JPS59110776A - Surface coated sintered hard alloy - Google Patents

Surface coated sintered hard alloy

Info

Publication number
JPS59110776A
JPS59110776A JP22077282A JP22077282A JPS59110776A JP S59110776 A JPS59110776 A JP S59110776A JP 22077282 A JP22077282 A JP 22077282A JP 22077282 A JP22077282 A JP 22077282A JP S59110776 A JPS59110776 A JP S59110776A
Authority
JP
Japan
Prior art keywords
cutting
coated
hard alloy
alloy
sintered hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22077282A
Other languages
Japanese (ja)
Other versions
JPH0258336B2 (en
Inventor
Shinya Tsukamoto
眞也 塚本
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22077282A priority Critical patent/JPS59110776A/en
Publication of JPS59110776A publication Critical patent/JPS59110776A/en
Publication of JPH0258336B2 publication Critical patent/JPH0258336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Abstract

PURPOSE:To enhance the heat resistance and the toughness of the titled alloy, by applying an Al2O3 and/or ZrO2 layer having a predetermined thickness on the surface of a sintered alloy consisting of a predetermined hard phase and a bonding phase. CONSTITUTION:The titled alloy is formed by coating the surface of a sintered hard alloy with a thin layer with a thickness of 0.1-2mum comprising Al2O3 and/or ZrO2 directly or through an intermediate layer. The hard phase of the aforementioned sintered hard alloy comprises a transient metal belonged to the Groups IVa, Va, VIa of the Periodic Table and carbide and/or nitride of one or more of B and Si while the bonding phase comprising one or more of a metal selected from a group consisting of Fe, Co, Ni, Cr, Mo, W, Ti and Al. This surface coated sintered alloy is excellent in heat resistance and toughness.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は高速において切削可能な切削工具用硬質合金の
改良に関するものであり、焼結硬質台を基体とし、この
表面に硬質、耐摩耗性の高い物質を被覆した被覆硬質合
金である。
Detailed Description of the Invention (a) Technical Field The present invention relates to the improvement of a hard alloy for cutting tools that can be cut at high speeds, using a sintered hard base as a base, and having a hard and highly wear-resistant surface on the surface. It is a coated hard alloy coated with a substance.

(ロ)技術の背景 機械加工に用いられる切削工具材料としては高速度鋼、
超硬合金(WC−Co )、サーメット、七ラミックと
切削速度が高くなるにつれて種々の材料が実用化されて
いる。切削工具に要望される特性は高硬度、高靭性、耐
熱強度それに耐摩耗性であるが最近の加工速度の向上、
能率の向上から要求はますます厳しくなっており切削速
度が数百m/min以上での高速切削が要求されるよう
になった。
(b) Background of the technology Cutting tool materials used in machining include high-speed steel,
As the cutting speed increases, various materials such as cemented carbide (WC-Co), cermet, and hexaramic are being put into practical use. The characteristics required for cutting tools are high hardness, high toughness, heat-resistant strength, and wear resistance, but recent improvements in machining speed,
Due to improvements in efficiency, requirements have become increasingly strict, and high-speed cutting at a cutting speed of several hundred m/min or more is now required.

