JPS607022B2 - Cubic boron nitride-based ultra-high pressure sintered material for cutting tools - Google Patents
Cubic boron nitride-based ultra-high pressure sintered material for cutting toolsInfo
- Publication number
- JPS607022B2 JPS607022B2 JP57151075A JP15107582A JPS607022B2 JP S607022 B2 JPS607022 B2 JP S607022B2 JP 57151075 A JP57151075 A JP 57151075A JP 15107582 A JP15107582 A JP 15107582A JP S607022 B2 JPS607022 B2 JP S607022B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- high pressure
- cutting
- resistance
- pressure sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Description
【発明の詳細な説明】
この発明は、すぐれた耐摩耗性、靭‘性、耐落着性、お
よび耐熱衝撃性を有し、特にNi基またはCo基スーパ
ーアロィや高硬度鋼などの切削が困難な材料の切削に切
削工具として使用するのに通した立方晶窒化棚秦基超高
圧焼給材料に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention has excellent wear resistance, toughness, deposition resistance, and thermal shock resistance, and is particularly suitable for cutting Ni-based or Co-based superalloys and high-hardness steel. The present invention relates to a cubic nitride terrace-based ultra-high pressure annealed material that is used as a cutting tool for cutting difficult materials.
近年L 立方晶窒化棚素(以下CBNで略記する)を主
成分とする超高圧暁結材料を切削工具として使用する試
みがなされている。In recent years, attempts have been made to use ultra-high-pressure agglomerated materials containing L cubic shelmetal nitride (hereinafter abbreviated as CBN) as a cutting tool.
このCBN基競結材料は、すぐれた耐摩耗性を有するも
のであって、分散相を形成するCBN粒子の結合相によ
って2種類に大別されている。すなわち、その1つが結
合相を鉄族金属、あるいは鉄族金属とAIなどを主成分
とする金属で構成するものであり、他のものが窒化チタ
ン、炭化チタン、窒化アルミニウム、または酸化アルミ
ニウムなどを主成分とし、金属を含有しないセラミック
で結合相を構成したものである。しかし、前者の結合相
を金属で構成したCBN基超高圧焼結材料においては、
金属結合相によって高靭性をもつようになる反面、高温
で軟化しやすく、したがってこれを多大な熱発生を伴う
苛酷な切削条件で使用した場合には耐摩耗性および耐落
着性不足をきたして十分なる切削性能の発揮は期待でき
ず、熱発生の少ない条件でしか使用することができない
ものである。一方、後者のCBN基超高圧暁結材料にお
いては「結合相がセラミックで構成されているために、
多大な熱発生を伴う条件下ですぐれた耐摩耗性および耐
溶着性を示すが、反面靭性不足や耐熱衝撃性不足となる
のを避けることができず、例えばダイス鋼などの高硬度
鋼のフライス切削などの刃先に大きな衝撃力の加わる切
削条件下ではピッチングや欠損を起し易いものである。
そこで、本発明者等は、上述のような観点から、多大な
熱発生を伴う苛酷な切削条件、並びに刃先に大きな衝撃
力の加わる切削条件下ですぐれた切削性能を発揮するC
BN基超高圧焼結材料を開発すべ〈研究を行なった結果
、CBN基超高圧焼結材料を、重量%で、分散相形成成
分としての周期律表の岬および弦Z族金属の炭化物、窒
化物、および炭窒化物、並びに同鞘族金属の炭化物、さ
らにこれらの2種以上の固港体のうちの1種または2種
以上(以下、これらを総称して金属の炭・窒化物という
):10〜60%、
Z同じく分散相形成成分としてのAIの炭化物、
窒化物、炭窒化物「および馴化物のうちの1種または2
種以上(以下、これらを総称してAIの炭・窒・棚化物
という):1〜30%、結合相形成成分としてのNi、
Co、およびFeの2うちの1種または2種以上(以下
、これらを総称して鉄族金属という):1〜10%、同
じく結合相形成成分としてのPd、Ru、およびRhの
うちの1種または2種以上(以下、これらを総称して白
金族金属という):1〜10%、 2を含有し、残りが
分散相形成成分としてのCBN(ただし30〜9の容量
%含有)と不可避不純物からなる組成で構成すると、こ
の結果のCBN基超高圧焼綾材料は、すぐれた耐摩耗性
、靭性、耐溶着性、および耐熱衝撃性を有することから
、これを3例えばNi基またはCo基スーパーアロィや
高硬度鋼などの切削に切削工具として用いた場合に、ど
んな苛酷な切削条件下においてもすぐれた切削性能を発
揮するという知見を得たのである。This CBN-based bonding material has excellent wear resistance and is roughly divided into two types depending on the binder phase of CBN particles forming the dispersed phase. That is, one of them is one in which the binder phase is composed of an iron group metal or a metal whose main components are an iron group metal and AI, and the other is one in which the binder phase is composed of a metal such as titanium nitride, titanium carbide, aluminum nitride, or aluminum oxide. The main component is ceramic, which does not contain metal, and the binder phase is composed of ceramic. However, in the former CBN-based ultra-high pressure sintered material in which the binder phase is composed of metal,
