m2以上のセラミックスからなる生体部材が、靭性のみでなく、生体内のような水分の多い環境下でも強度劣化を起こしにくく、また、耐摩耗性の劣化を起こしにくいことを見出し、本発明に至った。 A biological member made of ceramics containing ZrO 2 and having a Charpy impact value of 45 kJ / m 2 or more in the Charpy impact test is not only tough, but is less likely to cause strength deterioration even in a moisture-rich environment such as in vivo. The present inventors have found that the wear resistance is not easily deteriorated, and have reached the present invention.
また、本発明者らはアルミナ主体のAl2O3−ZrO2セラミックスにSrOを添加して、低温で焼成し、形状異方性粒子の生成を抑えつつ、同時に、分散させたジルコニアの粒成長を抑制し、ジルコニア粒子に歪みが残存するため、本来固溶しないと言われているSrをZrO2に微量固溶させることが可能となる事を発見した。その結果、SrOに安定化剤としての効果が発現し、正方晶ZrO2の準安定化を実現し、単斜晶への応力誘起相転移によって強度と破壊靭性を向上できること、更に焼結助剤としてTiO2、MgO及びSiO2を添加することによりZrO2へのSrの固溶が促進され、応力誘起相転移強化の効果が大きくできることを見出した。 In addition, the present inventors added SrO to alumina-based Al 2 O 3 —ZrO 2 ceramics and fired at a low temperature to suppress the formation of shape anisotropic particles, and at the same time, grain growth of dispersed zirconia. It was discovered that Sr, which is said not to be solid solution, can be dissolved in a small amount in ZrO 2 because strain remains in the zirconia particles. As a result, SrO exhibits an effect as a stabilizer, realizes metastabilization of tetragonal ZrO 2 , can improve strength and fracture toughness by stress-induced phase transition to monoclinic crystal, and further, sintering aid It was found that by adding TiO 2 , MgO and SiO 2 , solid solution of Sr in ZrO 2 is promoted, and the effect of strengthening the stress-induced phase transition can be increased.
すなわち、本発明は、Al2O3を65質量%以上、ZrO2を4〜34質量%、及びSrOを0.1〜4質量%含有するとともに、該ZrO2粒子の一部にSrが固溶していることを特徴とするセラミックスからなる生体部材およびそれを用いた人工関節に関する発明である。 That is, the present invention contains 65% by mass or more of Al 2 O 3 , 4 to 34% by mass of ZrO 2 , and 0.1 to 4% by mass of SrO, and Sr is fixed in a part of the ZrO 2 particles. The present invention relates to a living body member made of ceramics characterized by melting and an artificial joint using the same.
本発明においては更に、
(1)焼結助剤としてTiO2、MgO及びSiO2を含むこと、
(2)前記(1)においてSiO2を0.20質量%以上、TiO2を0.22質量%以上、MgOを0.12質量%以上含有し、かつSiO2、TiO2及びMgOを合計で0.6〜4.5質量%含有することが望ましい。
In the present invention,
(1) containing TiO 2 , MgO and SiO 2 as sintering aids,
(2) wherein (1) the SiO 2 0.20 wt% or more at the TiO 2 0.22% by mass or more, MgO and containing more than 0.12 wt%, and a total of SiO 2, TiO 2 and MgO It is desirable to contain 0.6-4.5 mass%.
また、本発明の生体部材を構成するセラミックスは、Al、Zr及びSrを金属として、又はこれらを金属化合物として含む主原料を、これらの金属又は金属化合物を金属酸化物に換算して、複合セラミックス中でAl2O3を65質量%以上、ZrO2を4〜34質量%、及びSrOを0.1〜4質量%含有するように混合して、所定形状に成形した後、1300℃〜1500℃の温度範囲で焼成し、更に前記焼成温度より30℃以上低い温度で熱間静水圧処理することにより作製することができる。 The ceramic constituting the living body member of the present invention is a composite ceramic obtained by converting a main raw material containing Al, Zr, and Sr as a metal or a metal compound thereof into a metal oxide. Al 2 O 3 65 wt% or more in the medium, the ZrO 2 4 to 34 wt%, and mixing SrO with to contain 0.1 to 4 wt%, was molded into a predetermined shape, 1300 ° C. to 1500 It can be produced by firing at a temperature range of ° C. and further subjecting to a hot isostatic pressure at a temperature lower by 30 ° C. or more than the firing temperature.
この場合、Al、Zr及びSrを金属として、又はこれらを金属化合物として含む前記主原料に、更にTi、Mg及びSiを金属として、又はこれらを金属化合物として含む焼結助剤を、これらの金属又は金属化合物を金属酸化物に換算して、複合セラミックス中でSiO2が0.20質量%以上、TiO2が0.22質量%以上、MgOが0.12質量%以上で、かつSiO2、TiO2及びMgOが合計で0.6〜4.5質量%含有するように混合することが望ましい。 In this case, the main raw material containing Al, Zr and Sr as a metal or these as a metal compound, further sintering aid containing Ti, Mg and Si as a metal, or these as a metal compound, these metals. Alternatively, when the metal compound is converted into a metal oxide, in the composite ceramic, SiO 2 is 0.20% by mass or more, TiO 2 is 0.22% by mass or more, MgO is 0.12% by mass or more, and SiO 2 , it is desirable to TiO 2 and MgO are mixed so as to contain 0.6 to 4.5 mass% in total.
