JPS62263940A - Heat treatment of ti-fe sintered alloy - Google Patents

Heat treatment of ti-fe sintered alloy

Info

Publication number
JPS62263940A
JPS62263940A JP10729186A JP10729186A JPS62263940A JP S62263940 A JPS62263940 A JP S62263940A JP 10729186 A JP10729186 A JP 10729186A JP 10729186 A JP10729186 A JP 10729186A JP S62263940 A JPS62263940 A JP S62263940A
Authority
JP
Japan
Prior art keywords
temp
sintered
alloy
powder
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10729186A
Other languages
Japanese (ja)
Inventor
Keiichiro Shoji
庄司 啓一郎
Kazuhiko Majima
一彦 真島
Takahiro Isono
磯野 貴宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP10729186A priority Critical patent/JPS62263940A/en
Publication of JPS62263940A publication Critical patent/JPS62263940A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide excellent tensile strength and elongation percentage,by subjecting a Ti-Fe alloy to heat treatment under specific conditions and by forming a metallic structure in which a new-precipitated phase separates out from a solid solution and forms into laminar state along the cleavage planes of solid solution grains. CONSTITUTION:A high-purity iron powder is added to a high-purity titanium powder by a specific weight percentage up to the eutectoid composition, and they are sufficiently blended. The resulting powder mixture is compacted and then sintered in a high-temp. vacuum furnace for a prescribed period. The resulting sintered compact is held at a temp. in a beta single phase temp. region for a prescribed period and then hardened. The above compact is further held at a temp. within an (alpha+beta) two phases temp. region for a prescribed period, which is hardened or is allowed to stand to be cooled.

Description

【発明の詳細な説明】 産業−にの利用分野 本発明は、Ti−Fe系焼結合金に関し、より詳細には
Ti −Fe系焼結合金の熱処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a Ti--Fe sintered alloy, and more particularly to a method for heat treatment of a Ti--Fe sintered alloy.

従来の技II打 チタンおよびチタン合金は比強度(引張強さ/比重)が
高くしかも優れた耐食性もあることがら、各種化学工業
用部品、航空機用部品などの機械構造用材料をはじめと
して形状記憶合金、水素吸蔵合金などの機能材料として
広範に利用されている。
Conventional technique II hammered titanium and titanium alloys have high specific strength (tensile strength/specific gravity) and excellent corrosion resistance, so they can be used as shape memory materials for mechanical structural materials such as various chemical industry parts and aircraft parts. It is widely used as a functional material such as alloys and hydrogen storage alloys.

チタン成品の製造方法としては、インゴットの鋳造、圧
延、切削加工等による方法が主流である。
Mainstream methods for manufacturing titanium products include ingot casting, rolling, cutting, and the like.

しかし、この方法ではチタンの加工性(圧延性、切削性
)の悪さ、および歩留りの低さに起因するコスト高、更
に共析組織の出るチタン合金の場合は偏析を生じやすく
組織が不均一である等の問題点を有する。
However, this method is expensive due to poor workability (rollability, machinability) of titanium and low yield, and in the case of titanium alloys with eutectoid structures, segregation tends to occur and the structure is non-uniform. There are some problems.

上記の問題を解決するために、粉末冶金法によるチタン
合金の製造方法が種々検討されている。
In order to solve the above problems, various methods for producing titanium alloys using powder metallurgy have been studied.

この方法は、チタンの粉末と、別種の金属の粉末とを所
定の比率で混合し、圧縮成形して焼結させるものである
In this method, titanium powder and powder of another metal are mixed in a predetermined ratio, compression molded, and sintered.

この粉末冶金法は、溶製材の場合に生ずる偏析や機械加
工困難といった問題を一挙に解決できる可能性がある。
This powder metallurgy method has the potential to solve all the problems of segregation and machining difficulties that occur with melt-sawn materials.

しかし、チタン系合金が苛酷な条件下で使用されること
もあり、また焼結密度をいかにして」−昇させるかが一
つの大きな問題となっている。
However, titanium-based alloys are sometimes used under harsh conditions, and one major problem is how to increase the sintered density.

その中で、チタン粉末と社較的低温にて共晶反応を生じ
る第8族元素粉末(鉄、コバルト、ニッケル、パラジウ
ム)との混合粉末の焼結材が、研究されている。
Among these, a sintered material of a mixed powder of titanium powder and Group 8 element powder (iron, cobalt, nickel, palladium) that undergoes a eutectic reaction at relatively low temperatures has been studied.

−1−記のS3族金属元素の粉末をある重量%(数重量
%ないし多くとも10重量%)添加して高圧にて成形し
て、高温にて(100(1〜1400℃)焼結すると、
相対密度が100%近くに達し、稠密化が実現できた。
-1- A certain weight % (several weight % to at most 10 weight %) of powder of the S3 group metal element is added, molded under high pressure, and sintered at a high temperature (100 (1 to 1400°C)). ,
The relative density reached nearly 100%, and densification was achieved.

しかし、これらの焼結材の中で、Ti −Fe系合金は
、引張強さは増加するものの、伸びは低下する。ある実
験結果によると、引張強度は90kgf/mm2程度で
あり、伸びは0.25%であった。このため機械構造用
合金としては実用−1′、使用することはできない。上
記した問題は、Ti−Feだけでなく、Tl−C01T
i−Ni系のような共析組織の出る合金の場合も同様に
生じる。
However, among these sintered materials, Ti--Fe alloys have increased tensile strength but decreased elongation. According to some experimental results, the tensile strength was about 90 kgf/mm2 and the elongation was 0.25%. For this reason, it cannot be used practically as an alloy for mechanical structures. The above-mentioned problem applies not only to Ti-Fe but also to Tl-C01T.
This also occurs in the case of alloys with eutectoid structures such as i-Ni alloys.

Ti−(iへI −4V合金のような共析しない合金系
では、合金粉末の混合粉を圧縮プレスした後、数時間焼
結し、この焼結合金をβ相である例えば1050℃の温
度領域に所定時間保持して、水焼入れすると、引張強さ
約90Kgf/mm2、伸び率約10%の機械的特性の
合金が得られ〆。また、」1記した水焼入れの機甲に、
〈α十β)相である930℃に一定時間保持してII 
I P処理を施すと、111粒の相は存在せず、均質か
つ微細な(α十β)2相組織の合金が得られる。この合
金の機械的特性は、引張強さ約100Kgf/mm2、
伸び率約17%であった。これらの特性は、機械構造用
合金として十分に使用に耐えられるものである。
In alloy systems that do not eutectoid, such as Ti-(I to I-4V alloys), the mixed powder of the alloy powder is compressed and pressed, then sintered for several hours, and the sintered alloy is heated to a temperature of, for example, 1050°C, which is in the β phase. When the alloy is held in the area for a predetermined period of time and water quenched, an alloy with mechanical properties of tensile strength of about 90 Kgf/mm2 and elongation of about 10% is obtained.
II
When the IP treatment is performed, the 111 grain phase does not exist, and an alloy with a homogeneous and fine (α and β) two-phase structure is obtained. The mechanical properties of this alloy include tensile strength of approximately 100Kgf/mm2,
The elongation rate was about 17%. These properties are sufficient to withstand use as an alloy for mechanical structures.

滲訓功<UI!jL、ようとする叫題卓上記したように
従来の技術においては、Ti −Fe。
UI! As mentioned above, in the conventional technology, Ti-Fe.

Ti−Co、Ti−Ni系のような共析組織の出る合金
の溶製祠では偏析が生じる。しかしながら、チタンと第
8族元素の混合粉末を焼結すると大きな偏析が生ぜず、
また稠密な焼結材が得られる。その焼結(イは、相当な
引張強さを有しているが、伸びがほとんどない。一方、
またTi −6AI −/l V合金のような共析しな
い合金系では、β相で焼き入れしてα十β相でl−I 
I P処理すると、引張強さだけでなく伸び率も大きい
強靭な材料が得られる。
Segregation occurs in the melting process of alloys such as Ti-Co and Ti-Ni that have a eutectoid structure. However, when a mixed powder of titanium and Group 8 elements is sintered, no large segregation occurs;
Moreover, a dense sintered material can be obtained. The sintered material (A) has considerable tensile strength, but has almost no elongation.On the other hand,
In addition, in alloy systems that do not eutectoid such as Ti -6AI -/lV alloy, the β phase is quenched and the l-I
IP treatment yields a tough material with high tensile strength as well as high elongation.

しかしながら、共析用の生じるいわゆる共析形合金の一
種であるTi−Fe系チタン系合金焼結材において、稠
密で十分な引張強さと十分な伸び率を兼ね備える合金を
実現する適正な熱処理条件は明らかではなかった。
However, in the Ti-Fe based titanium alloy sintered material, which is a type of eutectoid alloy that occurs for eutectoid use, there are no proper heat treatment conditions to realize an alloy that is dense and has sufficient tensile strength and elongation. It wasn't obvious.

そこで、本発明の目的は、引張強さが大きく、伸びの大
きい稠密で強靭な性質を有するTi −Fe系チタン合
金焼結材を製造することができる、Ti −Fe系焼結
合金の熱処理方法を提供することにある。
Therefore, an object of the present invention is to provide a method for heat treatment of a Ti-Fe-based sintered alloy, which enables production of a Ti-Fe-based titanium alloy sintered material having high tensile strength, high elongation, and dense and tough properties. Our goal is to provide the following.

I!jl a a G邂決するための手段本発明者等は
、従来の問題点を解決すべく種々検討した結果、Ti−
Fe混合粉末を適当に熱処理すれば、強靭な材質を得る
ことを見い出し、この知見に基づいて本発明をなすに至
った。
I! As a result of various studies to solve the conventional problems, the inventors of the present invention have developed Ti-
It has been discovered that a tough material can be obtained by appropriately heat-treating Fe mixed powder, and the present invention has been completed based on this knowledge.

即ち、本発明のTi −Be系焼結合金の熱処理方法は
、高純度のチタン粉末に、高純度の鉄粉末を共析組成以
下の特定の重量%添加して充分混合し、得られた混合粉
末を成形後、高温の真空炉中で一定時間焼結し、得られ
た焼結材をβ単相温度領域にある温度で一定時間保持し
た後、焼入れし、更に(α十β)2相温度領域内の温度
で一定時間保持した後、焼入れまたは放冷ずろことを特
徴とする。
That is, the heat treatment method for a Ti-Be-based sintered alloy of the present invention involves adding high-purity iron powder to high-purity titanium powder in a specific weight percent below the eutectoid composition and thoroughly mixing the resulting mixture. After compacting the powder, it is sintered in a high-temperature vacuum furnace for a certain period of time, and the obtained sintered material is held at a temperature in the β single phase temperature range for a certain period of time, then quenched, and then it is further sintered into two (α and β) phases. It is characterized by being kept at a temperature within a temperature range for a certain period of time and then being quenched or left to cool.

門 上記した本発明の方法において、焼結されたままのTi
−Fe系合金の金属組織は、固溶体から新析出相が析出
し、固溶体粒子のへき開面に沿って板状になり、いわゆ
るヴイドマンステッテン(WidmannsLatte
n)構造となり、この組織はFe元素量が増加するにつ
れて微細になる。この焼結合金をβ相から焼入れると、
マルテンサイトα° と残留β相の混合組織、もしくは
残留β相単一組織となる。またβ相から焼入れした合金
をさらに(α十β)2相領域内で恒温保持し、冷却する
とマルテンサイトα″あるいは残留β相からα相を析出
し、微細な(α十β)の2相組織が得られる。延性の改
善は、この一連の熱処理によって得られた(α」−β)
相組織のα/β相の量比の改善および組織の微細化によ
り得られる。
In the method of the present invention described above, as-sintered Ti
-The metallographic structure of the Fe-based alloy is such that a new precipitated phase precipitates from the solid solution and becomes plate-like along the cleavage planes of the solid solution particles, so-called Widmannslatte.
n) structure, and this structure becomes finer as the amount of Fe element increases. When this sintered alloy is quenched from the β phase,
The result is a mixed structure of martensite α° and residual β phase, or a single structure of residual β phase. In addition, when the alloy quenched from the β phase is further kept at a constant temperature within the (α + β) two-phase region and cooled, the α phase precipitates from the martensite α″ or residual β phase, and the fine (α + β) two-phase The improvement in ductility was obtained by this series of heat treatments (α”−β)
This is obtained by improving the ratio of α/β phase in the phase structure and refining the structure.

以−1−のことを要約すると、Ti −Fe系の合金の
金属組織は微細で均一なものが得られる。
To summarize the following -1-, a Ti--Fe based alloy has a fine and uniform metal structure.

実施例 以下、本発明を実施例により更に詳細に説明する。Example Hereinafter, the present invention will be explained in more detail with reference to Examples.

本発明のFe−Ti系焼結合金の製造方法を説明する。The method for manufacturing the Fe-Ti based sintered alloy of the present invention will be explained.

まず、大阪チタニウ■製、純度99.5%以−1ユのT
 S P −350Ti (粒度;350メツシユ以下
)に、Badishe−Anilin und 5or
la−Fabrik AG等で販売されているカルボニ
ルFe扮末(平均粒径4〜5μm1純度99.8%以−
tJを2重量%または4型組%添加し、さらに潤滑材を
添加後、充分混合する。得られた各混合粉末を成形(成
形圧力6tf/ci)後、高真空下で、1200℃(1
473K)の温度で1時間焼結した。
First, T made by Osaka Titanium■ with a purity of 99.5% or more - 1 unit.
S P-350Ti (particle size: 350 mesh or less), Badishe-Anilin and 5or
Carbonyl Fe powder (average particle size 4-5 μm, purity 99.8% or more) sold by la-Fabrik AG, etc.
Add tJ at 2% by weight or 4% by weight, and then add lubricant and mix thoroughly. After molding each of the obtained mixed powders (molding pressure 6 tf/ci), the mixture was heated at 1200°C (1
473 K) for 1 hour.

これ以下の焼結体の処理方法を添付の第1図を参照しつ
つ説明する。第1図はTi −Fe系の平衡状態図であ
り、縦軸は温度(K>であり、横軸はFeの含有量(重
量%)である。
The following method for processing the sintered body will be explained with reference to the attached FIG. 1. FIG. 1 is an equilibrium phase diagram of the Ti--Fe system, where the vertical axis is temperature (K>) and the horizontal axis is Fe content (wt%).

まず焼結材をβ単相領域である950℃(1223K)
で30分間保持後、水焼入れする。更に、(α十β)相
領域の温度である640℃(913K)において、Fe
粉末が2重量%または4重咀%である焼結体をそれぞれ
5時間または20時間保持した後、水焼入れした合金に
ついて測定した合金の機械的強度を下記の第1表に示す
。それらの試料(こ関して、インストロン型万能試験機
による静的引張性質の測定を行った。
First, the sintered material is heated to 950℃ (1223K), which is the β single phase region.
After holding for 30 minutes, water quenching is performed. Furthermore, at 640°C (913K), which is the temperature of the (α10β) phase region, Fe
The mechanical strengths of the alloys are shown in Table 1 below, as measured for water-quenched alloys after holding the sintered bodies containing 2% by weight or 4% powder for 5 hours or 20 hours, respectively. The static tensile properties of these samples were measured using an Instron universal testing machine.

第1表 」1記の表に示される値の示すところは、(α十β)2
相合金であるTi−6AI −4V合金の鋳造材の規格
であるΔS T M B38] に定められた引張強さ
91Kgf/…m以」二、伸び10%以上を十分に満足
する値である。本発明の焼結体の引張強さは、焼結チタ
ンの69.3Kgf/mm2、Ti −5tle焼結体
の90.4Kgf/mm2を凌いでいおり、格段と機械
的性質が良好になることを示している。」1記の焼結材
は引張強さは大きく、伸びも大きいために機械構造用合
金として使用できる。
The values shown in Table 1 in Table 1 indicate (α + β) 2
This is a value that fully satisfies the tensile strength of 91 Kgf/...m or more and the elongation of 10% or more specified in ΔSTM B38, which is the standard for casting materials of Ti-6AI-4V alloy, which is a phase alloy. The tensile strength of the sintered body of the present invention exceeds 69.3 Kgf/mm2 of sintered titanium and 90.4 Kgf/mm2 of Ti-5tle sintered body, and has significantly better mechanical properties. It shows. The sintered material of item 1 has high tensile strength and high elongation, so it can be used as an alloy for machine structures.

名門の効果 以上説明したように、本発明によるTi −Fe系焼結
合金の熱処理方法によれば、チタンと鉄の混合粉末を成
形、焼結して熱処理を施すことによって、溶製材での偏
析を逃れることができ、引張強さが大きく、伸び率を増
すことができ機械構造用合金としても実用可能である。
As explained above, according to the heat treatment method for Ti-Fe-based sintered alloy according to the present invention, by molding and sintering a mixed powder of titanium and iron and heat-treating it, segregation in the molten material can be reduced. It has high tensile strength, high elongation, and can be used as a mechanical structural alloy.

このことは航空機部品用等のチタン系材料としての用途
の拡大は大いに期待できる。
This means that it is highly expected that its use as a titanium-based material for aircraft parts will expand.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Ti−Fe系の平衡状態図である。 特許出願人  庄 司  啓 −部 1]ユ友重機械工業株式会社 FIG. 1 is an equilibrium state diagram of the Ti-Fe system. Patent applicant Kei Sho Tsukasa Department 1] Yutomo Heavy Machinery Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 高純度のチタン粉末に、高純度の鉄粉末を共析組成以下
の特定の重量%添加して充分混合し、得られた混合粉末
を成形後、高温の真空炉中で一定時間焼結し、得られた
焼結材をβ単相温度領域にある温度で一定時間保持した
後、焼入れし、更に(α+β)2相温度領域内の温度で
一定時間保持した後、焼入れまたは放冷することを特徴
とするTi−Fe系焼結合金の熱処理方法。
High-purity iron powder is added to high-purity titanium powder in a specific weight percent below the eutectoid composition, mixed thoroughly, the resulting mixed powder is molded, and then sintered in a high-temperature vacuum furnace for a certain period of time. The obtained sintered material is held at a temperature in the β single-phase temperature range for a certain period of time, then quenched, and then held at a temperature in the (α + β) two-phase temperature range for a certain period of time, and then quenched or allowed to cool. A heat treatment method for a Ti-Fe based sintered alloy.
JP10729186A 1986-05-10 1986-05-10 Heat treatment of ti-fe sintered alloy Pending JPS62263940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10729186A JPS62263940A (en) 1986-05-10 1986-05-10 Heat treatment of ti-fe sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10729186A JPS62263940A (en) 1986-05-10 1986-05-10 Heat treatment of ti-fe sintered alloy

Publications (1)

Publication Number Publication Date
JPS62263940A true JPS62263940A (en) 1987-11-16

Family

ID=14455374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10729186A Pending JPS62263940A (en) 1986-05-10 1986-05-10 Heat treatment of ti-fe sintered alloy

Country Status (1)

Country Link
JP (1) JPS62263940A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148567A (en) * 1991-11-25 1993-06-15 Nkk Corp High density powder titanium alloy for sintering
JP2013112856A (en) * 2011-11-29 2013-06-10 Toho Titanium Co Ltd α+β OR β TITANIUM ALLOY AND MANUFACTURING METHOD THEREFOR
WO2016013566A1 (en) * 2014-07-25 2016-01-28 新日鐵住金株式会社 Titanium alloy member having shape change characteristics in same direction as working direction, and method for manufacturing same
JP2019214749A (en) * 2018-06-12 2019-12-19 勝義 近藤 Ti-Fe SINTERING ALLOY MATERIAL AND METHOD FOR PRODUCING THE SAME
KR20200065851A (en) * 2018-11-30 2020-06-09 한국생산기술연구원 Manufacturing method of Titanium powder containing Fe For Strength Titanium 3D Printing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148567A (en) * 1991-11-25 1993-06-15 Nkk Corp High density powder titanium alloy for sintering
JP2013112856A (en) * 2011-11-29 2013-06-10 Toho Titanium Co Ltd α+β OR β TITANIUM ALLOY AND MANUFACTURING METHOD THEREFOR
WO2016013566A1 (en) * 2014-07-25 2016-01-28 新日鐵住金株式会社 Titanium alloy member having shape change characteristics in same direction as working direction, and method for manufacturing same
JP2019214749A (en) * 2018-06-12 2019-12-19 勝義 近藤 Ti-Fe SINTERING ALLOY MATERIAL AND METHOD FOR PRODUCING THE SAME
US11084093B2 (en) 2018-06-12 2021-08-10 Katsuyoshi Kondoh Ti—Fe-based sintered alloy material and method for producing same
KR20200065851A (en) * 2018-11-30 2020-06-09 한국생산기술연구원 Manufacturing method of Titanium powder containing Fe For Strength Titanium 3D Printing

Similar Documents

Publication Publication Date Title
Amherd Hidalgo et al. Powder metallurgy strategies to improve properties and processing of titanium alloys: A review
Igharo et al. Compaction and sintering phenomena in titanium—nickel shape memory alloys
Liu et al. Design of powder metallurgy titanium alloys and composites
US3591362A (en) Composite metal powder
JP5826219B2 (en) Method for making a metal article having other additive components without melting
US3728088A (en) Superalloys by powder metallurgy
EP0079755B1 (en) Copper base spinodal alloy strip and process for its preparation
US3655458A (en) Process for making nickel-based superalloys
US3639179A (en) Method of making large grain-sized superalloys
US3809545A (en) Superalloys by powder metallurgy
JPS62156240A (en) Powder metallurgical production of copper-nickel-tin spinodal alloy
Rabin et al. Microstructure and tensile properties of Fe 3 Al produced by combustion synthesis/hot isostatic pressing
JPS61104002A (en) Sintering method
US5384087A (en) Aluminum-silicon carbide composite and process for making the same
US3720551A (en) Method for making a dispersion strengthened alloy article
JPH03166335A (en) Dispersively reinforcing material
US2840891A (en) High temperature structural material and method of producing same
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
US3979209A (en) Ductile tungsten-nickel alloy and method for making same
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
JPS62263940A (en) Heat treatment of ti-fe sintered alloy
US4655855A (en) Method for refining microstructures of prealloyed titanium powder compacted articles
US3472709A (en) Method of producing refractory composites containing tantalum carbide,hafnium carbide,and hafnium boride
Hwang et al. The production of intermetallics based on NiAl by mechanical alloying
US20050163646A1 (en) Method of forming articles from alloys of tin and/or titanium