JP2011219279A - Zirconia raw material, sintered zirconia compact, cutter, and hand cutting tool - Google Patents

Zirconia raw material, sintered zirconia compact, cutter, and hand cutting tool Download PDF

Info

Publication number
JP2011219279A
JP2011219279A JP2008219557A JP2008219557A JP2011219279A JP 2011219279 A JP2011219279 A JP 2011219279A JP 2008219557 A JP2008219557 A JP 2008219557A JP 2008219557 A JP2008219557 A JP 2008219557A JP 2011219279 A JP2011219279 A JP 2011219279A
Authority
JP
Japan
Prior art keywords
zirconia
sintered body
mass
silica
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008219557A
Other languages
Japanese (ja)
Inventor
Takanori Nishihara
孝典 西原
Shunji Takagi
俊二 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Daiichi Kigenso Kagaku Kogyo Co Ltd
Original Assignee
Kyocera Corp
Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Daiichi Kigenso Kagaku Kogyo Co Ltd filed Critical Kyocera Corp
Priority to JP2008219557A priority Critical patent/JP2011219279A/en
Priority to PCT/JP2009/064546 priority patent/WO2010024171A1/en
Publication of JP2011219279A publication Critical patent/JP2011219279A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zirconia raw material and a sintered zirconia compact, capable of suppressing reduction in strength in a hydrothermal degradation environment, and to provide a cutter and a hand cutting tool.SOLUTION: The zirconia raw material including zirconia as the main component and containing 1.5 to 3.5 mol% of yttria, 0.03 to 0.3 mass% of silica, 0.001 to 0.01 mass% of sodium oxide and 0.005 to 2.0 mass% of alumina, and the sintered zirconia compact, are provided. The zirconia raw material has a mean particle diameter of 0.4 to 1 μm, a maximum particle diameter of 1 to 3 μm, and a specific surface area of 4 to 16 m/g. This sintered zirconia compact has peak intensity ratios as described in the description as determined by EDS surface analysis of a surface crystal grain boundary. The cutter and the hand cutting tool have a blade made of the sintered zirconia compact.

Description

本発明は、刃体等に好適なジルコニア原料およびジルコニア焼結体、並びに刃物および手動利器に関する。   The present invention relates to a zirconia raw material and a zirconia sintered body suitable for blades and the like, as well as a blade and a manual instrument.

ジルコニア焼結体には、温水、水蒸気等が存在する水熱劣化環境下において、その強度が低下するという問題がある。例えば特許文献1には、主としてジルコニア(ZrO)とイットリア(Y)とからなるジルコニア質焼結体が記載されている。 A zirconia sintered body has a problem that its strength is lowered in a hydrothermal deterioration environment in which hot water, water vapor and the like are present. For example, Patent Document 1 describes a zirconia sintered body mainly composed of zirconia (ZrO 2 ) and yttria (Y 2 O 3 ).

この焼結体は、イットリア/ジルコニアのモル比が1.5/98.5〜2.6/97.4であり、アルミナ(Al)を0.005〜4.5質量%、酸化カルシウム(CaO)および酸化マグネシウム(MgO)の少なくとも1種を1質量%以下の割合で含有する。また、該焼結体は、シリカ(SiO)、酸化ナトリウム(NaO)および酸化カリウム(KO)の合計量が0.3質量%以下であり、かつシリカが0.2質量%以下、酸化ナトリウムが0.05質量%以下、酸化カリウムが0.05質量%以下であり、平均結晶粒径が0.30〜0.70μmである。 In this sintered body, the molar ratio of yttria / zirconia is 1.5 / 98.5 to 2.6 / 97.4, 0.005 to 4.5% by mass of alumina (Al 2 O 3 ), oxidation At least one of calcium (CaO) and magnesium oxide (MgO) is contained in a proportion of 1% by mass or less. In the sintered body, the total amount of silica (SiO 2 ), sodium oxide (Na 2 O) and potassium oxide (K 2 O) is 0.3 mass% or less, and silica is 0.2 mass%. Hereinafter, sodium oxide is 0.05 mass% or less, potassium oxide is 0.05 mass% or less, and an average crystal grain size is 0.30 to 0.70 μm.

特許文献1では、この焼結体をジルコニア製分散・粉砕機用部材に用いており、該焼結体は相変態し難く、温水中においても耐摩耗性を有すると記載されている。
しかしながら、この焼結体であっても、水熱劣化環境下における強度低下は抑制できていないのが現状である。このため、水熱劣化環境下における強度低下を抑制できるジルコニア焼結体およびその原料の開発が望まれている。
特開平8−337473号公報
In Patent Document 1, this sintered body is used as a member for a zirconia-made dispersion / pulverizer, and it is described that the sintered body hardly undergoes phase transformation and has wear resistance even in warm water.
However, even in the case of this sintered body, the current situation is that the strength reduction in the hydrothermal deterioration environment cannot be suppressed. For this reason, development of the zirconia sintered compact which can suppress the strength reduction in a hydrothermal deterioration environment, and its raw material is desired.
JP-A-8-337473