Although the metal binder phase provides high toughness, it is easily softened at high temperatures, and therefore, when used under harsh cutting conditions that generate a large amount of heat, it may lack sufficient wear resistance and anti-sagging properties. It cannot be expected to exhibit such cutting performance, and it can only be used under conditions where there is little heat generation. On the other hand, in the latter CBN-based ultra-high pressure deposited material, ``because the binder phase is composed of ceramic,
It exhibits excellent wear resistance and welding resistance under conditions that generate a large amount of heat, but on the other hand, it cannot avoid insufficient toughness and thermal shock resistance. Pitting and chipping are likely to occur under cutting conditions where a large impact force is applied to the cutting edge.
Therefore, from the above-mentioned viewpoint, the present inventors have developed a carbon fiber that exhibits excellent cutting performance under severe cutting conditions that generate a large amount of heat and under cutting conditions that apply a large impact force to the cutting edge.
Develop a BN-based ultra-high-pressure sintered material. As a result of research, it was found that CBN-based ultra-high-pressure sintered material contains carbides and nitrides of cape and string Z group metals of the periodic table as dispersed phase forming components in weight percent. and carbonitrides, carbides of metals in the same sheath group, and one or more of these two or more types of solid ports (hereinafter collectively referred to as metal carbonitrides) :10~60%,
Similarly to Z, a carbide of AI as a dispersed phase forming component,
One or two of nitrides, carbonitrides, and acclimated substances
Species or more (hereinafter collectively referred to as carbon/nitrogen/shelf of AI): 1 to 30%, Ni as a binder phase forming component,
One or more of Co and Fe (hereinafter collectively referred to as iron group metals): 1 to 10%, and one of Pd, Ru, and Rh as a bonding phase forming component Species or two or more (hereinafter collectively referred to as platinum group metals): 1 to 10%, containing 2, and the remainder being CBN as a dispersed phase forming component (containing 30 to 9% by volume) and unavoidable When composed of impurities, the resulting CBN-based ultra-high pressure sintered twill material has excellent wear resistance, toughness, welding resistance, and thermal shock resistance. They found that when used as a cutting tool for cutting super alloys and high-hardness steel, it exhibits excellent cutting performance even under the harshest cutting conditions.
この発明は、上記知見にもとづいてなされたも3のであ
って、以下に成分組成範囲を上記の通りに限定した理由
を説明する。This invention was made based on the above findings, and the reason why the component composition range was limited as described above will be explained below.
{a} 金属の炭。{a} Metallic charcoal.
窒化物これらの成分には、分散相を形成して材料に靭一
性と耐熔着性を付与する作用があるが、その4含有量が
10%未満では所望のすぐた鞠性および耐熔着性を確保
することができず、一方60%を越えて含有させると材
料の耐摩耗性が劣化するようになることから、その含有
量を10〜60%と定めた。Nitride These components have the effect of forming a dispersed phase to impart toughness and welding resistance to the material, but if their content is less than 10%, the desired immediate balling and welding resistance may not be achieved. Adhesion cannot be ensured, and if the content exceeds 60%, the wear resistance of the material deteriorates, so the content was set at 10 to 60%.