その要望に答える材料の候補とし炭窒化物を硬質相とし
てこれを金属で結合したサーメットがある。これは例え
ばTi  の炭窒化物にTa sMo eW等を添加し
た遷移金属の炭窒化物を主たる硬質相としてFe tc
o sNi tMo eWt/V tTiから選んだ一
種以上の金属で結合し焼結硬質合金いわゆる窒素含有サ
ーメットは従来の窒素を含有しないTiC基硬質合金の
耐熱強度、熱疲労靭性を大巾に改良した切削工具として
広く実用に供されている。しかしながら近年切削加工の
分野では能率向上を計るために切削速度を従来よりも大
巾に引き上げるという要望が強まってきている。例えば
鋼の連続旋削において切削速度が500 m/mi n
以上の領域に耐える工具が要望されるようになって来た
。このような領域では上記の窒素含有サーメットと云え
ども耐熱強度の不足から殆んど実用に耐えず、実用に耐
え得るのはAlaOs−Tic系セラミックのみである
。確かにこのAlzOs−TiCセラミックは耐摩耗性
の見地から実用性があるものの靭性に欠けるためその適
用範囲は極めて狭いものに限られていた。
Cermets, which have carbonitride as a hard phase and bond it with metal, are candidates for materials that meet this demand. This is, for example, FetC with transition metal carbonitride as the main hard phase, which is made by adding TasMoeW etc. to Ti carbonitride.
o sNi tMo eWt/V tTi A hard alloy bonded with one or more metals selected from Ti and sintered. So-called nitrogen-containing cermet is a cutting tool that greatly improves the heat resistance strength and thermal fatigue toughness of conventional TiC-based hard alloys that do not contain nitrogen. It is widely used as a tool. However, in recent years in the field of cutting processing, there has been a growing demand for increasing the cutting speed to a greater extent than before in order to improve efficiency. For example, in continuous turning of steel, the cutting speed is 500 m/min.
There is a growing demand for tools that can withstand the above areas. In such a region, even the above nitrogen-containing cermets are hardly of practical use due to their lack of heat-resistant strength, and only AlaOs-Tic ceramics are suitable for practical use. It is true that this AlzOs-TiC ceramic is practical from the viewpoint of wear resistance, but its application range is extremely narrow because it lacks toughness.

又最近広い分野で実用されている超硬合金(WC−Ti
C−Co等)を基体としその表面AlzOsを被覆した
いわゆる被覆超硬合金は上記の如く高切削速度では工具
刃先が変形してしまい実用に供し得ない。
In addition, cemented carbide (WC-Ti) has recently been put into practical use in a wide range of fields.
The so-called coated cemented carbide, which has a substrate made of (C--Co, etc.) and whose surface is coated with AlzOs, cannot be put to practical use because the cutting edge of the tool deforms at high cutting speeds as described above.

(ハ)発明の目的 本発明は窒素含有サーメットの耐熱性及び、AlgOa
−TiCセラミックの欠点である靭性も大巾に改良する
ものであり鋼の高速切削領域において使用可能な切削工
具用合金を提供するものである。
(c) Purpose of the invention The present invention aims to improve the heat resistance of nitrogen-containing cermets and improve the heat resistance of nitrogen-containing cermets.
- The toughness, which is a drawback of TiC ceramics, is greatly improved, and an alloy for cutting tools that can be used in the high-speed cutting range of steel is provided.

に)発明の開示 本発明者らは鋼の高速切削時におこる現象を詳しく把握
するため硬度の異る各種の鋼を被剛材とし、窒素含有サ
ーメットおよびk120s−Tic士ラミラミックスl
gO,+被覆超硬合金およびP−10超硬合金を工具と
して高速切削試験を行った結果、驚くべき知見を得た。
B) Disclosure of the Invention In order to understand in detail the phenomena that occur during high-speed cutting of steel, the present inventors used various types of steel with different hardness as stiffening materials, and used nitrogen-containing cermet and K120S-Tic steel lamira mix l.
As a result of conducting high-speed cutting tests using gO,+ coated cemented carbide and P-10 cemented carbide as tools, surprising findings were obtained.

即ち、従来耐熱性が劣るゆえ高速切削した際には工具刃
先が塑性変形してしまうため高速切削に耐えないと考え
られていた窒素含有サーメットが例えば切削速度が60
0 m/mi nという領域でもクレータ摩耗が進行す
るまでは工具刃先が変形しないことがわかった。これに
対しP−10超硬合金及びAI!20a被覆超硬合金の
工具刃先は瞬時に塑性変形してしまい全く切削不可能で
あった。
In other words, nitrogen-containing cermets, which were conventionally thought to be unable to withstand high-speed cutting due to their poor heat resistance and the plastic deformation of the tool edge when cutting at high speeds,
It was found that even in the range of 0 m/min, the tool cutting edge did not deform until crater wear progressed. In contrast, P-10 cemented carbide and AI! The cutting edge of the 20a-coated cemented carbide tool was instantly plastically deformed and could not be cut at all.

またAJIIOa−TiCセラミックと窒素含有サーメ
ットを較べると、耐クレータ摩耗ではセラミックが圧倒
的に良好な為、クレータ摩耗が生じるような領域ではセ
ラミックが長寿命になるものの、クレータ−摩耗が生じ
ない領域では窒素含有サーメットの方がかえって長寿命
となった。これは両者の靭性の差が反映したものであろ
う。
Furthermore, when comparing AJIIOa-TiC ceramic and nitrogen-containing cermet, ceramic has overwhelmingly good crater wear resistance. Ceramic has a longer life in areas where crater wear occurs, but in areas where crater wear does not occur, ceramic has an overwhelmingly good resistance to crater wear. The nitrogen-containing cermet actually had a longer life. This probably reflects the difference in toughness between the two.

以上の驚くべき知見から発明者らは、クレータ摩耗lI
て富むのはAl2O5等の酸化物であり、窒化物、炭化
物等は空気中で高温にさらされると酸化してしまい耐ク
レータ摩耗が損われるのではないかと考えた。従って窒
素含有サーメットの表面に耐クレータ摩耗に酸化物の薄
層を被覆するならばか\る高速切削領域において靭性と
耐摩耗性の兼ねそなえた切削工具が得られるのではない
かと考えた。。
Based on the above surprising findings, the inventors discovered that crater wear lI
It was thought that oxides such as Al2O5 are rich in carbon dioxide, and that nitrides, carbides, etc. oxidize when exposed to high temperatures in the air, impairing crater wear resistance. Therefore, we thought that if we coated the surface of nitrogen-containing cermet with a thin layer of oxide for crater wear resistance, we could obtain a cutting tool that has both toughness and wear resistance in the high-speed cutting range. .

この考えに従って実際に窒素含有サーメットに1メのA
lzOsを被覆した合金を試作したところ予想どおりの
効果が得られた。
According to this idea, we actually applied 1-metal A to nitrogen-containing cermet.
When we prototyped an alloy coated with lzOs, the expected effects were obtained.

本発明の合金は基体として、周期律表I Va + V
a mVIa族遷移全遷移金属LZr tHf +Vt
Nb tTa +Cr +Mo 1w )およびB +
 S i  から選ばれた一種またはそれ以上の炭化物
及び/または窒化物を硬質層とし、F e e Co 
+5− Ni +Cr +Mo 1wl’ri 、Al から選
ばれた一種またはそれ以上の金属を結合相とする焼結合
金を用い、この表面にAI!QOsおよび/またはZr
O2からなる薄層を厚み0.1〜20μ で被覆した被
覆焼結硬質合金である。そして基体と表面の上記酸化物
薄層との間に中間層として周期律表IVatVaeVI
a  族遷移金属の一種またはそれ以上の炭化物および
/または窒化物を厚み0.1〜lOμ の被覆層を有す
る被覆焼結硬質合金である。
The alloy of the present invention is used as a substrate in the periodic table I Va + V
a mVIa group transition all transition metal LZr tHf +Vt
Nb tTa +Cr +Mo 1w ) and B +
A hard layer is made of one or more carbides and/or nitrides selected from S i , and Fe e Co
A sintered alloy having a binder phase of one or more metals selected from +5-Ni +Cr +Mo1wl'ri and Al is used, and AI! QOs and/or Zr
It is a coated sintered hard alloy coated with a thin layer of O2 with a thickness of 0.1 to 20 microns. Then, as an intermediate layer between the substrate and the above-mentioned oxide thin layer on the surface, the periodic table IVatVaeVI
It is a coated sintered hard alloy having a coating layer of one or more carbides and/or nitrides of group a transition metals with a thickness of 0.1 to 10μ.

klsosrZroa 被覆が0.1μ 以下では耐ク
レータ性等の耐摩性向上の効果がなく、20μ以上では
全体としての強度低下が著しく好ましくない。
If the klsosrZroa coating is less than 0.1μ, there is no effect of improving wear resistance such as crater resistance, and if it is more than 20μ, the overall strength will be significantly lowered, which is undesirable.

そして基体と外層被覆層との間の上記中間層を設けるの
はセラミック層と基体との密着強度の向上の効果がある
が0.1μ以下では密着強度の向」二効果なく、lOμ
以上では強度低下が著しく好ましくない。
Providing the above-mentioned intermediate layer between the substrate and the outer coating layer has the effect of improving the adhesion strength between the ceramic layer and the substrate, but if it is less than 0.1μ, there is no effect on the adhesion strength, and lOμ
Above this, the strength is significantly lowered, which is undesirable.

基体上にMhOs*ZrOs  及び中間層としての炭
化物、窒化物を被覆する方法としては通常の化学蒸着法
(CvD)、物理蒸着法(PVD)が好ましいが6一 被覆方法で限定されるものではない。
As a method for coating MhOs*ZrOs and a carbide or nitride as an intermediate layer on the substrate, the usual chemical vapor deposition method (CvD) or physical vapor deposition method (PVD) is preferable, but the method is not limited to the above-mentioned coating method. .

次に実施例によって詳細に説明する。Next, a detailed explanation will be given using examples.

実施例1゜ 基体として(Ti +Ta yMo 1w ) (C+
N )なる炭窒化物をNiとCoで結合した市販の含窒
素含有サーメット(型番5NG432)を用い、この表
面にCVD法によりAlgOsを1μ被覆したものをA
とし、1μのZrO2を被覆したものをBとした。比較
のため上記未処理の窒素含有サーメット(C)、市販の
AJ20g−TiCセラミック(D)、市販AA’20
8被覆超硬合金(E)を準備し第1表に示す条件で切削
試験を行った。
Example 1゜As a substrate (Ti + Ta yMo 1w) (C+
A commercially available nitrogen-containing cermet (model number 5NG432) in which carbonitride (N) is bonded with Ni and Co is coated with 1 μm of AlgOs on the surface by CVD.
B was coated with 1μ of ZrO2. For comparison, the untreated nitrogen-containing cermet (C), commercially available AJ20g-TiC ceramic (D), and commercially available AA'20
No. 8 coated cemented carbide (E) was prepared and a cutting test was conducted under the conditions shown in Table 1.

その結果は次の通りであった。The results were as follows.

A:切削時間10分においてクレータ摩耗、フランク摩
耗とも極めて微少であった。
A: Both crater wear and flank wear were extremely small at a cutting time of 10 minutes.

B:11分4・8秒切削可能 C:フランク摩耗は微少であったがクレータ摩耗が進行
し6分15秒でクレータ摩耗の進行が原因で刃先が欠損
し切削不能となった。
B: Cuttable for 11 minutes and 4.8 seconds C: Flank wear was slight, but crater wear progressed, and the cutting edge became damaged at 6 minutes and 15 seconds due to the progress of crater wear, making cutting impossible.

D=摩耗は微少であったが境界摩耗が著しく進展し6分
35秒で刃先が欠損して切削不可能。
D = Wear was slight, but boundary wear progressed significantly, and the cutting edge broke in 6 minutes and 35 seconds, making cutting impossible.

E:工具刃先の塑性変形のため15秒しか切削出来ず。E: Cutting could only be done for 15 seconds due to plastic deformation of the tool tip.

実施例2゜ 実施例1と同じ窒素含有サーメット(型番5NG4.3
2)の表面にCVD法によって先づTiNを2μ被覆し
、更にその上にA77gOaをl lt被被覆た工具を
第1表&C示す切削条件で切削試験を行ったところ12
分28秒まで切削が可能であった。
Example 2゜The same nitrogen-containing cermet as Example 1 (model number 5NG4.3
2) The surface of the tool was first coated with 2μ of TiN using the CVD method, and then A77gOa was further coated on top of it. Cutting tests were conducted under the cutting conditions shown in Table 1 & C.12
Cutting was possible up to minute 28 seconds.

実施例3゜ 実施例1と同じ窒素含有サーメット(型番C3N4.3
MT)チップに公知のイオンブレーティング法によって
Ti(CN)を2μ被覆した後、この上にCVD法にて
k120sを1μ被覆した。これをFとする。また被覆
処理をしないものをGとする。
Example 3゜The same nitrogen-containing cermet as in Example 1 (model number C3N4.3
MT) The chip was coated with 2μ of Ti(CN) by a known ion blating method, and then coated with 1μ of k120s using a CVD method. Let this be F. Moreover, the material without coating treatment is designated as G.

この切削工具で第2表に示す条件で切削試験を行った。A cutting test was conducted using this cutting tool under the conditions shown in Table 2.

その結果Gは8分25秒しか切削できなかったのに対し
本発明のFは14分12秒切削可能であった。
As a result, G could only be cut for 8 minutes and 25 seconds, whereas F of the present invention could be cut for 14 minutes and 12 seconds.

実施例4゜ Ticを37重量%、TiNを3重量%、TaNを20
重量%、wc を15重量%、Mo2C”k 10重量
%、Niを10重量%、Coを5重量%を配合し、通常
の粉末冶金法によって窒素含有サーメットを作製した。
Example 4 37% by weight of Tic, 3% by weight of TiN, 20% by weight of TaN
A nitrogen-containing cermet was prepared by blending 15 wt% wc, 10 wt% Mo2C''k, 10 wt% Ni, and 5 wt% Co, and using a normal powder metallurgy method.

(型番TNMG 882 ENA )。この表面にイオ
ンプレティング法によってTi(CN)を3.0μ被覆
し9− たのちCVD法でk120sを1.0μ被覆したものを
H1市販のアルミナ被覆(型番同じ)を■としたとき下
記の条件で切削テストした。
(Model number TNMG 882 ENA). This surface was coated with 3.0μ of Ti (CN) by the ion plating method, and then coated with 1.0μ of k120s by the CVD method, and when the H1 commercially available alumina coating (same model number) was designated as ■, the following: A cutting test was conducted under the following conditions.

切削条件: 被削材 : 5Cr420 (HB=190.95ru
L* x300m尻〕 切削速度: 550 m/min 送    リ     :0.25m尻/rev。
Cutting conditions: Work material: 5Cr420 (HB=190.95ru
L* x 300m bottom] Cutting speed: 550 m/min Feed: 0.25m bottom/rev.

切り込み:0.8〜1.0ruL ホルダー: PTGNR2020〜83この結果、Hは
23本切削可能であったのに対し、■は刃先の塑性変形
のため1本も切削できなかった。なお上記窒素含有サー
メットの被覆しないものは12本まで切削可能であった
Depth of cut: 0.8 to 1.0 ruL Holder: PTGNR2020 to 83 As a result, 23 pieces could be cut in H, but none could be cut in ■ due to plastic deformation of the cutting edge. Note that up to 12 pieces of the nitrogen-containing cermet without coating could be cut.

実施例5゜ 市販の立方晶型窒化硼素(CBN ) −TiN系超高
圧焼結体(型番5NG432)にイオンブレーティング
によってAlQO8を1μ被覆したもので下記条件で切
削テストを行った。
Example 5 A cutting test was conducted under the following conditions using a commercially available cubic boron nitride (CBN)-TiN ultra-high pressure sintered body (model number 5NG432) coated with 1μ of AlQO8 by ion blasting.

切削条件ニ ーl〇− 被削材: SCM415 (HB=180)切削速度:
 1000m/min。
Cutting conditions Knee l〇- Work material: SCM415 (HB=180) Cutting speed:
1000m/min.

送       リ  :   0.4.5B/ re
v。
Delivery: 0.4.5B/re
v.

切り込み:2.0に ホルダー: FNIR−44A 上記本発明のチップは5分切削してフランク摩耗0.1
1収、クレータ摩耗(深さ) 0.03ruLであった
のに対し、被覆処理しないものは1分間切削してフラン
ク摩耗9.38ax 、クレータ摩耗0.14vuxで
あった。
Depth of cut: 2.0 Holder: FNIR-44A The above tip of the present invention has flank wear of 0.1 after cutting for 5 minutes.
1 yield, crater wear (depth) was 0.03ruL, whereas the one without coating had flank wear of 9.38ax and crater wear of 0.14vux after cutting for 1 minute.

11− 362−11- 362-

Claims (1)

【特許請求の範囲】[Claims] (1)周期律表rVaoVasVla 族遷移金属およ
びB。 Si  の一種以上の炭化物および/又は窒化物硬質相
とし、Fe sCo tNi sCr eMo tWt
Ti tAl  からなる群より選ばれた一種以上の金
属を結合相とする焼結硬質合金の表面に直接または中間
層を介してAI!+Ogおよび/またはzr02  か
らなる厚み0.1μ〜20μの薄層を被覆してなること
を特徴とする表面被覆焼結硬質合金。 (2、特許請求の範囲第(1)項において、Ajp+O
sおよび/またはZrOs  の薄層と基体の焼結硬質
合金表面との中間層が周期律表IVa*Va*VIa 
族遷移金属の一種以上の炭化物および/または窒化物の
薄層の一層もしくは二層以上で合計厚みで0.1μ〜l
Oμの被覆層であることを特徴とする表面被覆焼結硬質
合金。
(1) Transition metals of group rVaoVasVla of the periodic table and B. At least one carbide and/or nitride hard phase of Si, Fe sCo tNi sCr eMo tWt
AI! is applied directly or via an intermediate layer to the surface of a sintered hard alloy whose binder phase is one or more metals selected from the group consisting of Ti tAl ! A surface-coated sintered hard alloy characterized by being coated with a thin layer of +Og and/or Zr02 with a thickness of 0.1 to 20μ. (2. In claim (1), Ajp+O
The intermediate layer between the thin layer of s and/or ZrOs and the sintered hard alloy surface of the substrate corresponds to the periodic table IVa*Va*VIa.
One or more thin layers of carbides and/or nitrides of one or more group transition metals, with a total thickness of 0.1μ to 1
A surface-coated sintered hard alloy characterized by a coating layer of Oμ.
JP22077282A 1982-12-15 1982-12-15 Surface coated sintered hard alloy Granted JPS59110776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22077282A JPS59110776A (en) 1982-12-15 1982-12-15 Surface coated sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22077282A JPS59110776A (en) 1982-12-15 1982-12-15 Surface coated sintered hard alloy

Publications (2)

Publication Number Publication Date
JPS59110776A true JPS59110776A (en) 1984-06-26
JPH0258336B2 JPH0258336B2 (en) 1990-12-07