本発明の課題は、水熱劣化環境下における強度低下を抑制することができるジルコニア原料およびジルコニア焼結体、並びに刃物および手動利器を提供することである。   The subject of this invention is providing the zirconia raw material and zirconia sintered compact which can suppress the intensity | strength fall in a hydrothermal deterioration environment, a cutter, and a manual instrument.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。
(1)ジルコニアを主成分とし、イットリアを1.5〜3.5モル%、シリカを0.03〜0.3質量%、酸化ナトリウムを0.001〜0.01質量%、およびアルミナを0.005〜2.0質量%の割合で含有し、平均粒径が0.4〜1μm、最大粒径が1〜3μm、かつ比表面積が4〜16m/gであることを特徴とするジルコニア原料。
(2)ジルコニアを主成分とし、イットリアを1.5〜3.5モル%、シリカを0.03〜0.3質量%、酸化ナトリウムを0.001〜0.01質量%、およびアルミナを0.005〜2.0質量%の割合で含有し、表面の結晶粒界におけるEDS表面分析において、酸素の最大ピーク強度がシリコンの最大ピーク強度に対して60〜80%であり、かつアルミニウムの最大ピーク強度およびジルコニウムの最大ピーク強度が、いずれもシリコンの最大ピーク強度に対して20〜80%であるシリカ化合物を有することを特徴とするジルコニア焼結体。
(3)結晶粒界で前記シリカ化合物を形成し得るシリカを表面に有する前記(2)に記載のジルコニア焼結体。
(4)前記シリカ化合物は、内部の結晶粒界よりも表面の結晶粒界に多く存在する前記(2)または(3)に記載のジルコニア焼結体。
(5)前記(2)〜(4)のいずれかに記載のジルコニア焼結体からなる刃体を備えたことを特徴とする刃物。
(6)前記(2)〜(4)のいずれかに記載のジルコニア焼結体からなる刃体を備えたことを特徴とする手動利器。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a solution means having the following constitution and have completed the present invention.
(1) Mainly composed of zirconia, yttria 1.5 to 3.5 mol%, silica 0.03 to 0.3 mass%, sodium oxide 0.001 to 0.01 mass%, and alumina 0 0.005 to 2.0% by mass, zirconia having an average particle size of 0.4 to 1 μm, a maximum particle size of 1 to 3 μm, and a specific surface area of 4 to 16 m 2 / g material.
(2) Mainly composed of zirconia, yttria 1.5 to 3.5 mol%, silica 0.03 to 0.3 mass%, sodium oxide 0.001 to 0.01 mass%, and alumina 0 0.005 to 2.0 mass%, and in the EDS surface analysis at the grain boundary of the surface, the maximum peak intensity of oxygen is 60 to 80% with respect to the maximum peak intensity of silicon, and the maximum of aluminum A zirconia sintered body comprising a silica compound having a peak intensity and a maximum peak intensity of zirconium of 20 to 80% of the maximum peak intensity of silicon.
(3) The zirconia sintered body according to the above (2), which has on its surface silica capable of forming the silica compound at a crystal grain boundary.
(4) The zirconia sintered body according to (2) or (3), wherein the silica compound is present more in the surface grain boundaries than in the internal crystal grain boundaries.
(5) A blade comprising a blade made of the zirconia sintered body according to any one of (2) to (4).
(6) A manual instrument comprising a blade made of the zirconia sintered body according to any one of (2) to (4).

一般に、水熱劣化環境下では、焼結体を構成するジルコニア結晶粒子が水熱により膨張し、焼結体全体が圧縮応力を有するようになり、それゆえ強度が低下する。本発明によれば、ジルコニア原料およびジルコニア焼結体を特定の組成に制御した。これにより、水熱劣化環境下では、焼結体表面のシリカが水と反応して焼結体表面の結晶粒界で特定のピーク強度比を有するシリカ化合物を形成するので、焼結体を構成するジルコニア結晶粒子のうち、焼結体表面のジルコニア結晶粒子のみを膨張させることができる。   In general, under a hydrothermal deterioration environment, the zirconia crystal particles constituting the sintered body expand due to hydrothermal heat, and the entire sintered body has a compressive stress, and therefore the strength decreases. According to the present invention, the zirconia raw material and the zirconia sintered body were controlled to a specific composition. As a result, in a hydrothermal deterioration environment, the silica on the surface of the sintered body reacts with water to form a silica compound having a specific peak intensity ratio at the crystal grain boundary on the surface of the sintered body. Of the zirconia crystal particles to be processed, only the zirconia crystal particles on the surface of the sintered body can be expanded.

すなわち、本発明によれば、焼結体表面のジルコニア結晶粒子を膨張させて焼結体表面にのみ圧縮応力層を形成することができるので、この圧縮応力層が強化層となって焼結体強度を向上させやすく、水熱劣化環境下における強度低下を抑制することができる。   That is, according to the present invention, the zirconia crystal particles on the surface of the sintered body can be expanded to form a compressive stress layer only on the surface of the sintered body. It is easy to improve the strength, and it is possible to suppress a decrease in strength under a hydrothermal deterioration environment.

<ジルコニア原料>
本発明の一実施形態であるジルコニア原料は、ジルコニアを主成分とし、イットリア、シリカ、酸化ナトリウムおよびアルミナを特定の割合で含有する。具体的に説明すると、前記イットリアを1.5〜3.5モル%の割合で含有する。
<Zirconia raw material>
The zirconia raw material which is one embodiment of the present invention contains zirconia as a main component and contains yttria, silica, sodium oxide and alumina in a specific ratio. If it demonstrates concretely, the said yttria will be contained in the ratio of 1.5-3.5 mol%.

イットリアを1.5モル%以上の割合で含有すると、後述するジルコニア焼結体中に単斜晶相の割合が過剰になるのを抑制することができる。すなわち、相転移による大きな容積変化で亀裂が発生して強度が低下するのを抑制することができる。   When yttria is contained at a ratio of 1.5 mol% or more, it is possible to suppress an excessive ratio of the monoclinic phase in the zirconia sintered body described later. That is, it is possible to suppress the occurrence of cracks due to a large volume change due to the phase transition and the decrease in strength.

また、イットリアを3.5モル%以下の割合で含有すると、ジルコニア焼結体中に立方晶相の割合が過剰になるのを抑制することができる。すなわち、正方晶相の応力誘起変態による効果が減少して強度が低下するのを抑制することができる。前記応力誘起変態とは、破壊の原因となる亀裂の伝播を相変態によって阻害し、亀裂先端の応力集中を緩和することを意味する。   Moreover, when yttria is contained at a ratio of 3.5 mol% or less, it is possible to suppress an excessive ratio of the cubic phase in the zirconia sintered body. That is, it is possible to suppress a decrease in strength due to a decrease in the effect of stress-induced transformation of the tetragonal phase. The stress-induced transformation means that the propagation of cracks that cause fracture is inhibited by phase transformation, and stress concentration at the crack tip is relaxed.

前記シリカを0.03〜0.3質量%、好ましくは0.05〜0.2質量%、より好ましくは0.07〜0.15質量%の割合で含有する。また、前記酸化ナトリムを0.001〜0.01質量%、好ましくは0.001〜0.003質量%の割合で含有する。このような割合でシリカおよび酸化ナトリウムを含有すると、水熱劣化環境下において、後述する結晶粒界にシリカ化合物が形成されやすくなり、該環境下における強度低下を抑制することができる。また、シリカを前記割合で含有すると、焼結密度が低下するのを抑制することもできる。   The silica is contained in an amount of 0.03 to 0.3% by mass, preferably 0.05 to 0.2% by mass, more preferably 0.07 to 0.15% by mass. The sodium oxide is contained in an amount of 0.001 to 0.01% by mass, preferably 0.001 to 0.003% by mass. When silica and sodium oxide are contained in such a ratio, a silica compound is likely to be formed at a crystal grain boundary described later in a hydrothermal deterioration environment, and a decrease in strength in the environment can be suppressed. Moreover, when a silica is contained in the said ratio, it can also suppress that a sintered density falls.