本発明の生体部材を構成するセラミックスは、Al2O3を65質量%以上、ZrO2を4〜34質量%、及びSrOを0.1〜4質量%含有し、更に該ZrO2粒子の一部にSrOが溶解していることを特徴とする。 The ceramic constituting the living body member of the present invention contains 65% by mass or more of Al 2 O 3 , 4 to 34% by mass of ZrO 2 , and 0.1 to 4% by mass of SrO, and further includes one of the ZrO 2 particles. SrO is dissolved in the part.
セラミックスが上記組成範囲で、かつZrO2粒子の一部にSrOが溶解していることにより、SrOによる正方晶ZrO2の安定化効果が発現し、強度と靭性が向上する。また、ジルコニア含有量の増加や形状異方性粒子生成による強度と硬度の低下も少なく、実用に耐え得るものが得られるようになる。 When the ceramic is in the above composition range and SrO is dissolved in a part of the ZrO 2 particles, the effect of stabilizing the tetragonal ZrO 2 by SrO is expressed, and the strength and toughness are improved. In addition, a decrease in strength and hardness due to an increase in zirconia content and generation of shape anisotropic particles is small, and a product that can withstand practical use can be obtained.
本発明の生体部材の製造方法は、先ず、原料を所定の割合で混合し、所定形状に成形する。ここでいう原料とは、金属、金属酸化物、金属水酸化物,金属炭酸塩などの塩類等を粉末あるいは水溶液等として使用することが可能である。前記粉末として使用する場合その平均粒径は、1.0μm以下が好ましい。 In the method for producing a biological member of the present invention, first, raw materials are mixed at a predetermined ratio and formed into a predetermined shape. As the raw material here, it is possible to use metals, metal oxides, metal hydroxides, salts such as metal carbonates and the like as powders or aqueous solutions. When used as the powder, the average particle size is preferably 1.0 μm or less.
また、成形には、プレス成形、鋳込み、冷間静水圧成形、或いは冷間静水圧処理などの成形法を使用可能である。 For the molding, a molding method such as press molding, casting, cold isostatic pressing, or cold isostatic pressing can be used.
次に、本発明によれば、1300〜1500℃の温度範囲で焼成し、更に前記焼成温度より30℃以上低い温度で熱間静水圧処理することを特徴とする。これによりアルミナ、ジルコニアが微粒で、アルミナの異方粒成長を抑えた緻密体を作製することが可能となる。 Next, according to the present invention, firing is performed in a temperature range of 1300 to 1500 ° C., and hot isostatic treatment is performed at a temperature lower by 30 ° C. or more than the firing temperature. As a result, it is possible to produce a dense body in which alumina and zirconia are fine particles and the anisotropic grain growth of alumina is suppressed.
本発明により、Srの固溶したZrO2において応力誘起相転移の効果が大きく、更に焼結助剤としてSiO2、TiO2およびMgOを添加することでその効果が更に顕著になる。またSiO2、TiO2およびMgOの添加により、焼成温度が下がり、高緻密化、組織微細化が起こり高強度、高靭性、高硬度の複合セラミックスからなる生体部材を提供できる。 According to the present invention, the effect of stress-induced phase transition is large in ZrO 2 in which Sr is dissolved, and the effect becomes even more remarkable by adding SiO 2 , TiO 2 and MgO as sintering aids. Moreover, the addition of SiO 2 , TiO 2, and MgO lowers the firing temperature, resulting in higher densification and finer structure, thereby providing a biological member made of a composite ceramic with high strength, high toughness, and high hardness.
本発明によれば、ZrO2を含み、且つシャルピー衝撃試験におけるシャルピー衝撃値が45kJ/m2以上のセラミックスからなる生体部材を構成したことにより、靭性のみでなく、生体内のような水分の多い環境下でも強度劣化を起こしにくい。 According to the present invention, a biological member made of ceramics containing ZrO 2 and having a Charpy impact value of 45 kJ / m 2 or more in the Charpy impact test is used, so that not only toughness but also moisture as in the living body is high. Less susceptible to strength degradation even in the environment.
また、前記複合セラミックス同士の摺動では、121℃の飽和水蒸気中で152時間の条件で行う加速劣化試験後のピンオンディスク試験法による比摩耗量を0.3×10−10mm2/N以下にすることができる。したがって、前記複合セラミックスで相互に摺動する人工関節の摺動部を構成することにより、人工関節において、高強度、高靭性、高耐摩耗性を実現することができる。 In the sliding of the composite ceramics, the specific wear amount by the pin-on-disk test method after the accelerated deterioration test performed under the condition of saturated steam at 121 ° C. for 152 hours is 0.3 × 10 −10 mm 2 / N. It can be: Therefore, high strength, high toughness, and high wear resistance can be realized in the artificial joint by configuring the sliding portion of the artificial joint that slides with the composite ceramic.