Family

ID=16756313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22077282A Granted JPS59110776A (en) 1982-12-15 1982-12-15 Surface coated sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS59110776A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134654A (en) * 1986-11-25 1988-06-07 Mitsubishi Metal Corp Surface-coated titanium carbonitride-base cermet for high-speed cutting
JP2007039752A (en) * 2005-08-04 2007-02-15 National Institute Of Advanced Industrial & Technology Tool or die material having hard film deposited on hard alloy for forming high hardness film, and manufacturing method of the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859106A (en) * 1971-11-12 1973-08-18
JPS5294812A (en) * 1976-02-06 1977-08-09 Mitsubishi Metal Corp Covered super hard throwaway tip
JPS5294813A (en) * 1976-02-06 1977-08-09 Mitsubishi Metal Corp Covered super hard throwaway tip
JPS5296911A (en) * 1976-02-10 1977-08-15 Mitsubishi Metal Corp Coated cutting chip made of hard alloy
JPS5479180A (en) * 1977-12-06 1979-06-23 Sumitomo Electric Ind Ltd Manufacture of coated superhard alloy material
JPS54103409A (en) * 1978-02-01 1979-08-14 Sumitomo Electric Industries Surface coated superhard alloy member
JPS56155080A (en) * 1980-04-30 1981-12-01 Sumitomo Electric Industries Coated cutting tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859106A (en) * 1971-11-12 1973-08-18
JPS5294812A (en) * 1976-02-06 1977-08-09 Mitsubishi Metal Corp Covered super hard throwaway tip
JPS5294813A (en) * 1976-02-06 1977-08-09 Mitsubishi Metal Corp Covered super hard throwaway tip
JPS5296911A (en) * 1976-02-10 1977-08-15 Mitsubishi Metal Corp Coated cutting chip made of hard alloy
JPS5479180A (en) * 1977-12-06 1979-06-23 Sumitomo Electric Ind Ltd Manufacture of coated superhard alloy material
JPS54103409A (en) * 1978-02-01 1979-08-14 Sumitomo Electric Industries Surface coated superhard alloy member
JPS56155080A (en) * 1980-04-30 1981-12-01 Sumitomo Electric Industries Coated cutting tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134654A (en) * 1986-11-25 1988-06-07 Mitsubishi Metal Corp Surface-coated titanium carbonitride-base cermet for high-speed cutting
JPH0745707B2 (en) * 1986-11-25 1995-05-17 三菱マテリアル株式会社 Surface-coated titanium carbonitride-based cermet for high-speed cutting
JP2007039752A (en) * 2005-08-04 2007-02-15 National Institute Of Advanced Industrial & Technology Tool or die material having hard film deposited on hard alloy for forming high hardness film, and manufacturing method of the same

Also Published As

Publication number Publication date
JPH0258336B2 (en) 1990-12-07

Similar Documents

Publication Publication Date Title
USRE39814E1 (en) Cemented carbide insert and method of making same
JP2000225506A (en) Cutting insert and manufacture thereof
JP2014000674A (en) Coated cutting insert
JP2004510589A (en) Chromium-containing sintered cemented carbide body with binder-enriched surface area
JP5099747B2 (en) Coated cermet cutting tool
JPS5985860A (en) Parts of cutting tool
JPS6119367B2 (en)
JP2004509773A (en) Chromium-containing cemented tungsten carbide coated cutting insert
JPH0196084A (en) Surface-coated cubic boron nitride-based material sintered under superhigh pressure to be used for cutting tool
JPH0230406A (en) Cutting tool made of surface-coated tungsten carbide radical cemented carbide
JPS59110776A (en) Surface coated sintered hard alloy
EP1222316B1 (en) Coated cemented carbide insert
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP2000336451A (en) Modified sintered alloy, coated sintered alloy, and their production
JP2645340B2 (en) Manufacturing method of coated cemented carbide tool
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JP2004223666A (en) Cutting tool for rough machining
JPH04116134A (en) Wc base sintered hard alloy excellent in toughness and sintered hard alloy coated with hard layer
JPH05171442A (en) Coated sintered hard alloy and its manufacture
JPS6111724B2 (en)
JPS6242988B2 (en)
JPS6119777A (en) Abrasion and heat resistant coated cemented hard alloy meterial
JP2003129165A (en) Surface coated hard alloy
JPS6245290B2 (en)
JPS63103069A (en) Surface coated sintered hard alloy