JPS5935423B2 - Sintered material for cutting tools containing cubic boron nitride - Google Patents

Sintered material for cutting tools containing cubic boron nitride

Info

Publication number
JPS5935423B2
JPS5935423B2 JP53084539A JP8453978A JPS5935423B2 JP S5935423 B2 JPS5935423 B2 JP S5935423B2 JP 53084539 A JP53084539 A JP 53084539A JP 8453978 A JP8453978 A JP 8453978A JP S5935423 B2 JPS5935423 B2 JP S5935423B2
Authority
JP
Japan
Prior art keywords
sintered material
cutting
boron nitride
cubic boron
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53084539A
Other languages
Japanese (ja)
Other versions
JPS5514806A (en
Inventor
泰次郎 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP53084539A priority Critical patent/JPS5935423B2/en
Publication of JPS5514806A publication Critical patent/JPS5514806A/en
Publication of JPS5935423B2 publication Critical patent/JPS5935423B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 この発明は、特にすぐれた耐摩耗性および靭性が要求さ
れる高硬度鋼の切削に切削工具として使用するのに適し
た立方晶窒化硼素含有の緻密な焼結材料に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dense sintered material containing cubic boron nitride, which is suitable for use as a cutting tool, particularly for cutting high-hardness steel where excellent wear resistance and toughness are required. It is something.

近年、苛酷な使用条件下での切削に際して比較的良好な
切削%性を示す切削工具用焼結材料として、立方晶窒化
硼素(以下、C−BNで示す)を主成分とし、少量のA
jおよび鉄族金属を含有した焼結材料が提案され、市販
されており、なるほど前記焼結材料は、約1100℃ま
での高温まで安定で、かつダイヤモンドに次ぐ著しく高
い硬さをもつC−BNを主成分として含有するため、耐
摩耗性にすぐれ、したがって仕上切削工具として使用し
た場合に有用な特性を発揮するが、これを。
In recent years, as a sintered material for cutting tools that exhibits relatively good machinability when cutting under severe usage conditions, cubic boron nitride (hereinafter referred to as C-BN) is the main component, and a small amount of A
A sintered material containing J and an iron group metal has been proposed and commercially available, and the sintered material is C-BN, which is stable at high temperatures up to about 1100°C and has a significantly higher hardness second only to diamond. Because it contains as a main component, it has excellent wear resistance and therefore exhibits useful properties when used as a finishing cutting tool.

例えばすぐれた靭性を有する通常の炭化タングステン(
以下、WCで示す)基超硬合金を切削工具として使用す
る場合に適用される切削条件0例えば切込み=4朋、送
り: 0.4mrtt/ revの条件で鋼。
For example, ordinary tungsten carbide (
Cutting conditions applied when using a base cemented carbide (hereinafter referred to as WC) as a cutting tool are 0, for example, depth of cut = 4 mm, feed rate: 0.4 mrtt/rev.

特に高硬度鋼を切削するのに使用すると、はとんどの場
合靭性不足が原因で刃先が欠損して使用に耐えなくなる
のが現状である。
In particular, when used to cut high-hardness steel, the cutting edge is often damaged due to lack of toughness, making it unusable.

本発明者等は、ト述のような観点から、h記従来公知の
C−BN基焼結材料に靭性を付与すべく研究を行なった
結果、前記C−BN基焼結材料に。
From the viewpoints mentioned above, the present inventors conducted research to impart toughness to the conventionally known C-BN-based sintered material, and as a result, developed the C-BN-based sintered material.

立方晶窒化タンタル(以下、CTaNで示す):50〜
95容量%(以下%は容量%を示す)と。
Cubic tantalum nitride (hereinafter referred to as CTaN): 50~
95% by volume (hereinafter % indicates volume%).

周期律表の4a 、5a、および6a族金属の炭化物、
並びにTaを除く同4aおよび5a族金属の窒化物(以
下、それぞれT ice ZrC5HfC,VC’5T
aCsNbCsCr3C2#MO2C,WC,’riN
carbides of metals of groups 4a, 5a and 6a of the periodic table;
and nitrides of group 4a and 5a metals excluding Ta (hereinafter referred to as Tice ZrC5HfC and VC'5T, respectively)
aCsNbCsCr3C2#MO2C,WC,'riN
.