また、Srの固溶したZrO2では正方晶が準安定化され、応力誘起相転移の効果によって高強度、高靭性材料となる。更に焼結助剤としてSiO2、TiO2及びMgOを同時に添加することでその効果が更に顕著になり、またこれらの焼結助剤の添加により、焼成温度が下がり、形状異方性粒子が生成せず高緻密化、組織微細化が起こる。その結果、高強度、高靭性、高硬度の複合セラミックスからなる生体部材およびそれを用いた人工関節を得ることが可能となる。 Moreover, in ZrO 2 in which Sr is dissolved, tetragonal crystals are metastable, and a high-strength and high-toughness material is obtained due to the effect of stress-induced phase transition. Furthermore, the effect becomes more remarkable by simultaneously adding SiO 2 , TiO 2 and MgO as sintering aids, and the addition of these sintering aids lowers the firing temperature and produces shape anisotropic particles. Without high densification and fine structure. As a result, it is possible to obtain a living body member made of a composite ceramic having high strength, high toughness, and high hardness and an artificial joint using the living body member.
以下に本発明を詳述する。 The present invention is described in detail below.
図1乃至2に本発明の生体部材の実施形態を例示する。図1によれば、人工関節の摺動部に前記セラミックスが用いられている。具体的には、金属ステム並びにセラミックス製の骨頭ボール及び臼蓋ソケットにより人工股関節が構成されている。本発明は、人工股関節などの人工関節において、対をなす摺動部が前記セラミックスからなり、これら摺動部を含む一対の生体部材が人工関節を構成する場合のみでなく、一方の摺動部のみが前記セラミックスからなる場合を含む。 1 to 2 illustrate an embodiment of the biological member of the present invention. According to FIG. 1, the ceramic is used for the sliding part of the artificial joint. Specifically, an artificial hip joint is constituted by a metal stem, a ceramic head ball and a acetabular socket. The present invention is not limited to a case where an artificial joint such as an artificial hip joint has a pair of sliding parts made of the ceramics, and a pair of biological members including these sliding parts constitutes an artificial joint. Including the case where only the ceramics is used.
また、本発明の生体部材は摺動部を有しないものも含む。例えば、関節部分を含まない人工骨であっても構わない。 Moreover, the living body member of the present invention includes those that do not have a sliding portion. For example, an artificial bone that does not include a joint portion may be used.
通常ZrO2は、Y2O3などの安定化剤を適量ZrO2に固溶させることで機械的特性を向上させることができる。しかし、Al2O3−ZrO2セラミックスにおいてY2O3の配合量が多すぎると立方晶が多くなり相変態の破壊靭性への寄与が小さくなる。一方、Y2O3の配合量が少なすぎると単斜晶ZrO2が多くなり、強度、靭性ともに低下する。またAl2O3含有量の増加によって硬度が高くなるが強度と靭性が低下する。 Usually, ZrO 2 can improve mechanical properties by dissolving a stabilizer such as Y 2 O 3 in an appropriate amount of ZrO 2 . However, if the amount of Y 2 O 3 is too large in the Al 2 O 3 —ZrO 2 ceramics, cubic crystals increase and the contribution to the fracture toughness of the phase transformation becomes small. On the other hand, if the blending amount of Y 2 O 3 is too small, monoclinic ZrO 2 increases, and both strength and toughness decrease. Further, the increase in Al 2 O 3 content increases the hardness but decreases the strength and toughness.
これを補う目的でSrOを添加し形状異方性粒子生成による破壊靭性向上を行なうが、高温焼成を必要とし、粒成長や緻密化阻害等により強度、硬度は大きく低下する。 In order to compensate for this, SrO is added to improve fracture toughness by forming anisotropically shaped particles. However, high temperature firing is required, and strength and hardness are greatly reduced due to grain growth and densification inhibition.
本発明で開発された材料は、Srの固溶による正方晶ZrO2の安定化が起こるが、SrではZrO2への固溶量が少ない為、立方晶は生成し難くなる。この結果、応力誘起相転移効果が大きく、形状異方性粒子生成によらず破壊靭性を向上でき、強度と硬度も高くなる。 In the material developed in the present invention, tetragonal ZrO 2 is stabilized by solid solution of Sr. However, since the amount of solid solution in ZrO 2 is small in Sr, it is difficult to form a cubic crystal. As a result, the stress-induced phase transition effect is large, the fracture toughness can be improved regardless of the formation of shape anisotropic particles, and the strength and hardness are also increased.
