JPS6020458B2 - High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools - Google Patents

High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools

Info

Publication number
JPS6020458B2
JPS6020458B2 JP56159623A JP15962381A JPS6020458B2 JP S6020458 B2 JPS6020458 B2 JP S6020458B2 JP 56159623 A JP56159623 A JP 56159623A JP 15962381 A JP15962381 A JP 15962381A JP S6020458 B2 JPS6020458 B2 JP S6020458B2
Authority
JP
Japan
Prior art keywords
boron nitride
weight
cutting
volume
cubic boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56159623A
Other languages
Japanese (ja)
Other versions
JPS5861256A (en
Inventor
利基 石松
紀章 三輪
文洋 植田
和男 山本
薫 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP56159623A priority Critical patent/JPS6020458B2/en
Publication of JPS5861256A publication Critical patent/JPS5861256A/en
Publication of JPS6020458B2 publication Critical patent/JPS6020458B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、特にすぐれた鞠性と耐摩耗性を有し、かつ
高硬度と、すぐれた耐熱性および高温強度を備え、これ
らの特性が要求される高速度鋼や、Ni器あるいはCo
基スーパーアロィなどの被削材の切工具として、さらに
軸受や線引きダイスなどの耐摩耗工具として使用するの
に適した窒化棚素基超高圧暁緒材料に関するものである
Detailed Description of the Invention This invention has particularly excellent ballability and wear resistance, high hardness, and excellent heat resistance and high temperature strength, and is suitable for use in high-speed steel and other steels that require these properties. , Ni or Co
The present invention relates to a nitride-based ultra-high-pressure cutting material suitable for use as a cutting tool for work materials such as super alloys, and as wear-resistant tools such as bearings and wire drawing dies.

近年、炭化タングステン基暁結材料に比して、きわめて
すぐれた耐摩耗性を有する立方晶窒化棚素基超高圧暁結
材料(以下CBN基暁縞材料という)を切削工具や耐摩
耗工具として使用することが提案されている。このCB
N基焼綾材料は、分散相を形成するCBN粒子の結合相
によって2種類に大別することができ、その1つが結合
相を鉄族金属あるいはNなどを主成分とする金属で構成
したものであり、もう1つが窒化チタン、炭化チタン、
窒化アルミニウム、または酸化アルミニウムなどを主成
分としたセラミック系化合物で結合相を構成したもので
ある。
In recent years, cubic crystal nitride shelbase-based ultra-high-pressure abrasive materials (hereinafter referred to as CBN-based ayo-stripe materials), which have extremely superior wear resistance compared to tungsten carbide-based abrasive materials, have been used as cutting tools and wear-resistant tools. It is proposed to do so. This CB
N-based sintered twill materials can be roughly divided into two types depending on the binder phase of the CBN particles that form the dispersed phase, one of which is one in which the binder phase is composed of an iron group metal or a metal whose main component is N or the like. The other is titanium nitride, titanium carbide,
The binder phase is made of a ceramic compound whose main component is aluminum nitride or aluminum oxide.

しかし、前者においては、前記のように結合相が金属で
あるために高温で軟化しやすく、したがって、これを例
えば切削工具として使用した場合には多大の熱発生を伴
う苛酷な切削条件下では耐摩耗性不足をきたして十分な
る切削性能の発揮は期待できず、熱発生の少ない条件、
すなわち負荷の少ない条件でしか使用することができな
いものである。また、後者においては、上記のように結
合相がセラミック系化合物で構成されているために、耐
熱性および耐摩耗性のすぐれたものになっているが、反
面靭性不足を避けることができず、例えば高速度鋼のフ
ライス切削などの刃先に大きな衝撃力の加わる切削条件
下ではチッピングや欠損を起し易いものである。また、
上記の2種類の従来のCBN緒材料のもつそれぞれの問
題点を解消する目的で、結合相を金属とセラミックス系
化合物で構成したCBN基鍵結材料も提案されたが、こ
のCBN基競綾材料においても十分満足する靭性を示さ
ず、同様に例えば高速度鋼のフライス切削のような刃先
に大きな衝撃力の加わる切削条件下で切削工具として使
用した場合刃先に欠損が発生し易いものである。
However, in the former, since the binder phase is metal as mentioned above, it easily softens at high temperatures, and therefore, when used as a cutting tool, for example, it can withstand severe cutting conditions that generate a large amount of heat. Due to insufficient abrasiveness, sufficient cutting performance cannot be expected, and under conditions with little heat generation,
In other words, it can only be used under light load conditions. In addition, in the latter case, since the binder phase is composed of a ceramic compound as mentioned above, it has excellent heat resistance and wear resistance, but on the other hand, lack of toughness cannot be avoided. For example, chipping and breakage are likely to occur under cutting conditions in which a large impact force is applied to the cutting edge, such as when milling high-speed steel. Also,
In order to solve the respective problems of the above two types of conventional CBN materials, a CBN-based binding material in which the binder phase is composed of a metal and a ceramic compound has been proposed. Similarly, when used as a cutting tool under cutting conditions where a large impact force is applied to the cutting edge, such as when milling high-speed steel, the cutting edge tends to break.