ZrN、HfN、VN、およびNbNで示し、かつこれ
らを総称して金属層・窒化物という)のうちの1種また
は2種以り二5〜50%との固溶体からなる高融点化合
物を含有させると、C−BNによってもたらされるすぐ
れた耐摩耗性を保持した状態で、従来WCC超超硬合金
もつ靭性に匹敵するすぐれた靭性をもつようになり、し
たがって、これを鋼、特に高硬度鋼の一般切削から仕と
切削までの広範囲に亘る切削に使用でき、しかも切削に
際して有用な切削性能を発揮するようになるという知見
を得たのである。
Contains a high melting point compound consisting of a solid solution of 25 to 50% of one or two of ZrN, HfN, VN, and NbN, collectively referred to as metal layer/nitride. While retaining the excellent wear resistance provided by C-BN, it now has excellent toughness comparable to that of conventional WCC cemented carbide, and therefore it can be used as a substitute for steel, especially high-hardness steel. They found that it can be used for a wide range of cutting, from general cutting to finish cutting, and that it also exhibits useful cutting performance during cutting.

したがって、この発明は、J:記知見にもとづいてなさ
れたものであって。
Therefore, this invention was made based on the findings described in J.

C−BN:20〜69.8%。C-BN: 20-69.8%.

C−TaN:50〜95%と、金属炭・窒化物:5〜5
0%との固溶体からなる高融点化合物:30〜79.8
%。
C-TaN: 50-95%, metal carbon/nitride: 5-5
High melting point compound consisting of solid solution with 0%: 30-79.8
%.

1?、またはpe、Co、NisおよびSiのうちの1
種または2種板h:io〜50%を含有し、残りがAl
からなるi合金の焼結助剤金属と不可避不純物二0.2
〜5%。
1? , or one of pe, Co, Nis and Si
Seed or 2nd type plate h: Contains io ~ 50%, the rest is Al
Sintering aid metal and inevitable impurities for i alloy consisting of 20.2
~5%.

からなる成分組成を有するC−BN含有の切削工具用焼
結材料に特徴を有するものである。
It is characterized by a C-BN-containing sintered material for cutting tools having a composition consisting of:

つぎに、この発明の焼結材料において、成分組成範囲を
J:、記の通りに限定した理由を説明する。
Next, in the sintered material of the present invention, the reason why the component composition range is limited to J: as described below will be explained.

(a)C−BN C−BNは、温度1200℃以丘、圧力40Kb以り、
望ましくは温度1800℃以り、圧力60Kb以丘の条
件で合成されるもので、ダイヤモンドに次ぐ硬さくビッ
カース硬さで6000〜700 okg/m4)を有し
、かつダイヤモンドより高温まで安定した性質をもつと
共に鉄族金属に対して反応しにくい性質をもつ成分であ
るが、その含有量が20%未満では、C−BNのもつ高
硬度を焼結材料に反映させることができず、この結果所
望の耐摩耗性を確保することができず、一方69.8%
を越えて含有させると、焼結材料に粘性低下をきたして
高送り切削ができなくなることから、その含有量を20
〜69.8%と定めた。
(a) C-BN C-BN has a temperature of 1200℃ or higher, a pressure of 40Kb or higher,
It is preferably synthesized at a temperature of 1,800°C or higher and a pressure of 60Kb or higher, has a Vickers hardness of 6,000 to 700 kg/m4), which is second only to diamond, and has properties that are more stable at higher temperatures than diamond. It is a component that has a property of being hard to react with iron group metals, but if its content is less than 20%, the high hardness of C-BN cannot be reflected in the sintered material, and as a result, the desired It was not possible to ensure wear resistance of 69.8%.
If the content exceeds 20%, the viscosity of the sintered material will decrease and high feed cutting will not be possible.
It was set at ~69.8%.

(b)高融点化合物 一般に、TaNは常温では六方晶型である力ζ高温高圧
下では立方晶型が安定型のものである。
(b) High melting point compound In general, TaN has a hexagonal crystal structure at room temperature, but is stable in a cubic crystal structure under high temperature and high pressure.