本発明の生体部材をなす複合セラミックスは、少なくともAl2O3とZrO2とSrOとを含有する複合セラミックスであって、Al2O3を65質量%以上、ZrO2を4〜34質量%、及びSrOを0.1〜4質量%含有し、更に該ZrO2粒子の一部にSrが固溶していることを特徴とするが、Al2O3の含有量は65質量%以上、好ましくは67〜90質量%、特に好ましくは76〜84質量%であり、ZrO2の含有量は4〜34質量%、好ましくは10〜34質量%、特に好ましくは11〜20質量%である。 The composite ceramic forming the living body member of the present invention is a composite ceramic containing at least Al 2 O 3 , ZrO 2 and SrO, wherein Al 2 O 3 is 65% by mass or more, ZrO 2 is 4 to 34% by mass, And SrO is contained in an amount of 0.1 to 4% by mass, and Sr is dissolved in a part of the ZrO 2 particles. The content of Al 2 O 3 is preferably 65% by mass or more, preferably Is 67 to 90% by mass, particularly preferably 76 to 84% by mass, and the content of ZrO 2 is 4 to 34% by mass, preferably 10 to 34% by mass, and particularly preferably 11 to 20% by mass.
Al2O3を65質量%以上含有させることにより、高強度でかつ高硬度という効果が得られ、ZrO2の含有量が4質量%未満では強度が低下し、低靭性となり、一方、34質量%を超えるとヤング率低下により硬度が低下する。 By containing 65% by mass or more of Al 2 O 3 , the effect of high strength and high hardness can be obtained. When the content of ZrO 2 is less than 4% by mass, the strength is lowered and the toughness is reduced, whereas 34% by mass. If it exceeds 50%, the hardness decreases due to a decrease in Young's modulus.
又、SrOの添加量は、複合セラミックス中で0.1〜4質量%、好ましくは0.5〜3質量%、特に好ましくは0.7〜1.5質量%である。 Moreover, the addition amount of SrO is 0.1-4 mass% in composite ceramics, Preferably it is 0.5-3 mass%, Most preferably, it is 0.7-1.5 mass%.
SrOの添加量を上記0.1〜4質量%とすることは重要である。 It is important that the amount of SrO added is 0.1 to 4 mass%.
SrOの添加量が0.1質量%未満のとき、ZrO2の単斜晶系が多くなり、強度が低下する。またSrOの添加量が4質量%を超えるときは、焼成温度が高くなり、形状異方性粒子生成による緻密化阻害、ジルコニア粒成長による強度あるいは硬度の低下がおきる。 When the amount of SrO added is less than 0.1% by mass, the monoclinic system of ZrO 2 increases and the strength decreases. On the other hand, when the amount of SrO added exceeds 4% by mass, the firing temperature becomes high, densification is inhibited due to formation of shape anisotropic particles, and strength or hardness is reduced due to zirconia grain growth.
上記組成範囲に更にSiO2、TiO2及びMgOを一定割合添加することにより、Al2O3とZrO2の結晶粒成長を抑制しながら、低い温度条件で焼結体を緻密化でき、微粒、高密度の組織形成により高強度化の実現が可能となる。 By further adding a certain proportion of SiO 2 , TiO 2 and MgO to the above composition range, the sintered body can be densified under low temperature conditions while suppressing the growth of crystal grains of Al 2 O 3 and ZrO 2 . High strength can be realized by forming a high-density structure.
すなわち、Al2O3を65%質量%以上、ZrO2を4〜34質量%、SrOを0.1〜4質量%含有し、更にSiO2を0.20質量%以上、TiO2を0.22質量%以上、MgOを0.12質量%以上含有して、かつSiO2、TiO2及びMgOが総量で0.6〜4.5質量%含有する組成において高強度、高靭性、高硬度が実現される。 That is, 65% by mass or more of Al 2 O 3 , 4 to 34% by mass of ZrO 2 , 0.1 to 4% by mass of SrO, 0.20% by mass or more of SiO 2 , and 0.1% of TiO 2 . High strength, high toughness, and high hardness in a composition containing 22% by mass or more, 0.12% by mass or more of MgO, and 0.6 to 4.5% by mass of SiO 2 , TiO 2 and MgO in total amount Realized.
ここで、SiO2の含有量は、0.20質量%以上、好ましくは0.4〜1.5質量%であり、TiO2の含有量は、0.22質量%以上、好ましくは0.3〜0.7質量%であり、MgOの含有量は、0.12質量%以上、好ましくは0.2〜1.4質量%である。 Here, the content of SiO 2 is 0.20 wt% or more, preferably from 0.4 to 1.5 wt%, the content of TiO 2 is 0.22 wt% or more, preferably 0.3 The content of MgO is 0.12% by mass or more, preferably 0.2-1.4% by mass.
SiO2の含有量が0.20質量%未満、あるいはTiO2の含有量が0.22質量%未満、あるいはMgOの含有量が0.12質量%未満では、液相が不足し、Al2O3が緻密化しにくいという不都合を生ずる。 When the content of SiO 2 is less than 0.20% by mass, the content of TiO 2 is less than 0.22% by mass, or the content of MgO is less than 0.12% by mass, the liquid phase is insufficient, and Al 2 O 3 causes the inconvenience that it is difficult to densify.