なお、20〜45%を含有させた場合に最もすぐれた特
性が得られるものである。{b} 山の炭・窒・棚化物
これらの成分も金属の炭・窒化物と同様に分散相を形成
するが、この成分の含有によって材料は著しくすぐれた
耐熱衝撃性をもつようになる。Note that the best properties are obtained when the content is 20 to 45%. {b} Mountain carbon, nitride, and shelving These components also form a dispersed phase in the same way as metal carbon and nitrides, and the inclusion of these components provides the material with significantly superior thermal shock resistance.
しかし、その含有量が1%未満では所望の耐熱衝撃性を
確保することができないので、1%以上の含有が必要で
あるが、その含有量が30%を越えると、CBN粒子が
粒成長し易くなり、この結果材料の耐摩耗性が低下する
ようになることから、30%を越えて含有させてはなら
ない。{c} 鉄族金属
これらの成分には、分散相を形成するCBN粒子、金属
の炭・窒化物粒子、およびAIの炭・窒・棚化物粒子の
間に廻り込んで、材料製造時には焼結性を一段と改善し
、かつ材料中においては結合相を形成して材料の鞠性を
向上させる作用があるが、その含有量が1%未満では前
記作用に所望の効果が得られず、材料は鋤性の劣ったも
のとなり、一方10%を越えて含有させると、相対的に
結合相が多くなりすぎて耐摩耗性および耐凝着性が劣化
するようになることからLその含有量を1〜10%と定
めた。However, if the content is less than 1%, the desired thermal shock resistance cannot be secured, so it is necessary to contain more than 1%, but if the content exceeds 30%, the CBN particles will grow. The content should not exceed 30%, as this may lead to a decrease in the wear resistance of the material. {c} Iron group metals These components are mixed between the CBN particles forming the dispersed phase, the metal carbon/nitride particles, and the carbon/nitrogen/shelfide particles of AI, and are sintered during material production. However, if the content is less than 1%, the desired effect will not be obtained, and the material will not have the desired effect. On the other hand, if the content exceeds 10%, the binder phase becomes relatively too large and wear resistance and adhesion resistance deteriorate. It was set at ~10%.
‘d} 白金族金属
これらの成分には、鉄族金属と同様に競絹性を促進し、
かつ結合相を形成して材料の鞠性を向上させる作用があ
るほか、結合相の耐熱性(耐高温酸化性)・および耐漆
着性を向上させ、この結果として材料の耐摩耗性、特に
切削工具刃先の耐クレータ摩耗性を向上させる作用があ
るが、その含有量が1%未満では、これらの作用に所望
の効果が得られず、一方10%を越えて含有させると、
相対的に結合相が多くなりすぎて耐摩耗性、特に刃先の
逃げ面摩耗が増大する傾向が現われるようになることか
ら、その含有量を1〜10%と定めた。'd} Platinum group metals These components, like iron group metals, promote silk competitiveness,
In addition to forming a binder phase and improving the balliness of the material, it also improves the heat resistance (high temperature oxidation resistance) and lacquer resistance of the binder phase, and as a result, the wear resistance of the material, especially It has the effect of improving the crater wear resistance of the cutting tool edge, but if its content is less than 1%, the desired effects cannot be obtained, while if it is contained in excess of 10%,
Since a relatively large amount of binder phase tends to increase wear resistance, particularly flank wear of the cutting edge, the content was set at 1 to 10%.
‘e} CBNの容量%
この成分は著しく高い硬さ並びにすぐれた耐熱性をもつ
ことから、この成分の含有によって材料はきわめてすぐ
れた耐摩耗性および耐熱性を有するようになるが、その
含有量が3畔容量%未満では所望の前記特性を確保する
ことができず、一方90容量%を越えて含有させると「
CBN粒子同志の接触割合が多くなりすぎて、材料が腕
化するようになるばかりでなく、暁結性も劣化し、材料
中に微細なポア−が残存し易くなって耐摩耗性の劣化を
招くようになることから、その含有量を30〜9破き量
%と定めた。'e} Volume % of CBN This component has extremely high hardness and excellent heat resistance, so the inclusion of this component gives the material extremely excellent wear resistance and heat resistance. If the content is less than 3% by volume, the desired characteristics cannot be secured, while if it is contained in excess of 90% by volume,
If the contact ratio between CBN particles becomes too high, not only will the material form into arms, but also the agglomeration property will deteriorate, making it easier for fine pores to remain in the material, resulting in deterioration of wear resistance. Therefore, the content was set at 30 to 9% by amount of tearing.
なお、このCBNの含有量を容量%で示したのは、例え
ばCoとCBNの比重を比較した場合、Co:8.71
タ′の、CBN:3.48タ′洲を示し、両者の差が著
しく、したがって、その含有量が重量的に少なくても実
質的に特性に影響を及ぼす容量割合ではかなりの量にな
るからである。また、この発明の切削工具用CBN基超
高圧焼結材料は、実用に際して、単独で、あるいは炭化
タングステン基超硬合金や炭化チタン基サーメットなど
の高剛性材料と複合した状態で、スローアウェイチップ
として使用することができ、さらにこれらのチップを炭
化タングステン基超硬合金や焼入れ鋼などからなるホル
ダの先端部にろう付けにより取り付けた状態で使用する
ことができる。The CBN content expressed in volume % is, for example, when comparing the specific gravity of Co and CBN, Co: 8.71
CBN: 3.48 Ta', and the difference between the two is significant. Therefore, even if the content is small in terms of weight, it becomes a considerable amount in terms of volume ratio that substantially affects the characteristics. It is. In addition, in practical use, the CBN-based ultra-high pressure sintered material for cutting tools of the present invention can be used alone or in combination with a high-rigidity material such as tungsten carbide-based cemented carbide or titanium carbide-based cermet as an indexable tip. Furthermore, these chips can be used in a state where they are attached by brazing to the tip of a holder made of tungsten carbide-based cemented carbide, hardened steel, or the like.
つぎに、この発明のCBN基暁結材料を実施例により具
体的に説明する。実施例
原料粉末として、平均粒径:6仏のを有するCBN粉末
、いずれも1仏肌の平均粒径を有するTIC粉末、Zr
C粉末、HfC粉末、VC粉末、N比粉末、TaC粉末
、Cr3C2粉末、Mo2C粉末、WC粉末、TIN粉
末、ZrN粉末、HfN粉末、VN粉末、NbN粉末、
TaN粉末、TICN粉末、ZにN粉末、VCN粉末、
TaCN粉末、(Ti、W)C粉末、(Zr、Ta)C
粉末、(Tj、Zt)C粉末、(Ti、Ta、W)C粉
末、(Ti、Zr)N粉末、(Nb、Ta)N粉末、(
Ti、W)CN粉末、(Ti、Zr)CN粉末、(Zr
、Mo、W)CN粉末、(Ti、Ta、W)CN粉末、
M4C3粉末、AIN粉末、AiCN粉末、AIB2粉
末、Pd粉末「R叫粉末、およびRh粉末、いずれも同
2仏ののCo粉末、Ni粉末、およびFe粉末を用意し
、これら原料粉末をそれぞれ第1表に示される配合組成
に配合し、通常の条件でボールミルにて混合した後、2
℃n/流の圧力で直径:15肌?×厚さ:1.5伽の寸
法をもつた円板状圧粉体に成形し、ついでこれらの圧粉
体を、基材となるWC:84%、Co:16%からなる
配合組成を有し、かつ同一の条件で成形した直径:15
肋?×厚さ:3側の寸法をもった円板状圧粉体と重ね合
せた状態で、公知の超高圧高温発生装置の容器内に挿入
し、圧力:4弧b、温度:1300℃、保持時間:5分
の条件で超高圧焼結することによって、実質的に配合組
成と同一の成分組成をもった本発明超高圧暁結材料1〜
28および比較超高圧焼結材料1〜10をそれぞれ製造
した。Next, the CBN-based deposited material of the present invention will be specifically explained with reference to Examples. Examples of raw material powders include CBN powder having an average particle size of 6 mm, TIC powder having an average particle size of 1 mm, and Zr.
