JPH04116134A - Wc base sintered hard alloy excellent in toughness and sintered hard alloy coated with hard layer - Google Patents

Wc base sintered hard alloy excellent in toughness and sintered hard alloy coated with hard layer

Info

Publication number
JPH04116134A
JPH04116134A JP2235082A JP23508290A JPH04116134A JP H04116134 A JPH04116134 A JP H04116134A JP 2235082 A JP2235082 A JP 2235082A JP 23508290 A JP23508290 A JP 23508290A JP H04116134 A JPH04116134 A JP H04116134A
Authority
JP
Japan
Prior art keywords
phase
hard
tin
cemented carbide
tic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2235082A
Other languages
Japanese (ja)
Other versions
JP3123067B2 (en
Inventor
Hironori Yoshimura
吉村 寛範
Shogo Inada
稲田 正吾
Munenori Nakajima
中島 宗紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP02235082A priority Critical patent/JP3123067B2/en
Publication of JPH04116134A publication Critical patent/JPH04116134A/en
Application granted granted Critical
Publication of JP3123067B2 publication Critical patent/JP3123067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a WC base sintered hard alloy excellent in toughness and chipping resistance, in a WC base sintered hard alloy composed of a hard phase essentially consisting of WC and a bonding phase constituted of Co, by specifying the componental compsn. and structure of the hard phase. CONSTITUTION:In a WC base sintered hard alloy composed of a hard phase essentially consisting of WC and a bonding phase constituted of WC, the componental compsn. of the hard phase lies in the range obtd. by connecting A, B, C and D in a WC-TiC-TiN ternary diagram by straight lines. Furthermore, the structure of the hard phase is composed of the three phases a WC phase having 0.5 to 5.0mum average grain size, a double solid soln. carbon nitride phase of W and Ti having 0.5 to 3.0mum average grain size and a TiN phase having 0.5 to 3.0mum average grain size. Moreover, in the ternary diagram, A, B, C and D are points shown by A (by mol, 85% WC-2% TiC-13% TiN), B (45% WC-35% TiC-20% TiN), C (25% WC-15% TiC-60% TiN) and D (38% WC-2% TiC-60% TiN).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、耐熱亀裂性にすぐれ、かつフライス切削な
どの苛酷な断続切削に用いても欠損を起しにくく、使用
寿命の長い切削工具を製造することのできるWC基超硬
合金よび硬質層被覆超硬合金に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a cutting tool that has excellent heat cracking resistance, is resistant to breakage even when used in severe interrupted cutting such as milling, and has a long service life. The present invention relates to a WC-based cemented carbide and a hard layer-coated cemented carbide that can be manufactured.

〔従来の技術〕[Conventional technology]

一般に、WC基超硬合金して、WC−Co系超硬合金、
WC−(Ti、Ta、W)C−Co系超硬合金などが知
られており、上記WC−Co系超硬合金は鋳鉄切削工具
部材として、また上記WC(Tj、Ta、W)C−Co
系超硬合金は鋼切削工具部祠として知られている。
Generally, WC-based cemented carbide includes WC-Co based cemented carbide,
WC-(Ti, Ta, W)C-Co based cemented carbide etc. are known, and the above-mentioned WC-Co based cemented carbide is used as a cast iron cutting tool member and the above-mentioned WC(Tj, Ta, W)C- Co
Cemented carbides are known as steel cutting tools.

上記WC−(Tj、Ta、W)C−Co系超硬合金に関
しては今日まで多くの研究が行なわれ、多くの提案がな
されている。
Up to now, many studies have been conducted and many proposals have been made regarding the above-mentioned WC-(Tj, Ta, W)C-Co based cemented carbide.

例えば、特公昭59−42067号公報には、硬質相と
してWCを主成分とし、TiC,TaC,NbC。
For example, Japanese Patent Publication No. 59-42067 discloses that the hard phase is mainly composed of WC, TiC, TaC, and NbC.

VCのうち1種まはた2種以上を含有し、結合相として
Coを含有する超硬合金であって、WCの平均粒径が3
μm以下で5陣を越えたものがなく、かつ固溶体炭化物
は平均粒径が0.7μm以下で1μmを越えたものか存
在しないWC基超硬合金記載されている。
A cemented carbide containing one or more types of VC and containing Co as a binder phase, the average grain size of the WC being 3.
WC-based cemented carbide is described as having no solid solution carbide having an average grain size of 0.7 μm or less and exceeding 1 μm or no solid solution carbides.