焼結助剤としてSiO2、TiO2、及びMgOを上記割合添加することにより、SrOのZrO2への固溶が促進され強度、靭性が向上すると共に共晶点が1300℃以下になり、焼結時に液相が生成して材料の焼結が大きく促進される。この為、より低い温度でも高い緻密性の焼結体が得られる。また比較的低温で焼結することによって異方粒成長を抑制し、微細な組織となり強度と硬度が低下しない。 By adding SiO 2 , TiO 2 , and MgO in the above proportions as sintering aids, solid solution of SrO in ZrO 2 is promoted, strength and toughness are improved, and the eutectic point is 1300 ° C. or lower. A liquid phase is generated during the sintering, and the sintering of the material is greatly promoted. For this reason, a highly dense sintered body can be obtained even at a lower temperature. Further, by sintering at a relatively low temperature, anisotropic grain growth is suppressed, and a fine structure is obtained and strength and hardness are not reduced.
次に、高強度、高靭性、及び高硬度の材料特性を得るには、1500℃以下の低温焼成によりAl2O3とZrO2の粒成長を抑制することが重要であり、特に1490℃以下とするのが望ましい。SrOを添加した状態で高温焼成した場合Al2O3が異方粒成長し、強度、靭性、硬度が低下する。これは、ZrO2の粒成長によって単斜晶ZrO2量が増加して、強度と硬度が低下するからである。 Next, in order to obtain material properties of high strength, high toughness, and high hardness, it is important to suppress grain growth of Al 2 O 3 and ZrO 2 by low-temperature firing at 1500 ° C. or less, particularly 1490 ° C. or less. Is desirable. When firing at a high temperature with SrO added, Al 2 O 3 grows anisotropically and the strength, toughness, and hardness decrease. This is because the monoclinic ZrO 2 amount by grain growth of ZrO 2 is increased, the strength and hardness is lowered.
以上の説明から理解されるように、上記のような組成を有する前記セラミックスは、形状異方性粒子による緻密化阻害や、ジルコニア粒成長による強度あるいは硬度の低下が有効に回避されている。 As understood from the above description, the ceramics having the above composition effectively avoids densification inhibition due to shape anisotropic particles and a decrease in strength or hardness due to zirconia grain growth.
例えば、該セラミックス中のAl2O3粒子は、前記複合セラミックスにおけるAl2O3の粒子が、SEM画像において細長形状を呈するとともに、前記各Al2O3の粒子の最長方向を長軸、その長さを長軸径とし、該長軸に対して垂直な方向を短軸、その長さを短軸径としたときに、前記長軸径の平均(長軸平均径)が1.5μm以下であり、前記短軸径に対する前記長軸径の比であるアスペクト比の平均が2.5以下であり、前記短軸径の平均と長軸径の平均(平均粒径)との中間値が1μm以下であることが好ましい。即ち、Al2O3粒子の平均アスペクト比が2.5を越えるとき或いはその長軸径の平均が1.5μmよりも大きいときには、形状異方性粒子による緻密化阻害を生じ、強度低下を生じてしまい。また、ZrO2粒子の前記短軸径の平均と長軸径の平均との中間値が1.0μmよりも大きいと、正方晶の安定性が低下し、相変態によるクラックが発生し、強度や靭性の低下を生じてしまう。 , For example, Al 2 O 3 particles in said ceramic particles of Al 2 O 3 in the composite ceramic, with exhibits an elongated shape in SEM images, the longest direction long axis of each Al 2 O 3 particles, the When the length is the major axis diameter, the direction perpendicular to the major axis is the minor axis, and the length is the minor axis diameter, the average of the major axis diameter (major axis average diameter) is 1.5 μm or less. And the average of the aspect ratio, which is the ratio of the major axis diameter to the minor axis diameter, is 2.5 or less, and the intermediate value between the average minor axis diameter and the average major axis diameter (average particle diameter) is It is preferable that it is 1 micrometer or less. That is, when the average aspect ratio of Al 2 O 3 particles exceeds 2.5, or when the average major axis diameter is larger than 1.5 μm, densification is inhibited by shape anisotropic particles, resulting in a decrease in strength. End. Also, if the mean value of the minor axis diameter and the average major axis diameter of ZrO2 particles is larger than 1.0 μm, the stability of tetragonal crystal is lowered, cracks are generated due to phase transformation, and the strength and toughness are increased. Will result in a decrease in.
例えば、該セラミックス中のAl2O3粒子は、平均アスペクト比が2.5以下であり、且つその長軸平均粒径が1.5μm以下、特に1μm以下であり、ZrO2粒子の平均粒径が0.7μm以下、特に0.5μm以下であることが好ましい。即ち、Al2O3粒子の平均アスペクト比が2.5を越えるとき或いはその長軸平均粒径が1.5μmよりも大きいときには、形状異方性粒子による緻密化阻害を生じ、強度低下を生じてしまい。また、ZrO2粒子の平均粒径が0.7μmよりも大きいと、正方晶の安定性が低下し、相変態によるミクロクラックが発生し、強度や靭性の低下を生じてしまう。 For example, the Al 2 O 3 particles in the ceramic have an average aspect ratio of 2.5 or less and a major axis average particle size of 1.5 μm or less, particularly 1 μm or less. The average particle size of ZrO 2 particles Is preferably 0.7 μm or less, particularly preferably 0.5 μm or less. That is, when the average aspect ratio of Al 2 O 3 particles exceeds 2.5, or when the major axis average particle size is larger than 1.5 μm, densification is inhibited by shape anisotropic particles, resulting in a decrease in strength. End. On the other hand, if the average particle size of the ZrO 2 particles is larger than 0.7 μm, the stability of the tetragonal crystal is lowered, microcracks are generated due to phase transformation, and the strength and toughness are lowered.