したがって、CTaNは1例えば六方晶TaNを、圧力
釜において、窒素雰囲気中、温度二り900℃、圧カニ
1000気圧の条件で処理することによって合成するこ
とができるもので、遷移金属の窒化物中最大の硬さくビ
ッカース硬さで約3200に!9/mi)を有し、かつ
すぐれた耐酸化性をもつものである。
Therefore, CTaN can be synthesized by treating, for example, hexagonal TaN in a nitrogen atmosphere in a pressure cooker at a temperature of 900°C and a pressure of 1000 atm. The maximum hardness is approximately 3200 Vickers hardness! 9/mi) and has excellent oxidation resistance.

しかも、このC−TaNにL記の金属炭・窒化物を固溶
させると、一段と硬さが向とするようになるが、その含
有量がC・TaNに対する割合で5%未満では所望の硬
さ向上効果が得られず、一方50%を越えて含有させる
と、CTaNによってもたらされる焼結材料の靭性向上
効果が損なわれるようになることから。
Moreover, if the metal carbon/nitride listed in L is dissolved in this C-TaN, the hardness will be further improved, but if the content is less than 5% with respect to C-TaN, the desired hardness will not be achieved. On the other hand, if the content exceeds 50%, the effect of improving the toughness of the sintered material brought about by CTaN will be impaired.

高融点化合物を構成するC−TaN→属炭・窒化物固溶
体の組成を、C−TaN:50〜95%、金属炭・窒化
物:5〜50%と定めたのである。
The composition of the C-TaN→metallic carbon/nitride solid solution constituting the high melting point compound was determined to be C-TaN: 50-95% and metal carbon/nitride: 5-50%.

また、高融点化合物の含有量が30%未満では、焼結時
におけるC−TaN−金属炭・窒化物固溶体のスケルト
ン形成が不十分で、焼結材料に所望のすぐれた靭性を付
与することができず、一方79.8%を越えて含有させ
ると、相対的に高硬度を有するC−BNの含有量が少な
くなり過ぎて所望のすぐれた耐摩耗性を確保することが
できないことから、その含有量を30〜79.8%と定
めた。
Furthermore, if the content of the high melting point compound is less than 30%, the skeleton formation of the C-TaN-metallic carbon/nitride solid solution during sintering is insufficient, making it difficult to impart the desired excellent toughness to the sintered material. On the other hand, if the content exceeds 79.8%, the content of C-BN, which has relatively high hardness, becomes too small and it is impossible to secure the desired excellent wear resistance. The content was determined to be 30 to 79.8%.

(c)焼結助剤金属 焼結助剤金属を構成するAlおよびL記組成の1合金に
は焼結を促進して、焼結材料の強度を向上させる作用が
あるが、その含有量が0.2%未満では所望の焼結促進
効果が得られず、一方5%を越えて含有させると、焼結
材料の高温硬さが低下するようになることから、その含
有量を0.2〜5%と定めたのであり、0.5〜2%の
含有が望ましい。
(c) Sintering aid metal Al and an alloy having the composition shown in L, which constitute the sintering aid metal, have the effect of promoting sintering and improving the strength of the sintered material, but their content is If the content is less than 0.2%, the desired sintering promotion effect cannot be obtained, while if the content exceeds 5%, the high temperature hardness of the sintered material will decrease, so the content should be reduced to 0.2%. 5%, and the content is preferably 0.5 to 2%.

なお、A[は焼結中に原料粉末中の吸着酸素と結合して
酸化アルミニウムを形成するので。
Note that A[ combines with adsorbed oxygen in the raw material powder during sintering to form aluminum oxide.

焼結助剤金属を構成するA7およびA[合金が必ずしも
金属状態で焼結材料中に存在するものではない。
A7 and A constituting the sintering aid metal [the alloy does not necessarily exist in the sintered material in a metallic state.

さらに、焼結助剤金属として0.I:記組成のAJli
’合金を用いた場合の方が焼結材料の靭性が向上するよ
うになるが、この人1合金中のFe。
Furthermore, as a sintering aid metal, 0. I: AJli of the following composition
'The toughness of the sintered material is improved when an alloy is used, but the Fe in the alloy.

Co 、Ni 、およびSiのうちの1種または2種以
丘からなる合金成分の含有量を10〜50%と定めたの
は、その含有量が10%未満では所望の靭性向上効果が
得られず、一方50%を越えて含有させると、AAによ
る焼結性改善効果が損なわれるようになるという理由か
らである。
The content of the alloy component consisting of one or more of Co, Ni, and Si is set at 10 to 50% because if the content is less than 10%, the desired toughness improvement effect cannot be obtained. First, if the content exceeds 50%, the sinterability improvement effect of AA will be impaired.

また、この発明の焼結材料は、原料粉末として。Moreover, the sintered material of this invention can be used as a raw material powder.

C−BN粉末、C−TaN−金属炭・窒化物固溶体。C-BN powder, C-TaN-metallic carbon/nitride solid solution.

へ!粉末、およびA1合金粉末を用意し、これら原料粉
末を所定の配合組成に配合し、鉄製ボールミル中で長時
間混合して均質な混合粉末として後。
fart! Powder and A1 alloy powder are prepared, these raw material powders are blended into a predetermined composition, and mixed for a long time in an iron ball mill to form a homogeneous mixed powder.

前記混合粉末を鋼製あるいは高融点金属製容器に封入し
、ついで例えば特公昭38−14号公報に記載されるよ
うな超高圧超高温発生装置に装入し。
The mixed powder is sealed in a container made of steel or a metal with a high melting point, and then charged into an ultra-high pressure and ultra-high temperature generator as described in, for example, Japanese Patent Publication No. 38-14.

圧力および温度を丑げて最終的に圧力=40〜60Kb
、温度: 1200〜1800℃とし、この最終圧力お
よび温度に0.5〜10分間保持し。
By increasing the pressure and temperature, the final pressure is 40 to 60 Kb.
, temperature: 1200-1800<0>C and hold at this final pressure and temperature for 0.5-10 minutes.

冷却後、圧力を開放することによって製造することがで
きる。
It can be manufactured by releasing the pressure after cooling.

つぎに、この発明の焼結材料を実施例により具体的に説
明する。
Next, the sintered material of the present invention will be specifically explained with reference to Examples.

実施例 原料粉末として。Example As raw material powder.

無触媒法で合成された平均粒径:3μmを有する C−BN粉末。Average particle size synthesized by non-catalytic method: 3 μm C-BN powder.

平均粒径:LOpmのC−TaN:50%−TiC:5
0%固溶体粉末。
Average particle size: LOpm of C-TaN:50%-TiC:5
0% solid solution powder.

同1.oμnのC−TaN:95%−NbC:5%固溶
体粉末。
Same 1. oμn C-TaN:95%-NbC:5% solid solution powder.

同0.9pmのC−TaN:95%−WC:5%固溶体
粉末。
Same 0.9 pm C-TaN:95%-WC:5% solid solution powder.

同1、OpmのC−TaN:60%−ZrC:20%−
TaC:20%固溶体粉末。
Same 1, Opm C-TaN: 60%-ZrC: 20%-
TaC: 20% solid solution powder.

同0.9pmのC−TaNニア0%−VC:10%−M
O2C:20%固溶体粉末。
Same 0.9pm C-TaN near 0%-VC:10%-M
O2C: 20% solid solution powder.

同0.9pmのC−TaN:60%−TiC:30%−
WC:10%固溶体粉末。
Same 0.9pm C-TaN: 60%-TiC: 30%-
WC: 10% solid solution powder.

同LOpmのC−TaN:80%−HfC:5%−Nb
C:5%−Cr3C2:5%固溶体粉末。
Same LOpm C-TaN:80%-HfC:5%-Nb
C:5%-Cr3C2:5% solid solution powder.

同LOpmのC−TaN:60%−T iN: 40%
固溶体粉末。
Same LOpm C-TaN: 60%-TiN: 40%
Solid solution powder.

同0.8pmのC−TaN:60%−VN:40%固溶
体粉末。
Same 0.8 pm C-TaN:60%-VN:40% solid solution powder.

同0.9pmのC−TaN:65%−TiN:15%−
NbN:20%固溶体粉末。
Same 0.9pm C-TaN: 65%-TiN: 15%-
NbN: 20% solid solution powder.

同0.8pmのC−TaN:50%−ZrC:30%−
HfN:5%−NbN:15%固溶体粉末。
Same 0.8pm C-TaN: 50%-ZrC: 30%-
HfN:5%-NbN:15% solid solution powder.