C powder, HfC powder, VC powder, N ratio powder, TaC powder, Cr3C2 powder, Mo2C powder, WC powder, TIN powder, ZrN powder, HfN powder, VN powder, NbN powder,
TaN powder, TICN powder, N powder for Z, VCN powder,
TaCN powder, (Ti, W)C powder, (Zr, Ta)C
powder, (Tj, Zt) C powder, (Ti, Ta, W) C powder, (Ti, Zr) N powder, (Nb, Ta) N powder, (
Ti, W) CN powder, (Ti, Zr) CN powder, (Zr
, Mo, W) CN powder, (Ti, Ta, W) CN powder,
M4C3 powder, AIN powder, AiCN powder, AIB2 powder, Pd powder, R powder, Rh powder, Co powder, Ni powder, and Fe powder of the same type are prepared, and these raw material powders are After blending with the composition shown in the table and mixing in a ball mill under normal conditions, 2
Diameter at ℃n/flow pressure: 15 skin? × Thickness: Formed into a disc-shaped green compact with a dimension of 1.5 mm, and then these green compacts were mixed with a base material having a composition of WC: 84% and Co: 16%. Diameter molded under the same conditions: 15
Ribs? × Thickness: Insert into the container of a known ultra-high pressure and high temperature generator in a stacked state with a disc-shaped powder compact with dimensions of 3 side, pressure: 4 arc b, temperature: 1300°C, and maintained. Ultra-high-pressure sintering material 1 of the present invention having substantially the same composition as the blended composition by ultra-high-pressure sintering under conditions of time: 5 minutes
No. 28 and comparative ultra-high pressure sintered materials 1 to 10 were manufactured, respectively.
なお、比較超高圧焼結材料1〜10は、いずれも構成成
分のうちのいずれかの成分含有量(第1表に※印を付し
たもの)がこの発明の範囲から外れた組成をもつもので
ある。Q船
縦
S
聡
船
ついで、この結果得られた本発明超高圧焼給材料1〜2
8および比較超高圧焼結材料1〜10について、ビッカ
ース硬さを測定すると共に、靭性を評価する目的で、ビ
ッカース硬さ測定後の圧痕の先端から発生した亀裂長さ
尊こもとづいて破壊鞠性値Kcを求め、さらに耐熱衝撃
性を評価する目的で、その表面に放電を施し、放電後形
成された亀裂本数を測定した。Comparative ultra-high pressure sintered materials 1 to 10 all have compositions in which the content of one of the constituent components (those marked with * in Table 1) is outside the scope of this invention. It is. QFune vertical S SatoshiFune Next, the ultra-high pressure combustion materials 1 to 2 of the present invention obtained as a result
8 and Comparative ultra-high pressure sintered materials 1 to 10, in order to measure the Vickers hardness and evaluate the toughness, fracture balling properties were determined based on the length of the crack that occurred from the tip of the indentation after the Vickers hardness measurement. In order to determine the value Kc and further evaluate the thermal shock resistance, an electrical discharge was applied to the surface, and the number of cracks formed after the electrical discharge was measured.
また、耐摩耗性および耐溶着性を評価する目的で、被削
,材:SKD−11(硬さ:ロックウェル硬さCスケー
ル60)、切込み:0.2側、送り;01側/rev.