よって1500℃以下で焼成し、Al2O3,ZrO2の粒成長を抑制しつつ、熱間静水圧焼成によって緻密化させることが重要である。この熱間静水圧焼成条件としては、本焼成温度よりも30℃以上低い温度、特に50℃以上低い温度、更には100℃以上低い温度が好ましい。 Therefore, it is important to sinter at 1500 ° C. or less and densify by hot isostatic pressing while suppressing the grain growth of Al 2 O 3 and ZrO 2 . As this hot isostatic firing condition, a temperature lower by 30 ° C. or more than the main firing temperature, particularly a temperature lower by 50 ° C. or more, more preferably a temperature lower by 100 ° C. or more is preferable.
純度が99.95質量%で平均粒径0.22μmのAl2O3粉末に、純度が99.95質量%で平均粒径0.4μmのZrO2粉末、平均粒径0.6μmのMg(OH)2、平均粒径0.5μmのSiO2粉末、及び平均粒径0.2μmのSrO粉末を表1に示すような組成になるように秤量混合して混合粉末を得た。そして、この混合粉末を1t/cm2の圧力で金型成形し、さらに3t/cm2の圧力で静水圧処理を加えて成形体を作製し、表2に示す温度にて本焼成及び熱間静水圧焼成(表中にHIPと表示)を行なった。 An Al 2 O 3 powder having a purity of 99.95% by mass and an average particle size of 0.22 μm, a ZrO 2 powder having a purity of 99.95% by mass and an average particle size of 0.4 μm, Mg having an average particle size of 0.6 μm ( OH) 2 , SiO 2 powder having an average particle diameter of 0.5 μm, and SrO powder having an average particle diameter of 0.2 μm were weighed and mixed to have a composition as shown in Table 1 to obtain a mixed powder. Then, this mixed powder is molded with a pressure of 1 t / cm 2 and further subjected to hydrostatic pressure treatment with a pressure of 3 t / cm 2 to produce a molded body. Hydrostatic baking (indicated as HIP in the table) was performed.
得られた各焼結体に対して、JIS−R1601による室温における抗折強度、及びJIS−R1607によるSEPB法により破壊靱性値、JIS−R1610によるビッカース硬度を測定した。シャルピー衝撃試験は、試験片を3mm×3mm×14mmに加工し中央部に0.5mmの切りかきを入れたものを使用し、JIS K 7111に規定されている衝撃試験に準拠して行った。また、結晶粒径の測定方法は、試験片を鏡面研磨後、焼成温度より50℃程度低い温度でサーマルエッチング処理し、SEMによる研磨面上の写真をAl2O3粒子及びZrO2粒子がそれぞれ100個以上写るように撮影し、その写真から完全な粒子の形状を有するAl2O3粒子結晶を抜き出し、形状の最も長い部分を長軸、それに直交している方向で最も長い部分を短軸として直接測定して、アスペクト比を算出した。さらに、121℃の飽和水蒸気中で152時間の条件で行う加速劣化試験後に、ピンオンディスク試験法(JIS−T0303:但し、試験片の材料を複合セラミックスとした)を用いて耐摩耗性を評価した。得られた結果を表2に示す。また、X線回折(XRD)によってSrOによる正方晶ZrO2が安定化されていることを確認し、電子線プローグマイクロアナライザー(EPMA)によりZrO2へのSrの固溶を確認した。 For each of the obtained sintered bodies, the bending strength at room temperature according to JIS-R1601, the fracture toughness value according to the SEPB method according to JIS-R1607, and the Vickers hardness according to JIS-R1610 were measured. The Charpy impact test was performed in accordance with an impact test defined in JIS K 7111 using a test piece processed to 3 mm × 3 mm × 14 mm and having a 0.5 mm notch in the center. In addition, the crystal grain size is measured by mirror-polishing the test piece and then performing thermal etching at a temperature lower by about 50 ° C. than the firing temperature, and the photograph on the polished surface by SEM shows Al 2 O 3 particles and ZrO 2 particles respectively. Take 100 or more images and extract the Al 2 O 3 particle crystal having the complete particle shape from the photograph. The longest part of the shape is the long axis and the longest part in the direction perpendicular to it is the short axis. As a direct measurement, the aspect ratio was calculated. Further, after an accelerated deterioration test performed in saturated steam at 121 ° C. for 152 hours, the wear resistance was evaluated using a pin-on-disk test method (JIS-T0303, where the material of the test piece was a composite ceramic). did. The obtained results are shown in Table 2. Further, it was confirmed by X-ray diffraction (XRD) that tetragonal ZrO 2 by SrO was stabilized, and solid solution of Sr in ZrO 2 was confirmed by an electron beam probe microanalyzer (EPMA).