また、特開昭51−125013号公報には、硬質相が
Ti C,TiN、WCからなり、これら硬質相がFc
族金属によって結合されてなる超硬合金が記載されてお
り、この超硬合金組織中にWC相、(Ti、W)(C,
N)相からなる硬質相が存在すること力〈S己載されて
いる。
Further, in JP-A-51-125013, the hard phase is composed of TiC, TiN, and WC, and these hard phases are Fc.
A cemented carbide formed by bonding group metals has been described, and the structure of this cemented carbide contains a WC phase, (Ti, W) (C,
N) The presence of a hard phase consisting of a phase force <S self-contained.

さらに、特公昭61−41’J80号公報には、WCを
主成分とし、TiNと、TaC,NbCおよび(Ta、
Nb)Cのうち1種または2種以上と、C。
Furthermore, Japanese Patent Publication No. 61-41'J80 discloses that WC is the main component, TiN, TaC, NbC and (Ta,
Nb) One or more types of C and C.

からなり、かつ硬質相の組織がWCと平均粒径:2庫以
下の(Ti、W、Ta、Nb)(C,N)と、TiNの
3相からなるWC基超硬合金記載されている。
It is described as a WC-based cemented carbide whose hard phase structure consists of three phases: WC, (Ti, W, Ta, Nb) (C, N) with an average grain size of 2 or less, and TiN. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記特公昭59−420G7号公報記載のWC基超硬合
金、従来のJIS規格P30の超硬合金に比べて、確か
に耐欠損性は向上するが、熱衝撃の激しいフライス切削
では十分な性能を示さず、また、上記特開昭51−12
5613号公報の超硬合金は、硬質相が(Tj、W)C
NとWCとからなり、超硬合金中の窒素量は(T1.W
)CNに含まれる窒素量だけであるので窒素含有量が少
なく、強度的に不十分である。
The WC-based cemented carbide described in the above-mentioned Japanese Patent Publication No. 59-420G7 certainly has improved chipping resistance compared to the conventional JIS standard P30 cemented carbide, but it does not have sufficient performance in milling with severe thermal shock. Not shown, and the above-mentioned Japanese Patent Application Laid-Open No. 51-12
The cemented carbide disclosed in Publication No. 5613 has a hard phase of (Tj, W)C
Composed of N and WC, the amount of nitrogen in the cemented carbide is (T1.W
) Since only the amount of nitrogen is contained in CN, the nitrogen content is small and the strength is insufficient.

さらに、上記特公昭84−41980号公報のWC基超
硬合金、WCと、平均粒径:2Hrn以下の(Ti、W
、 Ta、Nb) (C,N)と、TiNの3相からな
る硬質相を含んでいるが、依然として熱衝撃の激しいフ
ライス切削に対しては十分な性能を示さなかった。
Furthermore, the WC-based cemented carbide of the above-mentioned Japanese Patent Publication No. 84-41980, WC, and (Ti, W
Although it contains a hard phase consisting of three phases: , Ta, Nb) (C, N), and TiN, it still did not show sufficient performance for milling with severe thermal shock.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、熱的および機械的衝撃の激しい
フライス切削に対しても十分に耐えることのできる切削
工具用WC基超硬合金開発すべく研究を行った結果、 WC7i!、超硬合金を構成する硬質相の成分組成およ
び組織を特定の範囲内に限定することにより耐欠損性の
一層向上したWC基超硬合金得られるという知見を得た
のである。
Therefore, the inventors of the present invention conducted research to develop a WC-based cemented carbide for cutting tools that can sufficiently withstand milling, which is subject to severe thermal and mechanical shock, and as a result, developed WC7i! They found that a WC-based cemented carbide with even higher fracture resistance can be obtained by limiting the composition and structure of the hard phase constituting the cemented carbide within a specific range.