前記アルミナを0.005〜2.0質量%の割合で含有する。これにより、焼結性が向上し、結晶構造を均一化しやすくなる。また、ジルコニア焼結体の破壊靭性が低下するのを抑制することができる。   The said alumina is contained in the ratio of 0.005-2.0 mass%. Thereby, sinterability improves and it becomes easy to make a crystal structure uniform. Moreover, it can suppress that the fracture toughness of a zirconia sintered compact falls.

本発明の一実施形態であるジルコニア原料は、前記ジルコニア、イットリア、シリカ、酸化ナトリウムおよびアルミナを粉砕および混合して乾燥した後の平均粒径、最大粒径および比表面積がそれぞれ以下に示す特定の値を有する。   The zirconia raw material which is an embodiment of the present invention is a specific particle size, maximum particle size and specific surface area after the zirconia, yttria, silica, sodium oxide and alumina are pulverized, mixed and dried, respectively, as shown below. Has a value.

すなわち、前記平均粒径は0.4〜1μmであり、最大粒径は1〜3μmである。乾燥後のジルコニア原料は、後述するように、成形体に成形した後に焼結するが、平均粒径および最大粒径を前記範囲内にすると、前記成形体の密度が低下するのを抑制することができるので、緻密な焼結体を得やすくなる。また、焼結性および焼結密度が低下するのを抑制することができる。   That is, the average particle size is 0.4-1 μm, and the maximum particle size is 1-3 μm. As described later, the dried zirconia raw material is sintered after being formed into a molded body, but if the average particle diameter and the maximum particle diameter are within the above ranges, the density of the molded body is suppressed from being lowered. Therefore, it becomes easy to obtain a dense sintered body. Moreover, it can suppress that sinterability and a sintering density fall.

前記平均粒径および最大粒径は、水に少量のジルコニア原料を添加し、適当な分散剤を添加して超音波洗浄機で十分に分散させた後、レーザー回折式の粒度分析装置で測定して得られる値である。   The average particle size and maximum particle size are measured with a laser diffraction particle size analyzer after a small amount of zirconia raw material is added to water, an appropriate dispersant is added and sufficiently dispersed with an ultrasonic cleaner. Is the value obtained.

前記比表面積は4〜16m/gである。これにより、焼結性および焼結密度が低下するのを抑制することができる。また、成形体密度が低下するのを抑制することができる。前記比表面積は、ジルコニア原料を200℃で加熱乾燥した後、窒素とヘリウムを3:7の体積比で混合したガスを用い、BET一点法で測定して得られる値である。 The specific surface area is 4 to 16 m 2 / g. Thereby, it can suppress that sinterability and a sintering density fall. Moreover, it can suppress that a molded object density falls. The specific surface area is a value obtained by measuring by a BET one-point method using a gas obtained by heating and drying a zirconia raw material at 200 ° C. and then mixing nitrogen and helium at a volume ratio of 3: 7.

本発明の一実施形態であるジルコニア原料は、前記ジルコニア、イットリア、シリカ、酸化ナトリウムおよびアルミナを粉砕および混合する第1工程と、ついで乾燥を行なう第2工程とを経て得ることができる。   The zirconia raw material which is one embodiment of the present invention can be obtained through a first step of pulverizing and mixing the zirconia, yttria, silica, sodium oxide and alumina, and then a second step of drying.

前記第1工程において、前記ジルコニアは、その製造方法において特に限定はなく、例えば共沈法、加水分解法、水熱法等の公知の方法を採用して得ることができる。また、前記イットリア、シリカ、酸化ナトリウムおよびアルミナは、酸化物のまま粉砕および混合してもよいし、例えばイットリア安定化ジルコニア(YSZ:YTTRIA STABILIZED ZIRCONIA)のようにジルコニアに成分として含まれていてもよく、これを粉砕および混合してもよい。   In the first step, the zirconia is not particularly limited in its production method, and can be obtained by employing a known method such as a coprecipitation method, a hydrolysis method, or a hydrothermal method. The yttria, silica, sodium oxide, and alumina may be pulverized and mixed in the form of an oxide, or may be contained as a component in zirconia, for example, yttria stabilized zirconia (YSZ: YTTRIA STABILIZED ZIRCONIA). Well this may be ground and mixed.

前記粉砕および混合は、例えばビーズミル、ボールミル、振動ミル等を用いて行うことができる。粉砕および混合時間は、1〜10時間程度が適当である。また、溶媒を用いて湿式粉砕してもよく、前記溶媒としては、例えば水、有機溶媒等が挙げられ、前記有機溶媒としては、例えばエタノール、アセトン、イソプロピルアルコール等が挙げられる。前記溶媒は、湿式粉砕後のスラリーの固形分濃度が40〜60質量%となる割合で添加するのが好ましい。   The pulverization and mixing can be performed using, for example, a bead mill, a ball mill, a vibration mill, or the like. The pulverization and mixing time is suitably about 1 to 10 hours. In addition, wet pulverization may be performed using a solvent. Examples of the solvent include water and organic solvents, and examples of the organic solvent include ethanol, acetone, isopropyl alcohol, and the like. The solvent is preferably added in such a ratio that the solid content concentration of the slurry after wet pulverization is 40 to 60% by mass.

また、成形方法に応じて湿式粉砕後のスラリーにポリビニルアルコール、メチルセルロース等のバインダーを添加することもできる。粘度が高くて粉砕性が低下する場合には、分散剤を添加してもよく、該分散剤としては、例えばポリエチレングリコール、ポリアクリル酸アンモニウム、ポリカルボン酸アンモニウム、ヘキサメタリン酸ナトリウム等が挙げられる。   Moreover, binders, such as polyvinyl alcohol and methylcellulose, can also be added to the slurry after wet pulverization according to the molding method. When the viscosity is high and the grindability is lowered, a dispersant may be added. Examples of the dispersant include polyethylene glycol, ammonium polyacrylate, ammonium polycarboxylate, sodium hexametaphosphate and the like.

前記第2工程における乾燥方法としては特に限定はなく、公知の乾燥方法が採用可能である。具体例を挙げると、乾燥機による乾燥の他、スプレードライ法(噴霧乾燥法)等が挙げられ、効率よく原料が得られる上でスプレードライ法が好ましい。スプレードライ法を採用する場合には、スプレードライヤーの熱風温度は150〜250℃が好ましく、乾燥後の乾燥粉末は80〜200メッシュ程度のふるいを通して整粒するのが好ましい。   There is no limitation in particular as the drying method in the said 2nd process, A well-known drying method is employable. Specific examples thereof include a spray drying method (spray drying method) and the like in addition to drying with a dryer, and the spray drying method is preferable in order to obtain raw materials efficiently. When the spray drying method is employed, the hot air temperature of the spray dryer is preferably 150 to 250 ° C., and the dried powder after drying is preferably sized through a sieve of about 80 to 200 mesh.

一方、乾燥機等を用いる場合には、乾燥温度は100〜200℃程度が適当であり、乾燥後の原料はピンミル等を用いて解砕するのが好ましい。なお、乾燥後のジルコニア原料において、通常、ジルコニアおよびイットリアは固溶状態にあり、シリカ、酸化ナトリウムおよびアルミナは混合状態にある。   On the other hand, when using a dryer etc., about 100-200 degreeC is suitable for drying temperature, and it is preferable to crush the raw material after drying using a pin mill etc. In the zirconia raw material after drying, zirconia and yttria are usually in a solid solution state, and silica, sodium oxide, and alumina are in a mixed state.

<ジルコニア焼結体>
本発明の一実施形態であるジルコニア焼結体は、ジルコニアを主成分とし、イットリアを1.5〜3.5モル%、シリカを0.03〜0.3質量%、酸化ナトリウムを0.001〜0.01質量%、およびアルミナを0.005〜2.0質量%の割合で含有する。
<Zirconia sintered body>
The zirconia sintered body according to an embodiment of the present invention is mainly composed of zirconia, 1.5 to 3.5 mol% of yttria, 0.03 to 0.3 mass% of silica, and 0.001 of sodium oxide. -0.01 mass% and an alumina are contained in the ratio of 0.005-2.0 mass%.

このような組成からなるジルコニア焼結体は、図1に示すように、水熱劣化環境下においてジルコニア焼結体1表面に圧縮応力層2を形成することができ、これにより該環境下における強度低下を抑制することができる。   As shown in FIG. 1, the zirconia sintered body having such a composition can form a compressive stress layer 2 on the surface of the zirconia sintered body 1 in a hydrothermally deteriorated environment. The decrease can be suppressed.

すなわち、圧縮応力層2は矢印A方向に圧縮応力を有している。この圧縮応力層2の片面に対して、図2に示すように、矢印B方向(鉛直方向)から外力が加わると、該外力が加わった周辺の領域aには矢印C方向に圧縮応力が発生する。この矢印C方向の圧縮応力を、圧縮応力層2が有する矢印A方向の圧縮応力にて相殺することができ、それゆえ該環境下における強度低下を抑制することができる。   That is, the compressive stress layer 2 has a compressive stress in the arrow A direction. As shown in FIG. 2, when an external force is applied to one side of this compressive stress layer 2 from the direction of arrow B (vertical direction), a compressive stress is generated in the direction of arrow C in the peripheral area a where the external force is applied. To do. This compressive stress in the direction of arrow C can be offset by the compressive stress in the direction of arrow A that the compressive stress layer 2 has, and hence a decrease in strength in the environment can be suppressed.

一方、前記外力が加わった圧縮応力層2の片面と反対の他面であって、領域aと対向する領域bには、矢印D方向に引張応力が発生する。また、該領域bには、圧縮応力層2が有する矢印A方向の圧縮応力も加わるが、ジルコニア結晶粒子が正方晶から単斜晶へ相変態することによって領域bの体積が増加するので、破壊に至ることを抑制することができる(応力誘起変態)。   On the other hand, tensile stress is generated in the direction of arrow D on the other surface opposite to one surface of the compressive stress layer 2 to which the external force is applied, and in the region b facing the region a. Further, although compressive stress in the direction of arrow A of the compressive stress layer 2 is also applied to the region b, the volume of the region b increases due to the phase transformation of the zirconia crystal grains from tetragonal crystal to monoclinic crystal. (Stress-induced transformation).

圧縮応力層2は、ジルコニア結晶粒子が水熱により膨張すること、すなわちジルコニア結晶粒子が正方晶から単斜晶へ相変態することにより発生する。より具体的に説明すると、ジルコニア焼結体1は、図3に示すように、複数個のジルコニア結晶粒子10を有している。該ジルコニア結晶粒子10とは、ジルコニアを主成分とする結晶粒子を意味する。   The compressive stress layer 2 is generated when the zirconia crystal particles expand due to hydrothermal heat, that is, when the zirconia crystal particles undergo a phase transformation from tetragonal to monoclinic. More specifically, the zirconia sintered body 1 has a plurality of zirconia crystal particles 10 as shown in FIG. The zirconia crystal particles 10 mean crystal particles mainly containing zirconia.

これら複数個のジルコニア結晶粒子10が隣接して、結晶粒界11が形成されている。焼結体1は、水と反応して結晶粒界11でシリカ化合物12を形成し得るシリカを表面に有している。該シリカは、焼結体1が前記割合で含有するシリカに由来しており、結晶粒界11(特に3重点粒界)に多く含まれている。この理由としては、焼結体1がシリカおよび酸化ナトリウムを前記割合で含有することに起因すると推察される。   The plurality of zirconia crystal particles 10 are adjacent to each other to form a crystal grain boundary 11. The sintered body 1 has silica on the surface that can react with water to form a silica compound 12 at the crystal grain boundaries 11. The silica is derived from the silica contained in the sintered body 1 in the above ratio, and is contained in a large amount in the crystal grain boundary 11 (particularly, the triple point grain boundary). As this reason, it is guessed that it originates in the sintered compact 1 containing a silica and sodium oxide in the said ratio.

水熱劣化環境下では、焼結体1の表面から内部に向かって水熱劣化が進行する(矢印E方向)。この過程において前記シリカが水と反応し、焼結体1表面の結晶粒界11でシリカ化合物12が形成される。これにより、焼結体1表面のみでジルコニア結晶粒子10が正方晶から単斜晶へ相変態して体積が約4%増加し、その結果、圧縮応力層2が形成されやすくなる。   Under a hydrothermal degradation environment, hydrothermal degradation proceeds from the surface of the sintered body 1 toward the inside (in the direction of arrow E). In this process, the silica reacts with water, and a silica compound 12 is formed at the crystal grain boundary 11 on the surface of the sintered body 1. As a result, the zirconia crystal particles 10 undergo a phase transformation from tetragonal to monoclinic crystal only on the surface of the sintered body 1 and the volume increases by about 4%. As a result, the compressive stress layer 2 is easily formed.

この圧縮応力層2は焼結体1表面にのみ形成されることから、焼結体1全体が圧縮応力を有して脆くなることを抑制することができる。焼結体1表面にのみ圧縮応力層2が形成される理由としては、焼結体1表面の結晶粒界11にシリカ化合物12が形成されると、これが保護層となって焼結体1内部への水の浸入が防止されやすく、これにより焼結体1内部のジルコニア結晶粒子10の相変態が抑制されることに起因すると推察される。   Since this compressive stress layer 2 is formed only on the surface of the sintered body 1, it can be suppressed that the entire sintered body 1 has a compressive stress and becomes brittle. The reason why the compressive stress layer 2 is formed only on the surface of the sintered body 1 is that when the silica compound 12 is formed at the crystal grain boundary 11 on the surface of the sintered body 1, this becomes a protective layer and the inside of the sintered body 1. It is presumed that the intrusion of water into the glass is easily prevented, and this is because the phase transformation of the zirconia crystal particles 10 inside the sintered body 1 is suppressed.