表2より、SrOを含み、他の焼結助剤を含まない材料(試料No.8)ではSrOを添加していない材料(試料No.12)よりも強度と破壊靭性が高かった。しかし、SrOと焼結助剤SiO2、TiO2、MgOを含み、更に、より低温で焼結した材料(試料No.1,2,6,14)は強度1410〜1540MPa、破壊靭性5.1〜5.4MPa√m、硬度1740〜1790Hvの特性を示し、試料No.8の材料よりも特性が向上した。 As shown in Table 2, the material containing SrO and no other sintering aid (sample No. 8) had higher strength and fracture toughness than the material not containing SrO (sample No. 12). However, materials containing SrO and sintering aids SiO 2 , TiO 2 , MgO and sintered at a lower temperature (sample Nos. 1, 2, 6, and 14) have a strength of 1410 to 1540 MPa and a fracture toughness of 5.1. The characteristics of ˜5.4 MPa√m and hardness of 1740 to 1790 Hv were exhibited, and the characteristics were improved as compared with the material of Sample No. 8.
試料No.4の材料では焼成温度が高く、僅かに形状異方性粒子が生成する為、強度と硬度が多少低下したが試料No.8の材料よりも破壊靭性は高かった。Y2O3の固溶したZrO2を含む材料(試料No.12)では、立方晶ZrO2含有量が増加し、SrOによる正方晶ZrO2安定化の効果が小さくなるため、SrOとSiO2、TiO2、MgOを含有するにも関わらず強度と靭性が小さかった。 In the material of sample No. 4, the firing temperature was high, and slightly anisotropically shaped particles were formed, so the strength and hardness were slightly reduced, but the fracture toughness was higher than that of the material of sample No. 8. In the material containing ZrO 2 in which Y 2 O 3 is dissolved (sample No. 12), the content of cubic ZrO 2 is increased, and the effect of stabilizing the tetragonal ZrO 2 by SrO is reduced. Therefore, SrO and SiO 2 Despite containing TiO 2 and MgO, the strength and toughness were small.
また、試料No.1と11の材料のX線回折(XRD)測定結果を比較することで、試料No.1の材料ではSrOの添加によって正方晶ZrO2が安定化されていることを確認し、試料No.1の材料の組成分析を行うことでZrO2にSrが固溶していることを確認した。 Moreover, by comparing the X-ray diffraction (XRD) measurement results of the materials of sample No. 1 and 11, it was confirmed that tetragonal ZrO 2 was stabilized by adding SrO in the material of sample No. 1. It was confirmed that Sr was dissolved in ZrO 2 by analyzing the composition of the material of sample No. 1.
試料No8より、シャルピー衝撃試験が45MPa√m以下ではNo15と比較し、破壊靭性が4.5MPa√mと低かった。 From sample No. 8, when the Charpy impact test was 45 MPa√m or less, the fracture toughness was 4.5 MPa√m lower than No. 15.
また、試料No.21〜23においては焼結助剤であるTiO2、MgO、SiO2のいずれかが少ないか多いものであるが、いずれかが少ないと焼結温度が高くなり、結晶粒径が大きくなるために曲げ強度が低い結果となり、いずれかが多いものは焼結温度が低いものの液相成分が多くなり、曲げ強度が低い結果となった。
符号なし Unsigned
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004283560A JP4761749B2 (en) | 2004-09-29 | 2004-09-29 | Biomaterial and artificial joint using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004283560A JP4761749B2 (en) | 2004-09-29 | 2004-09-29 | Biomaterial and artificial joint using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006095018A true JP2006095018A (en) | 2006-04-13 |
JP4761749B2 JP4761749B2 (en) | 2011-08-31 |
Family
ID=36235393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004283560A Expired - Lifetime JP4761749B2 (en) | 2004-09-29 | 2004-09-29 | Biomaterial and artificial joint using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4761749B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010248051A (en) * | 2009-04-20 | 2010-11-04 | Japan Medical Materials Corp | Alumina-zirconia composite sintered compact |
JP2010273835A (en) * | 2009-05-28 | 2010-12-09 | Japan Medical Materials Corp | Ceramic bone head ball and artificial joint |
JP2013514104A (en) * | 2009-12-16 | 2013-04-25 | セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング | Ceramic composite material mainly composed of aluminum oxide and zirconium oxide |
WO2013136990A1 (en) * | 2012-03-16 | 2013-09-19 | 京セラメディカル株式会社 | Medical ceramic material and manufacturing method thereof |
JPWO2020022425A1 (en) * | 2018-07-27 | 2021-08-12 | 京セラ株式会社 | Alumina porcelain and ceramic heaters |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03151978A (en) * | 1989-11-10 | 1991-06-28 | Kyocera Corp | Ceramics for prosthesis of organism |
JPH09268055A (en) * | 1996-03-29 | 1997-10-14 | Kyocera Corp | Bioceramic and its production |
WO2002011780A1 (en) * | 2000-08-07 | 2002-02-14 | Matsushita Electric Works, Ltd. | Artificial joint made from zirconia-alumina composite ceramic |
JP2004024361A (en) * | 2002-06-21 | 2004-01-29 | Ngk Spark Plug Co Ltd | Artificial joint |
JP2005075659A (en) * | 2003-08-28 | 2005-03-24 | Kyocera Corp | Ceramic sintered compact, method for producing the same, and biomaterial |
JP2005161033A (en) * | 2003-11-07 | 2005-06-23 | Eska Implants Gmbh & Co | Covered joint endoprosthesis |