これは、上記CBN基嫌縞材料におおけるCBN粒子と
結合相(金属十セラミックス系化合物)との境界部を走
査型電子顕微鏡により詳細に観察した結果明らかになっ
たものであるが、超高圧暁縞時にCBN粒子の表面にお
ける微4・な凹部への前記結合相のまわり込みが十分に
行なわれないことに原因する微4・な未結合部(ボィド
)が前記境界部に形成され、さらにCBN粒子と結合相
との密着性は、結合相の構成成分によって異なるが、特
に炭化物系のセラミックスの場合著しく低く、このため
CBN粒子と結合相との間に部分的に結合強度の弱い部
分が形成されることに原因するものと解される。そこで
、本発明者等は、上述のような観点から、特にすぐれた
轍性と耐摩耗性とを兼ね備えたCBN基碗結材料を得べ
〈研究を行なった結果、CBN基暁結材料を、結合強化
金属としてのAIおびSiのうちの1種または2種:2
〜25重量%、酸化アルミニウム:2〜3の重量%、室
化珪素:2〜3の重量%を含有し、残りがCBN(立方
晶窒化棚素)と不可避不純物からなる組成を有し、かつ
CBNが体積割合で40〜90%を占めると共に、上記
結合強化金属がCBNを0.1〜1一肌の平均層厚で包
囲した組織を有するものとすると、分散相を構成したC
BN粒子を包囲した結合強化金属としてのAIとSiは
、CBN粒子とのぬれ性がよく、かつCBN粒子表面に
付着する徴量の酸素、水、酸化物などの不純物と反応し
、これを除去して清浄化し、さらに原料調製時に予めC
BN粒子表面に無電解〆ッキ法、化学蒸着法(CVD法
)、物理蒸着法(PVD法)、およびプラズマ化学蒸着
法(PCVD法)などの方法により強固にして繊密に被
覆されているので、CBN粒子と、NおよびSiの包囲
層との境界部に未結合部(ボィド)は全く存在せず、一
方結合相形成成分としての酸化アルミニウム(以下N2
03で示す)および窒化珪素(以下Si3N4で示す)
とは、その表面層部分で相互拡散した状態になっている
ので、CBN粒子と結合相とはNおよび/またはSiを
介して強固に結合しており、この結果材料は級性の著し
く高いものとなり、さた、すぐれた耐摩耗性と高硬度が
CBN粒子と、AI203によって確保されるばかりで
なく、Si3N4の含有によって高温特性と耐熱衝撃性
も向上するようになり、さらにこのCBN基嬢縞材料に
、Ni、AI、Co、Si、およびCrのうちの1蟹ま
たは2種以上の金属成分を0.5〜1の重量%の範囲で
含有させると、これらの成分には結合相同志の結合力を
強化する作用があることから、材料がより繊密となり、
さらに、また上記CBN基競給材料におけるCBNの一
部を、CBNより多くならない範囲、すなわち、〇.〇
5<ウルッ鉱型華化棚囚素C容量%)<ICBN(容量
%)を満足する範囲でワルツ鍵型窒化棚素(以下WBN
で示す)で置換すると、材料の轍性が一段と増大するよ
うになるという知見を得たのである。
This was revealed through detailed observation using a scanning electron microscope of the boundary between the CBN particles and the binder phase (metal/ceramic compound) in the above-mentioned CBN-based material. At the time of dawn fringes, fine unbonded parts (voids) are formed at the boundary part due to the binder phase not being sufficiently wrapped around the fine concave parts on the surface of the CBN particles, and The adhesion between CBN particles and the binder phase varies depending on the constituent components of the binder phase, but it is particularly low in the case of carbide-based ceramics, which means that there are parts of the bond between the CBN particles and the binder phase that have weak bond strength. It is understood that this is caused by the formation of Therefore, from the above-mentioned viewpoint, the inventors of the present invention aimed to obtain a CBN-based cemented material that has particularly excellent rutting resistance and wear resistance. One or two of AI and Si as bond-strengthening metals: 2
~25% by weight, aluminum oxide: 2-3% by weight, silicon nitride: 2-3% by weight, and the remainder consists of CBN (cubic shebal nitride) and inevitable impurities, and Assuming that CBN occupies 40 to 90% by volume and that the bond-strengthening metal has a structure in which the CBN is surrounded by an average layer thickness of 0.1 to 1.5 cm, the carbon that constitutes the dispersed phase
AI and Si, which act as bond-strengthening metals surrounding the BN particles, have good wettability with the CBN particles, and react with impurities such as oxygen, water, and oxides attached to the surface of the CBN particles, and remove them. and clean it, and then pre-clean it with C when preparing the raw material.
The surface of the BN particles is strongly and densely coated using methods such as electroless coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), and plasma chemical vapor deposition (PCVD). Therefore, there is no unbonded part (void) at the boundary between the CBN particles and the surrounding layer of N and Si, and on the other hand, aluminum oxide (hereinafter N2
03) and silicon nitride (hereinafter referred to as Si3N4)
Since the CBN particles and the binder phase are mutually diffused in the surface layer, the CBN particles and the binder phase are strongly bonded through N and/or Si, and as a result, the material has extremely high quality. In addition, not only the excellent wear resistance and high hardness are ensured by the CBN particles and AI203, but also the high temperature properties and thermal shock resistance are improved by the inclusion of Si3N4. When a material contains one or more metal components of Ni, AI, Co, Si, and Cr in a range of 0.5 to 1% by weight, these components have a bonding phase. Because it has the effect of strengthening the bonding force, the material becomes more delicate,
Furthermore, a portion of the CBN in the CBN-based competitive material is set within a range that does not exceed the CBN, that is, 0. 〇5<Wultz-key type nitride shelving unit C capacity%) <ICBN (volume%)
They found that when the material was replaced with (shown by ), the rutting properties of the material were further increased.

この発明は、上記知見にもとづいてなされたものであっ
て、以下に成分組成、CBNおよびWBNの体積割合、
並びに結合強化金属の層厚を上記の通りに限定した理由
を説明する。
This invention was made based on the above knowledge, and the following is the component composition, the volume ratio of CBN and WBN,
Also, the reason why the layer thickness of the bond reinforcing metal is limited as described above will be explained.

A 成分組成 ‘a} NおよびSi AIおよびSj成分には、上記の通りCBN粒子および
WBN粒子、並びに結合相形成成分としての針203お
よびSi3N4と強固に結合して材料の靭性を著しく改
善する作用があるが、その含有量が2重量%未満では所
望の結合強化作用を確保することができず、一方25重
量%を越えて含有させると、特に高温硬さが低下するよ
うになることから、その含有量を2〜25重量%と定め
た。
A Component composition 'a} N and Si AI and Sj components have the effect of strongly bonding with the CBN particles and WBN particles as well as the needles 203 and Si3N4 as binder phase forming components to significantly improve the toughness of the material. However, if the content is less than 2% by weight, the desired bond-strengthening effect cannot be ensured, while if the content exceeds 25% by weight, the high-temperature hardness in particular decreases. Its content was determined to be 2 to 25% by weight.

‘b} 山203 N203には、材料の耐摩耗性を向上させる作用がある
が、その含有量が2重量%未満では所望のすぐれた耐摩
耗性を得ることができず、一方3唯重量%を越えて含有
させると耐熱特性が低下するようになることから、その
含有量を2〜3の重量%と定めた。
'b} Mountain 203 N203 has the effect of improving the wear resistance of the material, but if its content is less than 2% by weight, the desired excellent wear resistance cannot be obtained; If the content exceeds 100%, the heat resistance properties will deteriorate, so the content was set at 2 to 3% by weight.

W Si3N4 Si3N4には、高温特性および耐熱衝撃性を向上させ
る作用があるが、その含有量が2重量%禾満では、前記
作用に所望の効果が得られず、一方3の重量%を超えて
含有させると、耐摩耗性が劣化するようになることから
、その含有量を2〜3値重量%と定めた。
W Si3N4 Si3N4 has the effect of improving high-temperature properties and thermal shock resistance, but if the content is less than 2% by weight, the desired effect cannot be obtained, while if the content exceeds 3% by weight, Since the abrasion resistance deteriorates when the content is included, the content is determined to be 2 to 3 weight %.

‘d’Ni、N、Co、Si、およびCrこれら金属成
分には、上記の通り結合相を繊密化して材料の強度およ
び耐衝撃性を一段と向上させる作用があるので、特にこ
れらの特性が要求される場合に必要に応じて含有される
が、その含有量が0・5重量%未満では前記作用に所望
の効果が得られず、一方1の重量%を越えて含有させる
と硬さ低下が著しくなることから、その含有量を0・5
〜1の重量%と定めた。
'd'Ni, N, Co, Si, and Cr These metal components have the effect of densifying the binder phase and further improving the strength and impact resistance of the material, so these properties are particularly important. It is included as necessary when required, but if the content is less than 0.5% by weight, the desired effect cannot be obtained, while if it is included in excess of 1% by weight, the hardness decreases. Since the content becomes significant, its content is reduced to 0.5
~1% by weight.

B CBNの体積割合 CBNの結合相に対する割合が4咳容量%未満では、相
対的に硬質のCBNの割合が少なすぎて所望の耐摩耗性
を確保することができず、一方CBNの割合が90容量
%を越えると、相対的に結合相の割合が少なくなりすぎ
て鞠性低下をきたすようになることから、その体積割合
を40〜9畔容量%と定めた。
B Volume percentage of CBN When the ratio of CBN to the binder phase is less than 4% by volume, the ratio of relatively hard CBN is too small to ensure the desired wear resistance, while on the other hand, when the ratio of CBN is 90 If it exceeds 40% to 9% by volume, the proportion of the binder phase becomes relatively too small, resulting in a decrease in ballistic properties, so the volume proportion was set at 40 to 9% by volume.

C WBNの置換割合 WBMこは、材料の級性を一段と向上させる作用があの
で、特に高靭性が要求される場合に必要に応じてCBN
の一部を置換した形で含有させるが、その置換割合、す
なわちWBN(容量%)/CBN(容量%)が0.05
未満では所望の鰯性向上効果が得られず、一方1を越え
た置換割合、すなわち相対的にCBNに比してWBNの
方が多い状態にすると、材料の硬さが低下し、耐摩耗性
が低下するようになることから、CBNの一部をWBN
で置換する場合には、o‐o5<漢詩<・の条件を満足
させなければならない。
C WBN substitution ratio WBM This has the effect of further improving the quality of the material, so when particularly high toughness is required, CBN may be added as needed.
is contained in a partially substituted form, but the substitution ratio, that is, WBN (volume %) / CBN (volume %) is 0.05.
If the substitution ratio is less than 1, the desired effect of improving sardine properties cannot be obtained. On the other hand, if the substitution ratio exceeds 1, that is, there is relatively more WBN than CBN, the hardness of the material decreases, and the wear resistance decreases. As the
When replacing with , the condition o-o5<Chinese poem<・ must be satisfied.

○ 結合強化金属としてのNおよびSiの平均層厚その
平均層厚が0.1〆の未満では、CBN粒子およびWB
N粒子と結合相との間に十分な結合強度を確保すること
ができず、一方1仏肌を越えた平均層厚にすると、材料
の硬さが低下するようになることから、その平均層厚を
0.1〜1仏のと定めた。
○ Average layer thickness of N and Si as bond-strengthening metals If the average layer thickness is less than 0.1, CBN particles and WB
It is not possible to secure sufficient bonding strength between the N particles and the binder phase, and on the other hand, if the average layer thickness exceeds one layer thickness, the hardness of the material will decrease. The thickness was determined to be 0.1 to 1 French.

なお、この発明の超高圧鯖給材料は、まず、CBN粉末
、さらに必要に応じてWBN粉末の表面に、無電解〆ツ
キ法、CVD法、PVD法、およびPCVD法などの方
法を用いて、結合強化金属としてのAIおよび/または
Siを0.1〜lrmの平均層厚で被覆し、さらに必要
に応じてその上に結合相形形成分としての山203およ
び/またはSi3N4を後層被覆し、このように調製し
た結合強化金属被覆のCBN粉末およびWBN粉末、並
びに結合強化金属と、結合相形成成分とを複層被覆した
CBN粉末およびWBN粉末、さらにAI2Q粉末、S
i3N4粉末、Ni粉末、Co粉末、AI粉末、Si粉
末、Cr粉末、およびこれらの金属の2種以上の合金粉
末を原料粉末として用意し、これら原料粉末のうちから
適宜選択して所定の配合組成に配合し、この配合粉末を
通常の条件で混合した後、粉末状態あるいは庄粉末の形
で必要に応じて超合金プレートなどと一諸に金属容器に
任れ、真空脱ガスして密封し、ついでこの密封容器を、
例えば侍公昭36一23463号公報に記数れるような
超高圧高温発生装置に装着し、圧力および温度を上げ、
圧力:40〜7岬■、温度:1200〜1600q0の
範囲内の圧力と温度に数分〜数10分保持した後、冷却
し、最後的に圧力を解放することからなる基本的工程に
よって製造することができる。
The ultra-high-pressure mackerel feed material of the present invention is produced by first applying a method such as an electroless finishing method, a CVD method, a PVD method, or a PCVD method to the surface of the CBN powder and, if necessary, the WBN powder. Coating AI and/or Si as a bond-strengthening metal with an average layer thickness of 0.1 to lrm, and further coating thereon as a bonding phase-forming component with a back layer of mountain 203 and/or Si3N4 as necessary, CBN powder and WBN powder coated with a bond-strengthening metal prepared in this way, CBN powder and WBN powder coated with a bond-strengthening metal and a binder phase forming component in multiple layers, and AI2Q powder, S
i3N4 powder, Ni powder, Co powder, AI powder, Si powder, Cr powder, and alloy powder of two or more of these metals are prepared as raw material powders, and a predetermined composition is prepared by appropriately selecting from these raw material powders. After mixing this blended powder under normal conditions, it is placed in a metal container together with a superalloy plate, etc. as necessary in the powder state or in the form of powder, vacuum degassed, and sealed. Next, take this sealed container.
For example, it is attached to an ultra-high pressure and high temperature generator as described in Samurai Publication No. 36-123463, and the pressure and temperature are increased.
Manufactured by a basic process consisting of maintaining the pressure and temperature within the range of pressure: 40 to 7 cm, temperature: 1200 to 1600 q0 for several minutes to several tens of minutes, cooling, and finally releasing the pressure. be able to.

つぎに、この発明の超高圧暁絹材料を実施例により具体
的に説明する。
Next, the ultra-high pressure Akatsuki silk material of the present invention will be specifically explained using Examples.

実施例 公知のPVD法およびCVD法を用いて、それぞれ第1
表に示される被覆CBN粉末および被覆WBN粉末を調
製し、これらの被覆粉体、平均粒蓬:2rのを有するA
I203粉末、同2rのを有するSi3N4粉末、いず
れも同2A机を有するNi粉末、AI粉末、Co粉末、
Si粉末、およびCr粉末をそれぞれ原料粉末として用
意し、これら原料粉末を、それぞれ第1表に示される配
合組成に配合し、これら配合粉末をボールミル中で約2
時間湿式混合した後、乾燥し、ついでこの混合粉末を外
蓬:12.5肋ぐ×厚さ:1.5側の寸法をもった超硬
合金プレートと一諸に詰め込み菱入し、真空中で脱気し
、密封した後、この密封容器を公知の超高圧高温発生装
置に袋入し、圧力:5郎b、温度:130ぴ○、保持時
間:1び分の条件で競結し、最終的に冷却して圧力を徐
々に下げることからなる基本的工程によって、実質的に
配合組成と同一の最終成分組成をもった本発明超高圧暁
結材料1〜19をそれぞれ製造した。
Example 1 Using the known PVD method and CVD method, the first
The coated CBN powders and coated WBN powders shown in the table were prepared, and these coated powders had an average grain size of 2r.
I203 powder, Si3N4 powder with the same 2r, Ni powder, AI powder, Co powder, all with the same 2A,
Si powder and Cr powder are each prepared as raw material powders, and these raw material powders are blended into the compositions shown in Table 1, and these blended powders are heated in a ball mill for about 20 minutes.
After wet mixing for an hour, it is dried, and then the mixed powder is packed together with a cemented carbide plate with dimensions of 12.5 mm x 1.5 mm and placed in a vacuum chamber. After degassing and sealing, this sealed container was placed in a known ultra-high pressure and high temperature generator and heated under the following conditions: pressure: 5cm, temperature: 130cm, holding time: 1cm. By the basic process consisting of final cooling and gradual pressure reduction, the ultra-high pressure deposited materials 1 to 19 of the present invention were produced, respectively, with a final component composition substantially the same as the formulation composition.

つぎに、この結果かち得られた本発明超高圧暁綾材料1
〜19について、被削材:ダイス鋼(SKD−11、硬
さ:HRC60)、切削速度:100の/min、送り
:0.1肌/rev.、切込み:0.5脚、切削油:な
しの条件で切削試験を行ない。
Next, the ultra-high pressure Akaya material 1 of the present invention obtained as a result
~19, work material: die steel (SKD-11, hardness: HRC60), cutting speed: 100/min, feed: 0.1 skin/rev. A cutting test was conducted under the conditions of , depth of cut: 0.5 feet, and no cutting oil.

刃先の逃げ面摩耗が0.2肌に至るまでの切削時間を測
定すると共に、さらに被削材:長手方向にそって中4仇
枕×深さ4仇岬のU溝を相互対称位置に2本有する外径
13仇舷?のダイス鋼丸棒(SKD−61、硬さ:HR
C52)、切削速度:100m/min、切込み:0.
5脚、送り:0.05、0.1、0.150.2、0.
3 および0・4肌′rev.、各送り毎の切削時間:
2分、切削油:なしの条件での断続切削試験を行ない、
刃先に欠け発生が見られた時点の送り量をチェックした
。この切削試験結果をビッカース硬さと共に第1表に合
せて示した。S 船 船 S 船 船 なお、第1表には、いずれも分散相がCBNで構成され
ているが、結合相の異る市販の超高圧凝結材料、すなわ
ち結合相がAI−Coからなる金属で構成された材料(
以下従来超高圧焼結材料1という)、および結合相がT
ICNのセラミック系化合物からなる材料(以下従釆超
高圧暁結材料2という)の同一条件での切削試験結果も
示した。
In addition to measuring the cutting time until the flank wear of the cutting edge reaches 0.2 skin, we also cut two U-grooves with a diameter of 4 mm x 4 mm deep along the longitudinal direction of the workpiece at mutually symmetrical positions. This book has an outer diameter of 13 mm? die steel round bar (SKD-61, hardness: HR
C52), cutting speed: 100 m/min, depth of cut: 0.
5 legs, feed: 0.05, 0.1, 0.150.2, 0.
3 and 0.4 skin'rev. , cutting time for each feed:
An intermittent cutting test was conducted for 2 minutes without cutting oil.
The feed amount was checked at the time when chipping was observed on the cutting edge. The cutting test results are shown in Table 1 along with the Vickers hardness. S Ship S Ship In Table 1, the dispersed phase is composed of CBN, but there are commercially available ultra-high pressure condensed materials with different binder phases, that is, metals in which the binder phase is made of AI-Co. The composed material (
(hereinafter referred to as conventional ultra-high pressure sintered material 1), and the binder phase is T
The results of a cutting test under the same conditions for a material made of ICN's ceramic compound (hereinafter referred to as secondary ultra-high pressure lather material 2) are also shown.

第1表に示されるように、本発明超高圧暁給材料1〜1
9は、いずれもすぐれた耐摩耗性および靭性を兼ね備え
ているので、いずれの切削試験においてもすぐれた切削
性能を示すのに対して、耐摩耗性および磁性のいずれか
の特性が劣る従来超高圧糠結材料1、2においては、両
試験とも満足する結果を示さないことが明らかである。
上述のように、この発明の超高圧焼結材料は、すぐれた
耐摩耗性と鋤性を有し、かつ高硬度をもつほか、耐熱性
および高温強度にもすぐれているので、これらの特性が
要求さる切削工具は勿論のこと、軸受や線引ダイスなど
の耐摩耗性工具として使用してもすぐれた性能を発揮す
るのである。
As shown in Table 1, the ultra-high pressure material 1 to 1 of the present invention
No. 9 has both excellent wear resistance and toughness, so it shows excellent cutting performance in all cutting tests, whereas conventional ultra-high pressure It is clear that the brazed materials 1 and 2 do not show satisfactory results in both tests.
As mentioned above, the ultra-high pressure sintered material of the present invention has excellent wear resistance, plowability, and high hardness, as well as excellent heat resistance and high-temperature strength. It exhibits excellent performance not only as cutting tools, but also as wear-resistant tools such as bearings and wire drawing dies.

Claims (1)

【特許請求の範囲】 1 結合強化金属としてのAlおよびSiのうちの1種
または2種:2〜25重量%、酸化アルミニウム:2〜
30重量%、窒化硅素:2〜30重量%を含有し、残り
が立方晶窒化硼素と不可避不純物からなる組成を有し、
かつ立方晶窒化硼素が体積割合で40〜90%を占める
と共に、上記結合強化金属が立方晶窒化硼素を0.1〜
1μmの平均層厚で包囲した組織を有することを特徴と
することを特徴とする切削および耐摩耗工具用高靭性窒
化硅素基超高圧焼結材料。 2 結合強化金属としてのAlおよびSiのうちの1種
または2種:2〜25重量%、酸化アルミニウム:2〜
30重量%、窒化硅素:2〜30重量%を含有し、さら
にNi、Al、Co、Si、およびCrのうちの1種ま
たは2種以上:0.5〜10重量%を含有し、残りが立
方晶窒化硼素と不可避不純物からなる組成を有し、かつ
立方晶窒化硼素が体積割合で40〜90%を占めると共
に、上記結合強化金属が立方晶室化硅素を0.1〜1μ
mの平均層厚で包囲した組織を有することを特徴とする
切削および耐摩耗工具用高靭性窒化硼素基超高圧焼結材
料。 3 結合強化金属としてAlおよびSiのうちの1種ま
たは2種:2〜25重量%、酸化アルミニウム:2〜3
0重量%、窒化硅素:2〜30重量%を含有し、残りが
立方晶窒化硼素およびウルツ鉱型窒化硼素と不可避不純
物からなる組成を有し、かつ立方晶窒化硼素とウルツ鉱
型窒化硼素が体積割合で40〜90%を占めると共に、
0.05<ウルツ鉱型室化硼素(容量%)/立方晶室化
硼素(容量%)<1を満足し、さらに上記結合強化金属
が立方晶窒化硼素およびウルツ鉱型窒化硼素を0.1〜
1μmの平均層厚で包囲した組織を有することを特徴と
する切削および耐摩耗工具用高靭性窒化硼素基超高圧焼
結材料。 4 結合強化金属としてのAlおよびSiのうちの1種
または2種:2〜25重量%、酸化アルミニウム:2〜
30重量%、窒化硅素:2〜30重量%を含有し、さら
にNi、Al、Co、Si、およびCrのうちの1種ま
たは2種以上:0.5〜10重量%を含有し、残りが立
方晶窒化硼素およびウルツ鉱型窒化硼素と不可避不純物
からなる組成を有し、かつ立方晶窒化硼素とウルツ鉱型
窒化硼素が体積割合で40〜90%を占めると共に、0
.05<ウルツ鉱型室化硼素(容量%)<立方晶室化硼
素(容量%)<1を満足し、さらに上記結合強化金属が
立方晶窒化硼素およびウルツ鉱型窒化硼素を0.1〜1
μmの平均層厚で包囲した組織を有することを特徴とす
る切削および耐摩耗工具用高靭性窒化硼素基超高圧焼結
材料。
[Claims] 1. One or two of Al and Si as bond-strengthening metals: 2 to 25% by weight, aluminum oxide: 2 to 25% by weight.
30% by weight, silicon nitride: 2 to 30% by weight, and the remainder consists of cubic boron nitride and inevitable impurities,
In addition, cubic boron nitride occupies 40 to 90% by volume, and the bond-strengthening metal accounts for 0.1 to 90% of cubic boron nitride.
A high-toughness silicon nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized in that it has an enclosed structure with an average layer thickness of 1 μm. 2 One or two of Al and Si as bond-strengthening metals: 2-25% by weight, aluminum oxide: 2-25% by weight
30% by weight, silicon nitride: 2 to 30% by weight, further containing one or more of Ni, Al, Co, Si, and Cr: 0.5 to 10% by weight, and the remainder It has a composition consisting of cubic boron nitride and unavoidable impurities, and the cubic boron nitride accounts for 40 to 90% by volume, and the bond-strengthening metal has a cubic boron nitride content of 0.1 to 1 μm.
A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having an enclosed structure with an average layer thickness of m. 3 One or two of Al and Si as bond-strengthening metals: 2 to 25% by weight, aluminum oxide: 2 to 3
0% by weight, silicon nitride: 2 to 30% by weight, the remainder having a composition consisting of cubic boron nitride, wurtzite boron nitride, and inevitable impurities, and containing cubic boron nitride and wurtzite boron nitride. It accounts for 40-90% by volume, and
0.05<wurtzite boron nitride (volume %)/cubic boron nitride (volume %)<1; ~
A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having an enclosed structure with an average layer thickness of 1 μm. 4 One or two of Al and Si as bond-strengthening metals: 2-25% by weight, aluminum oxide: 2-25% by weight
30% by weight, silicon nitride: 2 to 30% by weight, further containing one or more of Ni, Al, Co, Si, and Cr: 0.5 to 10% by weight, and the remainder It has a composition consisting of cubic boron nitride, wurtzite boron nitride, and inevitable impurities, and cubic boron nitride and wurtzite boron nitride account for 40 to 90% by volume, and 0.
.. 05<wurtzite boron nitride (volume %)<cubic boron nitride (volume %)<1;
A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having an enclosed structure with an average layer thickness of μm.
JP56159623A 1981-10-07 1981-10-07 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools Expired JPS6020458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56159623A JPS6020458B2 (en) 1981-10-07 1981-10-07 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159623A JPS6020458B2 (en) 1981-10-07 1981-10-07 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools

Publications (2)

Publication Number Publication Date
JPS5861256A JPS5861256A (en) 1983-04-12
JPS6020458B2 true JPS6020458B2 (en) 1985-05-22

Family

ID=15697759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159623A Expired JPS6020458B2 (en) 1981-10-07 1981-10-07 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools

Country Status (1)

Country Link
JP (1) JPS6020458B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10877390B2 (en) 2018-08-02 2020-12-29 Canon Kabushiki Kaisha Toner
US10942465B2 (en) 2018-10-19 2021-03-09 Canon Kabushiki Kaisha Toner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753607B2 (en) * 1986-06-21 1995-06-07 黒崎窯業株式会社 Method for manufacturing refractory material containing boron nitride

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514207A (en) * 1974-07-01 1976-01-14 Kagaku Gijutsucho Mukizai
JPS5377811A (en) * 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation
JPS546759A (en) * 1977-06-17 1979-01-19 Fujitsu Ltd Semiconductor logic circuit
JPS5597448A (en) * 1978-12-28 1980-07-24 Nippon Oil & Fats Co Ltd Sintered body containing high density phase boron nitride and preparation of the same
JPS55119150A (en) * 1979-03-03 1980-09-12 Tatsuro Kuratomi Cubic system boron nitride solid solution and preparation thereof
JPS55126581A (en) * 1979-03-19 1980-09-30 De Beers Ind Diamond Abrasive molded body and its manufacture
JPS55164475A (en) * 1979-06-06 1980-12-22 Mitsubishi Metal Corp Coated cubic boron nitride powder for grindstone and powder metallurgy
JPS5626771A (en) * 1979-08-14 1981-03-14 Sumitomo Electric Industries Sintered body for cast iron cutting tool and its manufacture
JPS5677359A (en) * 1979-11-30 1981-06-25 Nippon Oil & Fats Co Ltd High density phase boron nitride composite sintered body and its manufacture

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514207A (en) * 1974-07-01 1976-01-14 Kagaku Gijutsucho Mukizai
JPS5377811A (en) * 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation
JPS546759A (en) * 1977-06-17 1979-01-19 Fujitsu Ltd Semiconductor logic circuit
JPS5597448A (en) * 1978-12-28 1980-07-24 Nippon Oil & Fats Co Ltd Sintered body containing high density phase boron nitride and preparation of the same
JPS55119150A (en) * 1979-03-03 1980-09-12 Tatsuro Kuratomi Cubic system boron nitride solid solution and preparation thereof
JPS55126581A (en) * 1979-03-19 1980-09-30 De Beers Ind Diamond Abrasive molded body and its manufacture
JPS55164475A (en) * 1979-06-06 1980-12-22 Mitsubishi Metal Corp Coated cubic boron nitride powder for grindstone and powder metallurgy
JPS5626771A (en) * 1979-08-14 1981-03-14 Sumitomo Electric Industries Sintered body for cast iron cutting tool and its manufacture
JPS5677359A (en) * 1979-11-30 1981-06-25 Nippon Oil & Fats Co Ltd High density phase boron nitride composite sintered body and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10877390B2 (en) 2018-08-02 2020-12-29 Canon Kabushiki Kaisha Toner
US10942465B2 (en) 2018-10-19 2021-03-09 Canon Kabushiki Kaisha Toner

Also Published As

Publication number Publication date
JPS5861256A (en) 1983-04-12

Similar Documents

Publication Publication Date Title
KR100219930B1 (en) Superhard composite member and its production
US6500557B1 (en) Composite and method for producing the same
JP4731645B2 (en) Cemented carbide and coated cemented carbide and method for producing the same
JPS5860679A (en) High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
JPS6245196B2 (en)
JPS6119367B2 (en)
JPS6020457B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS6020458B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPH0196084A (en) Surface-coated cubic boron nitride-based material sintered under superhigh pressure to be used for cutting tool
JPS6020456B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS6225630B2 (en)
JPS6033893B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JPH06198504A (en) Cutting tool for high hardness sintered body
JPS6225632B2 (en)
JPH04116134A (en) Wc base sintered hard alloy excellent in toughness and sintered hard alloy coated with hard layer
JPH0551267A (en) Sintering material for tool
JPS602378B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
JPS5935423B2 (en) Sintered material for cutting tools containing cubic boron nitride
JPS59170265A (en) Surface coated sintered hard alloy member for cutting tool
JPS6146429B2 (en)
JPS6143307B2 (en)
JPS60131867A (en) High abrasion resistance superhard material
JPS6143306B2 (en)