この発明は、かかる知見にもとづいてなされたものであ
って、 (1)WCを主成分とする硬質相とCoの結合相からな
るWC基超硬合金おいて、 上記硬質相は、第1図のWC−TiC−TiN三元系状
態図におけるA、B、CおよびDを直線て結んで囲まれ
る範囲内にある成分組成を有し、かつ、平均粒径:0.
5〜5.0μmの炭化タングステン相、平均粒径:0.
5〜3,0μmのWとTiの複合固溶炭窒化物用、およ
び平均粒径:0.5〜3.0μmの窒化チタン相の3相
からなる組織を有する靭性に優れたwc基超超硬合金 (2)WCを主成分とする硬質相とCoの結合相からな
るWC基超硬合金おいて、 上記硬質相は、第1図のWC−Tic−TiN三元系状
態図におけるA、B、CおよびDを直線で結んで囲まれ
る範囲内にある成分組成に、さらに20重量%以下のM
(但し、Mは、TaおよびNbのうち1種または2種を
示す)の炭化物、窒化物および炭窒化物のうち1種また
は2種以上含有した成分組成を有し、 かつ、平均粒径:0,5〜5.0μmの炭化タングステ
ン相、平均粒径:0.5〜3.0節のWとTjとMの複
合固溶炭窒化物用、および平均粒径:0,5〜3.0μ
mの窒化チタン相の3相からなる組織を有する靭性に優
れたWC基超硬合金 に特徴を有するものである。
The present invention has been made based on this knowledge, and includes: (1) In a WC-based cemented carbide consisting of a hard phase mainly composed of WC and a binder phase of Co, the hard phase is as shown in FIG. It has a component composition within the range surrounded by straight lines connecting A, B, C, and D in the WC-TiC-TiN ternary system phase diagram, and has an average particle size of 0.
Tungsten carbide phase of 5-5.0 μm, average particle size: 0.
For composite solid solution carbonitride of W and Ti with a diameter of 5 to 3.0 μm, and a WC-based ultra-superstructure with excellent toughness that has a structure consisting of three phases: a titanium nitride phase with an average particle size of 0.5 to 3.0 μm. Hard alloy (2) In a WC-based cemented carbide consisting of a hard phase mainly composed of WC and a binder phase of Co, the hard phase is A in the WC-Tic-TiN ternary system phase diagram in Figure 1. In addition to the component composition within the range bounded by connecting B, C and D with a straight line, 20% by weight or less of M
(However, M represents one or two of Ta and Nb), has a component composition containing one or more of carbides, nitrides, and carbonitrides, and has an average particle size: Tungsten carbide phase of 0.5-5.0 μm, average particle size: 0.5-3.0 for composite solid solution carbonitride of W, Tj, and M, and average particle size: 0.5-3.0 μm. 0μ
This is a WC-based cemented carbide having excellent toughness and having a structure consisting of three phases of titanium nitride phases.

上記第1図のWC−Tic−TiN三元系状態図におけ
るA、B、CおよびDの各点は、A(WC:85%、T
iC:2%、TiN:13%)、B(WC:45%、T
iC:35%、 T i N : 20%)、C(WC
:25%,TiC:15%、 T I N : 80%
)、D (WC: 3g96. T i C: 2%、
 T IN : fli096)、(但し、%はモル%
)で特定することができる。
Each of the points A, B, C, and D in the WC-Tic-TiN ternary system phase diagram shown in Figure 1 above is A (WC: 85%, T
iC: 2%, TiN: 13%), B (WC: 45%, T
iC: 35%, T i N: 20%), C (WC
: 25%, TiC: 15%, TIN: 80%
), D (WC: 3g96. T i C: 2%,
T IN: fli096), (% is mol%
) can be specified.

上記靭性に優れたこの発明のWC基超硬合金基体とし、
その表面に、さらに、 Tiの炭化物、窒化物、酸化物、硼化物およびこれらの
固溶体、並びにAl2O3のうち1種まはた2種以上の
硬質層を被覆することによりこの発明の硬質層被覆超硬
合金を製造することができる。
The above-mentioned WC-based cemented carbide base of the present invention having excellent toughness,
The hard layer-coated superstructure of the present invention is further coated with a hard layer of one or more of Ti carbides, nitrides, oxides, borides, solid solutions thereof, and Al2O3 on the surface thereof. Hard alloys can be produced.

この発明のWC基超硬合金製造するには、原料粉末とし
て、通常のWC粉末、TiN粉末およびCo粉末のほか
に、WとTjの複合固溶炭窒化物粉末〔以下、(W、T
i)(C,N)粉末と記す〕を用いることが必要であり
、(W、Ti)(C。
In order to manufacture the WC-based cemented carbide of the present invention, in addition to normal WC powder, TiN powder, and Co powder, a composite solid solution carbonitride powder of W and Tj [hereinafter referred to as (W, T
i) (W, Ti) (C.

N)固溶体で添加できる窒素量は、この固溶体の窒素固
溶限以上にはできないが、この固溶体にさらにTiNを
添加した第1図の成分組成の硬質相を有するようにCo
と混合し、100Torr以上の高い窒素雰囲気下で焼
結すると、巣の発生が少なくかつ硬質相の組織が、平均
粒径:0.5〜5.0μmのWC相、平均粒径:0.5
〜3.0節の(W、 Ti) (C。
N) The amount of nitrogen that can be added in a solid solution cannot exceed the nitrogen solid solubility limit of this solid solution.
When sintered in a high nitrogen atmosphere of 100 Torr or more, the hard phase structure has a WC phase with an average grain size of 0.5 to 5.0 μm, and a WC phase with an average grain size of 0.5 μm.
~3.0 (W, Ti) (C.

N)相および平均粒径:0.5〜3.0unのTiN相
の3相からなる靭性に優れたWC基超硬合金得られ、こ
の超硬合金をフライス切削の切削工具に適用すると極め
て高い耐熱衝撃性を有し、かつ耐欠損性にも優れている
ことが確認されたのである。
N) phase and average grain size: A WC-based cemented carbide with excellent toughness is obtained, consisting of three phases of TiN phase with a diameter of 0.5 to 3.0 um.When this cemented carbide is applied to cutting tools for milling, it has extremely high toughness. It was confirmed that it has thermal shock resistance and excellent fracture resistance.

上記原料粉末に、さらにTaC粉末、NbC粉末、(T
a、Nb)C粉末、TaN粉末、NbN粉末、(Ta、
Nb)N粉末、TaCN粉末、NbCN粉末、(Ta、
Nb) (C,N)粉末のうち1種または2種以上=2
0重量%以下添加した原料粉末をCo粉末とともに10
0Torr以上の高い窒素雰囲気下で焼結すると、平均
粒径:0,5〜3μmの(W、 T1.M)(C,N)
相(但し、MはTaおよびNbのうち1種または2種)
が生じ、耐酸化性が向上し、性能が一段と向上したWC
基超硬合金得られることが確認された。
In addition to the above raw material powder, TaC powder, NbC powder, (T
a, Nb) C powder, TaN powder, NbN powder, (Ta,
Nb) N powder, TaCN powder, NbCN powder, (Ta,
Nb) One or more types of (C, N) powder = 2
10% raw material powder added with 0% by weight or less together with Co powder
When sintered in a high nitrogen atmosphere of 0 Torr or more, (W, T1.M) (C,N) with an average particle size of 0.5 to 3 μm
phase (however, M is one or two of Ta and Nb)
WC with improved oxidation resistance and further improved performance.
It was confirmed that a base cemented carbide could be obtained.

また、この発明のWC基超硬合金、V、Cr。Further, the WC-based cemented carbide of the present invention, V, Cr.

Mo 、Hf、Zrの炭化物、窒化物、炭窒化物の1種
または2種以上を5重量%以下添加しても性能の低下は
認められない。さらにこの発明のWC基超硬合金COの
50重量%以下をNi、Fe。
Even if one or more of carbides, nitrides, and carbonitrides of Mo 2 , Hf, and Zr are added in an amount of 5% by weight or less, no deterioration in performance is observed. Further, 50% by weight or less of the WC-based cemented carbide CO of the present invention is Ni or Fe.

AΩのうち1種または2種以上で置換しても本質的にこ
の発明のWC基超硬合金特性を損なうものではない。
Even if one or more types of AΩ are substituted, the properties of the WC-based cemented carbide of the present invention are not essentially impaired.

つぎに、この発明のWC基超硬合金成分組成および組織
を上記の如く限定した理由について説明する。
Next, the reason why the composition and structure of the WC-based cemented carbide of the present invention are limited as described above will be explained.

(a)  硬質相の成分組成を第1図のWC−TiC−
TiN三元系状態図のA、B、CおよびDを直線で結ん
で囲まれた範囲内としたのは、 (1)直線ABよりもTiNが少ない範囲では、TiN
が単独で存在しないか、もしくは存在したとしてもTi
Nの平均粒度が0.5節未満になるために切削工具の刃
先の耐すくい面摩耗性が低下する、 (ii)直線CDを越えてTiNが多くなる範囲では、
高窒素雰囲気下で焼結しても、焼結中にTiNの分解が
進み、焼結体中に巣が多数残存し、耐衝撃性が低下する
、 (iil) WCの一部は焼結中に(W、Ti)(C,
N)およびTiNと固溶してWとTiの複合固溶炭窒化
物用を形成するが、直線BCよりもWCが少ない範囲で
は単独で存在するWC相が減少し、合金の靭性(耐衝撃
性)が低下する、 (Iv)直線ADよりもTiCが少ない範囲では、合金
の耐摩耗性が低下する、 などの理由によるものである。
(a) The component composition of the hard phase is WC-TiC- in Figure 1.
The reason why A, B, C, and D of the TiN ternary system phase diagram are connected with a straight line and placed within the range is as follows: (1) In the range where TiN is less than the straight line AB, TiN
does not exist alone, or even if it exists, Ti
Since the average grain size of N is less than 0.5 knots, the rake face wear resistance of the cutting tool edge decreases. (ii) In the range where TiN increases beyond the straight line CD,
Even if sintered in a high nitrogen atmosphere, TiN decomposes during sintering, leaving many cavities in the sintered body and reducing impact resistance. (iii) Part of the WC is still sintered. to (W, Ti) (C,
N) and TiN to form a composite solid solution carbonitride of W and Ti, but in a range where WC is less than the straight BC, the WC phase existing alone decreases, and the toughness (impact resistance) of the alloy decreases. (Iv) In the range where TiC is less than the straight line AD, the wear resistance of the alloy decreases.

(b)  硬質相のWC相の平均粒径が0.5〜5.(
Jun、複合固溶炭窒化物用の平均粒径が0.5〜3,
0即およびTiN相の平均粒径が0.5〜0.3μmの
範囲内にあるように定めたのは、 (1)wc相の平均粒径が0.5−未満では、耐すくい
面摩耗性が低下し、また耐衝撃性が低下するが・5.0
即を越えるとかえって耐逃げ面摩耗性力(低下する、 (if)  (W、  Ti) (C,N)相の平均粒
径が0.5−未満では、耐すくい面摩耗性か低下し、3
.0即を越えると耐衝撃性か低下する、 (iil) T i N相の平均粒径が0.5−未満で
は、刃先の耐すくい面摩耗性が低下し、3.0μmを越
えると耐衝撃性が低下する、 などの理由によるものである。
(b) The average particle size of the WC phase of the hard phase is 0.5 to 5. (
Jun, average particle size for composite solid solution carbonitride is 0.5-3,
The reason why the average grain size of the 0 and TiN phases is set to be within the range of 0.5 to 0.3 μm is because (1) If the average grain size of the wc phase is less than 0.5 μm, the rake face wear resistance However, the impact resistance also decreases.・5.0
If the average grain size of the (W, Ti) (C,N) phase is less than 0.5, the rake wear resistance decreases. 3
.. (iii) If the average particle size of the T i N phase is less than 0.5 μm, the rake face wear resistance of the cutting edge decreases, and if it exceeds 3.0 μm, the impact resistance decreases. This is due to reasons such as decreased performance.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

実施例 1 原料粉末として、 平均粒径:3.0即のWC粉末、 平均粒径:1.8間の(W、Ti)(C,N)粉末(W
:TiC:TiN=56:24:20.重量比)、平均
粒径:2.ローの(W、 Ti)C粉末(WC:T i
 C−70: 30.重量比)、平均粒径:1.5tI
nのTiN粉末、平均粒径: 1.2t1frIのCo
粉末、平均粒径:1.8μmのTaC粉末、 平均粒径:1,9μmのNbC粉末、 平均粒径: 2.0urrI(Ta、Nb)C粉末(T
a  :Nb −90: 10.重量比)、 平均粒径:1.6μn+のTaN粉末、平均粒径:2.
2μmのNbN粉末、 平均粒径: 1.5回mのTa CN粉末(TaC:T
aN−90:10.重量比)、 平均粒径:1.8μmの(Ta、Nb) (C,N)粉
末(TaC:TaN:NbC=80:10:10.重量
比)、 平均粒径:2.’aumのHfC粉末、をそれぞれ用意
し、これら原料粉末を第1表に示されるごとく配合し、
混合し、第1表に示される条件で焼結して、本発明WC
基超硬合金〜18および比較WC基超硬合金〜6を製造
した。
Example 1 The raw material powders were WC powder with an average particle size of 3.0 and (W, Ti) (C, N) powder (W, Ti) with an average particle size of 1.8.
:TiC:TiN=56:24:20. weight ratio), average particle size: 2. Low (W, Ti)C powder (WC: Ti
C-70: 30. weight ratio), average particle size: 1.5tI
n TiN powder, average particle size: 1.2t1frI Co
Powder, average particle size: 1.8μm TaC powder, average particle size: 1.9μm NbC powder, average particle size: 2.0urrI (Ta, Nb)C powder (T
a:Nb-90: 10. weight ratio), average particle size: 1.6 μn+ TaN powder, average particle size: 2.
2 μm NbN powder, average particle size: 1.5 times m TaCN powder (TaC:T
aN-90:10. Weight ratio), average particle size: 1.8 μm (Ta, Nb) (C, N) powder (TaC:TaN:NbC=80:10:10.weight ratio), average particle size: 2. 'aum HfC powder was prepared, and these raw material powders were blended as shown in Table 1,
The WC of the present invention was mixed and sintered under the conditions shown in Table 1.
Base cemented carbide ~18 and comparative WC base cemented carbide ~6 were produced.

得られた本発明WC基超硬合金〜18および比較WCJ
!超硬合金1〜6の硬質相の組織を調べその粒径も測定
し、それらの結果を第1表に示した。
Obtained WC-based cemented carbide of the present invention ~18 and comparative WCJ
! The structures of the hard phases of cemented carbide alloys 1 to 6 were examined and their grain sizes were also measured, and the results are shown in Table 1.

次に、これら本発明WC基超硬合金〜18および比較W
C基超硬合金〜6からISO規格の5EEN42AFT
N1の形状のスローアウェイチップをそれぞれ作製し、
これらスローアウェイチップを用いて、 被削材:SCM440(硬さ、 HB220)、切削速
度: 150m/ff1in、、送  リフ0,3關/
刃、 切込み:3.Om+e。
Next, these WC-based cemented carbide of the present invention ~ 18 and comparative W
C-base cemented carbide ~6 to ISO standard 5EEN42AFT
Each indexable tip in the shape of N1 was prepared,
Using these indexable inserts, workpiece material: SCM440 (hardness, HB220), cutting speed: 150m/ff1in, feed rate 0.3mm/
Blade, depth of cut: 3. Om+e.

の条件で1つのスローアウェイチップについて2回フラ
イス切削を行ない、欠損を起すまでの時間を7111j
定し、2回の平均を計算して、これらの結果も第1表に
合せて示した。
Milling was performed twice on one indexable insert under the following conditions, and the time required to cause breakage was 7111j
The results were also shown in Table 1.

さらに比較のために、市販のP30超硬合金で作製され
たスローアウェイチップを用いて上記の条件で切削試験
を行ない、その結果も第1表に示した。
Furthermore, for comparison, a cutting test was conducted under the above conditions using a commercially available indexable insert made of P30 cemented carbide, and the results are also shown in Table 1.

実施例 2 実施例1の本発明WC基超硬合金で作製したスローアウ
ェイチップの表面に、第2表に示す各種の硬質層を通常
のCVD法およびPVD法で被覆し、本発明硬質層被覆
スローアウェイチップ1〜9を製造した。
Example 2 The surface of the indexable tip made of the WC-based cemented carbide of the present invention in Example 1 was coated with various hard layers shown in Table 2 by the usual CVD method and PVD method to obtain the hard layer coating of the present invention. Throwaway chips 1 to 9 were manufactured.

さらに、比較のために、実施例1で用意した市販のP3
0超硬合金で作製されたスローアウェイチップの表面に
、第2表に示される硬質層を被覆し、従来硬質層被覆ス
ローアウェイチップ1〜2を用意した。
Furthermore, for comparison, commercially available P3 prepared in Example 1
The hard layer shown in Table 2 was coated on the surface of an indexable tip made of zero cemented carbide to prepare conventional hard layer coated indexable tips 1 and 2.

これら硬質層被覆スローアウェイチップを、被削材:S
CM440(硬さ、 HB220)切削速度: 200
m/m1n、、 送  リ: 0.25mm/刃、 切込み:3.O+n+a。
These hard layer coated indexable inserts are
CM440 (Hardness, HB220) Cutting speed: 200
m/m1n, Feed: 0.25mm/blade, Depth of cut: 3. O+n+a.

の条件で1つの硬質層被覆スローアウェイチップについ
て2回フライス切削を行ない、欠損を起すまでの時間を
測定し、2回の平均を計算して、これらの結果も第2表
に示した。
Milling was performed twice on one hard layer coated indexable tip under the following conditions, the time until breakage occurred was measured, and the average of the two times was calculated. These results are also shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

第1表の結果から、本発明WC基超硬合金作製したスロ
ーアウェイチップは、市販のWC2J、超硬合金で作製
したスローアウェイチップに比べて、いずれも耐欠損性
が格段にすぐれていることから、本発明WC基超硬合金
、いずれも靭性にすぐれていることがわかる。
From the results in Table 1, it can be seen that the indexable insert made of the WC-based cemented carbide of the present invention has much better fracture resistance than the commercially available WC2J and indexable insert made of the cemented carbide. It can be seen from the above that all of the WC-based cemented carbides of the present invention have excellent toughness.

また、この発明の条件から外れた組織を有する比較WC
基超硬合金この発明の条件から外れている値に※印を付
して示した)で作製したスローアウェイチップは、フラ
イス切削による欠損に至るまでの時間が短いところから
、比較WC基超硬合金靭性が低いことがわかる。
In addition, comparative WC having a structure that deviates from the conditions of this invention
The indexable insert made with the WC-based cemented carbide (values that deviate from the conditions of this invention are indicated with an asterisk) has a shorter time to breakage during milling than the comparative WC-based cemented carbide. It can be seen that the alloy toughness is low.