同LOpmのC−TaN:60%−TiC二15%−T
iN:25%固溶体粉末。
C-TaN of the same LOpm: 60%-TiC215%-T
iN: 25% solid solution powder.

同1.0μmのCTaN:50%−VC:5%−WC:
30%−NbN:15%の固溶体粉末。
Same 1.0 μm CTaN: 50%-VC: 5%-WC:
30%-NbN:15% solid solution powder.

同5μmのAl粉末。Same 5μm Al powder.

同1.2pmのA#−Co−Ni合金粉末(Co:20
%、Ni: 10%含有)。
A#-Co-Ni alloy powder (Co:20
%, Ni: 10% content).

同1.1μmのA#−Ni合金粉末(Ni:50%含有
)。
A#-Ni alloy powder (containing 50% Ni) with a diameter of 1.1 μm.

同1.0pmのA7−Co合金粉末(Co: 10%含
有)。
1.0 pm A7-Co alloy powder (Co: 10% content).

同1.1μmのA# −N i −F e合金粉末(N
i:30%、pe:10%含有)。
Same 1.1μm A#-Ni-Fe alloy powder (N
i: 30%, pe: 10%).

同1.2μmのA#−Si合金粉末(Si :13%含
有)、を用意し、これら原料粉末を第1表に示される配
合組成に配合し、超硬合金内張りの小型高速遊星運動ミ
ルにて、メチルアルコールを7)Dえて1時間混合し、
混合後、前記ミルの蓋をAr雰囲気中にて開放し、温度
:130℃に加熱してメチルアルコールを蒸発させて乾
燥し、引続いて。
A#-Si alloy powder (Si: 13% content) of 1.2 μm was prepared, and these raw material powders were blended into the composition shown in Table 1, and a small high-speed planetary motion mill with a cemented carbide lining was used. Add methyl alcohol (7) and mix for 1 hour.
After mixing, the lid of the mill was opened in an Ar atmosphere and heated to a temperature of 130°C to evaporate the methyl alcohol and dry the mixture.

同じ<Ar雰囲気内において、別途用意した内径10m
1nφX高さ15mmの寸法をもったTi製円筒型容器
の底部に、まず同じく別途用意した直径9.8朋φ×厚
さ2朋の寸法をもったWCC超超硬合金製円板装入し、
この円板丘に厚みが7間となるように丘記の混合粉末を
装入し、押し棒で軽く押えて充填し、この充填混合粉末
とに厚さ2mmのWCC超超硬合金製円板載置し、つい
でAr雰囲気から取出した後、ざらにTiM丘蓋をかぶ
せてプレスして前記Ti製円筒型容器内の混合粉末の厚
みを5.5朋に圧縮し、引続いて前記円筒型容器と前記
と蓋とを溶接にて密封し、ついで、このようにL記混合
粉末を充填密封した丘記円筒型容器を公知の超高圧超高
温発生装置に装入し、最終付カロ圧力および最終加熱温
度を第1表に示される条件とし、この条件で2〜20分
の範囲内の所定時間保持し、圧力解放と冷却を行なうこ
とによって。
In the same <Ar atmosphere, a separately prepared inner diameter of 10 m
At the bottom of a Ti cylindrical container with dimensions of 1 nφ x height 15 mm, a WCC cemented carbide disk with dimensions of 9.8 mm in diameter x 2 mm in thickness, which was also prepared separately, was first charged. ,
Charge the mixed powder described above so that the thickness is 7 mm, press it lightly with a push rod, and fill it with the filled mixed powder. The powder mixture in the Ti cylindrical container was compressed to a thickness of 5.5 mm by covering it with a TiM cap and pressing it, and then removing it from the Ar atmosphere. The container and the lid are sealed by welding, and then the cylindrical container filled with the L mixed powder and sealed is placed in a known ultra-high pressure and ultra-high temperature generator, and the final caloric pressure and By setting the final heating temperature to the conditions shown in Table 1, maintaining these conditions for a predetermined time within the range of 2 to 20 minutes, and performing pressure release and cooling.

実質的に配合組成と同一の成分組成をもった本発明焼結
材料1〜13を丘記WC基超硬合金製のL下円板に拡散
結合した状態で製造した。
Sintered materials 1 to 13 of the present invention having substantially the same composition as the blended composition were manufactured in a state in which they were diffusion bonded to a lower L disk made of WC-based cemented carbide.

つぎに、この結果得られた本発明焼結材料1〜13を、
切断および研磨により切削用切刃に仕とげ、丘記超硬合
金製円板と結合したままの状態で。
Next, the resulting sintered materials 1 to 13 of the present invention were
Cutting and polishing it into a cutting blade, which remains connected to the Ouki cemented carbide disc.

別途用意した4角形状のWCC超超硬合金製チップ銀ろ
うによって固定し、さらにノーズRを0.4mmに仕丘
げ、さらに従来市販のWCC超超硬合金よびC−BN基
焼結材料(以下従来材料1,2という)製切削工具と共
に。
The square-shaped WCC cemented carbide chip was fixed with silver solder prepared separately, and the nose radius was rounded to 0.4 mm. Along with cutting tools made from conventional materials 1 and 2 (hereinafter referred to as conventional materials 1 and 2).

被削材:ダイス鋼(SKDII、硬さ:HRC60)。Work material: Die steel (SKDII, hardness: HRC60).

切削速度: 100 m/min。Cutting speed: 100 m/min.

切込み:0.5mm。Depth of cut: 0.5mm.

送り: 0.15mm/ rev・。Feed: 0.15mm/rev.

切削時間:20m1n。Cutting time: 20m1n.

の条件での連続切削試験、並びに。Continuous cutting tests under the conditions of

被削材:SNCM−8(硬さ: HB400 ) 。Work material: SNCM-8 (hardness: HB400).

切削速度: 100 m/ min。Cutting speed: 100 m/min.

切込み=0.5朋。Depth of cut = 0.5 mm.

送り: Q、25mm/ rev−。Feed: Q, 25mm/rev-.

切削時間:1m1n。Cutting time: 1m1n.

の条件での断続切削試験を行ない、連続切削試験では切
刃の逃げ面摩耗幅とすくい面摩耗深さを測定し、また断
続切削試験では6本の試験切刃のうちの欠損発生数を測
定した。
An interrupted cutting test was conducted under the following conditions, and in the continuous cutting test, the flank wear width and rake face wear depth of the cutting edge were measured, and in the interrupted cutting test, the number of fractures among the six test cutting edges was measured. did.

これらの測定結果を第1表にビッカース硬さと共に示し
た。
These measurement results are shown in Table 1 together with the Vickers hardness.

第1表に示される結果から、従来材料1(WCC超超硬
合金は靭性にすぐれるが耐摩耗性に劣り。
From the results shown in Table 1, conventional material 1 (WCC cemented carbide has excellent toughness but poor wear resistance.

一方従来材料2(C−BN基焼結材料)は靭性不足が原
因で全数に刃先欠損発生が見られるのに対して1本発明
焼結材料1〜13は、いずれもすぐれた耐摩耗性と靭性
とを具備していることが明らかである。
On the other hand, all of conventional material 2 (C-BN based sintered material) had cutting edge defects due to lack of toughness, whereas 1. sintered materials 1 to 13 of the present invention all have excellent wear resistance. It is clear that the material has toughness.

と述のように、この発明の焼結材料は、すぐれた耐摩耗
性と靭性とを兼ね備えているので、鋼。
As mentioned above, the sintered material of this invention has excellent wear resistance and toughness, making it comparable to steel.

特に高硬度鋼の切削に切削工具として用いた場合すぐれ
た性能を発揮するのである。
It exhibits excellent performance especially when used as a cutting tool for cutting high-hardness steel.

Claims (1)