焼結体1は、水と反応して結晶粒界11でシリカ化合物12を形成し得る前記シリカを表面のみならず内部にも有しているが、前記理由から焼結体1内部への水の浸入が防止されやすくなるので、シリカ化合物12は、通常、焼結体1の内部の結晶粒界11よりも表面の結晶粒界11に多く存在しやすくなる。   The sintered body 1 has the silica that can react with water to form the silica compound 12 at the crystal grain boundaries 11 not only on the surface but also on the inside. As a result, the silica compound 12 usually tends to be present more in the crystal grain boundaries 11 on the surface than in the crystal grain boundaries 11 inside the sintered body 1.

焼結体1表面にのみ圧縮応力層2を適切に形成する処理条件としては、特に限定されない。すなわち、該焼結体1を研磨したり使用するうちに正方晶から単斜晶へ自発的に相変態して、焼結体1表面にのみ圧縮応力層2が形成されやすくなる。   Processing conditions for appropriately forming the compressive stress layer 2 only on the surface of the sintered body 1 are not particularly limited. That is, while the sintered body 1 is polished or used, the phase spontaneously transforms from tetragonal to monoclinic and the compressive stress layer 2 is easily formed only on the surface of the sintered body 1.

ここで、シリカ化合物12は、特定のピーク強度比を有している。すなわち、シリカ化合物12は、焼結体1表面の結晶粒界11におけるEDS(エネルギー分散型X線分光)表面分析において、酸素の最大ピーク強度がシリコンの最大ピーク強度に対して60〜80%であり、かつアルミニウムの最大ピーク強度およびジルコニウムの最大ピーク強度が、いずれもシリコンの最大ピーク強度に対して20〜80%である。このような特定のピーク強度比を有するシリカ化合物12を焼結体1表面の結晶粒界11に有し、かつ該シリカ化合物12を含む圧縮応力層2が焼結体1表面に形成されると焼結体1の坑折強度が高くなり、水熱劣化環境下における強度低下を抑制しやすくすることができる。このようなピーク強度比を有するシリカ化合物12は、焼結体1を前記組成で構成することによって形成しやすくすることができる。   Here, the silica compound 12 has a specific peak intensity ratio. That is, in the EDS (energy dispersive X-ray spectroscopy) surface analysis at the grain boundary 11 on the surface of the sintered body 1, the silica compound 12 has a maximum peak intensity of oxygen of 60 to 80% with respect to the maximum peak intensity of silicon. In addition, the maximum peak intensity of aluminum and the maximum peak intensity of zirconium are both 20 to 80% with respect to the maximum peak intensity of silicon. When the silica compound 12 having such a specific peak intensity ratio is present at the crystal grain boundary 11 on the surface of the sintered body 1 and the compressive stress layer 2 including the silica compound 12 is formed on the surface of the sintered body 1 The folding strength of the sintered body 1 is increased, and it is possible to easily suppress the strength reduction in the hydrothermal deterioration environment. The silica compound 12 having such a peak intensity ratio can be easily formed by configuring the sintered body 1 with the above composition.

前記EDS表面分析は、透過電子顕微鏡(JEOL社製の「JEM2010F」)を加速電圧200kVに設定し、エネルギー分散型X線分光分析(Noran Instruments社製の「VoyagerIV」)をスポット径1nm、測定時間50秒、測定エネルギー幅0.12〜20.48keVに設定し、判定量計算方法に薄膜近似法を用いて行う。   In the EDS surface analysis, a transmission electron microscope (“JEM2010F” manufactured by JEOL) is set to an acceleration voltage of 200 kV, and an energy dispersive X-ray spectroscopic analysis (“Voyager IV” manufactured by Noran Instruments) is performed with a spot diameter of 1 nm and a measurement time. The measurement energy width is set to 0.12 to 20.48 keV for 50 seconds, and the determination amount calculation method is performed using a thin film approximation method.

結晶粒界11の組成分析は、SEM(走査型電子顕微鏡)による組織観察にて行う。具体的には、SEM(日本電子社製の「JSM−7001F」)を、Tilt0°、蒸着なし、加速電圧15kV、倍率2000倍、反射電子組成像の条件で使用する。なお、焼結体1自体の組成分析についても、結晶粒界11の組成分析と同様にして行うことができる。   The composition analysis of the crystal grain boundary 11 is performed by structural observation with an SEM (scanning electron microscope). Specifically, SEM (“JSM-7001F” manufactured by JEOL Ltd.) is used under the conditions of Tilt 0 °, no evaporation, acceleration voltage 15 kV, magnification 2000 times, and reflected electron composition image. The composition analysis of the sintered body 1 itself can also be performed in the same manner as the composition analysis of the crystal grain boundaries 11.

本発明の一実施形態であるジルコニア焼結体は、ジルコニア原料から成形体を作製する第1工程と、該成形体を焼結する第2工程とを経て得ることができる。前記第1工程において、ジルコニア原料からの成形体の作製は、例えば鋳込み成形、射出成形、押出し成形、加圧成形、金型成形等の公知の成形方法が採用可能である。   The zirconia sintered body which is one embodiment of the present invention can be obtained through a first step of producing a molded body from a zirconia raw material and a second step of sintering the molded body. In the first step, a known molded method such as cast molding, injection molding, extrusion molding, pressure molding, mold molding, or the like can be employed to produce a molded body from the zirconia raw material.

特に、加圧成形を採用する場合には、均質かつ高密度な成形体が得られる上でCIP成形が好ましく、成形圧力としては0.5〜2.0t/cm程度が適当である。なお、CIP成形を行う前に、一軸加圧成形機等を用いて仮成形してもよい。金型成形を採用する場合の成形圧力としては0.5〜1.0t/cm程度が適当である。 In particular, when pressure molding is employed, CIP molding is preferable in order to obtain a uniform and high-density molded body, and a molding pressure of about 0.5 to 2.0 t / cm 2 is appropriate. In addition, before performing CIP shaping | molding, you may perform temporary shaping | molding using a uniaxial pressure molding machine etc. A molding pressure of about 0.5 to 1.0 t / cm 2 is appropriate when employing mold molding.

前記第2工程において、成形体の焼成は1300〜1600℃、好ましくは1350〜1450℃で、1〜3時間程度かけて行なうのが好ましい。このようにして焼成すると、結晶粒界11が大きくなるのを抑制することができ、水熱劣化環境下における強度低下を抑制することができる。   In the second step, the molded body is preferably fired at 1300 to 1600 ° C., preferably 1350 to 1450 ° C., for about 1 to 3 hours. When fired in this manner, it is possible to suppress the crystal grain boundary 11 from becoming large, and it is possible to suppress a decrease in strength in a hydrothermal deterioration environment.

また、前記バインダーを添加したジルコニア原料を使用する場合には、350〜600℃で脱脂を行うのが好ましい。この範囲で脱脂すると、バインダーが残留したり、急激に脱脂が進むことによるクラックが成形体に発生することを抑制することができる。焼成雰囲気としては大気の他、焼結体の気孔を減らすために真空等で行なってもよい。   Moreover, when using the zirconia raw material which added the said binder, it is preferable to degrease at 350-600 degreeC. When degreasing is performed within this range, it is possible to prevent the binder from remaining or cracks due to abrupt degreasing from occurring in the molded body. As the firing atmosphere, in addition to the air, vacuum may be used in order to reduce pores in the sintered body.

本発明の一実施形態であるジルコニア焼結体は、水熱劣化環境下における強度低下を抑制しやすくできることから、刃物、手動利器等の刃体に好適である。すなわち、本発明の一実施形態である刃物は、前記ジルコニア焼結体からなる刃体を備えている。前記刃物としては、例えば(カッター)ナイフ、包丁等が挙げられる。   Since the zirconia sintered body which is one embodiment of the present invention can easily suppress a decrease in strength under a hydrothermal deterioration environment, it is suitable for blades such as blades and manual instruments. That is, the blade which is one Embodiment of this invention is equipped with the blade body which consists of the said zirconia sintered compact. Examples of the blade include a (cutter) knife and a knife.

また、本発明の一実施形態である手動利器は、前記ジルコニア焼結体からなる刃体を備えている。前記手動利器としては、例えばハサミ、ピーラー、スプーン、フォーク、フライ返し等が挙げられる。これら刃物および手動利器において、前記刃体を研磨する工程においても、焼結体表面に圧縮応力層を形成しやすくすることができる。なお、本発明の一実施形態であるジルコニア焼結体の用途は、例示したこれらの用途に限定されるものではなく、水熱劣化環境下で使用される各種部材としても使用できる。   Moreover, the manual instrument which is one Embodiment of this invention is equipped with the blade body which consists of the said zirconia sintered compact. Examples of the manual instrument include scissors, peelers, spoons, forks, and frying. In these blades and manual instruments, it is possible to easily form a compressive stress layer on the surface of the sintered body even in the step of polishing the blade. In addition, the use of the zirconia sintered compact which is one Embodiment of this invention is not limited to these illustrated uses, It can be used also as various members used in a hydrothermal deterioration environment.

以下、実施例を挙げて本発明についてさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、各物性の測定方法は、次の通りである。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to a following example. In addition, the measuring method of each physical property is as follows.

(平均粒径・最大粒径)
水に少量のジルコニア原料を添加し、分散剤を添加して超音波洗浄機で十分に分散させた後、レーザー回折式の粒度分析装置で測定した。なお、前記分散剤には、ヘキサメタリン酸ナトリウムを使用し、その使用量は、ジルコニア原料100重量部に対して80重量部(固形分換算)とした。
(Average particle size / maximum particle size)
A small amount of zirconia raw material was added to water, a dispersant was added, and the mixture was sufficiently dispersed with an ultrasonic cleaner, and then measured with a laser diffraction particle size analyzer. In addition, sodium hexametaphosphate was used for the said dispersing agent, and the usage-amount was 80 weight part (solid content conversion) with respect to 100 weight part of zirconia raw materials.

(比表面積)
前記したBET一点法で測定した。
(Specific surface area)
It measured by the above-mentioned BET one point method.

<ジルコニア焼結体の作製>
まず、イットリア2モル%、シリカ0.007質量%、酸化ナトリウム0.001質量%、アルミナ0.005質量%、残りがジルコニアからなり、比表面積が6.5m/gであるYSZを用意した。また、別途、アルミナおよびシリカを用意した。
<Preparation of sintered zirconia>
First, YSZ having 2 mol% of yttria, 0.007 mass% of silica, 0.001 mass% of sodium oxide, 0.005 mass% of alumina, the remainder consisting of zirconia and having a specific surface area of 6.5 m 2 / g was prepared. . Separately, alumina and silica were prepared.

ついで、これらを表1に示す組成となる割合で粉砕および混合した。なお、表1中、イットリア、シリカ、酸化ナトリウムおよびアルミナを除いた残りの組成がジルコニアの組成になる。   Subsequently, these were pulverized and mixed at the ratios shown in Table 1. In Table 1, the remaining composition excluding yttria, silica, sodium oxide and alumina is the composition of zirconia.

前記粉砕および混合は、湿式粉砕にて行った。すなわち、溶媒に水を用いて、振動ミルで5時間かけて湿式粉砕を行った。前記水は、湿式粉砕後のスラリーの固形分濃度が40質量%となる割合で添加した。   The pulverization and mixing were performed by wet pulverization. That is, wet pulverization was performed using a vibration mill for 5 hours using water as a solvent. The water was added in such a ratio that the solid content concentration of the slurry after wet pulverization was 40% by mass.

湿式粉砕後のスラリーをスプレードライヤー(熱風温度:170℃)にて乾燥し、得られた乾燥粉末を120メッシュのふるいを通して整粒し、これにより粉末状のジルコニア原料を得た(表1中の試料番号1〜41)。得られた各ジルコニア原料について、平均粒径、最大粒径および比表面積を前記した方法に従って測定した。その結果を表1に示す。   The slurry after wet pulverization was dried with a spray dryer (hot air temperature: 170 ° C.), and the obtained dry powder was sized through a 120-mesh sieve to obtain a powdery zirconia raw material (in Table 1). Sample numbers 1-41). About each obtained zirconia raw material, the average particle diameter, the maximum particle diameter, and the specific surface area were measured according to the above-mentioned method. The results are shown in Table 1.

次に、得られた粉末状のジルコニア原料を一軸加圧成形機(丸七社製の「HYDRAULIC PRESS」)を用いて仮成形した後、CIP成形機(神戸製作所製の「Dr.CIP」)を用いて1.0t/cmの圧力で成形した。この成形体を1430℃で2時間かけて大気中で焼結を行い、ジルコニア焼結体を得た(表1中の試料番号1〜41)。得られた各焼結体の組成分析を、前記したSEMによる分析方法にて実施した。その結果、各焼結体の組成は、表1中に示す組成と同じ組成を有していた。 Next, the powdery zirconia raw material thus obtained was temporarily molded using a uniaxial pressure molding machine (“HYDRALIC PRESS” manufactured by Marushichi Company), and then a CIP molding machine (“Dr. CIP” manufactured by Kobe Seisakusho). Was molded at a pressure of 1.0 t / cm 2 . This molded body was sintered in the air at 1430 ° C. for 2 hours to obtain a zirconia sintered body (sample numbers 1 to 41 in Table 1). The composition analysis of each obtained sintered body was carried out by the analysis method using the SEM described above. As a result, the composition of each sintered body had the same composition as the composition shown in Table 1.

<評価>
得られた各焼結体について水熱劣化試験を行なった。まず、焼結体をJIS 1601に準拠するように切断および加工し、その表面に対して3.0μmのダイヤモンドペーストを用いて鏡面研磨を行った。ついで、この焼結体を1000mlの耐圧容器内に研磨面が容器底面に対して上方を向くように載置した。
<Evaluation>
A hydrothermal deterioration test was performed on each of the obtained sintered bodies. First, the sintered body was cut and processed so as to comply with JIS 1601, and the surface was mirror-polished using a 3.0 μm diamond paste. Subsequently, this sintered body was placed in a 1000 ml pressure-resistant container so that the polishing surface was directed upward with respect to the bottom surface of the container.

この耐圧容器中に、純水700mlを焼結体が動かないようにゆっくりと注ぎ込んだ後、該耐圧容器をオートクレーブ装置(耐圧硝子工業株式会社製の「TEM−V」)にセットし、140℃で3.6気圧の条件下、100時間かけて水熱劣化試験を行った。そして、水熱劣化試験後の焼結体について、EDS表面分析と、坑折強度の測定を実施した。分析方法および測定方法を以下に示すと共に、その結果を表1に示す。   After slowly pouring 700 ml of pure water into the pressure vessel so that the sintered body does not move, the pressure vessel is set in an autoclave device ("TEM-V" manufactured by Pressure Glass Industrial Co., Ltd.), and 140 ° C. The hydrothermal deterioration test was conducted over 100 hours under the condition of 3.6 atm. And about the sintered compact after a hydrothermal deterioration test, the EDS surface analysis and the measurement of mine strength were implemented. The analysis method and measurement method are shown below, and the results are shown in Table 1.

(EDS表面分析)
EDS表面分析は、測定箇所を焼結体表面の3重点粒界にした以外は、前記した条件で実施した。なお、表1中、ピーク強度比の欄において、「酸素」は、シリコンの最大ピーク強度に対する酸素の最大ピーク強度の比を示している。これと同様に、当該欄において、「アルミニウム」および「ジルコニウム」は、シリコンの最大ピーク強度に対するアルミニウムの最大ピーク強度およびジルコニウムの最大ピーク強度の比をそれぞれ示している。
(EDS surface analysis)
The EDS surface analysis was performed under the above-described conditions except that the measurement location was a triple point grain boundary on the surface of the sintered body. In Table 1, in the column of the peak intensity ratio, “oxygen” indicates the ratio of the maximum peak intensity of oxygen to the maximum peak intensity of silicon. Similarly, in this column, “aluminum” and “zirconium” indicate the ratio of the maximum peak intensity of aluminum and the maximum peak intensity of zirconium to the maximum peak intensity of silicon, respectively.

EDS表面分析結果の一例として、試料番号41の透過電子顕微鏡による観察結果を図4に、そのEDS表面分析結果を図5にそれぞれ示す。なお、EDS表面分析は、図4中の焼結体表面における3重点粒界Fについて行った。図5中、「Si」はシリコン、「O」は酸素、「Al」はアルミニウム、「Zr」はジルコニウムをそれぞれ示している。   As an example of the EDS surface analysis result, the observation result of the sample number 41 with a transmission electron microscope is shown in FIG. 4, and the EDS surface analysis result is shown in FIG. In addition, the EDS surface analysis was performed about the triple point grain boundary F in the sintered compact surface in FIG. In FIG. 5, “Si” represents silicon, “O” represents oxygen, “Al” represents aluminum, and “Zr” represents zirconium.

(坑折強度)
坑折強度は、水熱劣化試験後の焼結体について、JIS 1601に準拠した3点曲げ強さの測定条件で実施した。
(Folding strength)
The mine strength was measured under the three-point bending strength measurement conditions based on JIS 1601 for the sintered body after the hydrothermal degradation test.

表1から明らかなように、本発明の範囲内にあるジルコニア焼結体は、水熱劣化試験後の坑折強度が1000MPa以上であり、高い値を示しているのがわかる。   As is apparent from Table 1, the zirconia sintered body within the scope of the present invention has a fold strength after the hydrothermal deterioration test of 1000 MPa or more, indicating a high value.

本発明の一実施形態であるジルコニア焼結体を水熱劣化環境下に曝した状態を示す概略断面説明図である。It is a schematic sectional explanatory drawing which shows the state which exposed the zirconia sintered compact which is one Embodiment of this invention to the hydrothermal deterioration environment. 本発明の一実施形態であるジルコニア焼結体に外力が加わった状態を示す概略断面説明図である。It is a schematic sectional explanatory drawing which shows the state in which the external force was added to the zirconia sintered compact which is one Embodiment of this invention. 本発明の一実施形態であるジルコニア焼結体に形成される圧縮応力層を示す概略断面説明図である。It is a schematic sectional explanatory drawing which shows the compressive-stress layer formed in the zirconia sintered compact which is one Embodiment of this invention. 本発明の一実施形態である実施例における試料番号41の透過電子顕微鏡による観察結果を示す顕微鏡写真である。It is a microscope picture which shows the observation result by the transmission electron microscope of the sample number 41 in the Example which is one Embodiment of this invention. 本発明の一実施形態である実施例における試料番号41のEDS表面分析結果を示すグラフである。It is a graph which shows the EDS surface analysis result of the sample number 41 in the Example which is one Embodiment of this invention.

符号の説明Explanation of symbols

1 ジルコニア焼結体
2 圧縮応力層
10 ジルコニア結晶粒子
11 結晶粒界
12 シリカ化合物
DESCRIPTION OF SYMBOLS 1 Zirconia sintered compact 2 Compression stress layer 10 Zirconia crystal grain 11 Grain boundary 12 Silica compound

Claims (6)

ジルコニアを主成分とし、
イットリアを1.5〜3.5モル%、
シリカを0.03〜0.3質量%、
酸化ナトリウムを0.001〜0.01質量%、
およびアルミナを0.005〜2.0質量%の割合で含有し、
平均粒径が0.4〜1μm、最大粒径が1〜3μm、かつ比表面積が4〜16m/gであることを特徴とするジルコニア原料。
With zirconia as the main component,
1.5 to 3.5 mol% yttria,
0.03-0.3% by mass of silica,
0.001 to 0.01% by mass of sodium oxide,
And alumina in a proportion of 0.005 to 2.0 mass%,
A zirconia raw material having an average particle diameter of 0.4 to 1 μm, a maximum particle diameter of 1 to 3 μm, and a specific surface area of 4 to 16 m 2 / g.
ジルコニアを主成分とし、
イットリアを1.5〜3.5モル%、
シリカを0.03〜0.3質量%、
酸化ナトリウムを0.001〜0.01質量%、
およびアルミナを0.005〜2.0質量%の割合で含有し、
表面の結晶粒界におけるEDS表面分析において、
酸素の最大ピーク強度がシリコンの最大ピーク強度に対して60〜80%であり、
かつアルミニウムの最大ピーク強度およびジルコニウムの最大ピーク強度が、いずれもシリコンの最大ピーク強度に対して20〜80%であるシリカ化合物を有することを特徴とするジルコニア焼結体。
With zirconia as the main component,
1.5 to 3.5 mol% yttria,
0.03-0.3% by mass of silica,
0.001 to 0.01% by mass of sodium oxide,
And alumina in a proportion of 0.005 to 2.0 mass%,
In the EDS surface analysis at the surface grain boundary,
The maximum peak intensity of oxygen is 60-80% of the maximum peak intensity of silicon;
A zirconia sintered body having a silica compound in which the maximum peak intensity of aluminum and the maximum peak intensity of zirconium are both 20 to 80% of the maximum peak intensity of silicon.
結晶粒界で前記シリカ化合物を形成し得るシリカを表面に有する請求項2に記載のジルコニア焼結体。   The zirconia sintered body according to claim 2, which has silica capable of forming the silica compound at a grain boundary on a surface thereof. 前記シリカ化合物は、内部の結晶粒界よりも表面の結晶粒界に多く存在する請求項2または3に記載のジルコニア焼結体。   4. The zirconia sintered body according to claim 2, wherein the silica compound is present more in the surface grain boundaries than in the internal crystal grain boundaries. 5. 請求項2〜4のいずれかに記載のジルコニア焼結体からなる刃体を備えたことを特徴とする刃物。   A blade comprising the blade made of the zirconia sintered body according to any one of claims 2 to 4. 請求項2〜4のいずれかに記載のジルコニア焼結体からなる刃体を備えたことを特徴とする手動利器。   A manual instrument comprising a blade made of the zirconia sintered body according to any one of claims 2 to 4.
JP2008219557A 2008-08-28 2008-08-28 Zirconia raw material, sintered zirconia compact, cutter, and hand cutting tool Withdrawn JP2011219279A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008219557A JP2011219279A (en) 2008-08-28 2008-08-28 Zirconia raw material, sintered zirconia compact, cutter, and hand cutting tool
PCT/JP2009/064546 WO2010024171A1 (en) 2008-08-28 2009-08-20 Zirconia raw material, sintered zirconia compact, and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219557A JP2011219279A (en) 2008-08-28 2008-08-28 Zirconia raw material, sintered zirconia compact, cutter, and hand cutting tool

Publications (1)

Publication Number Publication Date
JP2011219279A true JP2011219279A (en) 2011-11-04

Family

ID=41721340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219557A Withdrawn JP2011219279A (en) 2008-08-28 2008-08-28 Zirconia raw material, sintered zirconia compact, cutter, and hand cutting tool

Country Status (2)

Country Link
JP (1) JP2011219279A (en)
WO (1) WO2010024171A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4269353A1 (en) * 2020-12-22 2023-11-01 Kuraray Noritake Dental Inc. Zirconia granules, green compact, and methods respectively for producing those products

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860953B2 (en) * 1995-06-12 1999-02-24 株式会社ニッカトー Components for zirconia dispersing and crushing machines
JP2004115343A (en) * 2002-09-27 2004-04-15 Nitsukatoo:Kk Method of producing partially stabilized zirconia sintered compact

Also Published As

Publication number Publication date
WO2010024171A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
Hwang et al. Improved processing and oxidation-resistance of ZrB2 ultra-high temperature ceramics containing SiC nanodispersoids
JP6637956B2 (en) Sintered ceramic material, powder composition for obtaining sintered ceramic material, method for producing the same, and ceramic component
Matsui et al. Effect of alumina-doping on grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal
Darihaki et al. Effect of nano and micro SiC particles on the microstructure and fracture toughness of ZrB2-SiC nanocomposite produced by SPS method
WO2021070502A1 (en) High-ductility molybdenum alloy material
DUTTA et al. Microstructure, strength, and oxidation of a 10 wt% zyttrite‐Si3N4 ceramic
Santos et al. Properties of Y-TZP/Al2O3 ceramic nanocomposites obtained by high-energy ball milling
Bakhtierkhalzi et al. Effect of TiO2 as sintering additive on microstructural, physical, and mechanical properties of CeO2 doped zirconia toughened alumina ceramic composite
Izhevskyi et al. Liquid phase sintered SiC ceramics from starting materials of different grade
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
Lin et al. Spark plasma sintering of ZrO2 fiber toughened ZrB2-based ultra-high temperature ceramics
JP2011219279A (en) Zirconia raw material, sintered zirconia compact, cutter, and hand cutting tool
Zhu et al. Effects of the Zr concentration on transparent Y 2 O 3 ceramics fabricated by vacuum pre-sintering and a subsequent HIP treatment
JP2020097509A (en) Mullite-based sintered compact and method for producing the same
JP2671929B2 (en) Zirconia-based ceramic material and its manufacturing method
Meng et al. Microstructural evolution of nanocrystalline Al2O3 sintered at a high heating rate
Rambo et al. Synthesis of porous biomorphic α/β-Si 3 N 4 composite from sea sponge
Jang et al. Fabrication and microstructure of Al2O3 matrix composites by in-situ reaction in the Al2O3-La2O3 system
Holmström et al. Reaction-sintered ZrO2-mullite composites
JP2645894B2 (en) Method for producing zirconia ceramics
JP2008273753A (en) Boron carbide-based sintered compact and protective member
JPH04275977A (en) High strength alumina-zirconia ceramic edged tool
JP3078430B2 (en) High-strength alumina sintered body
JP3121996B2 (en) Alumina sintered body
WO2022202710A1 (en) Ceramic sintered body and ceramic powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101