切削速度:120の′min、切削油なしの条件で切削
試験を行ない、切刃の逃げ面摩耗が0.2肋に到るまで
の切削時間を測定した。これらの結果を第1表に合せて
示した。第1表に示される結果から、本発明超高圧焼結
材料1〜28は、いずれもすぐれた鞠性、耐熱衝撃性、
耐摩耗性、および耐溶着性を有し、したがって高速度鋼
などの難肖り村においてもすぐれた切削性能を示すのに
対して、比較超高圧焼結材料1〜10に見られるように
、構成成分のうちのいずれかの成分含有量でもこの発明
の範囲から外れると、前記の特性のうち、少なくともい
ずれかの特性が劣ったものになり、良好な切削性能が得
られないことが明らかである。上述のように、この発明
のCBN基超高圧焼結材料は、すぐれた鞠性、耐熱衝撃
性、耐摩耗性、および耐溶着性をすべて兼ね備えている
ので、これらの特性が必要とされる難削材の切削に切削
工具として用いた場合にきわめて長期に亘つてすぐれた
切削性能を安定的に発揮するのである。In addition, for the purpose of evaluating wear resistance and welding resistance, workpiece material: SKD-11 (hardness: Rockwell hardness C scale 60), depth of cut: 0.2 side, feed: 01 side/rev.
A cutting test was conducted at a cutting speed of 120 min without cutting oil, and the cutting time until the flank wear of the cutting edge reached 0.2 ribs was measured. These results are also shown in Table 1. From the results shown in Table 1, the ultra-high pressure sintered materials 1 to 28 of the present invention all have excellent ballability, thermal shock resistance,
It has wear resistance and welding resistance, and therefore shows excellent cutting performance even on difficult materials such as high-speed steel, but as seen in comparative ultra-high pressure sintered materials 1 to 10, It is clear that if the content of any of the constituent components falls outside the scope of the present invention, at least one of the above characteristics will be inferior and good cutting performance will not be obtained. be. As mentioned above, the CBN-based ultra-high pressure sintered material of the present invention has excellent ballability, thermal shock resistance, abrasion resistance, and welding resistance, so it can be used in difficult situations where these properties are required. When used as a cutting tool for cutting materials, it stably exhibits excellent cutting performance over an extremely long period of time.
Claims (1)
、および炭窒化物、並びに同6a族金属の炭化物、さら
にこれらの2種以上の固溶体のうちの1種または2種以
上:10〜60%、 Alの炭化物、窒化物、炭窒化物
、および硼化物のうちの1種または2種以上:1〜30
%、 Ni、Co、およびFeのうちの1種または2種
以上:1〜10%、 Pd、Ru、およびRhのうちの
1種または2種以上:1〜10%、を含有し、残りが立
方晶窒化硼素(ただし30〜90容量%含有)と不可避
不純物からなる組成(以上重量%)を有することを特徴
とする切削工具用立方晶窒化硼素基超高圧焼結材料。1. Carbides, nitrides, and carbonitrides of metals in groups 4a and 5a of the periodic table, carbides of metals in group 6a of the periodic table, and one or more solid solutions of two or more of these: 10 to 60 %, one or more of Al carbides, nitrides, carbonitrides, and borides: 1 to 30
%, one or more of Ni, Co, and Fe: 1 to 10%, one or more of Pd, Ru, and Rh: 1 to 10%, and the remainder is A cubic boron nitride-based ultra-high pressure sintered material for cutting tools, characterized by having a composition (the above weight %) of cubic boron nitride (containing 30 to 90% by volume) and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57151075A JPS607022B2 (en) | 1982-08-31 | 1982-08-31 | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57151075A JPS607022B2 (en) | 1982-08-31 | 1982-08-31 | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5941445A JPS5941445A (en) | 1984-03-07 |
JPS607022B2 true JPS607022B2 (en) | 1985-02-21 |
Family
ID=15510758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57151075A Expired JPS607022B2 (en) | 1982-08-31 | 1982-08-31 | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS607022B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111500913A (en) * | 2020-03-25 | 2020-08-07 | 成都美奢锐新材料有限公司 | Titanium carbonitride cermet material for extrusion die and preparation method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4828612A (en) * | 1987-12-07 | 1989-05-09 | Gte Valenite Corporation | Surface modified cemented carbides |
US4913877A (en) * | 1987-12-07 | 1990-04-03 | Gte Valenite Corporation | Surface modified cemented carbides |