さらに、第2表の結果から、本発明WC基超硬合金作製
したスローアウェイチップに硬質層を被覆してなる本発
明硬質層被覆スローアウェイチップは、市販のWC21
!、超硬合金で作製したスローアウェイチップに硬質層
を被覆してなる従来硬質層被覆スローアウェイチップに
比べて、いずれも優れた耐欠損性を有することがわかる
Furthermore, from the results in Table 2, it can be seen that the hard layer-coated indexable tip of the present invention, which is obtained by coating the hard layer on the indexable tip made of the WC-based cemented carbide of the present invention, is similar to the commercially available WC21.
! It can be seen that both of them have excellent fracture resistance compared to the conventional hard layer-covered indexable insert made of a hard layer coated indexable insert made of cemented carbide.

成範囲を示すWC−Tic である。WC-Tic showing the range of It is.

TiN三元系状態図 二 三菱金属株式会社 外1名 4、TiN ternary system phase diagram 2. Mitsubishi Metals Co., Ltd. 1 other person 4,

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (4)

【特許請求の範囲】[Claims] (1) WCを主成分とする硬質相が、Coからなる結
合相によって結合されてなるWC基超硬合金において、 上記硬質相の成分組成は、第1図のWC− TiC−TiN三元系状態図におけるA,B,Cおよび
Dを直線で結んで囲まれる範囲内にあり、かつ上記硬質
相の組織は、平均粒径:0.5〜5.0μmの炭化タン
グステン相、平均粒径:0.5〜3.0μmのWとTi
の複合固溶炭窒化物相、および平均粒径:0.5〜3.
0μmの窒化チタン相の3相からなる、 ことを特徴とする靭性に優れたWC基超硬合金。 但し、上記A,B,CおよびDは、上記第1図のWC−
TiC−TiN三元系状態図において、A(WC:85
%,TiC:2%,TiN:13%)、B(WC:45
%,TiC:35%,TiN:20%)、C(WC:2
5%,TiC:15%,TiN:60%)、D(WC:
38%,TiC:2%,TiN:60%)、(以上、モ
ル%)で示される点である。
(1) In a WC-based cemented carbide in which a hard phase mainly composed of WC is bonded by a binder phase consisting of Co, the component composition of the hard phase is the ternary system WC-TiC-TiN shown in Figure 1. The structure of the hard phase is within the range surrounded by straight lines connecting A, B, C, and D in the phase diagram, and the structure of the hard phase is a tungsten carbide phase with an average grain size of 0.5 to 5.0 μm; 0.5-3.0μm W and Ti
composite solid solution carbonitride phase, and average particle size: 0.5 to 3.
A WC-based cemented carbide with excellent toughness, consisting of three phases including a 0 μm titanium nitride phase. However, the above A, B, C and D are WC- in Fig. 1 above.
In the TiC-TiN ternary system phase diagram, A(WC:85
%, TiC: 2%, TiN: 13%), B (WC: 45
%, TiC: 35%, TiN: 20%), C (WC: 2
5%, TiC: 15%, TiN: 60%), D(WC:
38%, TiC: 2%, TiN: 60%) (the above is mol%).
(2) 請求項1記載の硬質相に、さらに20重量%以
下のM(但し、Mは、TaおよびNbのうち1種または
2種を示す)の炭化物、窒化物および炭窒化物のうち1
種または2種以上を含有した成分組成を有し、 かつ、平均粒径:0.5〜5.0μmの炭化タングステ
ン相、平均粒径:0.5〜3.0μmのWとTiとMの
複合固溶炭窒化物相、および平均粒径:0.5〜3.0
μmの窒化チタン相の3相からなる硬質相を有すること
を特徴とする靭性の優れたWC基超硬合金。
(2) In addition to the hard phase according to claim 1, 20% by weight or less of M (M represents one or two of Ta and Nb) among carbides, nitrides, and carbonitrides.
A tungsten carbide phase with an average particle size of 0.5 to 5.0 μm and a tungsten carbide phase of W, Ti, and M with an average particle size of 0.5 to 3.0 μm. Composite solid solution carbonitride phase and average particle size: 0.5 to 3.0
A WC-based cemented carbide with excellent toughness, characterized by having a hard phase consisting of three micrometer-sized titanium nitride phases.
(3) 請求項1記載の靭性に優れたWC基超硬合金の
表面に、 Tiの炭化物、窒化物、酸化物、硼化物およびこれらの
固溶体、並びにAl_2O_3のうち1種または2種以
上の硬質層を被覆してなることを特徴とする靭性に優れ
た硬質層被覆超硬合金。
(3) On the surface of the WC-based cemented carbide having excellent toughness according to claim 1, one or more hard compounds selected from Ti carbides, nitrides, oxides, borides, and solid solutions thereof, and Al_2O_3. A hard layer coated cemented carbide with excellent toughness characterized by being coated with a layer.
(4) 請求項2記載の靭性に優れたWC基超硬合金の
表面に、 Tiの炭化物、窒化物、酸化物、硼化物およびこれらの
固溶体、並びにAl_2O_3のうち1種または2種以
上の硬質層を被覆してなることを特徴とする靭性に優れ
た硬質層被覆超硬合金。
(4) On the surface of the WC-based cemented carbide having excellent toughness according to claim 2, one or more types of hard carbides, nitrides, oxides, borides of Ti, solid solutions thereof, and Al_2O_3 are added. A hard layer coated cemented carbide with excellent toughness characterized by being coated with a layer.
JP02235082A 1990-09-05 1990-09-05 WC-based cemented carbide and cemented carbide with hard layer excellent in toughness Expired - Lifetime JP3123067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02235082A JP3123067B2 (en) 1990-09-05 1990-09-05 WC-based cemented carbide and cemented carbide with hard layer excellent in toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02235082A JP3123067B2 (en) 1990-09-05 1990-09-05 WC-based cemented carbide and cemented carbide with hard layer excellent in toughness

Publications (2)

Publication Number Publication Date
JPH04116134A true JPH04116134A (en) 1992-04-16
JP3123067B2 JP3123067B2 (en) 2001-01-09

Family

ID=16980800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02235082A Expired - Lifetime JP3123067B2 (en) 1990-09-05 1990-09-05 WC-based cemented carbide and cemented carbide with hard layer excellent in toughness

Country Status (1)

Country Link
JP (1) JP3123067B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454100B1 (en) 2001-05-23 2002-09-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor element carrying equipment
DE102008048967A1 (en) * 2008-09-25 2010-04-01 Kennametal Inc. Carbide body and process for its production
JP2016098393A (en) * 2014-11-20 2016-05-30 日本特殊合金株式会社 Hard metal alloy
WO2017191744A1 (en) * 2016-05-02 2017-11-09 住友電気工業株式会社 Cemented carbide and cutting tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045093B1 (en) * 2016-07-11 2016-12-14 明美 小山 Wheelchair urine pack holder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454100B1 (en) 2001-05-23 2002-09-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor element carrying equipment
DE102008048967A1 (en) * 2008-09-25 2010-04-01 Kennametal Inc. Carbide body and process for its production
JP2016098393A (en) * 2014-11-20 2016-05-30 日本特殊合金株式会社 Hard metal alloy
WO2017191744A1 (en) * 2016-05-02 2017-11-09 住友電気工業株式会社 Cemented carbide and cutting tool
CN107923006A (en) * 2016-05-02 2018-04-17 住友电气工业株式会社 Hard alloy and cutting element
JPWO2017191744A1 (en) * 2016-05-02 2019-03-07 住友電気工業株式会社 Cemented carbide and cutting tools

Also Published As

Publication number Publication date
JP3123067B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
USRE39814E1 (en) Cemented carbide insert and method of making same
JP2890592B2 (en) Carbide alloy drill
KR20040084760A (en) Coated cutting tool insert
JP2001205505A (en) Coated cutting insert for application to milling and lathing
US20040214050A1 (en) Cemented carbide with binder phase enriched surface zone
JPH04116134A (en) Wc base sintered hard alloy excellent in toughness and sintered hard alloy coated with hard layer
WO2006100939A1 (en) TiCN BASE CERMET AND CUTTING TOOL AND METHOD FOR MANUFACTURING CUT ARTICLE USING THE SAME
JPS6225631B2 (en)
JPH0230406A (en) Cutting tool made of surface-coated tungsten carbide radical cemented carbide
JP3460571B2 (en) Milling tool with excellent wear resistance
JPS6020457B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
EP1222316B1 (en) Coated cemented carbide insert
JP2982359B2 (en) Cemented carbide with excellent wear and fracture resistance
JP4857506B2 (en) WC-based cemented carbide multilayer chip
JPH11350111A (en) Super hard film-coated tool member
JP3878334B2 (en) Cemented carbide and coated cemented carbide
JPS59170265A (en) Surface coated sintered hard alloy member for cutting tool
JPS602378B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS60149775A (en) Surface coated cermet member for cutting tool
JPS58126902A (en) Coated cutting tool
JPS6020458B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPH03131573A (en) Sintered boron nitrode base having high-density phase and composite sintered material produced by using the same
JPS6245290B2 (en)
JPS6334216B2 (en)
JPS6360283A (en) Surface-coated hard metal for cutting tool having excellent breakage resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

EXPY Cancellation because of completion of term