JP2005306726A (en) * | 2004-03-23 | 2005-11-04 | Matsushita Electric Works Ltd | Zirconia-alumina compound ceramic material and its production process |
-
2004
- 2004-09-29 JP JP2004283560A patent/JP4761749B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03151978A (en) * | 1989-11-10 | 1991-06-28 | Kyocera Corp | Ceramics for prosthesis of organism |
JPH09268055A (en) * | 1996-03-29 | 1997-10-14 | Kyocera Corp | Bioceramic and its production |
WO2002011780A1 (en) * | 2000-08-07 | 2002-02-14 | Matsushita Electric Works, Ltd. | Artificial joint made from zirconia-alumina composite ceramic |
JP2004024361A (en) * | 2002-06-21 | 2004-01-29 | Ngk Spark Plug Co Ltd | Artificial joint |
JP2005075659A (en) * | 2003-08-28 | 2005-03-24 | Kyocera Corp | Ceramic sintered compact, method for producing the same, and biomaterial |
JP2005161033A (en) * | 2003-11-07 | 2005-06-23 | Eska Implants Gmbh & Co | Covered joint endoprosthesis |
JP2005306726A (en) * | 2004-03-23 | 2005-11-04 | Matsushita Electric Works Ltd | Zirconia-alumina compound ceramic material and its production process |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010248051A (en) * | 2009-04-20 | 2010-11-04 | Japan Medical Materials Corp | Alumina-zirconia composite sintered compact |
JP2010273835A (en) * | 2009-05-28 | 2010-12-09 | Japan Medical Materials Corp | Ceramic bone head ball and artificial joint |
JP2013514104A (en) * | 2009-12-16 | 2013-04-25 | セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング | Ceramic composite material mainly composed of aluminum oxide and zirconium oxide |
WO2013136990A1 (en) * | 2012-03-16 | 2013-09-19 | 京セラメディカル株式会社 | Medical ceramic material and manufacturing method thereof |
US9358321B2 (en) | 2012-03-16 | 2016-06-07 | Kyocera Medical Corporation | Medical ceramic material and manufacturing method thereof |
JPWO2020022425A1 (en) * | 2018-07-27 | 2021-08-12 | 京セラ株式会社 | Alumina porcelain and ceramic heaters |
JP7148613B2 (en) | 2018-07-27 | 2022-10-05 | 京セラ株式会社 | Alumina porcelain and ceramic heater |
Also Published As
Publication number | Publication date |
---|---|
JP4761749B2 (en) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ramesh et al. | A review on the hydrothermal ageing behaviour of Y-TZP ceramics | |
JP5366398B2 (en) | Composite ceramics and manufacturing method thereof | |
US7820577B2 (en) | Biomedical member and method for producing the same | |
CN100522870C (en) | Composite ceramic and method for producing same | |
JP4465173B2 (en) | Composite ceramics and manufacturing method thereof | |
JP2013514104A (en) | Ceramic composite material mainly composed of aluminum oxide and zirconium oxide | |
US9353010B2 (en) | Alumina-zirconia ceramic implants and related materials, apparatus, and methods | |
JP4761749B2 (en) | Biomaterial and artificial joint using the same | |
JP4398840B2 (en) | Zirconia composite sintered body and biomaterial using the same | |
JP2005075659A (en) | Ceramic sintered compact, method for producing the same, and biomaterial | |
JP4753575B2 (en) | Biomaterial, artificial joint using the same, and method for producing biomaterial | |
JP4721635B2 (en) | Biomaterial, artificial joint using the same, and method for producing biomaterial | |
JP4589642B2 (en) | Alumina / zirconia ceramics and process for producing the same | |
JP2022191863A (en) | Ceramic biomaterial, biological part, and method for manufacturing the same | |
JP4570348B2 (en) | Biomaterial manufacturing method, biomaterial and artificial joint using the same | |
JP4883885B2 (en) | Biomaterial, method for manufacturing the same, and artificial joint | |
JP2010248051A (en) | Alumina-zirconia composite sintered compact | |
JP2005008435A (en) | Composite ceramic and method for preparing the same | |
JP4831945B2 (en) | Zirconia-alumina ceramics and process for producing the same | |
JP4601303B2 (en) | Alumina / zirconia ceramics and process for producing the same | |
Sivakumar et al. | The Effect of Copper Oxide on the Mechanical Properties of Y-TZP Ceramics | |
JP4514563B2 (en) | Alumina / zirconia ceramics and process for producing the same | |
JP4243514B2 (en) | Composite ceramics and manufacturing method thereof | |
JP4601304B2 (en) | Alumina / zirconia ceramics and process for producing the same | |
JP2001089224A (en) | Ceramic biomember |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110607 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4761749 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |