JP2003129165A - Surface coated hard alloy - Google Patents

Surface coated hard alloy

Info

Publication number
JP2003129165A
JP2003129165A JP2001322148A JP2001322148A JP2003129165A JP 2003129165 A JP2003129165 A JP 2003129165A JP 2001322148 A JP2001322148 A JP 2001322148A JP 2001322148 A JP2001322148 A JP 2001322148A JP 2003129165 A JP2003129165 A JP 2003129165A
Authority
JP
Japan
Prior art keywords
cemented carbide
1suf
2suf
surface region
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001322148A
Other languages
Japanese (ja)
Other versions
JP4005787B2 (en
Inventor
Keiji Usami
恵司 宇佐美
Daisuke Shibata
大輔 柴田
Hiroshi Ohata
浩志 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001322148A priority Critical patent/JP4005787B2/en
Priority to DE10244955.4A priority patent/DE10244955C5/en
Priority to US10/256,275 priority patent/US6797369B2/en
Publication of JP2003129165A publication Critical patent/JP2003129165A/en
Priority to US10/916,671 priority patent/US7018726B2/en
Application granted granted Critical
Publication of JP4005787B2 publication Critical patent/JP4005787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated hard alloy which has high hardness and toughness, and excellent oxidation resistance, and can improve both fracture resistance and abrasion resistance so as to endure even when the surface is exposed to high temperature. SOLUTION: The surface coated hard alloy comprises a hard alloy 2 consisting of WC and one or more carbides, nitrides, and/or carbonitrides, of Zr and M (M is at least one metallic element except Zr, selected from the group consisting of 4a, 5a and 6a family metals in the periodic table), and a binding material of iron family metals, and a hard coating layer 3 formed thereon. Then, the provided metal has high hardness, high toughness, and excellent oxidation resistance, and is suitable for machining for a hardly machinable material including not only steel and cast iron like carbon steel and alloy steel but also stainless steel. In addition, the above hard coating layer is comprised of one or more layers selected from the group consisting of carbides, nitrides, oxides or the like of 4a, 5a, and 6a family metals or Al, and of diamond, in the periodic table.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は切削工具等に使用さ
れる表面被覆超硬合金に関し、特に高硬度かつ高靭性で
優れた耐酸化性を有し、炭素鋼、合金鋼などの鋼や鋳鉄
のみならず、ステンレス鋼をはじめとする難削材の切削
に適する表面被覆超硬合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-coated cemented carbide used for a cutting tool or the like, and particularly has high hardness and high toughness and excellent oxidation resistance, and is a steel such as carbon steel or alloy steel or cast iron. In addition, it relates to a surface-coated cemented carbide suitable for cutting difficult-to-cut materials such as stainless steel.

【0002】[0002]

【従来の技術】従来より、超硬合金は、WC(炭化タン
グステン)を主体とする硬質相と、コバルト等の鉄族金
属の結合相からなるWC−Co系合金、もしくはこれに
周期律表第4a、5a、6a族金属の炭化物、窒化物、
炭窒化物等のいわゆるB−1型固溶体相を分散せしめた
系が知られており、金属の切削加工や耐摩耗材等に広く
用いられ、中でも切削工具としては炭素鋼・合金鋼など
の鋼や鋳鉄の切削に主に利用されているが、最近ではス
テンレス鋼等の難削材の切削も進められている。
2. Description of the Related Art Conventionally, cemented carbide is a WC-Co type alloy composed of a hard phase mainly composed of WC (tungsten carbide) and a binding phase of an iron group metal such as cobalt, or a WC-Co based alloy thereof. 4a, 5a, 6a group metal carbides, nitrides,
A system in which a so-called B-1 type solid solution phase such as carbonitride is dispersed is known, and is widely used for metal cutting and wear resistant materials. Among them, cutting tools such as carbon steel and alloy steel are used. It is mainly used for cutting cast iron, but recently cutting difficult-to-cut materials such as stainless steel has also been advanced.

【0003】また、かかる超硬合金では、より高硬度な
硬質被覆層を合金表面に被着形成して耐摩耗性を向上さ
せる方法が知られており、この硬質被覆層にかかる衝撃
を緩和するために、超硬合金の硬質被覆層を被着形成す
る表面領域にB−1型固溶体の含有量を減じた、いわゆ
る脱β層を形成する方法が知られている。
Further, in such cemented carbide, a method of forming a hard coating layer having a higher hardness on the alloy surface to improve wear resistance is known, and the impact applied to the hard coating layer is mitigated. Therefore, there is known a method of forming a so-called β-free layer in which the content of the B-1 type solid solution is reduced in the surface region on which the hard coating layer of cemented carbide is formed.

【0004】さらに、特開平6−93473号公報に
は、B−1型固溶体としてTiとZrとを用いる(Nb
を用いることなく)と、母材表面から内部1〜50μm
の深さ領域におけるZrの含有量が消失または減少する
ことが記載されている。
Further, in JP-A-6-93473, Ti and Zr are used as a B-1 type solid solution (Nb).
1 to 50 μm from the surface of the base material)
It is described that the Zr content disappears or decreases in the depth region of.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の超硬合金では、切削加工時の熱および環境中の酸素で
合金表面が酸化して変質してしまい、硬度、靭性ともに
低下してしまうことが知られており、たとえ合金(母
材)表面に硬質被覆層を被着形成した場合でも硬質被覆
層中の欠陥部分の存在によって母材表面が酸化雰囲気に
曝される場合があり、特に母材表面に脱β層を形成する
(p1suf/pin<0.9、q1suf/qin<0.9)と、
母材表面の酸化や変質が生じやすいものであった。
However, in these cemented carbides, the surface of the alloy may be oxidized and deteriorated by heat during cutting and oxygen in the environment, resulting in a decrease in both hardness and toughness. It is known that even if a hard coating layer is formed on the surface of an alloy (base material), the base material surface may be exposed to an oxidizing atmosphere due to the presence of defects in the hard coating layer. forming a de-β layer on the surface and (p 1suf / p in <0.9 , q 1suf / q in <0.9),
The surface of the base material was likely to be oxidized and deteriorated.

【0006】一方、硬質被覆層の直下に脱β層を形成し
ない場合(p1suf=p2suf=pin、q1suf=q2suf=q
in)には、硬質被覆層の耐衝撃性および耐欠損性が低下
してしまうという問題があった。
On the other hand, when not forming a de-β layer directly below the hard coating layer (p 1suf = p 2suf = p in, q 1suf = q 2suf = q
In ), there was a problem that the impact resistance and fracture resistance of the hard coating layer deteriorated.

【0007】さらに、特開平6−93473号公報の母
材表面領域におけるZrの含有量が少ない(q1suf/q
in<0.9)被覆超硬合金では、耐塑性変形性が悪くな
り、耐摩耗性が低下するという問題があった。
Further, the content of Zr in the surface area of the base material as disclosed in JP-A-6-93473 is small (q 1suf / q
In <0.9) coated cemented carbide, there is a problem that the plastic deformation resistance deteriorates and the wear resistance decreases.

【0008】したがって、本発明は上記課題を解決する
ためになされたもので、その目的は、高い硬度と靭性を
有するとともに耐酸化性に優れ、表面が連続稼動等によ
って高温に曝されるような過酷な環境化においても高い
耐欠損性と耐摩耗性をともに向上できる表面被覆超硬合
金を提供することにある。
Therefore, the present invention has been made to solve the above problems, and its purpose is to have high hardness and toughness as well as excellent oxidation resistance, such that the surface is exposed to high temperatures due to continuous operation or the like. An object of the present invention is to provide a surface-coated cemented carbide capable of improving both high fracture resistance and wear resistance even in a harsh environment.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記課題に
対して超硬合金母材の構成について検討した結果、超硬
合金表面に、Zrの含有量は内部のそれに対して変化量
が少なく、かつZr以外の金属元素M(Mは周期律表第
4a、5a、6a族金属の群から選ばれる少なくとも1
種以上)の含有量が内部のそれに対して少ない第1の表
面領域と、該第1の表面領域の内部に、Zrの含有量は
内部のそれに対して変化量が少なく、かつZr以外の金
属元素M(Mは周期律表第4a、5a、6a族金属の群
から選ばれる少なくとも1種以上)の含有量が内部のそ
れに対して多い第2の表面領域とを設けることにより、
母材表面の靭性を向上させて硬質被覆層の耐欠損性を向
上させることができるとともに、硬質被覆層を被着形成
した超硬合金の耐酸化性を高めることができ、連続的ま
たは断続的に長時間作動させ、高温下に長時間曝される
ような場合においても優れた耐欠損性と耐摩耗性を有す
る表面被覆超硬合金が得られることを知見した。
Means for Solving the Problems The present inventor has examined the constitution of the cemented carbide base material with respect to the above problems, and as a result, the Zr content on the surface of the cemented carbide has a variation amount with respect to that of the inside. At least one metal element other than Zr (M is at least one selected from the group of metals of Groups 4a, 5a and 6a of the Periodic Table)
A content of (1 or more) is smaller than that of the inside, and inside the first surface region, the content of Zr has a small change with respect to the inside and a metal other than Zr. By providing a second surface region in which the content of the element M (M is at least one or more selected from the group of metals of groups 4a, 5a and 6a of the periodic table) is higher than that of the inside thereof,
The toughness of the base metal surface can be improved to improve the fracture resistance of the hard coating layer, and the oxidation resistance of the cemented carbide on which the hard coating layer is formed can be increased, either continuously or intermittently. It was found that a surface-coated cemented carbide having excellent fracture resistance and wear resistance can be obtained even when it is operated for a long time and exposed to a high temperature for a long time.

【0010】すなわち、本発明の表面被覆超硬合金は、
WCと、周期律表第4a、5a、6a族金属の群から選
ばれる少なくとも1種以上の金属元素Mの炭化物、窒化
物および/または炭窒化物のうちの1種以上と、鉄属金
属の結合材とからなる超硬合金の表面に、硬質被覆層を
被着形成してなる表面被覆超硬合金において、前記金属
元素Mは、ZrおよびNbを共に含有するとともに、前
記超硬合金の表面から5μm以上200μm以下の深さ
にわたり、以下に示す第1の表面領域と、該第1の表面
領域よりも内側に位置する第2の表面領域とを具備する
ことを特徴とするものである。
That is, the surface-coated cemented carbide of the present invention is
WC, one or more of carbides, nitrides and / or carbonitrides of at least one metal element M selected from the group of metals of groups 4a, 5a and 6a of the periodic table, and an iron group metal In a surface-coated cemented carbide formed by depositing a hard coating layer on the surface of a cemented carbide containing a binder, the metal element M contains both Zr and Nb, and the surface of the cemented carbide. To a depth of 5 μm or more and 200 μm or less, the first surface region shown below and a second surface region located inside the first surface region are provided.

【0011】前記超硬合金内部における金属元素Mの総
含有量:Min、前記超硬合金内部におけるZrの含有
量:Zrin、前記超硬合金内部におけるWの含有量:W
in、前記第1の表面領域における金属元素Mの総含有
量:M1suf、前記第1の表面領域におけるZrの含有
量:Zr1suf、前記第1の表面領域におけるWの含有
量:W 1suf、前記第2の表面領域における金属元素Mの
総含有量:M2suf、前記第2の表面領域におけるZrの
含有量:Zr2suf、前記第2の表面領域におけるWの含
有量:W2sufとし、pin=Min/Win、p1suf=M1suf
/W1suf、p2suf=M2s uf/W2suf、qin=Zrin/W
in、q1suf=Zr1suf/W1suf、q2suf=Zr2s uf/W
2sufとしたとき、0.1≦p1suf/pin≦0.9、0.
9≦q1suf/qin≦1.1かつ、1.1≦p2suf/pin
≦1.5、0.9≦q2suf/qin≦1.1ここで、前記
表面被覆超硬合金の耐酸化性が0.01mg/mm2
下であること、前記超硬合金全体において、前記金属元
素Mが、0.1≦Zr/(Ti+Zr+Hf)≦0.
5、かつ、0.6≦Nb/(V+Nb+Ta)≦1.0
を満足すること、前記超硬合金全体において、0.05
≦Zr/(Zr+Nb)≦0.8を満足することが望ま
しい。
The total amount of the metal element M in the cemented carbide is
Content: Min, Inclusion of Zr in the cemented carbide
Amount: Zrin, W content in the cemented carbide: W
in, The total content of the metal element M in the first surface region
Amount: M1 suf, Inclusion of Zr in the first surface region
Amount: Zr1 suf, Inclusion of W in the first surface region
Quantity: W 1 sufOf the metal element M in the second surface region
Total content: M2 suf, Zr in the second surface region
Content: Zr2 suf, Containing W in the second surface region
Amount: W2 sufAnd pin= Min/ Win, P1 suf= M1 suf
/ W1 suf, P2 suf= M2s uf/ W2 suf, Qin= Zrin/ W
in, Q1 suf= Zr1 suf/ W1 suf, Q2 suf= Zr2s uf/ W
2 sufAnd 0.1 ≦ p1 suf/ Pin≤ 0.9, 0.
9 ≦ q1 suf/ Qin≦ 1.1 and 1.1 ≦ p2 suf/ Pin
≦ 1.5, 0.9 ≦ q2 suf/ Qin≦ 1.1 where:
Oxidation resistance of surface coated cemented carbide is 0.01mg / mm2Since
Below, in the whole of the cemented carbide, the metal element
Element M is 0.1 ≦ Zr / (Ti + Zr + Hf) ≦ 0.
5 and 0.6 ≦ Nb / (V + Nb + Ta) ≦ 1.0
Satisfying the above requirement, 0.05
It is desirable to satisfy ≦ Zr / (Zr + Nb) ≦ 0.8
Good

【0012】さらに、前記超硬合金が、ZrCを0.1
〜1.5重量%、NbCを0.5〜3.5重量%、Ti
Cを1.0〜2.5重量%、TaCを0〜1.0重量
%、HfCを0〜1.0重量%、Cr32を0〜1.0
重量%、VCを0〜1.0重量%、Coを5〜10重量
%含有し、残部がWCおよび不可避不純物からなること
が望ましい。
Further, the cemented carbide has a ZrC content of 0.1.
~ 1.5 wt%, NbC 0.5-3.5 wt%, Ti
1.0 to 2.5% by weight of C, 0 to 1.0% by weight of TaC, 0 to 1.0% by weight of HfC, and 0 to 1.0 of Cr 3 C 2 .
It is desirable that the content of WC and unavoidable impurities is 50% by weight, VC is 0 to 1.0% by weight, Co is 5 to 10% by weight, and the balance is WC and inevitable impurities.

【0013】また、前記第1の表面領域の厚みd1が1
〜50μm、前記第2の表面領域の厚みd2が10〜2
00μmであることが望ましい。
Further, the thickness d 1 of the first surface region is 1
˜50 μm, the thickness d 2 of the second surface region is 10 to 2
It is preferably 00 μm.

【0014】さらに、前記硬質被覆層が、周期律表第4
a、5a、6a族金属またはAlの炭化物、窒化物、酸
化物、炭窒化物、炭酸化物、窒酸化物、炭酸窒化物およ
びダイヤモンドの群から選ばれる少なくとも1種の単層
または複数層からなることが望ましい。
Further, the hard coating layer is the fourth periodic table.
Consists of a single layer or a plurality of layers selected from the group consisting of carbides, nitrides, oxides, carbonitrides, carbonitrides, carbonitrides and diamonds of a, 5a, 6a group metals or Al. Is desirable.

【0015】[0015]

【発明の実施の形態】本発明の表面被覆超硬合金は、図
1(a)の概略断面図に示すように、超硬合金(母材)
2の表面に硬質被覆層3を被着形成したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The surface-coated cemented carbide of the present invention is a cemented carbide (base material) as shown in the schematic sectional view of FIG.
The hard coating layer 3 is adhered and formed on the surface of 2.

【0016】母材2は、WC(炭化タングステン)と、
周期律表第4a、5a、6a族金属の群から選ばれる少
なくとも1種以上の金属元素M(Ti、V、Cr、Z
r、Nb、Mo、Hf、Ta、W)の炭化物、窒化物お
よび/または炭窒化物のうちの1種以上と、鉄属金属
(Co、Ni、Fe)の結合材とからなるものである
が、本発明によれば、前記金属元素Mとして、ZrとN
bとを共に含有することが大きな特徴であり、これによ
って下記に示す所定の深さからなる表面領域を形成する
ことができる。なお、金属元素Mとしては、Zrおよび
Nb以外にTi、V、Cr、Mo、HfおよびTaの群
から選ばれる少なくとも1種が挙げられる。
The base material 2 comprises WC (tungsten carbide),
At least one metal element M (Ti, V, Cr, Z selected from the group consisting of metals of groups 4a, 5a and 6a of the periodic table)
r, Nb, Mo, Hf, Ta, W) and one or more of carbides, nitrides and / or carbonitrides, and a binder of an iron group metal (Co, Ni, Fe). However, according to the present invention, as the metal element M, Zr and N
The major feature is that b and b are contained together, whereby a surface region having a predetermined depth shown below can be formed. The metal element M includes at least one selected from the group consisting of Ti, V, Cr, Mo, Hf and Ta, in addition to Zr and Nb.

【0017】また、本発明によれば、超硬合金(母材)
2の表面から5μm以上50μm以下の深さにわたり、
超硬合金内部4における金属元素Mの総含有量:Min
超硬合金内部4におけるZrの含有量:Zrin、超硬合
金内部4におけるWの含有量:Win、第1の表面領域5
における金属元素Mの総含有量:M1suf、第1の表面領
域5におけるZrの含有量:Zr1suf、第1の表面領域
5におけるWの含有量:W1suf、第2の表面領域6にお
ける金属元素Mの総含有量:M2suf、第2の表面領域6
におけるZrの含有量:Zr2suf、第2の表面領域6に
おけるWの含有量:W2sufとし、pin=Min/Win、p
1suf=M1suf/W1suf、p2suf=M2suf/W2suf、qin
=Zrin/Win、q1suf=Zr1suf/W1suf、q2suf
Zr2suf/W2sufとしたとき、0.1≦p1suf/pin
0.9、0.9≦q1suf/qin≦1.1かつ、1.1≦
2suf/pin≦1.5、0.9≦q2suf/qin≦1.1
を満たす第1の表面領域5およびこの第1の表面領域5
よりも内側に位置する第2の表面領域6とを具備するこ
とが重要である。
Further, according to the present invention, a cemented carbide (base material)
From the surface of 2 to a depth of 5 μm or more and 50 μm or less,
The total content of the metal element M in the cemented carbide internal 4: M in,
The content of Zr in the cemented carbide Internal 4: Zr in, the content of W in the cemented carbide Internal 4: W in, the first surface region 5
Content of metal element M in M 1suf , content of Zr in first surface region 5: Zr 1suf , content of W in first surface region 5: W 1suf , metal in second surface region 6 Total content of element M: M 2suf , second surface area 6
The content of Zr in: Zr 2Suf, the content of W in the second surface region 6: the W 2suf, p in = M in / W in, p
1suf = M 1suf / W 1suf , p 2suf = M 2suf / W 2suf , q in
= Zr in / W in , q 1suf = Zr 1suf / W 1suf , q 2suf =
When Zr 2suf / W 2suf , 0.1 ≦ p 1suf / p in
0.9, 0.9 ≦ q 1suf / q in ≦ 1.1 and 1.1 ≦
p 2suf / p in ≤1.5, 0.9 ≤q 2suf / q in ≤1.1
And a first surface area 5 that satisfies the
It is important to have the second surface region 6 located further inside.

【0018】これによって、母材2表面の靭性を向上さ
せて硬質被覆層3の耐欠損性を向上させることができる
とともに、硬質被覆層3を被着形成した合金1の耐酸化
性を高めることができ、炭素鋼・合金鋼などの鋼や鋳鉄
のみならず、ステンレス鋼等難削材の切削等のように高
温環境下で作動させるような場合においても優れた耐欠
損性と耐摩耗性を有し、特に切削加工用として最適な表
面被覆超硬合金1が得られる。
As a result, the toughness of the surface of the base material 2 can be improved and the fracture resistance of the hard coating layer 3 can be improved, and at the same time, the oxidation resistance of the alloy 1 on which the hard coating layer 3 is formed is increased. It has excellent fracture resistance and wear resistance even when operating in a high temperature environment such as cutting difficult-to-cut materials such as stainless steel as well as steel such as carbon steel and alloy steel and cast iron. It is possible to obtain the surface-coated cemented carbide 1, which is most suitable for cutting work.

【0019】ここで、第1の表面領域5において、p
1suf/pinが0.1よりも小さいと、母材2表面での耐
酸化性が低下して、特に高温域で連続的に使用すると母
材2の表面が変質して硬質被覆層3が剥離したり、塑性
変形を引き起こす。逆に、p1s uf/pinが0.9よりも
大きいと、母材2表面の靭性が低下して硬質被覆層3の
耐衝撃性が低下し、チッピングが発生しやすくなる。ま
た、q1suf/qinが0.9よりも小さいと、母材表面で
の耐酸化性が低下し、特に高温域で連続的に使用すると
母材2の表面が変質して硬質被覆層3が剥離したりチッ
ピングが発生しやすくなるとともに、特に刃先(切刃)
における耐塑性変形性が悪化して耐磨耗性の低下を招
く。逆に、q1suf/qinが1.1よりも大きいと合金表
面の耐塑性変形性および耐摩耗性が低下する。
Here, in the first surface region 5, p
When 1suf / p in is less than 0.1, decreases the oxidation resistance at the base material 2 surface, the hard coating layer 3 in particular altered continuously used to the surface of the base material 2 in a high temperature region is It causes peeling and plastic deformation. Conversely, when p 1s uf / p in is greater than 0.9, it decreases the toughness of the base material 2 surface reduces the impact resistance of the hard coating layer 3, chipping is likely to occur. Further, if q 1suf / q in is less than 0.9, the oxidation resistance on the surface of the base material is lowered, and particularly when continuously used in a high temperature range, the surface of the base material 2 is deteriorated and the hard coating layer 3 Is likely to peel off and chip, and especially the blade edge (cutting edge)
In this case, the plastic deformation resistance is deteriorated and the wear resistance is lowered. On the other hand, when q 1suf / q in is larger than 1.1, the plastic deformation resistance and wear resistance of the alloy surface decrease.

【0020】また、第2の表面領域6においてp2suf
inが1.1よりも小さいと、第2の表面領域6におい
て硬度値の著しい低下部分が形成され、耐摩耗性と耐塑
性変形性が低下する。逆に、p2suf/pinが1.5より
も大きいと、第2の表面領域6において靭性値の著しい
低下部分が形成され、耐欠損性が低下する。また、q
2suf/qinが0.9よりも小さいと、第2の表面領域6
において硬度値の著しい低下部分が形成され、耐摩耗性
と耐塑性変形性が低下する。逆に、q2suf/qinが1.
1よりも大きいと、第2の表面領域6において靭性値の
著しい低下部分が形成され、耐欠損性が低下する。
In the second surface region 6, p2 suf/
pinIs less than 1.1, the second surface region 6 is odorous
Area where the hardness value is significantly reduced, resulting in wear resistance and plastic resistance.
Deformability decreases. Conversely, p2 suf/ PinIs from 1.5
Is also large, the toughness value is remarkable in the second surface region 6.
A reduced portion is formed and the fracture resistance is reduced. Also, q
2 suf/ QinIs less than 0.9, the second surface area 6
Wear resistance
And plastic deformation resistance decreases. Conversely, q2 suf/ QinIs 1.
If it is larger than 1, the toughness value of the second surface region 6
A significantly reduced portion is formed and the fracture resistance is reduced.

【0021】なお、本発明における金属元素Mの分布状
態は、合金の各位置における成分比をエネルギー分散型
X線分析(EDS)で測定し、図1(b)のようにマッ
ピングすることによって求めることができる。
The distribution state of the metal element M in the present invention is obtained by measuring the component ratio at each position of the alloy by energy dispersive X-ray analysis (EDS) and mapping it as shown in FIG. 1 (b). be able to.

【0022】また、本発明における第1の表面領域5と
第2の表面領域6との総和は5〜200μmが望まし
く、特に5〜50μmが望ましい。第1の表面領域5と
第2の表面領域6との総和が5μmより薄いと靭性向上
の効果が小さく、200μm以上では表面硬度が低下し
て耐塑性変形性が低下する。
Further, the total sum of the first surface region 5 and the second surface region 6 in the present invention is preferably 5 to 200 μm, and particularly preferably 5 to 50 μm. If the sum of the first surface region 5 and the second surface region 6 is less than 5 μm, the effect of improving the toughness is small, and if it is 200 μm or more, the surface hardness decreases and the plastic deformation resistance decreases.

【0023】ここで、第1の表面領域の厚みd1は、耐
酸化性と耐欠損性を両立させるために、1〜50μmで
あることが望ましく、特に1〜10μmであることが望
ましい。また、第2の表面領域6の厚みd2は、耐摩耗
性と耐塑性変形性および耐欠損性を両立させるために、
10〜200μmが望ましく、特に10〜40μmであ
ることが望ましい。さらに、d1/d2の比は耐酸化性お
よび耐欠損性を両立させるために、0.1〜0.6であ
ることが望ましい。
Here, the thickness d 1 of the first surface region is preferably from 1 to 50 μm, and particularly preferably from 1 to 10 μm in order to achieve both oxidation resistance and chipping resistance. Further, the thickness d 2 of the second surface region 6 is set in order to achieve both wear resistance, plastic deformation resistance and fracture resistance.
The thickness is preferably 10 to 200 μm, particularly preferably 10 to 40 μm. Further, the ratio of d 1 / d 2 is preferably 0.1 to 0.6 in order to achieve both oxidation resistance and chipping resistance.

【0024】また、超硬合金(母材)2の組成は、耐欠
損性、耐摩耗性、耐酸化性を高めるために、0.1≦Z
r/(Ti+Zr+Hf)≦0.5、特に、0.1≦Z
r/(Ti+Zr+Hf)≦0.4、かつ、0.6≦N
b/(V+Nb+Ta)≦1.0、特に0.7≦Nb/
(V+Nb+Ta)≦1.0と所定の比率でZrととも
にNbを含有することが望ましく、さらには、超硬合金
全体において、0.05≦Zr/(Zr+Nb)≦0.
8、特に0.1≦Zr/(Zr+Nb)≦0.6を満足
することが望ましい。
Further, the composition of the cemented carbide (base material) 2 has a composition of 0.1 ≦ Z in order to improve fracture resistance, wear resistance and oxidation resistance.
r / (Ti + Zr + Hf) ≦ 0.5, especially 0.1 ≦ Z
r / (Ti + Zr + Hf) ≦ 0.4 and 0.6 ≦ N
b / (V + Nb + Ta) ≦ 1.0, especially 0.7 ≦ Nb /
It is desirable to contain Nb together with Zr in a predetermined ratio of (V + Nb + Ta) ≦ 1.0. Further, in the whole cemented carbide, 0.05 ≦ Zr / (Zr + Nb) ≦ 0.
It is desirable to satisfy 8 and in particular 0.1 ≦ Zr / (Zr + Nb) ≦ 0.6.

【0025】さらにまた、超硬合金(母材)2の具体的
な組成は、耐酸化性、耐摩耗性と耐塑性変形性および耐
欠損性を両立するために、ZrC(炭化ジルコニウム)
を0.1〜1.5重量%、NbC(炭化ニオブ)を0.
5〜3.5重量%、TiC(炭化チタン)を1〜2.5
重量%、TaC(炭化タンタル)を0〜1重量%、Hf
C(炭化ハフニウム)を0〜1重量%、Cr32(炭化
クロム)を0〜1重量%、VC(炭化バナジウム)を0
〜1重量%、Co(コバルト)を5〜10重量%の比率
で含有し、残部がWC(炭化タングステン)および不可
避不純物からなることが望ましい。
Furthermore, the specific composition of the cemented carbide (base material) 2 is ZrC (zirconium carbide) in order to achieve both oxidation resistance, wear resistance, plastic deformation resistance and fracture resistance.
0.1 to 1.5% by weight, and NbC (niobium carbide) to 0.
5 to 3.5 wt%, TiC (titanium carbide) 1 to 2.5
%, TaC (tantalum carbide) 0 to 1% by weight, Hf
C (hafnium carbide) 0 to 1% by weight, Cr 3 C 2 (chromium carbide) 0 to 1% by weight, VC (vanadium carbide) 0
It is desirable that the content of Co is 1 to 1% by weight, Co (cobalt) is 5 to 10% by weight, and the balance is WC (tungsten carbide) and inevitable impurities.

【0026】なお、上記成分のうち、コストの低減のた
めには高価なTaCの含有量を0.5重量%以下、特に
0.1重量%以下、さらには実質的に含有させないこと
が望ましい。
Of the above components, in order to reduce the cost, it is desirable that the content of expensive TaC is 0.5% by weight or less, particularly 0.1% by weight or less, and further it is not substantially contained.

【0027】さらにまた、上記組成範囲の中でも、耐摩
耗性を重視して旋削用切削工具として用いる上では、T
iCを1.5〜2.0重量%、NbCを2.0〜3.5
重量%、ZrCを0.1〜0.8重量%、Coを5.0
〜7.5重量%含有し、残部がWCからなることが望ま
しく、また、耐欠損性を重視してフライス用切削工具と
して用いる上では、TiCを1.5〜2.0重量%、N
bCを0.5〜2.0重量%、ZrCを0.8〜1.5
重量%、Coを7.5〜10.0重量%含有し、残部が
WCからなることが望ましい。
Further, in the above composition range, in order to attach importance to wear resistance and to use as a cutting tool for turning, T
1.5 to 2.0% by weight of iC and 2.0 to 3.5 of NbC
% By weight, 0.1 to 0.8% by weight of ZrC, 5.0 of Co
It is desirable that the content of WC be up to 7.5% by weight and the balance be WC, and that TiC is 1.5 to 2.0% by weight and N in order to use it as a cutting tool for milling with an emphasis on fracture resistance.
bC 0.5 to 2.0% by weight, ZrC 0.8 to 1.5
It is preferable that the content of Co is 7.5 to 10.0% by weight and the balance is WC.

【0028】また、本発明によれば、ステンレス等の難
削材を切削する際などのように、高温域で安定に作動さ
せるためには、表面被覆超硬合金1の耐酸化性を0.0
1mg/mm2以下とすることが重要である。すなわ
ち、表面被覆超硬合金1の耐酸化性が0.01mg/m
2よりも大きくなると、硬質被覆層中に存在する欠陥
等を介して超硬合金(母材)2表面が加工時に酸化して
しまい、耐摩耗性および耐欠損性が低下する。
Further, according to the present invention, in order to operate stably in a high temperature range such as when cutting a difficult-to-cut material such as stainless steel, the surface-coated cemented carbide 1 has an oxidation resistance of 0. 0
It is important to set it to 1 mg / mm 2 or less. That is, the oxidation resistance of the surface-coated cemented carbide 1 is 0.01 mg / m
If it is larger than m 2, the surface of the cemented carbide (base material) 2 is oxidized during processing due to defects existing in the hard coating layer, and wear resistance and fracture resistance are deteriorated.

【0029】なお、本発明における耐酸化性とは、硬質
被覆層を被着形成した表面被覆超硬合金を大気中の80
0℃×30分の条件で保持する酸化試験を行った場合の
試験前後における酸化増量割合を示す。
The term "oxidation resistance" as used in the present invention means that a surface-coated cemented carbide having a hard coating layer formed thereon has a hardness of 80
When the oxidation test is carried out under the condition of 0 ° C. × 30 minutes, the rate of increase in oxidation before and after the test is shown.

【0030】また、超硬合金(母材)2の表面に被着形
成される硬質被覆層としては、周期律表第4a、5a、
6a族金属またはAlの炭化物、窒化物、酸化物、炭窒
化物、炭酸化物、窒酸化物、炭酸窒化物およびダイヤモ
ンドの群から選ばれる少なくとも1種、特にTiC、T
iN、TiCN、Al23、TiAlNの単層または複
数層からなり、図1では、母材2側から順に、TiC
層、Al23層、TiN層と構成されている。
The hard coating layer formed on the surface of the cemented carbide (base material) 2 includes the periodic table 4a, 5a,
At least one selected from the group consisting of 6a group metal or Al carbides, nitrides, oxides, carbonitrides, carbonates, oxynitrides, carbonitrides and diamonds, particularly TiC and T.
It is composed of a single layer or a plurality of layers of iN, TiCN, Al 2 O 3 and TiAlN, and in FIG.
Layer, an Al 2 O 3 layer, and a TiN layer.

【0031】(製造方法)上述した表面被覆超硬合金を
製造するには、まず、例えば平均粒径0.5〜10μm
の炭化タングステン粉末を80〜90重量%、平均粒径
0.5〜5μmのZrの炭化物、窒化物および/または
炭窒化物粉末またはその固溶体粉末を総量で0.1〜1
0重量%、平均粒径0.5〜5μmのNbの炭化物、窒
化物および/または炭窒化物粉末またはその固溶体粉末
を総量で0.1〜10重量%、平均粒径0.5〜5μm
のTi、V、Cr、Mo、HfおよびTaの群から選ば
れる少なくとも1種の炭化物、窒化物および/または炭
窒化物粉末もしくはこれら金属のうちの2種以上の固溶
体粉末を総量で0.1〜10重量%、平均粒径0.5〜
10μmの鉄族金属を5〜15重量%、さらには所望に
より金属タングステン(W)粉末あるいは炭素(C)粉
末を混合する。
(Manufacturing Method) In order to manufacture the above-mentioned surface-coated cemented carbide, first, for example, the average particle size is 0.5 to 10 μm.
Tungsten carbide powder of 80 to 90% by weight, and Zr carbide, nitride and / or carbonitride powder of Zr having an average particle diameter of 0.5 to 5 μm or a solid solution powder thereof in a total amount of 0.1 to 1
0% by weight, Nb carbide, nitride and / or carbonitride powder of Nb having an average particle size of 0.5 to 5 μm or a solid solution powder thereof in a total amount of 0.1 to 10% by weight, an average particle size of 0.5 to 5 μm
Of at least one carbide, nitride and / or carbonitride powder selected from the group consisting of Ti, V, Cr, Mo, Hf and Ta, or a solid solution powder of two or more of these metals in a total amount of 0.1. -10% by weight, average particle size 0.5-
5 to 15% by weight of iron group metal having a thickness of 10 μm is mixed with metal tungsten (W) powder or carbon (C) powder, if desired.

【0032】次に、上記混合粉末を用いて、プレス成
形、鋳込成形、押出成形、冷間静水圧プレス成形等の公
知の成形方法によって所定形状に成形した後、0.1〜
15Paの真空中、1000℃以上における昇温速度を
0.3〜4℃/分、特に0.5〜2℃/分で昇温し、真
空度10-3〜0.05Paの真空中、1350〜150
0℃で0.2〜5時間、特に0.5〜2時間焼成するこ
とによって超硬合金(母材)を作製する。
Next, the powder mixture is molded into a predetermined shape by a known molding method such as press molding, cast molding, extrusion molding, cold isostatic pressing, etc.
In a vacuum of 15 Pa, the temperature rising rate at 1000 ° C. or higher is raised at 0.3 to 4 ° C./minute, particularly 0.5 to 2 ° C./minute, and the vacuum degree is 10 −3 to 0.05 Pa in a vacuum of 1350. ~ 150
A cemented carbide (base material) is produced by firing at 0 ° C. for 0.2 to 5 hours, particularly 0.5 to 2 hours.

【0033】上記焼成に関しては、表面領域の組成およ
び厚みを制御するために、特に昇温速度および焼成中の
雰囲気を上記範囲に制御することが重要である。
Regarding the above-mentioned firing, in order to control the composition and thickness of the surface region, it is important to control the temperature rising rate and the atmosphere during firing within the above range.

【0034】次に、上記超硬合金(母材)表面にCVD
法やPVD法等の公知の薄膜形成法で硬質被覆層を0.
1〜20μm被着形成することによって本発明の表面被
覆超硬合金を得ることができる。
Next, CVD is performed on the surface of the cemented carbide (base material).
Of the hard coating layer by a known thin film forming method such as the PVD method or the PVD method.
The surface-coated cemented carbide of the present invention can be obtained by depositing 1 to 20 μm.

【0035】また、上述した本発明の表面被覆超硬合金
は、高硬度、高靭性、高強度の優れた機械的特性および
高い耐酸化性を有することから、金型、耐摩耗部材、高
温構造材料等に適応可能であり、中でも炭素鋼、合金鋼
などの鋼や鋳鉄の加工用切削工具、さらにはステンレス
鋼等の難削材加工用の切削工具として好適に使用可能で
ある。
The surface-coated cemented carbide of the present invention described above has excellent mechanical properties such as high hardness, high toughness, high strength, and high oxidation resistance, so that it can be used in molds, wear resistant members, and high temperature structures. It is applicable to materials and the like, and can be suitably used as a cutting tool for machining steel such as carbon steel and alloy steel and cast iron, and for machining difficult-to-cut materials such as stainless steel.

【0036】[0036]

【実施例】(実施例1)平均粒径1.5μmの炭化タン
グステン(WC)粉末、平均粒径1.2μmの金属コバ
ルト(Co)粉末および平均粒径2.0μmの表1に示
す金属元素M化合物粉末を表1に示す比率で添加、混合
して、プレス成形で切削工具形状(CNMG12040
8)に成形した後、脱バインダ処理を施し、さらに、1
000℃以上を3℃/分の速度で昇温して、0.01P
aの真空中、1500℃で1時間焼成して超硬合金を作
製した。
EXAMPLES Example 1 Tungsten carbide (WC) powder having an average particle size of 1.5 μm, metallic cobalt (Co) powder having an average particle size of 1.2 μm, and metallic elements shown in Table 1 having an average particle size of 2.0 μm. The M compound powder was added and mixed at the ratio shown in Table 1, and the shape of the cutting tool was obtained by press molding (CNMG12040).
After forming into 8), it is subjected to binder removal treatment, and further 1
Increase the temperature above 000 ° C at a rate of 3 ° C / min to 0.01P
In a vacuum of a, it was fired at 1500 ° C. for 1 hour to produce a cemented carbide.

【0037】得られた超硬合金の表面にCVD法でTi
Nを1μm、TiCNを7μm、Al23を3μm、T
iNを1μmの順に硬質被覆層を成膜することによって
表面被覆超硬合金を作製した。
Ti was formed on the surface of the obtained cemented carbide by the CVD method.
N 1 μm, TiCN 7 μm, Al 2 O 3 3 μm, T
A surface-coated cemented carbide was produced by depositing a hard coating layer of iN in the order of 1 μm.

【0038】得られた表面被覆超硬合金に対して、波長
分散型X線マイクロアナライザー(EPMA)で表面か
ら内部に向かって、200μm×200μmの任意領域
における金属元素濃度分布を測定した。なお、EPMA
測定に関しては、表面領域を斜めに研磨して、表面から
の深さ5μm毎に5点づつ測定し、その平均値を算出し
た。また、その金属元素濃度分布から図2に示すような
濃度分布のマッピングをし、第1の表面領域と第2の表
面領域の厚みを算出した。その結果を図1および表1に
示す。
With respect to the obtained surface-coated cemented carbide, a metal element concentration distribution in an arbitrary region of 200 μm × 200 μm was measured from the surface to the inside by a wavelength dispersive X-ray microanalyzer (EPMA). In addition, EPMA
Regarding the measurement, the surface region was obliquely polished, and 5 points were measured at every 5 μm depth from the surface, and the average value was calculated. Further, the concentration distribution as shown in FIG. 2 was mapped from the metal element concentration distribution, and the thicknesses of the first surface region and the second surface region were calculated. The results are shown in FIG. 1 and Table 1.

【0039】また、800℃の大気圧雰囲気で30分間
酸化処理し、酸化前後における重量増加量を測定して耐
酸化性とした。その結果を表1に示す。
Further, oxidation treatment was carried out for 30 minutes in an atmospheric pressure atmosphere of 800 ° C., and the weight increase amount before and after the oxidation was measured to obtain the oxidation resistance. The results are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】そして、この切削工具を用いて下記の条件
で合金鋼の切削を25分間行い、切削工具のフランク摩
耗量および先端摩耗量を測定した。なお、切削試験中に
フランク摩耗量あるいは先端摩耗量が0.2mmに達し
た場合にはその切削時間を測定した。さらに、溝付き鋼
材で断続試験を行い、欠損したときの衝撃回数を比較し
た。その結果を表2に示す。
Using this cutting tool, alloy steel was cut for 25 minutes under the following conditions, and the flank wear amount and tip wear amount of the cutting tool were measured. When the flank wear amount or the tip wear amount reached 0.2 mm during the cutting test, the cutting time was measured. Furthermore, an intermittent test was performed on a grooved steel material to compare the number of impacts when chipped. The results are shown in Table 2.

【0042】(摩耗試験) 被削材 :合金鋼(SCM435) 工具形状:CNMG120408 切削速度:250m/分 送り速度:0.3mm/rev 切り込み:2mm その他 :水溶性切削液使用 (断続試験) 被削材 :合金鋼(SCM440) 工具形状:CNMG120408 切削速度:200m/分 送り速度:0.4mm/rev 切り込み:1.5mm その他 :水溶性切削液使用(Abrasion test) Work Material: Alloy Steel (SCM435) Tool shape: CNMG120408 Cutting speed: 250m / min Feed rate: 0.3 mm / rev Notch: 2 mm Others: Using water-soluble cutting fluid (Intermittent test) Work Material: Alloy Steel (SCM440) Tool shape: CNMG120408 Cutting speed: 200m / min Feed rate: 0.4 mm / rev Notch: 1.5 mm Others: Using water-soluble cutting fluid

【0043】[0043]

【表2】 [Table 2]

【0044】表1および表2の結果より、Nbを含有し
ない試料No.1では、第1の表面領域におけるq1suf
/qin(Zrの含有量)が0.9より小さくなり、耐酸
化性が低下して切削性能が低下した。なお、酸化試験後
の試料断面をSEM観察したところ、母材表面付近が酸
化で変質していることを確認した。また、Zrを含有し
ない試料No.2では、第1の表面領域におけるp1suf
/pin(金属元素Mの総含有量)が0.9より大きく、
1suf/qin(Zrの含有量)が0.9より小さくなる
とともに、第2の表面領域におけるp2suf/pin(金属
元素Mの総含有量)が1.1より小さく、かつq2suf
in(Zrの含有量)が0.9より小さくなり、耐欠損
性および耐酸化性が悪いものであった。
From the results shown in Tables 1 and 2, sample No. containing no Nb. 1, q 1suf in the first surface region
/ Q in (content of Zr) was smaller than 0.9, oxidation resistance was lowered, and cutting performance was lowered. When the cross section of the sample after the oxidation test was observed by SEM, it was confirmed that the vicinity of the surface of the base material was deteriorated by oxidation. Moreover, the sample No. containing no Zr. 2, p 1suf in the first surface region
/ P in (the total content of the metal element M) is greater than 0.9,
q 1suf / q in (content of Zr) is smaller than 0.9, p 2suf / p in (total content of metal element M) in the second surface region is smaller than 1.1, and q 2suf /
The q in (Zr content) was less than 0.9, and the chipping resistance and oxidation resistance were poor.

【0045】これに対して、本発明に従ってZrとNb
を共に添加するとともに、0.1≦p1suf/pin≦0.
9、0.9≦q1suf/qin≦1.1、かつ、1.1≦p
2suf/pin≦1.5、0.9≦q2suf/qin≦1.1を
満たす第1の表面領域およびこの第1の表面領域よりも
内側に位置する第2の表面領域とを具備する試料No.
3〜8では、いずれも耐酸化性に優れるとともに、硬
度、靭性とも高く、優れた切削性能を有するものであっ
た。 (実施例2)実施例1の試料No.5および11に対し
て、フライス用工具形状(SDK42)に成形した後、
1400℃で1時間焼成して、その表面にPVD法で膜
厚2μmのTiN膜を成膜する以外は実施例1と全く同
様にして表面被覆超硬合金からなる切削工具を作製し
た。
In contrast, according to the present invention, Zr and Nb
Is added together with 0.1 ≦ p 1suf / p in ≦ 0.
9, 0.9 ≦ q 1suf / q in ≦ 1.1, and 1.1 ≦ p
And a 2suf / p in ≦ 1.5,0.9 ≦ q 2suf / q in the first surface region satisfying ≦ 1.1 and a second surface region located inside than the first surface region Sample No.
In Nos. 3 to 8, all had excellent oxidation resistance, high hardness and toughness, and excellent cutting performance. (Example 2) Sample No. of Example 1 After forming into a milling tool shape (SDK42) for 5 and 11,
A cutting tool made of a surface-coated cemented carbide was prepared in exactly the same manner as in Example 1 except that the TiN film having a film thickness of 2 μm was formed on the surface by firing at 1400 ° C. for 1 hour.

【0046】そして、得られた切削工具を用いて下記の
条件 被削材 :ステンレス鋼(SUS304) 工具形状:SDK42 切削速度:200m/分 送り速度:0.2mm/刃 切り込み:2mm その他 :水溶性切削液使用 でステンレス鋼の切削を15分間行い、実施例1と同様
に切削性能を評価した結果、試料No.2についてはフ
ランク摩耗量が0.21mmであるのに対して、試料N
o.7ではフランク摩耗量が0.11mmであり、優れ
た耐摩耗性および耐欠損性を有するものであった。
Then, using the obtained cutting tool, the following conditions Work material: Stainless steel (SUS304) Tool shape: SDK42 Cutting speed: 200 m / min Feed speed: 0.2 mm / Flute depth: 2 mm Others: Water-soluble The stainless steel was cut for 15 minutes using a cutting fluid, and the cutting performance was evaluated in the same manner as in Example 1. As a result, Sample No. For No. 2, the flank wear amount is 0.21 mm, while for sample N
o. In No. 7, the flank wear amount was 0.11 mm, which was excellent in wear resistance and chipping resistance.

【0047】[0047]

【発明の効果】以上詳述したとおり、本発明の表面被覆
超硬合金によれば、超硬合金表面に、Zrの含有量は内
部のそれに対して変化量が少なく、かつ金属M(MはZ
r以外の周期律表第4a、5a、6a族金属の群から選
ばれる少なくとも1種以上)の含有量が内部のそれに対
して少ない第1の表面領域と、該第1の表面領域の内部
に、Zrの含有量は内部のそれに対して変化量が少な
く、かつ金属M(MはZr以外の周期律表第4a、5
a、6a族金属の群から選ばれる少なくとも1種以上)
の含有量が内部のそれに対して多い第2の表面領域とを
配設することにより、母材表面の靭性を向上させて硬質
被覆層の耐欠損性を向上させることができるとともに、
合金および硬質被覆層を被着形成した合金の耐酸化性を
高めることができ、高温環境下で作動させるような場合
においても優れた耐欠損性と耐摩耗性を有する表面被覆
超硬合金が得られる。
As described above in detail, according to the surface-coated cemented carbide of the present invention, the content of Zr on the surface of the cemented carbide has a small change relative to that inside, and the metal M (M is Z
a first surface region in which the content of at least one selected from the group of metals of groups 4a, 5a, and 6a of the periodic table other than r is smaller than that in the inside, and inside the first surface region , Zr content is less changed with respect to that of the inside, and metal M (M is a periodic table other than Zr 4a, 5
(At least one selected from the group of metals a and 6a)
By disposing the second surface region having a larger content of that with respect to that of the inside, it is possible to improve the toughness of the base material surface and improve the fracture resistance of the hard coating layer,
It is possible to obtain a surface-coated cemented carbide that can improve the oxidation resistance of the alloy and the alloy on which the hard coating layer is formed and that has excellent fracture resistance and wear resistance even when operating in a high temperature environment. To be

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の表面被覆超硬合金の(a)概略断面
図、(b)超硬合金(母材)中の各金属元素分布の一例
である。
FIG. 1A is a schematic sectional view of a surface-coated cemented carbide of the present invention, and FIG. 1B is an example of each metal element distribution in the cemented carbide (base material).

【符号の説明】[Explanation of symbols]

1 表面被覆超硬合金 2 超硬合金(母材) 3 硬質被覆層 4 内部 5 第1の表面領域 6 第2の表面領域 1 Surface coated cemented carbide 2 Cemented carbide (base material) 3 Hard coating layer 4 inside 5 First surface area 6 Second surface area

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C046 FF03 FF11 FF12 FF13 FF16 FF32 FF38 FF40 FF43 FF44 FF51    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3C046 FF03 FF11 FF12 FF13 FF16                       FF32 FF38 FF40 FF43 FF44                       FF51

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 WCと、周期律表第4a、5a、6a族
金属の群から選ばれる少なくとも1種以上の金属元素M
の炭化物、窒化物および/または炭窒化物のうちの1種
以上と、鉄属金属の結合材とからなる超硬合金の表面
に、硬質被覆層を被着形成してなる表面被覆超硬合金に
おいて、前記金属元素Mは、ZrおよびNbを共に含有
するとともに、前記超硬合金の表面から5μm以上20
0μm以下の深さにわたり、以下に示す第1の表面領域
と、該第1の表面領域よりも内側に位置する第2の表面
領域とを具備することを特徴とする表面被覆超硬合金。 前記超硬合金内部における金属元素Mの総含有量:Min 前記超硬合金内部におけるZrの含有量:Zrin 前記超硬合金内部におけるWの含有量:Win 前記第1の表面領域における金属元素Mの総含有量:M
1suf 前記第1の表面領域におけるZrの含有量:Zr1suf 前記第1の表面領域におけるWの含有量:W1suf 前記第2の表面領域における金属元素Mの総含有量:M
2suf 前記第2の表面領域におけるZrの含有量:Zr2suf 前記第2の表面領域におけるWの含有量:W2sufin=Min/Win1suf=M1suf/W1suf2suf=M2suf/W2sufin=Zrin/Win1suf=Zr1suf/W1suf2suf=Zr2suf/W2suf としたとき、 0.1≦p1suf/pin≦0.9、0.9≦q1suf/qin
≦1.1 かつ、 1.1≦p2suf/pin≦1.5、0.9≦q2suf/qin
≦1.1
1. WC and at least one metal element M selected from the group consisting of metals of groups 4a, 5a and 6a of the periodic table.
Surface-coated cemented carbide obtained by depositing a hard coating layer on the surface of a cemented carbide composed of at least one of the above-mentioned carbides, nitrides and / or carbonitrides and a binder of an iron group metal. In the above, the metal element M contains both Zr and Nb, and is 5 μm or more and 20 μm or more from the surface of the cemented carbide.
A surface-coated cemented carbide, comprising a first surface region shown below and a second surface region located inside the first surface region over a depth of 0 μm or less. Total content of the metal element M inside the cemented carbide: M in Content of Zr inside the cemented carbide: Zr in Content of W inside the cemented carbide: W in Metal in the first surface region Total content of element M: M
1suf Content of Zr in the first surface region: Zr 1suf Content of W in the first surface region: W 1suf Total content of metal element M in the second surface region: M
2Suf content of Zr in said second surface region: Zr 2Suf content of W in the second surface region: W 2suf p in = M in / W in p 1suf = M 1suf / W 1suf p 2suf = M 2suf / W 2suf q in = Zr in / W in q 1suf = Zr 1suf / W 1suf q 2suf = Zr 2suf / W 2suf , 0.1 ≦ p 1suf / p in ≦ 0.9, 0.9 ≦ q 1suf / q in
≦ 1.1 and 1.1 ≦ p 2suf / p in ≦ 1.5, 0.9 ≦ q 2suf / q in
≦ 1.1
【請求項2】 前記表面被覆超硬合金の耐酸化性が0.
01mg/mm2以下であることを特徴とする請求項1
記載の表面被覆超硬合金。
2. The oxidation resistance of the surface-coated cemented carbide is 0.
The amount is 01 mg / mm 2 or less.
Surface-coated cemented carbide as described.
【請求項3】 前記超硬合金全体において、前記金属元
素Mが、0.1≦Zr/(Ti+Zr+Hf)≦0.
5、かつ、0.6≦Nb/(V+Nb+Ta)≦1.0
を満足することを特徴とする請求項1または2記載の表
面被覆超硬合金。
3. In the entire cemented carbide, the metal element M is 0.1 ≦ Zr / (Ti + Zr + Hf) ≦ 0.
5 and 0.6 ≦ Nb / (V + Nb + Ta) ≦ 1.0
The surface coated cemented carbide according to claim 1 or 2, characterized in that
【請求項4】 前記超硬合金全体において、0.05≦
Zr/(Zr+Nb)≦0.8を満足することを特徴と
する請求項1乃至3のいずれかに記載の表面被覆超硬合
金。
4. In the whole cemented carbide, 0.05 ≦
The surface-coated cemented carbide according to claim 1, wherein Zr / (Zr + Nb) ≦ 0.8 is satisfied.
【請求項5】 前記超硬合金が、ZrCを0.1〜1.
5重量%、NbCを0.5〜3.5重量%、TiCを
1.0〜2.5重量%、TaCを0〜1.0重量%、H
fCを0〜1.0重量%、Cr32を0〜1.0重量
%、VCを0〜1.0重量%、Coを5〜10重量%含
有し、残部がWCおよび不可避不純物からなることを特
徴とする請求項1乃至4のいずれかに記載の表面被覆超
硬合金。
5. The cemented carbide contains ZrC in an amount of 0.1 to 1.
5% by weight, NbC 0.5 to 3.5% by weight, TiC 1.0 to 2.5% by weight, TaC 0 to 1.0% by weight, H
fC is 0 to 1.0% by weight, Cr 3 C 2 is 0 to 1.0% by weight, VC is 0 to 1.0% by weight, Co is 5 to 10% by weight, and the balance is WC and inevitable impurities. The surface-coated cemented carbide according to any one of claims 1 to 4, wherein
【請求項6】 前記第1の表面領域の厚みd1が1〜5
0μm、前記第2の表面領域の厚みd2が10〜200
μmであることを特徴とする請求項1乃至5のいずれか
に記載の表面被覆超硬合金。
6. The thickness d 1 of the first surface region is 1 to 5
0 μm, the thickness d 2 of the second surface region is 10 to 200
The surface-coated cemented carbide according to any one of claims 1 to 5, which has a thickness of µm.
【請求項7】 前記硬質被覆層が、周期律表第4a、5
a、6a族金属またはAlの炭化物、窒化物、酸化物、
炭窒化物、炭酸化物、窒酸化物、炭酸窒化物およびダイ
ヤモンドの群から選ばれる少なくとも1種の単層または
複数層からなることを特徴とする請求項1乃至6のいず
れかに記載の表面被覆超硬合金。
7. The hard coating layer comprises periodic tables 4a and 5
a, 6a group metal or Al carbide, nitride, oxide,
The surface coating according to any one of claims 1 to 6, wherein the surface coating is composed of a single layer or a plurality of layers selected from the group consisting of carbonitrides, carbon oxides, nitrogen oxides, carbonitrides and diamonds. Cemented carbide.
JP2001322148A 2001-09-26 2001-10-19 Surface coated cemented carbide Expired - Lifetime JP4005787B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001322148A JP4005787B2 (en) 2001-10-19 2001-10-19 Surface coated cemented carbide
DE10244955.4A DE10244955C5 (en) 2001-09-26 2002-09-26 Cemented carbide, use of a cemented carbide and method for making a cemented carbide
US10/256,275 US6797369B2 (en) 2001-09-26 2002-09-26 Cemented carbide and cutting tool
US10/916,671 US7018726B2 (en) 2001-09-26 2004-08-12 Cemented carbide and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001322148A JP4005787B2 (en) 2001-10-19 2001-10-19 Surface coated cemented carbide

Publications (2)

Publication Number Publication Date
JP2003129165A true JP2003129165A (en) 2003-05-08
JP4005787B2 JP4005787B2 (en) 2007-11-14

Family

ID=19139242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001322148A Expired - Lifetime JP4005787B2 (en) 2001-09-26 2001-10-19 Surface coated cemented carbide

Country Status (1)

Country Link
JP (1) JP4005787B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513256A (en) * 2003-12-03 2007-05-24 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
JP2012166299A (en) * 2011-02-14 2012-09-06 Kyocera Corp Cutting tool
WO2019189774A1 (en) * 2018-03-29 2019-10-03 京セラ株式会社 Cemented carbide and coated tool using same, and cutting tool
WO2019189775A1 (en) * 2018-03-29 2019-10-03 京セラ株式会社 Cemented carbide, coated tool, and cutting tool

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513256A (en) * 2003-12-03 2007-05-24 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
JP2011202278A (en) * 2003-12-03 2011-10-13 Kennametal Inc Cemented carbide body containing zirconium and niobium and method of making the same
JP4796969B2 (en) * 2003-12-03 2011-10-19 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
JP2012166299A (en) * 2011-02-14 2012-09-06 Kyocera Corp Cutting tool
WO2019189774A1 (en) * 2018-03-29 2019-10-03 京セラ株式会社 Cemented carbide and coated tool using same, and cutting tool
WO2019189775A1 (en) * 2018-03-29 2019-10-03 京セラ株式会社 Cemented carbide, coated tool, and cutting tool
KR20200121885A (en) * 2018-03-29 2020-10-26 교세라 가부시키가이샤 Carbide and coated tools and cutting tools using them
KR20200121884A (en) * 2018-03-29 2020-10-26 교세라 가부시키가이샤 Carbide, coated tools and cutting tools
CN111918978A (en) * 2018-03-29 2020-11-10 京瓷株式会社 Cemented carbide, coated tool and cutting tool
CN112004954A (en) * 2018-03-29 2020-11-27 京瓷株式会社 Hard alloy, and coated cutting tool and cutting tool using the same
US11421306B2 (en) 2018-03-29 2022-08-23 Kyocera Corporation Cemented carbide, coated tool, and cutting tool
CN111918978B (en) * 2018-03-29 2022-11-25 京瓷株式会社 Cemented carbide, coated cutting tool and cutting tool
US11618936B2 (en) 2018-03-29 2023-04-04 Kyocera Corporation Cemented carbide, coated tool using same, and cutting tool
KR102530858B1 (en) * 2018-03-29 2023-05-10 교세라 가부시키가이샤 Cemented carbide, coated tools and cutting tools
KR102586369B1 (en) * 2018-03-29 2023-10-10 교세라 가부시키가이샤 Cemented carbide alloy and coated tools and cutting tools using it

Also Published As

Publication number Publication date
JP4005787B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
EP1347076B1 (en) PVD-Coated cutting tool insert
US6797369B2 (en) Cemented carbide and cutting tool
JP3402146B2 (en) Surface-coated cemented carbide end mill with a hard coating layer with excellent adhesion
JP6699056B2 (en) Surface coated cutting tool
JP4373074B2 (en) Coated cutting tool insert made of cemented carbide and coating
WO2001018272A1 (en) Coated cemented carbide insert
JP4351521B2 (en) Surface coated cutting tool
JP2003129165A (en) Surface coated hard alloy
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP4069749B2 (en) Cutting tool for roughing
EP1222316B1 (en) Coated cemented carbide insert
JP4077739B2 (en) Surface-coated Ti-based cermet cutting tool and method for manufacturing the same
JP3460571B2 (en) Milling tool with excellent wear resistance
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP2001315006A (en) Coated hard tool
JP4817799B2 (en) Surface covering
KR20210118093A (en) hard film cutting tool
JPH03180464A (en) Surface coated hard member excellent in wear resistance
EP3406761A1 (en) A method for producing a coated cutting tool and a coated cutting tool
JP2645340B2 (en) Manufacturing method of coated cemented carbide tool
JPH08257808A (en) Surface coated cutting tool
JP4126451B2 (en) Cemented carbide
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JPH09241825A (en) High strength coated body
JP2006299422A (en) Production method of surface coated body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

R150 Certificate of patent or registration of utility model

Ref document number: 4005787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6