【特許請求の範囲】 1 立方晶窒化硼素:20〜69.8係。 立方晶窒化タンタル=50〜95係と9周期律表の4a
、5a、および6a族金属の炭化物、並びtこTaを除
く同4aおよび5a族金属の窒化物のうちの1種または
2種以丘:5〜50%との固溶体からなる高融点化合物
:30〜79.8%。 Alからなる焼結助剤金属と不可避不純物二〇、2〜5
%。 からなる組成(以丘容量%)を有することを特徴とする
立方晶窒化硼素含有の切削工具用焼結材料。 2 立方晶窒化硼素:20〜69.8%。 立方晶窒化タンタル:50〜95%と1周期律表の4a
、5a、および6a族金属の炭化物、並びにTaを除く
同4aおよび5a族金属の窒化物のうちの1種または2
種以丘:5〜50%との固溶体からなる高融点化合物=
30〜79.8%。 Fe 、 Co 、Ni 、およびSiのうちの1種ま
たは2種以辷:10〜50%を含有し、残りがA[から
なるA1合金の焼結助剤金属と不可避不純物二〇、2〜
5%、からなる組成(以丘容量%)を有することを特徴
とする立方晶窒化硼素含有の切削工具用焼結材料。
[Claims] 1. Cubic boron nitride: ratio 20 to 69.8. Cubic tantalum nitride = 50-95 and 4a of the 9 periodic table
, 5a, and 6a group metal carbides, and one or two of the group 4a and 5a metal nitrides excluding Ta. ~79.8%. Sintering aid metal consisting of Al and inevitable impurities 20, 2-5
%. A sintered material for a cutting tool containing cubic boron nitride, characterized in that it has a composition (volume %) consisting of: 2 Cubic boron nitride: 20-69.8%. Cubic tantalum nitride: 50-95% and 4a of the periodic table
, carbides of group 5a and 6a metals, and nitrides of group 4a and 5a metals excluding Ta.
High melting point compound consisting of solid solution with 5 to 50%
30-79.8%. Sintering aid for A1 alloy containing one or more of Fe, Co, Ni, and Si: 10 to 50%, with the remainder consisting of A metal and inevitable impurities 20, 2 to 50%
A sintered material for cutting tools containing cubic boron nitride, characterized in that it has a composition (capacity %) of 5%.
JP53084539A 1978-07-13 1978-07-13 Sintered material for cutting tools containing cubic boron nitride Expired JPS5935423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53084539A JPS5935423B2 (en) 1978-07-13 1978-07-13 Sintered material for cutting tools containing cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53084539A JPS5935423B2 (en) 1978-07-13 1978-07-13 Sintered material for cutting tools containing cubic boron nitride

Publications (2)

Publication Number Publication Date
JPS5514806A JPS5514806A (en) 1980-02-01
JPS5935423B2 true JPS5935423B2 (en) 1984-08-28

Family

ID=13833443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53084539A Expired JPS5935423B2 (en) 1978-07-13 1978-07-13 Sintered material for cutting tools containing cubic boron nitride

Country Status (1)

Country Link
JP (1) JPS5935423B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410921B2 (en) * 1985-04-08 1992-02-26

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097410U (en) * 1983-12-08 1985-07-03 株式会社タナカヤ Cubic unit for indoor equipment
CN100415640C (en) * 2005-05-24 2008-09-03 株洲硬质合金集团有限公司 Ultra-fine high-nitrogen tantalum nitride powder and its preparation method
CN112301246A (en) * 2019-07-30 2021-02-02 上海永言特种材料研究所 Preparation method of wear-resistant metal ceramic with small thermal expansion coefficient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410921B2 (en) * 1985-04-08 1992-02-26

Also Published As

Publication number Publication date
JPS5514806A (en) 1980-02-01

Similar Documents

Publication Publication Date Title
US4647546A (en) Polycrystalline cubic boron nitride compact
US4342595A (en) Cubic boron nitride and metal carbide tool bit
JPS627149B2 (en)
US20050226691A1 (en) Sintered body with high hardness for cutting cast iron and the method for producing same
JPS5935423B2 (en) Sintered material for cutting tools containing cubic boron nitride
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JPS5927303B2 (en) Sintered material for cutting tools with toughness and wear resistance
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPS6020456B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS607022B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS644989B2 (en)
JPS6141873B2 (en)
JPS6143312B2 (en)
JP3762278B2 (en) Cemented carbide and method for producing the same
JPS60187659A (en) Cubic boron nitride-base ultrahigh-pressure sintered material for cutting tool
JPS638072B2 (en)
JPS5917180B2 (en) Sintered material with toughness and wear resistance
JPS5917181B2 (en) Sintered material with toughness and wear resistance
JPS6114110B2 (en)
JPS62877B2 (en)
JPS6241306B2 (en)
JPS6020458B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS5929666B2 (en) Sintered material for cutting tools with excellent toughness and wear resistance
JPS5852552B2 (en) Tough cermet for cutting tools
JPS6146429B2 (en)