US5603075A (en) * | 1995-03-03 | 1997-02-11 | Kennametal Inc. | Corrosion resistant cermet wear parts |
KR20040101476A (en) | 2002-04-19 | 2004-12-02 | 미쓰비시 마테리알 가부시키가이샤 | Cubic boron nitride base ultra-high pressure sintered material cutting tip |
JP7400692B2 (en) * | 2020-10-26 | 2023-12-19 | 株式会社タンガロイ | Cubic boron nitride sintered body and tool having cubic boron nitride sintered body |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5377811A (en) * | 1976-12-21 | 1978-07-10 | Sumitomo Electric Ind Ltd | Sintered material for tools of high hardness and its preparation |
JPS55113859A (en) * | 1979-02-26 | 1980-09-02 | Sumitomo Electric Ind Ltd | Sintered body for cutting tool and manufacture thereof |
JPS55126581A (en) * | 1979-03-19 | 1980-09-30 | De Beers Ind Diamond | Abrasive molded body and its manufacture |
JPS568914A (en) * | 1979-07-04 | 1981-01-29 | Toshiba Corp | Low-frequency dispersed type delay line |
JPS56156738A (en) * | 1981-03-16 | 1981-12-03 | Sumitomo Electric Ind Ltd | Sintered body for high hardness tool and its manufacture |
-
1982
- 1982-08-31 JP JP57151075A patent/JPS607022B2/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5377811A (en) * | 1976-12-21 | 1978-07-10 | Sumitomo Electric Ind Ltd | Sintered material for tools of high hardness and its preparation |
JPS55113859A (en) * | 1979-02-26 | 1980-09-02 | Sumitomo Electric Ind Ltd | Sintered body for cutting tool and manufacture thereof |
JPS55126581A (en) * | 1979-03-19 | 1980-09-30 | De Beers Ind Diamond | Abrasive molded body and its manufacture |
JPS568914A (en) * | 1979-07-04 | 1981-01-29 | Toshiba Corp | Low-frequency dispersed type delay line |
JPS56156738A (en) * | 1981-03-16 | 1981-12-03 | Sumitomo Electric Ind Ltd | Sintered body for high hardness tool and its manufacture |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111500913A (en) * | 2020-03-25 | 2020-08-07 | 成都美奢锐新材料有限公司 | Titanium carbonitride cermet material for extrusion die and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS5941445A (en) | 1984-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4645821B2 (en) | Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JPS607022B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools | |
JP2007105841A (en) | Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut | |
JPS6225631B2 (en) | ||
JP4756445B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JPH10237650A (en) | Wc base cemented carbide and its production | |
JPS605666B2 (en) | Ultra-high pressure sintered material for cutting tools | |
JPS6020456B2 (en) | High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools | |
JPH10193206A (en) | Cutting tool whose cutting edge piece has excellent brazing joining strength | |
JPS6056783B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools | |
JP7400692B2 (en) | Cubic boron nitride sintered body and tool having cubic boron nitride sintered body | |
JPS602378B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools | |
JPS629551B2 (en) | ||
JP7087596B2 (en) | Cutting tools | |
JP4484500B2 (en) | Surface coated cutting tool | |
JPH075384B2 (en) | Cubic boron nitride based sintered body | |
JPS5852552B2 (en) | Tough cermet for cutting tools | |
JPS6141873B2 (en) | ||
JPH10193210A (en) | Cemented carbide-made cutting tool having excellent brazing connection strength in cutting edge piece | |
JPS602379B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools | |
JPS6245290B2 (en) | ||
JP3358477B2 (en) | Cutting tool with excellent brazing joint strength with cutting edge piece | |
JPS6017017B2 (en) | Tungsten carbide-based sintered cemented carbide | |
JPS6067637A (en) | Cermet for cutting tool or hot processing tool | |
JPS6023181B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools |