US3639179A - Method of making large grain-sized superalloys - Google Patents

Method of making large grain-sized superalloys Download PDF

Info

Publication number
US3639179A
US3639179A US7895A US3639179DA US3639179A US 3639179 A US3639179 A US 3639179A US 7895 A US7895 A US 7895A US 3639179D A US3639179D A US 3639179DA US 3639179 A US3639179 A US 3639179A
Authority
US
United States
Prior art keywords
temperature
billet
percent
cold
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US7895A
Inventor
Steven H Reichman
John W Smythe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALLEGHENY INTERNATIONAL ACCEPTANCE Corp
Federal Mogul LLC
Original Assignee
Federal Mogul LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal Mogul LLC filed Critical Federal Mogul LLC
Application granted granted Critical
Publication of US3639179A publication Critical patent/US3639179A/en
Assigned to AL-INDUSTRIAL PRODUCTS, INC. reassignment AL-INDUSTRIAL PRODUCTS, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPECIAL METALS CORPORATION A DE CORP
Assigned to CITICORP INDUSTRIAL CREDIT, INC., BOND COURT BLDG., STE. 615, 1300 E. 9TH ST., CLEVELAND, OH. 44114 reassignment CITICORP INDUSTRIAL CREDIT, INC., BOND COURT BLDG., STE. 615, 1300 E. 9TH ST., CLEVELAND, OH. 44114 SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPECIAL METALS CORPORATION
Assigned to ALLEGHENY INTERNATIONAL ACCEPTANCE CORPORATION reassignment ALLEGHENY INTERNATIONAL ACCEPTANCE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AL- INDUSTRIAL PRODUCTS INC.
Assigned to HELLER FINANCIAL, INC. reassignment HELLER FINANCIAL, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPECIAL METALS CORPORATION
Assigned to SPECIAL METALS CORPORATION reassignment SPECIAL METALS CORPORATION RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITICORP INDUSTRIAL CREDIT, INC.
Assigned to SPECIAL METALS CORPORATION reassignment SPECIAL METALS CORPORATION RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: AL-INDUSTRIAL PRODUCTS, INC., A CORP. OF PA, ALLEGHENY INTERNATIONAL, INC., A CORP. OF PA
Anticipated expiration legal-status Critical
Assigned to SPECIAL METALS CORPORATION reassignment SPECIAL METALS CORPORATION RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: HELLER FINANCIAL, INC.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys

Definitions

  • ABSTRACT A process for making nickel-base superalloys possessing superior high-temperature properties which employs powder metallurgical techniques and includes the steps of densifying the powdered alloy into a blank approaching 100 percent [52] U.S.Cl.
  • the superalloy is microcast or atomized to a powder state and then consolidated in a substantially oxygen-free environment to a blank of the desired size and configuration, which is substantially free from segregation.
  • a continuing problem experienced in superalloy components made by such powder metallurgical techniques has been the severe limitation in effecting any appreciable grain growth in the resultant densified component. It is believed that such grain growth restriction is in part attributable to oxides and other relatively insoluble impurities which are present on the surfaces of the powder particles.
  • Various precautions taken to reduce the presence of such insoluble impurities have not been successful since the problem in achieving such grain growth has been encountered even with powdered alloys containing as little as 30 parts per million (p.p.m.) oxygen.
  • the benefits of the present invention are achieved by an improved process for making large grain-sized nickel-base superalloys in which the alloy is initially microcast or otherwise subdivided into a powder form of controlled size and is thereafter confined and densified into a body or blank approaching substantially 100 percent theoretical density.
  • the dense body is subjected to cold working at a temperature below the recrystallization temperature of the alloy and thereafter is recrystallized at a temperature between the recrystallization temperature and the solvus of the gammaprime phase for a period of time sufficient to nucleate new grains.
  • the recrystallized body is thereafter heat treated at a temperature above the solvus of the gamma-prime phase and below the incipient melting temperature of the alloy for a period of time sufiicient to effect grain growth and the attainment of the desired ultimate grain size.
  • the nickel-based superalloys made in accordance with the process comprising the present invention are characterized as being of exceptionally large grain size and possessing superior tensile strength and stress rupture life at elevated temperatures, that is, temperatures in excess of about l,400 F. in comparison to similar-type alloys heretofore known.
  • FIG. I is a schematic flow sheet illustrating the sequence of steps in accordance with the preferred practice of the process comprising the present invention.
  • FIG. 2 is a photomicrograph of a Kallings etched sample taken at a magnification of 500 times of the grain structure of a superalloy after densification from loose powder to a density corresponding substantially to percent theoretical densiy;
  • FIG. 3 is a photomicrograph of the same alloy shown in FIG. 2 at the same magnification after being cold worked and subjected to recrystallization;
  • FIG. 4 is a photomicrograph of the grain structure of a Kallings etched tensile specimen taken at a magnification of 10 times prepared from the alloy shown in FIGS. 2 and 3 after heat treatment to effect grain growth.
  • the process comprising the present invention consists of five basic steps which are performed in the same sequence as illustrated in the flow sheet.
  • a nickel-based superalloy of the desired composition is initially comminuted or microcast so as to form a powder of the desired configuration and particle size which thereafter is confined and densified, forming a body or blank having a density approaching a 100 percent theoretical density.
  • the resultant blank is thereafter cold worked, that is, subjected to deformation at a temperature below the recrystallization temperature of the alloy, followed by a recrystallization step in which nucleation of new grain occurs.
  • the recrystallized blank is subjected to a heat treatment at a controlled temperature, during which a growth in the grain size is effected and by proper control, can be increased up to almost a single crystal structure.
  • each of the powder particles is of substantially the same nominal composition
  • microcasting such as achieved by atomization of a melt of the alloy
  • the microcasting of the molten alloy can be achieved, for example, by an atomization process employing an atomization nozzle and technique as described in US. Pat. No. 3,253,783, which is assigned to the same assignee as the present invention and is incorporated herein by reference.
  • the atomization of the superalloy and the collection of the powder particles is achieved under conditions whereby oxygen and oxygen-containing substances, including water, are not permitted to contact the powder particles for any appreciable time to minimize oxidation and/or oxygen entrapment.
  • the degree of precautions required to prevent oxidation of the superalloy during the atomization process is dependent to a large extent on the specific alloying constituents present in the alloy. For example, the presence of aluminum and titanium require particular precautions due to their susceptibility to oxidation attack at the high temperatures encountered in conventional microcasting techniques.
  • the interior of the equipment to be employed is initially evacuated and thereafter back-flooded with the substantially dry, nonoxidizing atmosphere prior to initiation of the atomization of the melt.
  • the oxygen content of the powder as finally densified is preferably controlled to a level of less than about I00 p.p.m.
  • the superalloy is transformed into a metallic powder in which the particles preferably are of a generally spherical configuration and wherein each powder particle is of substantially the same or similar alloy chemistry.
  • the metallic powder is thereafter recovered and is subjected to a screening operation so as to segregate the powder particles which are suitable for forming the densified body or billet of superalloy.
  • particles of a size less than about 60 mesh United States Standard Sieve Size (250 microns) can be satisfactorily employed down to a particle size as small as about 1 micron.
  • the powder particles range from about 100 mesh (150 microns) to about 10 microns, and wherein the particles are further randomly distributed over the aforementioned range. This provides for optimum packing density of the free-flowing powder, facilitating subsequent densification thereof.
  • the resultant superalloy powder having the desired composition and particle size, is thereafter confined and densified at elevated temperatures so as to form a body or billet approaching 100 percent theoretical density.
  • the densification of the metallic powder can be achieved by any one of the variety of techniques well known in the art, including extrusion, hot upsetting, vacuum die pressing, hot isostatic compaction, explosive compaction, etc.
  • the densification process is preferably done at an elevated temperature to facilitate a bond of the powder particles and to facilitate compaction and- 5 deformation thereof into a billet approaching substantially 100 percent theoretical density.
  • preheat temperatures ranging from 1,900 F. up to about 2,500 F. can be satisfactorily employed.
  • the specific temperature used within the aforementioned range is dictated by that temperature approaching the solidus or just below the incipient melting point of the powder particles.
  • the aforementioned explosive compaction technique in which the powder is subjected to violent densification is usually done without any appreciable preheat.
  • Optimum packing of the interior of such containers with the loose powder can be achieved by subjecting the containers to sonic or supersonic frequencies wherein packing densities ranging from about percent to about 70 percent of a theoretical 100 percent density can be attained.
  • the loose powder particles can be confined in the cavity of a die, subjected to vacuum and compacted so as to make a preform approaching 85-90 percent theoretical density.
  • a preform can also be attained by compacting the powder in vacuum and sintering it at an elevated temperature, forming a self-sustaining body or billet which subsequently can be subjected to further compaction to attain substantially 100 percent density.
  • Such containers may comprise any metal having sufficient ductility to enable their deformation by extrusion at elevated temperatures without rupture of the sidewalls, thereby maintaining the sealed integrity of the powder particles therein.
  • Typical of such ductile metals which are compatible with the 60 superalloy powder and which can be satisfactorily employed for the practice of the present invention are various of the socalled conventional stainless steels such as AlSl-type 304 or an M81 1010 mild steel.
  • the resultant densified billet is allowed to cool and is thereafter cold worked by subjecting it to a mechanical deformation, such as by passing it between a pair of rolls or by subjecting it to a further extrusion operation.
  • the cold working of the densified billet can be achieved in one or more successive passes to impart he desired degree of cold work to the billet, which is dictated by that amount necessary to provide for a substantially complete recrystallization of the alloy at the specific temperature used during the following recrystallization step.
  • the magnitude of cold working expressed in terms of percentage reduction of the cross-sectional area of the densified body or billet during such cold working can range from only several percent up to about 50 percent or more.
  • the maximum degree of cold working imparted to the densified billet is dictated by practical considerations, including equipment limitations and time. Usually, 50 percent reductions in crosssectional area in one pass have been found satisfactory and cross-sectional area reductions or the equivalent cold working in a range of about 30 percent to about 50 percent at moderate temperatures ranging from about l,000 F. to about l,700 F. constitutes a preferred practice.
  • the densified blank or billet is preferably heated to facilitate deformation thereof and as previously indicated, can be heated to moderate temperatures which approach but are below the recrystallization temperature of the specific alloy.
  • the recrystallization temperature generally is in the range of from about 1,700 F. to about 2,l00 F. In view of this, it is preferred to heat the densified billet to a temperature of from about 1,000 F. to about l,700 F. during such cold reduction.
  • recrystallization temperature is defined as that temperature above which a nucleation and growth of new strain-free grains occurs accompanied by consumption of the cold-worked matrix as a result of the growth of such grains.
  • the resultant densified and cold-worked billet is thereafter subjected to recrystallization at a temperature above the minimum recrystallization temperature but below the gammaprime solvus temperature.
  • the gamma-prime solvus temperature is defined as the temperature at or above which the gamma-prime phase dissolves in the gamma phase matrix.
  • the gamma-prime phase in turn is defined as a variety of intermetallic compounds which are generally expressed by the formula Ni,,(X,Y,Z) in which X, Y and Z represent, for example, aluminum, titanium, cobalt, etc., and wherein a" and b" are integers. These intermetallic compounds at temperatures below the gamma-prime solvus temperature are dispersed throughout the gamma matrix and act as a strengthening agent.
  • recrystallization of the cold-worked and densified billet is achieved at a temperature generally ranging from about l,700 F. up to about 2,l00 F. for a period of time sufficient to effect a nucleation of new strain-free grains in the cold-worked billet. Recrystallization is continued for a period of time sufficient to effect substantially full recrystallization of the billet, which, for most nickel-based superalloys which are cold worked in an amount ranging from about 10 percent to about 50 percent in terms of reduction of cross-sectional area or the equivalent thereof at recrystallization temperatures of from l,700 F. up to about 2,100 F., requires about 2 to about 12 hours.
  • the recrystallization of a cold-worked billet can be performed at any time after the cold working and similarly, the heat-treating step can be performed at any time after the recrystallization step.
  • the absence of any criticality in time with respect to the performance of the several process steps provides further advantages in connection with the versatility and processing flexibility afforded.
  • the densified, cold-worked and recrystallized billet is subjected to a heat treatment in which grain growth occurs.
  • the heat-treating operation is carried out by heating the recrystallized billet to a temperature above the gamma-prime solution or solvus temperature and below the incipient melting point of the gamma matrix.
  • the incipient melting point of the gamma matrix for nickel-based superalloys of the general type to which the process is applicable conventionally ranges from about 2,200 F. up to about 2,500 F.
  • the duration of heat treatment can be varied so as to provide the desired degree of from about 2,l0O F. to about 2,400 F.
  • the billet was subjected to heat treatment at a temperature of 2,150 F. for a period of about 72 hours.
  • the heat treatment temperature employed is above the gamma-prime solvus temperature but below the incipient melting temperature of this alloy.
  • the large grain structure attained as a result of the heat treatment step is clearly evident in the photomicrograph comprising FIG. 4 of the drawings which comprises a Kalling's etched micrograph of a tensile specimen prepared from the billet and photographed at a magnification of 10 times.
  • the alloy processed in accordance with he present invention had a stress rupture life EXAMPLEI j to failure of 196 hours, whereas conventional cast-and- A millfel'based sljlperanoy correspondmg the nominal wrought U-700 alloy of the same composition had a life of composition of Udrmet 700, as set forth in table 1, was only 10 hours under these same conditions microcast into spherical powder particles and were screened while it will be apparent that the description f the Pmviding f 'f y Filed Powder ranging from 10 mlcmns preferred embodiments of the present invention is well calcu- P to micro!
  • the microstructure of the resultant densified billet is illusperalloy which comprises the steps of confining and densifying trated in FIG. 2.
  • the resultant extruded rod thereafter was a powder of said superalloy into a billet, cold working said bilpreheated to l,700 F., which is approximately 200 F. below let by effecting deformation thereof at a temperature below its recrystallization temperature.
  • the recrystallization temperature of the alloy, recrystallizing the billet was cold worked by passing it through a pair of rolls, the cold-worked said billet by heating; it to a temperature effecting approximately a 50 percent reduction in cross-secabove its recrystallization temperature and below the gammational area in one pass.
  • the resultant cold-worked billet was prime solvus temperature for a period of time sufficient to efthereafter recrystallized for a period of 2% hours at a temperafeet nucleation of new grains, and thereafter heat treating the ture at 2,100 R, which is a temperature above the recrystalrecrystallized said billet at a temperature above the gammalization temperature but below the gamma-prime solvus temprime solvus temperature and below the incipient melting perature for this alloy.
  • the resultant recrystallized structure of point of the gamma matrix for a period of time sufficient to efthe cold worked and recrystallized billet is illustrated in FIG. feet growth of the grain to the desired size.

Abstract

A process for making nickel-base superalloys possessing superior high-temperature properties which employs powder metallurgical techniques and includes the steps of densifying the powdered alloy into a blank approaching 100 percent theoretical density, cold working the blank at a controlled temperature, recrystallizing the cold-worked blank for a period of time sufficient to nucleate new grains and thereafter heat treating the recrystallized blank at a controlled temperature for a period of time sufficient to attain the desired magnitude of grain growth.

Description

United States Patent Reichman et al.
[ Feb.l,]l972 [54] METHOD OF MAKING LARGE GRAIN- SIZED SUPERALLOYS [72] lnventors: Steven H. Reichman; John W. Smythe,
both of Ann Arbor, Mich.
Primary Examinerl-lyland Bizot Assistant ExaminerW W. Stallard Attorney-Harness, Dickey & Pierce [57] ABSTRACT A process for making nickel-base superalloys possessing superior high-temperature properties which employs powder metallurgical techniques and includes the steps of densifying the powdered alloy into a blank approaching 100 percent [52] U.S.Cl. ..l48/11.5 F, 75/ 171 theoretical density d working the blank at a controlled CL temperature, recr stallizing the cold-worked blank for a 581 m Id we in 148/115-75/05 m y l e a period of time sufficient to nucleate new grains and thereafter heat treating the recrystallized blank at a controlled tempera- [56] Reemmes Cited ture for a period of time sufficient to attain the desired mag- UNITED STATES PATENTS of grain gwwth- 3,524,744 8/1970 Parikh ..75/ l7] 7 Claims, 4 Drawing Figures Maw/f /2// Mia? Evy w? m @MEHE METHOD OF MAKING LARGE GRAIN-SIZED SUPERALLOYS BACKGROUND OF THE INVENTION Modern superalloys of the general types to which the present invention is applicable contain large amounts of second-phase gamma-prime and complex carbides in a gamma matrix which contribute significantly to their high-temperature properties. The presence of these constituents, however, has made such alloys exceedingly difficult to form subsequent to casting. Additional problems are further introduced as a result of the tendency of such alloys to undergo segregation, which significantly detracts from their high-temperature strength characteristics. The elimination of such segregation is virtually impossible due to the extend of it.
The foregoing problems have been overcome by employing powder metallurgical techniques for making bodies of such superalloys. In accordance with this technique, the superalloy is microcast or atomized to a powder state and then consolidated in a substantially oxygen-free environment to a blank of the desired size and configuration, which is substantially free from segregation. A continuing problem experienced in superalloy components made by such powder metallurgical techniques has been the severe limitation in effecting any appreciable grain growth in the resultant densified component. It is believed that such grain growth restriction is in part attributable to oxides and other relatively insoluble impurities which are present on the surfaces of the powder particles. Various precautions taken to reduce the presence of such insoluble impurities have not been successful since the problem in achieving such grain growth has been encountered even with powdered alloys containing as little as 30 parts per million (p.p.m.) oxygen.
In accordance with the process comprising the present invention, the problem of effecting grain growth in densified powder components has now been overcome providing for a metallurgical structure which is of superior homogeneity and of superior physical properties at elevated temperatures than cast and wrought forms of the same superalloy compositions.
SUMMARY OF THE INVENTION The benefits of the present invention are achieved by an improved process for making large grain-sized nickel-base superalloys in which the alloy is initially microcast or otherwise subdivided into a powder form of controlled size and is thereafter confined and densified into a body or blank approaching substantially 100 percent theoretical density. The dense body is subjected to cold working at a temperature below the recrystallization temperature of the alloy and thereafter is recrystallized at a temperature between the recrystallization temperature and the solvus of the gammaprime phase for a period of time sufficient to nucleate new grains. The recrystallized body is thereafter heat treated at a temperature above the solvus of the gamma-prime phase and below the incipient melting temperature of the alloy for a period of time sufiicient to effect grain growth and the attainment of the desired ultimate grain size.
The nickel-based superalloys made in accordance with the process comprising the present invention are characterized as being of exceptionally large grain size and possessing superior tensile strength and stress rupture life at elevated temperatures, that is, temperatures in excess of about l,400 F. in comparison to similar-type alloys heretofore known.
Further advantages and benefits of the present invention will become apparent upon a reading of the description of the preferred embodiments taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a schematic flow sheet illustrating the sequence of steps in accordance with the preferred practice of the process comprising the present invention;
FIG. 2 is a photomicrograph of a Kallings etched sample taken at a magnification of 500 times of the grain structure of a superalloy after densification from loose powder to a density corresponding substantially to percent theoretical densiy;
FIG. 3 is a photomicrograph of the same alloy shown in FIG. 2 at the same magnification after being cold worked and subjected to recrystallization; and
FIG. 4 is a photomicrograph of the grain structure of a Kallings etched tensile specimen taken at a magnification of 10 times prepared from the alloy shown in FIGS. 2 and 3 after heat treatment to effect grain growth.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now in detail to the drawing, and as diagrammatically shown in FIG. 1, the process comprising the present invention consists of five basic steps which are performed in the same sequence as illustrated in the flow sheet. As shown, a nickel-based superalloy of the desired composition is initially comminuted or microcast so as to form a powder of the desired configuration and particle size which thereafter is confined and densified, forming a body or blank having a density approaching a 100 percent theoretical density. The resultant blank is thereafter cold worked, that is, subjected to deformation at a temperature below the recrystallization temperature of the alloy, followed by a recrystallization step in which nucleation of new grain occurs. Thereafter, the recrystallized blank is subjected to a heat treatment at a controlled temperature, during which a growth in the grain size is effected and by proper control, can be increased up to almost a single crystal structure.
The provision of the nickel-based alloy in the form of a metallic powder in which each of the powder particles is of substantially the same nominal composition can be achieved by a variety of techniques, of which microcasting, such as achieved by atomization of a melt of the alloy, constitutes the most convenient and preferred technique. The microcasting of the molten alloy can be achieved, for example, by an atomization process employing an atomization nozzle and technique as described in US. Pat. No. 3,253,783, which is assigned to the same assignee as the present invention and is incorporated herein by reference.
Due to the deleterious effects of oxygen and oxides of the metals comprising the alloy, the atomization of the superalloy and the collection of the powder particles is achieved under conditions whereby oxygen and oxygen-containing substances, including water, are not permitted to contact the powder particles for any appreciable time to minimize oxidation and/or oxygen entrapment. The degree of precautions required to prevent oxidation of the superalloy during the atomization process is dependent to a large extent on the specific alloying constituents present in the alloy. For example, the presence of aluminum and titanium require particular precautions due to their susceptibility to oxidation attack at the high temperatures encountered in conventional microcasting techniques. Under such conditions, it is conventional to effect microcasting in the presence of inert atmospheres such as argon or helium, which are substantially moisture free. Commercially available argon containing minimal amounts of conventional impurities has been found particularly satisfactory for providing a nonoxidizing, substantially dry inert atmosphere for microcasting such superalloys. In accordance with conventional practice, the interior of the equipment to be employed is initially evacuated and thereafter back-flooded with the substantially dry, nonoxidizing atmosphere prior to initiation of the atomization of the melt. Regardless of the specific technique employed for forming the powder, the oxygen content of the powder as finally densified is preferably controlled to a level of less than about I00 p.p.m.
In accordance with conventional atomization or microcasting procedures, the superalloy is transformed into a metallic powder in which the particles preferably are of a generally spherical configuration and wherein each powder particle is of substantially the same or similar alloy chemistry. The metallic powder is thereafter recovered and is subjected to a screening operation so as to segregate the powder particles which are suitable for forming the densified body or billet of superalloy. 5 Conventionally, particles of a size less than about 60 mesh United States Standard Sieve Size (250 microns) can be satisfactorily employed down to a particle size as small as about 1 micron. Particularly satisfactory results are obtained when the powder particles range from about 100 mesh (150 microns) to about 10 microns, and wherein the particles are further randomly distributed over the aforementioned range. This provides for optimum packing density of the free-flowing powder, facilitating subsequent densification thereof.
The resultant superalloy powder, having the desired composition and particle size, is thereafter confined and densified at elevated temperatures so as to form a body or billet approaching 100 percent theoretical density. The densification of the metallic powder can be achieved by any one of the variety of techniques well known in the art, including extrusion, hot upsetting, vacuum die pressing, hot isostatic compaction, explosive compaction, etc. The densification process is preferably done at an elevated temperature to facilitate a bond of the powder particles and to facilitate compaction and- 5 deformation thereof into a billet approaching substantially 100 percent theoretical density. For most nickel-base superalloys, preheat temperatures ranging from 1,900 F. up to about 2,500 F. can be satisfactorily employed. The specific temperature used within the aforementioned range is dictated by that temperature approaching the solidus or just below the incipient melting point of the powder particles. The aforementioned explosive compaction technique in which the powder is subjected to violent densification is usually done without any appreciable preheat. In the extrusion and hot upsetting compaction techniques, it is conventional to confine the powder within a suitable container which is evacuated and subsequently sealed. Optimum packing of the interior of such containers with the loose powder can be achieved by subjecting the containers to sonic or supersonic frequencies wherein packing densities ranging from about percent to about 70 percent of a theoretical 100 percent density can be attained. It is also contemplated that the loose powder particles can be confined in the cavity of a die, subjected to vacuum and compacted so as to make a preform approaching 85-90 percent theoretical density. Such a preform can also be attained by compacting the powder in vacuum and sintering it at an elevated temperature, forming a self-sustaining body or billet which subsequently can be subjected to further compaction to attain substantially 100 percent density.
Of the foregoing compaction techniques, hot extrusion of the powder while contained within an elongated deformable container has been found convenient and satisfactory for producing the improved superalloy in elongated rod form. Such containers may comprise any metal having sufficient ductility to enable their deformation by extrusion at elevated temperatures without rupture of the sidewalls, thereby maintaining the sealed integrity of the powder particles therein. Typical of such ductile metals which are compatible with the 60 superalloy powder and which can be satisfactorily employed for the practice of the present invention are various of the socalled conventional stainless steels such as AlSl-type 304 or an M81 1010 mild steel.
At the completion of the compaction or densification operation, the resultant densified billet is allowed to cool and is thereafter cold worked by subjecting it to a mechanical deformation, such as by passing it between a pair of rolls or by subjecting it to a further extrusion operation. The cold working of the densified billet can be achieved in one or more successive passes to impart he desired degree of cold work to the billet, which is dictated by that amount necessary to provide for a substantially complete recrystallization of the alloy at the specific temperature used during the following recrystallization step. For most nickel-base superalloys, it has been found that the magnitude of cold working expressed in terms of percentage reduction of the cross-sectional area of the densified body or billet during such cold working can range from only several percent up to about 50 percent or more. The maximum degree of cold working imparted to the densified billet is dictated by practical considerations, including equipment limitations and time. Usually, 50 percent reductions in crosssectional area in one pass have been found satisfactory and cross-sectional area reductions or the equivalent cold working in a range of about 30 percent to about 50 percent at moderate temperatures ranging from about l,000 F. to about l,700 F. constitutes a preferred practice.
During the cold-working step, the densified blank or billet is preferably heated to facilitate deformation thereof and as previously indicated, can be heated to moderate temperatures which approach but are below the recrystallization temperature of the specific alloy. For most nickel-based superalloys of the type to which the process comprising the present invention is applicable, the recrystallization temperature generally is in the range of from about 1,700 F. to about 2,l00 F. In view of this, it is preferred to heat the densified billet to a temperature of from about 1,000 F. to about l,700 F. during such cold reduction.
For the purpose of the present invention, the terminology recrystallization temperature, as employed in the specification and subjoined claims, is defined as that temperature above which a nucleation and growth of new strain-free grains occurs accompanied by consumption of the cold-worked matrix as a result of the growth of such grains.
The resultant densified and cold-worked billet is thereafter subjected to recrystallization at a temperature above the minimum recrystallization temperature but below the gammaprime solvus temperature. The gamma-prime solvus temperature, as herein used, is defined as the temperature at or above which the gamma-prime phase dissolves in the gamma phase matrix. The gamma-prime phase in turn is defined as a variety of intermetallic compounds which are generally expressed by the formula Ni,,(X,Y,Z) in which X, Y and Z represent, for example, aluminum, titanium, cobalt, etc., and wherein a" and b" are integers. These intermetallic compounds at temperatures below the gamma-prime solvus temperature are dispersed throughout the gamma matrix and act as a strengthening agent.
In accordance with the preceding definitions, recrystallization of the cold-worked and densified billet is achieved at a temperature generally ranging from about l,700 F. up to about 2,l00 F. for a period of time sufficient to effect a nucleation of new strain-free grains in the cold-worked billet. Recrystallization is continued for a period of time sufficient to effect substantially full recrystallization of the billet, which, for most nickel-based superalloys which are cold worked in an amount ranging from about 10 percent to about 50 percent in terms of reduction of cross-sectional area or the equivalent thereof at recrystallization temperatures of from l,700 F. up to about 2,100 F., requires about 2 to about 12 hours. It will be noted that the recrystallization of a cold-worked billet can be performed at any time after the cold working and similarly, the heat-treating step can be performed at any time after the recrystallization step. The absence of any criticality in time with respect to the performance of the several process steps provides further advantages in connection with the versatility and processing flexibility afforded.
At the completion of the recrystallization step, the densified, cold-worked and recrystallized billet is subjected to a heat treatment in which grain growth occurs. The heat-treating operation is carried out by heating the recrystallized billet to a temperature above the gamma-prime solution or solvus temperature and below the incipient melting point of the gamma matrix. The incipient melting point of the gamma matrix for nickel-based superalloys of the general type to which the process is applicable conventionally ranges from about 2,200 F. up to about 2,500 F. The duration of heat treatment can be varied so as to provide the desired degree of from about 2,l0O F. to about 2,400 F. for nickel-based superalloys of the general type evaluated have been found satisfactory to produce a resultant microstructure in which the grain size is approximately one-eighth inch in diameter. It is feasible, by continuing the heat treatment of the billet over prolonged periods of time, to effect further increases in grain size until ultimately a billet of a single grain crystal is attained.
It will be apparent from the foregoing that it is now feasible, employing powder metallurgical practices, to form billets and components composed of nickel-based superalloys which are of a relatively large grain structure and possess superior hightemperature physical properties in comparison to the same or similar superalloys in a cast and/or wrought form. The benefits of the process comprising the present invention are achieved with any one of a variety of well-known superalloys which are nickel based, that is, in which the major alloying constituent is nickel. Typical of the various nickel-based alloys which are presently known and which can be processed in accordance with the present invention are the compositions as set forth in table ll. It will be understood that the enumerated superalloy compositions are provided for illustrative purposes and are not intended as being restrictive of other suitable nickel-based alloy compositions that can be satisfactorily processed to achieve the benefits of the present invention.
3. It is apparent that the cold-worked and recrystallized grain structure of the billet as shown in FIG. 3 evidences a fine recrystallized grain structure.
Following the recrystallization step, the billet was subjected to heat treatment at a temperature of 2,150 F. for a period of about 72 hours. The heat treatment temperature employed is above the gamma-prime solvus temperature but below the incipient melting temperature of this alloy. The large grain structure attained as a result of the heat treatment step is clearly evident in the photomicrograph comprising FIG. 4 of the drawings which comprises a Kalling's etched micrograph of a tensile specimen prepared from the billet and photographed at a magnification of 10 times.
In comparison, a control specimen prepared from the same powder and subjected to the same compaction by extrusion followed by recrystallization and heat treatment, but omitting the cold-working step. did not evidence any appreciable grain growth characteristics and possessed high temperature physical properties substantially inferior to that of the specimen as evidenced by the microstructure shown in FIG. 4. Comparative room and elevated temperature tests of the tensile properties of the alloy prepared in accordance with the process comprising the present invention and the same alloy in a cast-andwrought condition revealed the alloy made in accordance with the process comprising the present invention to be at least as good, and in most cases, superior to that of the prior art struc- [Percent by weight] Alloy C Cr Al Ti Mo W Go Cl) :3 Zr Other Ni Nlrnuulc 75... 0.12 20 0.5 Bztluncv. Nimtmlc 80A 0. 08 20 1,5 2.4 H l)(j Nimonic 10, 0.10 20 1. (l 2. 4 Do. Niuumictlfi. 0.12 20 2.0 3.0 Do. Nlmrmlr. 100.. 0.20 II 5.0 1.3 5.0 [)o. Wuspnloy. 0.08 10 1.3 3. 0 4. 4 0. 008 0. 08 Do. lhllmul. 700 0.10 15 4.3 3.5 5.2 0.03 1m. Hum! 41 0.00 10 1.5 3.1 10.0 0.005 no. IN -l0ll (011st). 0.18 10 5. 5 5.0 3. 0 15. 0.015 0. 05 Du. m uumun 0.15 0.0 5.0 2.0 1.0 0 015 0.05 1m. ll-llllll] (c1tSl.) 0.11 8.0 0.0 1.0 0.0 10. 0. 015 0. 07 4.3 T0,... 110. moo-713 (c11st).... 0.14 13.0 6.0 0.75 4.5 2.4 0.01 0.1 110. M-; 2 0.15 10.0 1.0' 2.5 0.8 10.0 1 0.005 5.0 F0(mux.). Do.
In order to further illustrate the process comprising the tures. In addition, stress rupture properties, a property parpresent invention, the following typical examples are proticularly important in alloys subjected to high temperature vided. It will be understood that the examples are furnished stress applications, were measured at a temperature of l,850 for illustrative purposes and are not intended to be limiting of F. and at a stress of 20,000 psi. for the alloy comprising the the scope of the invention as herein described and defined in present invention and identical alloy compositions of the castthe subjoined claims. and-wrought type heretofore known. The alloy processed in accordance with he present invention had a stress rupture life EXAMPLEI j to failure of 196 hours, whereas conventional cast-and- A millfel'based sljlperanoy correspondmg the nominal wrought U-700 alloy of the same composition had a life of composition of Udrmet 700, as set forth in table 1, was only 10 hours under these same conditions microcast into spherical powder particles and were screened while it will be apparent that the description f the Pmviding f 'f y Filed Powder ranging from 10 mlcmns preferred embodiments of the present invention is well calcu- P to micro! S1Ze- The Q S Powder was lated to provide the advantages and benefits of the process fined an elongated cylmflncal comalllel' composed Ofa "111d comprising the present invention, it will be appreciated that Steel and compacted harem y Subjectmg the comalnel' 0 the process is susceptible to variation, modification and p rsomc vl ra n Th Contalner was q n ly eVaCU- change without departing from the spirit of the invention. ated and sealed by welding and thereafter was extruded to a wh t i l i d i fully dense rod, while heated to a temperature of l,950 F. 1, The ethod offorming a dense mass of a nickel-based su- The microstructure of the resultant densified billet is illusperalloy which comprises the steps of confining and densifying trated in FIG. 2. The resultant extruded rod thereafter was a powder of said superalloy into a billet, cold working said bilpreheated to l,700 F., which is approximately 200 F. below let by effecting deformation thereof at a temperature below its recrystallization temperature. At this preheat temperature, the recrystallization temperature of the alloy, recrystallizing the billet was cold worked by passing it through a pair of rolls, the cold-worked said billet by heating; it to a temperature effecting approximately a 50 percent reduction in cross-secabove its recrystallization temperature and below the gammational area in one pass. The resultant cold-worked billet was prime solvus temperature for a period of time sufficient to efthereafter recrystallized for a period of 2% hours at a temperafeet nucleation of new grains, and thereafter heat treating the ture at 2,100 R, which is a temperature above the recrystalrecrystallized said billet at a temperature above the gammalization temperature but below the gamma-prime solvus temprime solvus temperature and below the incipient melting perature for this alloy. The resultant recrystallized structure of point of the gamma matrix for a period of time sufficient to efthe cold worked and recrystallized billet is illustrated in FIG. feet growth of the grain to the desired size.
2. The method as defined in claim 1, wherein said powder is of a particle size ranging from about 60 mesh to about 1 micron and contains less than about 100 p.p.m. oxygen.
3. The method as defined in claim 1, wherein said billet formed by said confining and densifying is substantially of a 100 percent theoretical density.
4. The process as defined in claim 1, wherein said cold working is performed so as to provide a degree of cold working to said billet equivalent to that resulting from a reduction in its cross sectional area of from several percent up to about 50 percent.
5. The method as defined in claim 1, wherein said cold working is performed on said billet which is preheated to a temperature ranging from about l,O00 F. to about l,700 F. in a manner to impart a working thereof equivalent to that resulting from about a 30 percent to about a 50 percent red uction in its cross-sectional area.
6. The method as defined in claim 1, wherein said recrystallizing the cold-worked said billet is accomplished for a period of time ranging from about 2 hours up to about 12 hours at a temperature of about 1,700 F. to about 2,100" F.
7. The method as defined in claim 1, wherein the recrystallization temperature of said superalloy ranges from about l,700 F. to about 2,100? F.

Claims (6)

  1. 2. The method as defined in claim 1, wherein said powder is of a particle size ranging from about 60 mesh to about 1 micron and contains less than about 100 p.p.m. oxygen.
  2. 3. The method as defined in claim 1, wherein said billet formed by said confining and densifying is substantially of a 100 percent theoretical density.
  3. 4. The process as defined in claim 1, wherein said cold working is performed so as to provide a degree of cold working to said billet equivalent to that resulting from a reduction in its cross sectional area of from several percent up to about 50 percent.
  4. 5. The method as defined in claim 1, wherein said cold working is performed on said billet which is preheated to a temperature ranging from about 1,000* F. to about 1,700* F. in a manner to impart a working thereof equivalent to that resulting from about a 30 percent to about a 50 percent reduction in its cross-sectional area.
  5. 6. The method as defined in claim 1, wherein said recrystallizing the cold-worked said billet is accomplished for a period of time ranging from about 2 hours up to about 12 hours at a temperature of about 1,700* F. to about 2,100* F.
  6. 7. The method as defined in claim 1, wherein the recrystallization temperature of said superalloy ranges from about 1,700* F. to about 2,100* F.
US7895A 1970-02-02 1970-02-02 Method of making large grain-sized superalloys Expired - Lifetime US3639179A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US789570A 1970-02-02 1970-02-02

Publications (1)

Publication Number Publication Date
US3639179A true US3639179A (en) 1972-02-01

Family

ID=21728689

Family Applications (1)

Application Number Title Priority Date Filing Date
US7895A Expired - Lifetime US3639179A (en) 1970-02-02 1970-02-02 Method of making large grain-sized superalloys

Country Status (12)

Country Link
US (1) US3639179A (en)
JP (1) JPS5338250B1 (en)
BE (1) BE762376A (en)
BR (1) BR7100768D0 (en)
CA (1) CA920397A (en)
CH (1) CH568397A5 (en)
DE (1) DE2103875C3 (en)
ES (1) ES387777A1 (en)
FR (1) FR2080946B1 (en)
GB (1) GB1302994A (en)
NL (1) NL7101367A (en)
SE (1) SE362900B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865575A (en) * 1972-12-18 1975-02-11 Int Nickel Co Thermoplastic prealloyed powder
US3920489A (en) * 1970-03-02 1975-11-18 Gen Electric Method of making superalloy bodies
US3930841A (en) * 1972-12-18 1976-01-06 The International Nickel Company, Inc. Thermoplastic prealloyed powder
US3988524A (en) * 1973-01-15 1976-10-26 Cabot Corporation Powder metallurgy compacts and products of high performance alloys
US4062678A (en) * 1974-01-17 1977-12-13 Cabot Corporation Powder metallurgy compacts and products of high performance alloys
US4066449A (en) * 1974-09-26 1978-01-03 Havel Charles J Method for processing and densifying metal powder
US4073648A (en) * 1974-06-10 1978-02-14 The International Nickel Company, Inc. Thermoplastic prealloyed powder
US4081295A (en) * 1977-06-02 1978-03-28 United Technologies Corporation Fabricating process for high strength, low ductility nickel base alloys
US4497669A (en) * 1983-07-22 1985-02-05 Inco Alloys International, Inc. Process for making alloys having coarse, elongated grain structure
US5451244A (en) * 1994-04-06 1995-09-19 Special Metals Corporation High strain rate deformation of nickel-base superalloy compact
US5826160A (en) * 1995-08-14 1998-10-20 The United States Of America As Represented By The Secretary Of The Army Hot explosive consolidation of refractory metal and alloys
US6021174A (en) * 1998-10-26 2000-02-01 Picker International, Inc. Use of shaped charge explosives in the manufacture of x-ray tube targets
US6129795A (en) * 1997-08-04 2000-10-10 Integran Technologies Inc. Metallurgical method for processing nickel- and iron-based superalloys
US20050106056A1 (en) * 2003-11-18 2005-05-19 Dwa Technologies, Inc. Manufacturing method for high yield rate of metal matrix composite sheet production
US20180223388A1 (en) * 2015-02-17 2018-08-09 Sandvik Materials Technology Deutschland Gmbh Method for producing a strand from stainless steel and strand made of stainless steel
EP3772544A4 (en) * 2018-03-06 2021-12-08 Hitachi Metals, Ltd. Method for manufacturing super-refractory nickel-based alloy and super-refractory nickel-based alloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8519579D0 (en) * 1985-08-03 1985-09-11 Apsley Metals Ltd Pneumatic tyres
US4761190A (en) * 1985-12-11 1988-08-02 Inco Alloys International, Inc. Method of manufacture of a heat resistant alloy useful in heat recuperator applications and product
US4816084A (en) * 1986-09-15 1989-03-28 General Electric Company Method of forming fatigue crack resistant nickel base superalloys
US10245639B2 (en) * 2012-07-31 2019-04-02 United Technologies Corporation Powder metallurgy method for making components

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524744A (en) * 1966-01-03 1970-08-18 Iit Res Inst Nickel base alloys and process for their manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524744A (en) * 1966-01-03 1970-08-18 Iit Res Inst Nickel base alloys and process for their manufacture

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920489A (en) * 1970-03-02 1975-11-18 Gen Electric Method of making superalloy bodies
US3865575A (en) * 1972-12-18 1975-02-11 Int Nickel Co Thermoplastic prealloyed powder
US3930841A (en) * 1972-12-18 1976-01-06 The International Nickel Company, Inc. Thermoplastic prealloyed powder
US3988524A (en) * 1973-01-15 1976-10-26 Cabot Corporation Powder metallurgy compacts and products of high performance alloys
US4062678A (en) * 1974-01-17 1977-12-13 Cabot Corporation Powder metallurgy compacts and products of high performance alloys
US4073648A (en) * 1974-06-10 1978-02-14 The International Nickel Company, Inc. Thermoplastic prealloyed powder
US4066449A (en) * 1974-09-26 1978-01-03 Havel Charles J Method for processing and densifying metal powder
US4081295A (en) * 1977-06-02 1978-03-28 United Technologies Corporation Fabricating process for high strength, low ductility nickel base alloys
US4497669A (en) * 1983-07-22 1985-02-05 Inco Alloys International, Inc. Process for making alloys having coarse, elongated grain structure
AU570059B2 (en) * 1983-07-22 1988-03-03 Inco Alloys International Inc. Non-ferrous ni-cr-fe alloys having a coarse elongated grain structure
US5451244A (en) * 1994-04-06 1995-09-19 Special Metals Corporation High strain rate deformation of nickel-base superalloy compact
EP0676483A1 (en) * 1994-04-06 1995-10-11 Special Metals Corporation High strain rate deformation of nickel-base superalloy compact
US5826160A (en) * 1995-08-14 1998-10-20 The United States Of America As Represented By The Secretary Of The Army Hot explosive consolidation of refractory metal and alloys
US6129795A (en) * 1997-08-04 2000-10-10 Integran Technologies Inc. Metallurgical method for processing nickel- and iron-based superalloys
US6021174A (en) * 1998-10-26 2000-02-01 Picker International, Inc. Use of shaped charge explosives in the manufacture of x-ray tube targets
US20050106056A1 (en) * 2003-11-18 2005-05-19 Dwa Technologies, Inc. Manufacturing method for high yield rate of metal matrix composite sheet production
US7625520B2 (en) * 2003-11-18 2009-12-01 Dwa Technologies, Inc. Manufacturing method for high yield rate of metal matrix composite sheet production
US20180223388A1 (en) * 2015-02-17 2018-08-09 Sandvik Materials Technology Deutschland Gmbh Method for producing a strand from stainless steel and strand made of stainless steel
US10501820B2 (en) * 2015-02-17 2019-12-10 Sandvik Materials Technology Deutschland Gmbh Method for producing a strand from stainless steel and strand made of stainless steel
EP3772544A4 (en) * 2018-03-06 2021-12-08 Hitachi Metals, Ltd. Method for manufacturing super-refractory nickel-based alloy and super-refractory nickel-based alloy

Also Published As

Publication number Publication date
CA920397A (en) 1973-02-06
GB1302994A (en) 1973-01-10
SE362900B (en) 1973-12-27
BE762376A (en) 1971-07-16
DE2103875B2 (en) 1974-05-09
JPS5338250B1 (en) 1978-10-14
FR2080946B1 (en) 1973-06-08
BR7100768D0 (en) 1973-06-12
CH568397A5 (en) 1975-10-31
DE2103875A1 (en) 1972-01-27
NL7101367A (en) 1971-08-04
FR2080946A1 (en) 1971-11-26
ES387777A1 (en) 1974-02-01
DE2103875C3 (en) 1974-12-12

Similar Documents

Publication Publication Date Title
US3639179A (en) Method of making large grain-sized superalloys
US3655458A (en) Process for making nickel-based superalloys
DE3445767C2 (en)
US3975219A (en) Thermomechanical treatment for nickel base superalloys
JP2782189B2 (en) Manufacturing method of nickel-based superalloy forgings
US3850702A (en) Method of making superalloy bodies
US4066449A (en) Method for processing and densifying metal powder
US3746581A (en) Zone annealing in dispersion strengthened materials
US3671230A (en) Method of making superalloys
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
US3765958A (en) Method of heat treating a formed powder product material
US3702791A (en) Method of forming superalloys
US4851053A (en) Method to produce dispersion strengthened titanium alloy articles with high creep resistance
US3322512A (en) Beryllium-aluminum-silver composite
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
US3700434A (en) Titanium-nickel alloy manufacturing methods
US4410488A (en) Powder metallurgical process for producing a copper-based shape-memory alloy
US2807542A (en) Method of making high density sintered alloys
US4655855A (en) Method for refining microstructures of prealloyed titanium powder compacted articles
US3615381A (en) Process for producing dispersion-hardened superalloys by internal oxidation
US4808250A (en) Method for refining microstructures of blended elemental titanium powder compacts
US4536234A (en) Method for refining microstructures of blended elemental powder metallurgy titanium articles
US3301671A (en) Aluminous sintered parts and techniques for fabricating same
US3775101A (en) Method of forming articles of manufacture from superalloy powders
US2228600A (en) Powder metallurgy

Legal Events

Date Code Title Description
AS Assignment

Owner name: AL-INDUSTRIAL PRODUCTS, INC. 2700 TWO OLIVER PLAZA

Free format text: SECURITY INTEREST;ASSIGNOR:SPECIAL METALS CORPORATION A DE CORP;REEL/FRAME:004212/0061

Effective date: 19831229

Owner name: CITICORP INDUSTRIAL CREDIT, INC., BOND COURT BLDG.

Free format text: SECURITY INTEREST;ASSIGNOR:SPECIAL METALS CORPORATION;REEL/FRAME:004207/0501

Effective date: 19831223

AS Assignment

Owner name: ALLEGHENY INTERNATIONAL ACCEPTANCE CORPORATION

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AL- INDUSTRIAL PRODUCTS INC.;REEL/FRAME:004379/0797

Effective date: 19850306

AS Assignment

Owner name: HELLER FINANCIAL, INC., 101 PARK AVE., NEW YORK, N

Free format text: SECURITY INTEREST;ASSIGNOR:SPECIAL METALS CORPORATION;REEL/FRAME:004756/0171

Effective date: 19870827

AS Assignment

Owner name: SPECIAL METALS CORPORATION

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP INDUSTRIAL CREDIT, INC.;REEL/FRAME:004764/0322

Effective date: 19870825

AS Assignment

Owner name: SPECIAL METALS CORPORATION,PENNSYLVANIA

Free format text: RELEASED BY SECURED PARTY;ASSIGNORS:AL-INDUSTRIAL PRODUCTS, INC., A CORP. OF PA;ALLEGHENY INTERNATIONAL, INC., A CORP. OF PA;REEL/FRAME:004846/0078

Effective date: 19870827

Owner name: SPECIAL METALS CORPORATION, 240 TWO CHATHAM CENTER

Free format text: RELEASED BY SECURED PARTY;ASSIGNORS:AL-INDUSTRIAL PRODUCTS, INC., A CORP. OF PA;ALLEGHENY INTERNATIONAL, INC., A CORP. OF PA;REEL/FRAME:004846/0078

Effective date: 19870827

AS Assignment

Owner name: SPECIAL METALS CORPORATION, NEW YORK

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:HELLER FINANCIAL, INC.;REEL/FRAME:005463/0096

Effective date: 19900831